Properties

Label 896.2.z.a.607.5
Level $896$
Weight $2$
Character 896.607
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [896,2,Mod(31,896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(896, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("896.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 607.5
Character \(\chi\) \(=\) 896.607
Dual form 896.2.z.a.31.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.282507 + 1.05433i) q^{3} +(1.39922 - 0.374919i) q^{5} +(0.298614 + 2.62885i) q^{7} +(1.56627 + 0.904287i) q^{9} +(1.42219 - 5.30770i) q^{11} +(1.84531 - 1.84531i) q^{13} +1.58116i q^{15} +(5.69424 - 3.28757i) q^{17} +(-3.24453 + 0.869370i) q^{19} +(-2.85604 - 0.427830i) q^{21} +(0.256173 - 0.443704i) q^{23} +(-2.51288 + 1.45081i) q^{25} +(-3.71137 + 3.71137i) q^{27} +(2.30263 + 2.30263i) q^{29} +(3.79637 + 6.57551i) q^{31} +(5.19429 + 2.99893i) q^{33} +(1.40343 + 3.56637i) q^{35} +(-1.07603 - 4.01582i) q^{37} +(1.42426 + 2.46689i) q^{39} -0.453189 q^{41} +(3.40842 + 3.40842i) q^{43} +(2.53059 + 0.678070i) q^{45} +(1.71468 - 2.96992i) q^{47} +(-6.82166 + 1.57002i) q^{49} +(1.85753 + 6.93238i) q^{51} +(1.37226 + 0.367696i) q^{53} -7.95984i q^{55} -3.66642i q^{57} +(6.57560 + 1.76193i) q^{59} +(-1.30846 - 4.88324i) q^{61} +(-1.90952 + 4.38752i) q^{63} +(1.89015 - 3.27384i) q^{65} +(-6.19818 - 1.66080i) q^{67} +(0.395441 + 0.395441i) q^{69} -6.44865 q^{71} +(7.43995 + 12.8864i) q^{73} +(-0.819730 - 3.05927i) q^{75} +(14.3778 + 2.15377i) q^{77} +(3.33780 + 1.92708i) q^{79} +(-0.151668 - 0.262697i) q^{81} +(2.44051 + 2.44051i) q^{83} +(6.73491 - 6.73491i) q^{85} +(-3.07824 + 1.77722i) q^{87} +(3.81344 - 6.60506i) q^{89} +(5.40208 + 4.30001i) q^{91} +(-8.00527 + 2.14500i) q^{93} +(-4.21387 + 2.43288i) q^{95} -11.2152i q^{97} +(7.02722 - 7.02722i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{11} - 12 q^{17} - 6 q^{19} + 10 q^{21} + 12 q^{23} + 24 q^{29} - 12 q^{33} - 2 q^{35} - 6 q^{37} + 4 q^{39} - 12 q^{45} - 8 q^{49} - 34 q^{51} - 6 q^{53} + 42 q^{59}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.282507 + 1.05433i −0.163106 + 0.608719i 0.835169 + 0.549994i \(0.185370\pi\)
−0.998274 + 0.0587246i \(0.981297\pi\)
\(4\) 0 0
\(5\) 1.39922 0.374919i 0.625749 0.167669i 0.0680093 0.997685i \(-0.478335\pi\)
0.557740 + 0.830016i \(0.311669\pi\)
\(6\) 0 0
\(7\) 0.298614 + 2.62885i 0.112866 + 0.993610i
\(8\) 0 0
\(9\) 1.56627 + 0.904287i 0.522090 + 0.301429i
\(10\) 0 0
\(11\) 1.42219 5.30770i 0.428807 1.60033i −0.326658 0.945143i \(-0.605923\pi\)
0.755465 0.655189i \(-0.227411\pi\)
\(12\) 0 0
\(13\) 1.84531 1.84531i 0.511798 0.511798i −0.403279 0.915077i \(-0.632130\pi\)
0.915077 + 0.403279i \(0.132130\pi\)
\(14\) 0 0
\(15\) 1.58116i 0.408253i
\(16\) 0 0
\(17\) 5.69424 3.28757i 1.38106 0.797353i 0.388771 0.921334i \(-0.372900\pi\)
0.992285 + 0.123982i \(0.0395664\pi\)
\(18\) 0 0
\(19\) −3.24453 + 0.869370i −0.744347 + 0.199447i −0.611009 0.791624i \(-0.709236\pi\)
−0.133338 + 0.991071i \(0.542569\pi\)
\(20\) 0 0
\(21\) −2.85604 0.427830i −0.623238 0.0933601i
\(22\) 0 0
\(23\) 0.256173 0.443704i 0.0534157 0.0925187i −0.838081 0.545546i \(-0.816322\pi\)
0.891497 + 0.453027i \(0.149656\pi\)
\(24\) 0 0
\(25\) −2.51288 + 1.45081i −0.502576 + 0.290162i
\(26\) 0 0
\(27\) −3.71137 + 3.71137i −0.714254 + 0.714254i
\(28\) 0 0
\(29\) 2.30263 + 2.30263i 0.427587 + 0.427587i 0.887806 0.460219i \(-0.152229\pi\)
−0.460219 + 0.887806i \(0.652229\pi\)
\(30\) 0 0
\(31\) 3.79637 + 6.57551i 0.681848 + 1.18100i 0.974416 + 0.224751i \(0.0721568\pi\)
−0.292568 + 0.956245i \(0.594510\pi\)
\(32\) 0 0
\(33\) 5.19429 + 2.99893i 0.904211 + 0.522046i
\(34\) 0 0
\(35\) 1.40343 + 3.56637i 0.237223 + 0.602827i
\(36\) 0 0
\(37\) −1.07603 4.01582i −0.176899 0.660196i −0.996220 0.0868615i \(-0.972316\pi\)
0.819321 0.573334i \(-0.194350\pi\)
\(38\) 0 0
\(39\) 1.42426 + 2.46689i 0.228064 + 0.395018i
\(40\) 0 0
\(41\) −0.453189 −0.0707762 −0.0353881 0.999374i \(-0.511267\pi\)
−0.0353881 + 0.999374i \(0.511267\pi\)
\(42\) 0 0
\(43\) 3.40842 + 3.40842i 0.519779 + 0.519779i 0.917504 0.397726i \(-0.130200\pi\)
−0.397726 + 0.917504i \(0.630200\pi\)
\(44\) 0 0
\(45\) 2.53059 + 0.678070i 0.377238 + 0.101081i
\(46\) 0 0
\(47\) 1.71468 2.96992i 0.250112 0.433207i −0.713444 0.700712i \(-0.752866\pi\)
0.963556 + 0.267505i \(0.0861992\pi\)
\(48\) 0 0
\(49\) −6.82166 + 1.57002i −0.974523 + 0.224289i
\(50\) 0 0
\(51\) 1.85753 + 6.93238i 0.260106 + 0.970727i
\(52\) 0 0
\(53\) 1.37226 + 0.367696i 0.188495 + 0.0505070i 0.351831 0.936063i \(-0.385559\pi\)
−0.163337 + 0.986570i \(0.552226\pi\)
\(54\) 0 0
\(55\) 7.95984i 1.07330i
\(56\) 0 0
\(57\) 3.66642i 0.485629i
\(58\) 0 0
\(59\) 6.57560 + 1.76193i 0.856070 + 0.229383i 0.660055 0.751218i \(-0.270533\pi\)
0.196015 + 0.980601i \(0.437200\pi\)
\(60\) 0 0
\(61\) −1.30846 4.88324i −0.167531 0.625235i −0.997704 0.0677284i \(-0.978425\pi\)
0.830173 0.557506i \(-0.188242\pi\)
\(62\) 0 0
\(63\) −1.90952 + 4.38752i −0.240577 + 0.552775i
\(64\) 0 0
\(65\) 1.89015 3.27384i 0.234445 0.406070i
\(66\) 0 0
\(67\) −6.19818 1.66080i −0.757229 0.202899i −0.140507 0.990080i \(-0.544873\pi\)
−0.616722 + 0.787181i \(0.711540\pi\)
\(68\) 0 0
\(69\) 0.395441 + 0.395441i 0.0476055 + 0.0476055i
\(70\) 0 0
\(71\) −6.44865 −0.765314 −0.382657 0.923890i \(-0.624991\pi\)
−0.382657 + 0.923890i \(0.624991\pi\)
\(72\) 0 0
\(73\) 7.43995 + 12.8864i 0.870780 + 1.50823i 0.861191 + 0.508281i \(0.169719\pi\)
0.00958835 + 0.999954i \(0.496948\pi\)
\(74\) 0 0
\(75\) −0.819730 3.05927i −0.0946543 0.353255i
\(76\) 0 0
\(77\) 14.3778 + 2.15377i 1.63850 + 0.245445i
\(78\) 0 0
\(79\) 3.33780 + 1.92708i 0.375532 + 0.216813i 0.675873 0.737019i \(-0.263767\pi\)
−0.300341 + 0.953832i \(0.597100\pi\)
\(80\) 0 0
\(81\) −0.151668 0.262697i −0.0168520 0.0291886i
\(82\) 0 0
\(83\) 2.44051 + 2.44051i 0.267881 + 0.267881i 0.828246 0.560365i \(-0.189339\pi\)
−0.560365 + 0.828246i \(0.689339\pi\)
\(84\) 0 0
\(85\) 6.73491 6.73491i 0.730503 0.730503i
\(86\) 0 0
\(87\) −3.07824 + 1.77722i −0.330022 + 0.190538i
\(88\) 0 0
\(89\) 3.81344 6.60506i 0.404223 0.700135i −0.590007 0.807398i \(-0.700875\pi\)
0.994231 + 0.107262i \(0.0342085\pi\)
\(90\) 0 0
\(91\) 5.40208 + 4.30001i 0.566292 + 0.450763i
\(92\) 0 0
\(93\) −8.00527 + 2.14500i −0.830107 + 0.222427i
\(94\) 0 0
\(95\) −4.21387 + 2.43288i −0.432334 + 0.249608i
\(96\) 0 0
\(97\) 11.2152i 1.13873i −0.822085 0.569365i \(-0.807189\pi\)
0.822085 0.569365i \(-0.192811\pi\)
\(98\) 0 0
\(99\) 7.02722 7.02722i 0.706263 0.706263i
\(100\) 0 0
\(101\) −5.03457 + 18.7893i −0.500959 + 1.86960i −0.00725520 + 0.999974i \(0.502309\pi\)
−0.493704 + 0.869630i \(0.664357\pi\)
\(102\) 0 0
\(103\) −6.15035 3.55091i −0.606012 0.349881i 0.165391 0.986228i \(-0.447111\pi\)
−0.771403 + 0.636347i \(0.780445\pi\)
\(104\) 0 0
\(105\) −4.15662 + 0.472156i −0.405645 + 0.0460777i
\(106\) 0 0
\(107\) −11.5830 + 3.10366i −1.11977 + 0.300042i −0.770791 0.637088i \(-0.780139\pi\)
−0.348981 + 0.937130i \(0.613472\pi\)
\(108\) 0 0
\(109\) −2.68591 + 10.0240i −0.257264 + 0.960122i 0.709553 + 0.704652i \(0.248897\pi\)
−0.966817 + 0.255470i \(0.917770\pi\)
\(110\) 0 0
\(111\) 4.53799 0.430727
\(112\) 0 0
\(113\) −13.4601 −1.26622 −0.633109 0.774062i \(-0.718222\pi\)
−0.633109 + 0.774062i \(0.718222\pi\)
\(114\) 0 0
\(115\) 0.192088 0.716883i 0.0179123 0.0668497i
\(116\) 0 0
\(117\) 4.55896 1.22157i 0.421476 0.112934i
\(118\) 0 0
\(119\) 10.3429 + 13.9876i 0.948132 + 1.28224i
\(120\) 0 0
\(121\) −16.6227 9.59715i −1.51116 0.872468i
\(122\) 0 0
\(123\) 0.128029 0.477811i 0.0115440 0.0430828i
\(124\) 0 0
\(125\) −8.09362 + 8.09362i −0.723916 + 0.723916i
\(126\) 0 0
\(127\) 13.7356i 1.21884i −0.792849 0.609418i \(-0.791403\pi\)
0.792849 0.609418i \(-0.208597\pi\)
\(128\) 0 0
\(129\) −4.55651 + 2.63070i −0.401178 + 0.231620i
\(130\) 0 0
\(131\) 2.81460 0.754169i 0.245912 0.0658920i −0.133757 0.991014i \(-0.542704\pi\)
0.379670 + 0.925122i \(0.376038\pi\)
\(132\) 0 0
\(133\) −3.25430 8.26977i −0.282184 0.717080i
\(134\) 0 0
\(135\) −3.80156 + 6.58449i −0.327186 + 0.566703i
\(136\) 0 0
\(137\) 6.25695 3.61245i 0.534568 0.308633i −0.208307 0.978064i \(-0.566795\pi\)
0.742874 + 0.669431i \(0.233462\pi\)
\(138\) 0 0
\(139\) 0.708981 0.708981i 0.0601350 0.0601350i −0.676400 0.736535i \(-0.736461\pi\)
0.736535 + 0.676400i \(0.236461\pi\)
\(140\) 0 0
\(141\) 2.64687 + 2.64687i 0.222906 + 0.222906i
\(142\) 0 0
\(143\) −7.16997 12.4188i −0.599583 1.03851i
\(144\) 0 0
\(145\) 4.08518 + 2.35858i 0.339255 + 0.195869i
\(146\) 0 0
\(147\) 0.271845 7.63583i 0.0224214 0.629793i
\(148\) 0 0
\(149\) −2.46397 9.19566i −0.201856 0.753338i −0.990385 0.138340i \(-0.955823\pi\)
0.788529 0.614998i \(-0.210843\pi\)
\(150\) 0 0
\(151\) −3.55073 6.15004i −0.288954 0.500483i 0.684606 0.728913i \(-0.259974\pi\)
−0.973560 + 0.228430i \(0.926641\pi\)
\(152\) 0 0
\(153\) 11.8916 0.961381
\(154\) 0 0
\(155\) 7.77723 + 7.77723i 0.624683 + 0.624683i
\(156\) 0 0
\(157\) −8.47741 2.27152i −0.676571 0.181287i −0.0958582 0.995395i \(-0.530560\pi\)
−0.580713 + 0.814108i \(0.697226\pi\)
\(158\) 0 0
\(159\) −0.775348 + 1.34294i −0.0614891 + 0.106502i
\(160\) 0 0
\(161\) 1.24293 + 0.540942i 0.0979563 + 0.0426322i
\(162\) 0 0
\(163\) −3.28686 12.2667i −0.257447 0.960805i −0.966713 0.255864i \(-0.917640\pi\)
0.709266 0.704941i \(-0.249027\pi\)
\(164\) 0 0
\(165\) 8.39231 + 2.24871i 0.653340 + 0.175062i
\(166\) 0 0
\(167\) 21.5280i 1.66588i −0.553361 0.832942i \(-0.686655\pi\)
0.553361 0.832942i \(-0.313345\pi\)
\(168\) 0 0
\(169\) 6.18963i 0.476126i
\(170\) 0 0
\(171\) −5.86798 1.57232i −0.448736 0.120238i
\(172\) 0 0
\(173\) −5.18431 19.3481i −0.394156 1.47101i −0.823213 0.567733i \(-0.807821\pi\)
0.429057 0.903278i \(-0.358846\pi\)
\(174\) 0 0
\(175\) −4.56434 6.17274i −0.345032 0.466615i
\(176\) 0 0
\(177\) −3.71531 + 6.43510i −0.279260 + 0.483692i
\(178\) 0 0
\(179\) −6.57967 1.76302i −0.491787 0.131774i 0.00439858 0.999990i \(-0.498600\pi\)
−0.496186 + 0.868216i \(0.665267\pi\)
\(180\) 0 0
\(181\) 6.32019 + 6.32019i 0.469776 + 0.469776i 0.901842 0.432066i \(-0.142215\pi\)
−0.432066 + 0.901842i \(0.642215\pi\)
\(182\) 0 0
\(183\) 5.51821 0.407917
\(184\) 0 0
\(185\) −3.01121 5.21558i −0.221389 0.383457i
\(186\) 0 0
\(187\) −9.35112 34.8989i −0.683822 2.55206i
\(188\) 0 0
\(189\) −10.8649 8.64836i −0.790305 0.629076i
\(190\) 0 0
\(191\) −11.5374 6.66112i −0.834817 0.481982i 0.0206820 0.999786i \(-0.493416\pi\)
−0.855499 + 0.517804i \(0.826750\pi\)
\(192\) 0 0
\(193\) 5.25772 + 9.10664i 0.378459 + 0.655511i 0.990838 0.135054i \(-0.0431207\pi\)
−0.612379 + 0.790564i \(0.709787\pi\)
\(194\) 0 0
\(195\) 2.91773 + 2.91773i 0.208943 + 0.208943i
\(196\) 0 0
\(197\) −14.0642 + 14.0642i −1.00203 + 1.00203i −0.00203129 + 0.999998i \(0.500647\pi\)
−0.999998 + 0.00203129i \(0.999353\pi\)
\(198\) 0 0
\(199\) 20.9503 12.0957i 1.48513 0.857439i 0.485272 0.874363i \(-0.338721\pi\)
0.999857 + 0.0169240i \(0.00538734\pi\)
\(200\) 0 0
\(201\) 3.50206 6.06575i 0.247017 0.427845i
\(202\) 0 0
\(203\) −5.36565 + 6.74085i −0.376595 + 0.473115i
\(204\) 0 0
\(205\) −0.634110 + 0.169909i −0.0442882 + 0.0118670i
\(206\) 0 0
\(207\) 0.802472 0.463307i 0.0557757 0.0322021i
\(208\) 0 0
\(209\) 18.4574i 1.27673i
\(210\) 0 0
\(211\) 8.81296 8.81296i 0.606709 0.606709i −0.335375 0.942085i \(-0.608863\pi\)
0.942085 + 0.335375i \(0.108863\pi\)
\(212\) 0 0
\(213\) 1.82179 6.79902i 0.124827 0.465861i
\(214\) 0 0
\(215\) 6.04700 + 3.49124i 0.412402 + 0.238101i
\(216\) 0 0
\(217\) −16.1523 + 11.9436i −1.09649 + 0.810785i
\(218\) 0 0
\(219\) −15.6883 + 4.20368i −1.06012 + 0.284058i
\(220\) 0 0
\(221\) 4.44106 16.5743i 0.298738 1.11490i
\(222\) 0 0
\(223\) 5.44902 0.364893 0.182447 0.983216i \(-0.441598\pi\)
0.182447 + 0.983216i \(0.441598\pi\)
\(224\) 0 0
\(225\) −5.24780 −0.349853
\(226\) 0 0
\(227\) 0.389502 1.45364i 0.0258521 0.0964815i −0.951794 0.306737i \(-0.900763\pi\)
0.977647 + 0.210255i \(0.0674295\pi\)
\(228\) 0 0
\(229\) −4.77902 + 1.28054i −0.315807 + 0.0846202i −0.413241 0.910622i \(-0.635603\pi\)
0.0974340 + 0.995242i \(0.468937\pi\)
\(230\) 0 0
\(231\) −6.33263 + 14.5505i −0.416656 + 0.957354i
\(232\) 0 0
\(233\) −10.7652 6.21528i −0.705251 0.407177i 0.104049 0.994572i \(-0.466820\pi\)
−0.809300 + 0.587395i \(0.800153\pi\)
\(234\) 0 0
\(235\) 1.28574 4.79843i 0.0838721 0.313015i
\(236\) 0 0
\(237\) −2.97474 + 2.97474i −0.193230 + 0.193230i
\(238\) 0 0
\(239\) 7.34038i 0.474810i 0.971411 + 0.237405i \(0.0762968\pi\)
−0.971411 + 0.237405i \(0.923703\pi\)
\(240\) 0 0
\(241\) −8.98405 + 5.18694i −0.578713 + 0.334120i −0.760622 0.649195i \(-0.775106\pi\)
0.181909 + 0.983315i \(0.441773\pi\)
\(242\) 0 0
\(243\) −14.8897 + 3.98968i −0.955173 + 0.255938i
\(244\) 0 0
\(245\) −8.95636 + 4.75438i −0.572201 + 0.303746i
\(246\) 0 0
\(247\) −4.38292 + 7.59144i −0.278879 + 0.483032i
\(248\) 0 0
\(249\) −3.26257 + 1.88365i −0.206757 + 0.119371i
\(250\) 0 0
\(251\) −0.401720 + 0.401720i −0.0253563 + 0.0253563i −0.719671 0.694315i \(-0.755707\pi\)
0.694315 + 0.719671i \(0.255707\pi\)
\(252\) 0 0
\(253\) −1.99072 1.99072i −0.125156 0.125156i
\(254\) 0 0
\(255\) 5.19817 + 9.00349i 0.325522 + 0.563820i
\(256\) 0 0
\(257\) 7.92211 + 4.57383i 0.494168 + 0.285308i 0.726302 0.687376i \(-0.241237\pi\)
−0.232134 + 0.972684i \(0.574571\pi\)
\(258\) 0 0
\(259\) 10.2356 4.02791i 0.636012 0.250282i
\(260\) 0 0
\(261\) 1.52430 + 5.68877i 0.0943519 + 0.352126i
\(262\) 0 0
\(263\) 2.29116 + 3.96841i 0.141279 + 0.244703i 0.927979 0.372634i \(-0.121545\pi\)
−0.786699 + 0.617336i \(0.788212\pi\)
\(264\) 0 0
\(265\) 2.05795 0.126419
\(266\) 0 0
\(267\) 5.88661 + 5.88661i 0.360254 + 0.360254i
\(268\) 0 0
\(269\) 9.22279 + 2.47124i 0.562323 + 0.150674i 0.528773 0.848763i \(-0.322652\pi\)
0.0335497 + 0.999437i \(0.489319\pi\)
\(270\) 0 0
\(271\) −3.64178 + 6.30775i −0.221223 + 0.383169i −0.955179 0.296027i \(-0.904338\pi\)
0.733957 + 0.679196i \(0.237671\pi\)
\(272\) 0 0
\(273\) −6.05976 + 4.48080i −0.366754 + 0.271190i
\(274\) 0 0
\(275\) 4.12667 + 15.4009i 0.248848 + 0.928712i
\(276\) 0 0
\(277\) −31.2724 8.37942i −1.87898 0.503470i −0.999627 0.0272931i \(-0.991311\pi\)
−0.879349 0.476177i \(-0.842022\pi\)
\(278\) 0 0
\(279\) 13.7320i 0.822115i
\(280\) 0 0
\(281\) 4.09880i 0.244514i −0.992498 0.122257i \(-0.960987\pi\)
0.992498 0.122257i \(-0.0390132\pi\)
\(282\) 0 0
\(283\) 13.1954 + 3.53570i 0.784387 + 0.210176i 0.628718 0.777633i \(-0.283580\pi\)
0.155669 + 0.987809i \(0.450247\pi\)
\(284\) 0 0
\(285\) −1.37461 5.13012i −0.0814249 0.303882i
\(286\) 0 0
\(287\) −0.135329 1.19136i −0.00798819 0.0703239i
\(288\) 0 0
\(289\) 13.1162 22.7180i 0.771543 1.33635i
\(290\) 0 0
\(291\) 11.8245 + 3.16838i 0.693167 + 0.185733i
\(292\) 0 0
\(293\) 16.6941 + 16.6941i 0.975280 + 0.975280i 0.999702 0.0244213i \(-0.00777432\pi\)
−0.0244213 + 0.999702i \(0.507774\pi\)
\(294\) 0 0
\(295\) 9.86128 0.574146
\(296\) 0 0
\(297\) 14.4206 + 24.9771i 0.836766 + 1.44932i
\(298\) 0 0
\(299\) −0.346054 1.29149i −0.0200128 0.0746889i
\(300\) 0 0
\(301\) −7.94240 + 9.97801i −0.457792 + 0.575123i
\(302\) 0 0
\(303\) −18.3878 10.6162i −1.05635 0.609886i
\(304\) 0 0
\(305\) −3.66164 6.34215i −0.209665 0.363151i
\(306\) 0 0
\(307\) −16.7590 16.7590i −0.956484 0.956484i 0.0426074 0.999092i \(-0.486434\pi\)
−0.999092 + 0.0426074i \(0.986434\pi\)
\(308\) 0 0
\(309\) 5.48135 5.48135i 0.311823 0.311823i
\(310\) 0 0
\(311\) 18.6053 10.7418i 1.05501 0.609111i 0.130963 0.991387i \(-0.458193\pi\)
0.924048 + 0.382277i \(0.124860\pi\)
\(312\) 0 0
\(313\) 10.4249 18.0565i 0.589253 1.02062i −0.405078 0.914282i \(-0.632756\pi\)
0.994331 0.106334i \(-0.0339111\pi\)
\(314\) 0 0
\(315\) −1.02687 + 6.85501i −0.0578576 + 0.386236i
\(316\) 0 0
\(317\) −14.3981 + 3.85795i −0.808676 + 0.216684i −0.639390 0.768883i \(-0.720813\pi\)
−0.169287 + 0.985567i \(0.554146\pi\)
\(318\) 0 0
\(319\) 15.4964 8.94686i 0.867633 0.500928i
\(320\) 0 0
\(321\) 13.0891i 0.730565i
\(322\) 0 0
\(323\) −15.6170 + 15.6170i −0.868955 + 0.868955i
\(324\) 0 0
\(325\) −1.95985 + 7.31425i −0.108713 + 0.405722i
\(326\) 0 0
\(327\) −9.80980 5.66369i −0.542483 0.313203i
\(328\) 0 0
\(329\) 8.31948 + 3.62078i 0.458668 + 0.199620i
\(330\) 0 0
\(331\) 2.89002 0.774378i 0.158850 0.0425637i −0.178518 0.983937i \(-0.557130\pi\)
0.337367 + 0.941373i \(0.390464\pi\)
\(332\) 0 0
\(333\) 1.94609 7.26290i 0.106645 0.398005i
\(334\) 0 0
\(335\) −9.29528 −0.507855
\(336\) 0 0
\(337\) −20.5605 −1.12000 −0.560000 0.828493i \(-0.689199\pi\)
−0.560000 + 0.828493i \(0.689199\pi\)
\(338\) 0 0
\(339\) 3.80257 14.1914i 0.206527 0.770771i
\(340\) 0 0
\(341\) 40.3000 10.7983i 2.18237 0.584763i
\(342\) 0 0
\(343\) −6.16439 17.4643i −0.332846 0.942981i
\(344\) 0 0
\(345\) 0.701566 + 0.405049i 0.0377711 + 0.0218071i
\(346\) 0 0
\(347\) −1.55085 + 5.78787i −0.0832542 + 0.310709i −0.994978 0.100095i \(-0.968085\pi\)
0.911724 + 0.410804i \(0.134752\pi\)
\(348\) 0 0
\(349\) −3.15549 + 3.15549i −0.168909 + 0.168909i −0.786500 0.617590i \(-0.788109\pi\)
0.617590 + 0.786500i \(0.288109\pi\)
\(350\) 0 0
\(351\) 13.6973i 0.731108i
\(352\) 0 0
\(353\) 6.03486 3.48423i 0.321203 0.185447i −0.330726 0.943727i \(-0.607293\pi\)
0.651929 + 0.758280i \(0.273960\pi\)
\(354\) 0 0
\(355\) −9.02307 + 2.41773i −0.478895 + 0.128320i
\(356\) 0 0
\(357\) −17.6695 + 6.95325i −0.935168 + 0.368005i
\(358\) 0 0
\(359\) −18.6187 + 32.2485i −0.982656 + 1.70201i −0.330735 + 0.943724i \(0.607297\pi\)
−0.651921 + 0.758287i \(0.726037\pi\)
\(360\) 0 0
\(361\) −6.68329 + 3.85860i −0.351752 + 0.203084i
\(362\) 0 0
\(363\) 14.8146 14.8146i 0.777566 0.777566i
\(364\) 0 0
\(365\) 15.2415 + 15.2415i 0.797774 + 0.797774i
\(366\) 0 0
\(367\) 13.0391 + 22.5844i 0.680637 + 1.17890i 0.974787 + 0.223138i \(0.0716300\pi\)
−0.294150 + 0.955759i \(0.595037\pi\)
\(368\) 0 0
\(369\) −0.709816 0.409813i −0.0369516 0.0213340i
\(370\) 0 0
\(371\) −0.556840 + 3.71726i −0.0289097 + 0.192991i
\(372\) 0 0
\(373\) −9.46676 35.3304i −0.490170 1.82934i −0.555555 0.831480i \(-0.687494\pi\)
0.0653850 0.997860i \(-0.479172\pi\)
\(374\) 0 0
\(375\) −6.24686 10.8199i −0.322586 0.558736i
\(376\) 0 0
\(377\) 8.49813 0.437676
\(378\) 0 0
\(379\) −0.261074 0.261074i −0.0134105 0.0134105i 0.700370 0.713780i \(-0.253018\pi\)
−0.713780 + 0.700370i \(0.753018\pi\)
\(380\) 0 0
\(381\) 14.4819 + 3.88041i 0.741929 + 0.198799i
\(382\) 0 0
\(383\) 8.76848 15.1875i 0.448048 0.776043i −0.550211 0.835026i \(-0.685453\pi\)
0.998259 + 0.0589834i \(0.0187859\pi\)
\(384\) 0 0
\(385\) 20.9252 2.37692i 1.06645 0.121139i
\(386\) 0 0
\(387\) 2.25632 + 8.42070i 0.114695 + 0.428048i
\(388\) 0 0
\(389\) 21.5199 + 5.76625i 1.09110 + 0.292361i 0.759137 0.650930i \(-0.225621\pi\)
0.331967 + 0.943291i \(0.392288\pi\)
\(390\) 0 0
\(391\) 3.36874i 0.170365i
\(392\) 0 0
\(393\) 3.18058i 0.160439i
\(394\) 0 0
\(395\) 5.39281 + 1.44500i 0.271342 + 0.0727058i
\(396\) 0 0
\(397\) 6.12529 + 22.8599i 0.307419 + 1.14730i 0.930843 + 0.365420i \(0.119075\pi\)
−0.623424 + 0.781884i \(0.714259\pi\)
\(398\) 0 0
\(399\) 9.63844 1.09484i 0.482526 0.0548108i
\(400\) 0 0
\(401\) −3.87231 + 6.70703i −0.193374 + 0.334933i −0.946366 0.323096i \(-0.895276\pi\)
0.752992 + 0.658029i \(0.228610\pi\)
\(402\) 0 0
\(403\) 19.1394 + 5.12838i 0.953400 + 0.255463i
\(404\) 0 0
\(405\) −0.310707 0.310707i −0.0154392 0.0154392i
\(406\) 0 0
\(407\) −22.8451 −1.13239
\(408\) 0 0
\(409\) −15.9651 27.6524i −0.789425 1.36732i −0.926320 0.376739i \(-0.877045\pi\)
0.136894 0.990586i \(-0.456288\pi\)
\(410\) 0 0
\(411\) 2.04109 + 7.61745i 0.100680 + 0.375741i
\(412\) 0 0
\(413\) −2.66827 + 17.8124i −0.131297 + 0.876489i
\(414\) 0 0
\(415\) 4.32981 + 2.49981i 0.212542 + 0.122711i
\(416\) 0 0
\(417\) 0.547209 + 0.947793i 0.0267969 + 0.0464136i
\(418\) 0 0
\(419\) 6.96449 + 6.96449i 0.340238 + 0.340238i 0.856457 0.516219i \(-0.172661\pi\)
−0.516219 + 0.856457i \(0.672661\pi\)
\(420\) 0 0
\(421\) −6.31935 + 6.31935i −0.307986 + 0.307986i −0.844128 0.536142i \(-0.819881\pi\)
0.536142 + 0.844128i \(0.319881\pi\)
\(422\) 0 0
\(423\) 5.37132 3.10113i 0.261162 0.150782i
\(424\) 0 0
\(425\) −9.53929 + 16.5225i −0.462724 + 0.801461i
\(426\) 0 0
\(427\) 12.4466 4.89795i 0.602331 0.237028i
\(428\) 0 0
\(429\) 15.1191 4.05114i 0.729955 0.195591i
\(430\) 0 0
\(431\) −5.61569 + 3.24222i −0.270498 + 0.156172i −0.629114 0.777313i \(-0.716582\pi\)
0.358616 + 0.933485i \(0.383249\pi\)
\(432\) 0 0
\(433\) 17.1718i 0.825223i −0.910907 0.412612i \(-0.864617\pi\)
0.910907 0.412612i \(-0.135383\pi\)
\(434\) 0 0
\(435\) −3.64081 + 3.64081i −0.174564 + 0.174564i
\(436\) 0 0
\(437\) −0.445418 + 1.66232i −0.0213072 + 0.0795196i
\(438\) 0 0
\(439\) −27.1054 15.6493i −1.29367 0.746900i −0.314366 0.949302i \(-0.601792\pi\)
−0.979302 + 0.202402i \(0.935125\pi\)
\(440\) 0 0
\(441\) −12.1043 3.70966i −0.576396 0.176650i
\(442\) 0 0
\(443\) −11.7094 + 3.13752i −0.556330 + 0.149068i −0.526020 0.850472i \(-0.676316\pi\)
−0.0303104 + 0.999541i \(0.509650\pi\)
\(444\) 0 0
\(445\) 2.85946 10.6717i 0.135552 0.505885i
\(446\) 0 0
\(447\) 10.3914 0.491495
\(448\) 0 0
\(449\) 33.4968 1.58081 0.790406 0.612583i \(-0.209869\pi\)
0.790406 + 0.612583i \(0.209869\pi\)
\(450\) 0 0
\(451\) −0.644522 + 2.40539i −0.0303494 + 0.113265i
\(452\) 0 0
\(453\) 7.48729 2.00621i 0.351783 0.0942601i
\(454\) 0 0
\(455\) 9.17085 + 3.99130i 0.429936 + 0.187115i
\(456\) 0 0
\(457\) −2.60908 1.50635i −0.122047 0.0704641i 0.437733 0.899105i \(-0.355781\pi\)
−0.559781 + 0.828641i \(0.689115\pi\)
\(458\) 0 0
\(459\) −8.93205 + 33.3349i −0.416912 + 1.55594i
\(460\) 0 0
\(461\) 20.6763 20.6763i 0.962993 0.962993i −0.0363467 0.999339i \(-0.511572\pi\)
0.999339 + 0.0363467i \(0.0115721\pi\)
\(462\) 0 0
\(463\) 11.6775i 0.542697i 0.962481 + 0.271349i \(0.0874696\pi\)
−0.962481 + 0.271349i \(0.912530\pi\)
\(464\) 0 0
\(465\) −10.3969 + 6.00266i −0.482145 + 0.278367i
\(466\) 0 0
\(467\) 9.80739 2.62788i 0.453832 0.121604i −0.0246599 0.999696i \(-0.507850\pi\)
0.478492 + 0.878092i \(0.341184\pi\)
\(468\) 0 0
\(469\) 2.51512 16.7900i 0.116137 0.775290i
\(470\) 0 0
\(471\) 4.78986 8.29629i 0.220705 0.382273i
\(472\) 0 0
\(473\) 22.9383 13.2434i 1.05470 0.608933i
\(474\) 0 0
\(475\) 6.89183 6.89183i 0.316219 0.316219i
\(476\) 0 0
\(477\) 1.81683 + 1.81683i 0.0831870 + 0.0831870i
\(478\) 0 0
\(479\) −5.72312 9.91273i −0.261496 0.452924i 0.705144 0.709064i \(-0.250882\pi\)
−0.966640 + 0.256140i \(0.917549\pi\)
\(480\) 0 0
\(481\) −9.39606 5.42482i −0.428424 0.247350i
\(482\) 0 0
\(483\) −0.921468 + 1.15764i −0.0419283 + 0.0526743i
\(484\) 0 0
\(485\) −4.20479 15.6925i −0.190930 0.712560i
\(486\) 0 0
\(487\) −4.85037 8.40108i −0.219791 0.380689i 0.734953 0.678118i \(-0.237204\pi\)
−0.954744 + 0.297429i \(0.903871\pi\)
\(488\) 0 0
\(489\) 13.8618 0.626851
\(490\) 0 0
\(491\) −11.4667 11.4667i −0.517483 0.517483i 0.399326 0.916809i \(-0.369244\pi\)
−0.916809 + 0.399326i \(0.869244\pi\)
\(492\) 0 0
\(493\) 20.6817 + 5.54166i 0.931459 + 0.249584i
\(494\) 0 0
\(495\) 7.19798 12.4673i 0.323525 0.560362i
\(496\) 0 0
\(497\) −1.92566 16.9525i −0.0863776 0.760424i
\(498\) 0 0
\(499\) 4.93931 + 18.4338i 0.221114 + 0.825209i 0.983924 + 0.178586i \(0.0571524\pi\)
−0.762810 + 0.646623i \(0.776181\pi\)
\(500\) 0 0
\(501\) 22.6976 + 6.08181i 1.01405 + 0.271715i
\(502\) 0 0
\(503\) 22.4043i 0.998960i 0.866325 + 0.499480i \(0.166476\pi\)
−0.866325 + 0.499480i \(0.833524\pi\)
\(504\) 0 0
\(505\) 28.1779i 1.25390i
\(506\) 0 0
\(507\) −6.52593 1.74862i −0.289827 0.0776588i
\(508\) 0 0
\(509\) 3.91534 + 14.6122i 0.173544 + 0.647676i 0.996795 + 0.0799982i \(0.0254915\pi\)
−0.823251 + 0.567678i \(0.807842\pi\)
\(510\) 0 0
\(511\) −31.6546 + 23.4065i −1.40032 + 1.03544i
\(512\) 0 0
\(513\) 8.81512 15.2682i 0.389197 0.674109i
\(514\) 0 0
\(515\) −9.93698 2.66261i −0.437876 0.117328i
\(516\) 0 0
\(517\) −13.3248 13.3248i −0.586025 0.586025i
\(518\) 0 0
\(519\) 21.8639 0.959721
\(520\) 0 0
\(521\) 3.63800 + 6.30121i 0.159384 + 0.276061i 0.934647 0.355578i \(-0.115716\pi\)
−0.775263 + 0.631639i \(0.782383\pi\)
\(522\) 0 0
\(523\) 4.66897 + 17.4249i 0.204160 + 0.761936i 0.989704 + 0.143130i \(0.0457166\pi\)
−0.785544 + 0.618806i \(0.787617\pi\)
\(524\) 0 0
\(525\) 7.79758 3.06849i 0.340314 0.133920i
\(526\) 0 0
\(527\) 43.2349 + 24.9617i 1.88334 + 1.08735i
\(528\) 0 0
\(529\) 11.3688 + 19.6913i 0.494294 + 0.856141i
\(530\) 0 0
\(531\) 8.70588 + 8.70588i 0.377803 + 0.377803i
\(532\) 0 0
\(533\) −0.836275 + 0.836275i −0.0362231 + 0.0362231i
\(534\) 0 0
\(535\) −15.0435 + 8.68540i −0.650389 + 0.375502i
\(536\) 0 0
\(537\) 3.71761 6.43909i 0.160427 0.277867i
\(538\) 0 0
\(539\) −1.36852 + 38.4402i −0.0589463 + 1.65574i
\(540\) 0 0
\(541\) 2.61709 0.701247i 0.112518 0.0301490i −0.202121 0.979361i \(-0.564783\pi\)
0.314638 + 0.949212i \(0.398117\pi\)
\(542\) 0 0
\(543\) −8.44907 + 4.87808i −0.362585 + 0.209338i
\(544\) 0 0
\(545\) 15.0327i 0.643931i
\(546\) 0 0
\(547\) −20.4366 + 20.4366i −0.873807 + 0.873807i −0.992885 0.119078i \(-0.962006\pi\)
0.119078 + 0.992885i \(0.462006\pi\)
\(548\) 0 0
\(549\) 2.36645 8.83170i 0.100998 0.376928i
\(550\) 0 0
\(551\) −9.47278 5.46911i −0.403554 0.232992i
\(552\) 0 0
\(553\) −4.06928 + 9.35002i −0.173043 + 0.397603i
\(554\) 0 0
\(555\) 6.34964 1.70138i 0.269527 0.0722196i
\(556\) 0 0
\(557\) −1.22222 + 4.56137i −0.0517869 + 0.193271i −0.986973 0.160885i \(-0.948565\pi\)
0.935186 + 0.354156i \(0.115232\pi\)
\(558\) 0 0
\(559\) 12.5792 0.532044
\(560\) 0 0
\(561\) 39.4367 1.66502
\(562\) 0 0
\(563\) −1.89945 + 7.08884i −0.0800522 + 0.298759i −0.994331 0.106326i \(-0.966091\pi\)
0.914279 + 0.405085i \(0.132758\pi\)
\(564\) 0 0
\(565\) −18.8336 + 5.04645i −0.792335 + 0.212306i
\(566\) 0 0
\(567\) 0.645300 0.477158i 0.0271001 0.0200387i
\(568\) 0 0
\(569\) 10.8006 + 6.23575i 0.452787 + 0.261416i 0.709006 0.705202i \(-0.249144\pi\)
−0.256220 + 0.966619i \(0.582477\pi\)
\(570\) 0 0
\(571\) 9.94080 37.0996i 0.416010 1.55257i −0.366795 0.930302i \(-0.619545\pi\)
0.782805 0.622267i \(-0.213788\pi\)
\(572\) 0 0
\(573\) 10.2824 10.2824i 0.429555 0.429555i
\(574\) 0 0
\(575\) 1.48663i 0.0619969i
\(576\) 0 0
\(577\) −16.4040 + 9.47084i −0.682906 + 0.394276i −0.800949 0.598732i \(-0.795671\pi\)
0.118043 + 0.993009i \(0.462338\pi\)
\(578\) 0 0
\(579\) −11.0868 + 2.97069i −0.460750 + 0.123458i
\(580\) 0 0
\(581\) −5.68696 + 7.14450i −0.235935 + 0.296404i
\(582\) 0 0
\(583\) 3.90324 6.76062i 0.161656 0.279996i
\(584\) 0 0
\(585\) 5.92098 3.41848i 0.244803 0.141337i
\(586\) 0 0
\(587\) 7.54134 7.54134i 0.311264 0.311264i −0.534135 0.845399i \(-0.679363\pi\)
0.845399 + 0.534135i \(0.179363\pi\)
\(588\) 0 0
\(589\) −18.0340 18.0340i −0.743078 0.743078i
\(590\) 0 0
\(591\) −10.8551 18.8015i −0.446517 0.773391i
\(592\) 0 0
\(593\) −10.2804 5.93539i −0.422165 0.243737i 0.273838 0.961776i \(-0.411707\pi\)
−0.696003 + 0.718039i \(0.745040\pi\)
\(594\) 0 0
\(595\) 19.7162 + 15.6939i 0.808284 + 0.643387i
\(596\) 0 0
\(597\) 6.83423 + 25.5057i 0.279706 + 1.04388i
\(598\) 0 0
\(599\) 10.9170 + 18.9089i 0.446058 + 0.772595i 0.998125 0.0612043i \(-0.0194941\pi\)
−0.552067 + 0.833800i \(0.686161\pi\)
\(600\) 0 0
\(601\) −37.4893 −1.52922 −0.764610 0.644493i \(-0.777068\pi\)
−0.764610 + 0.644493i \(0.777068\pi\)
\(602\) 0 0
\(603\) −8.20620 8.20620i −0.334182 0.334182i
\(604\) 0 0
\(605\) −26.8570 7.19631i −1.09189 0.292572i
\(606\) 0 0
\(607\) 2.33958 4.05227i 0.0949605 0.164476i −0.814632 0.579979i \(-0.803061\pi\)
0.909592 + 0.415502i \(0.136394\pi\)
\(608\) 0 0
\(609\) −5.59125 7.56151i −0.226569 0.306408i
\(610\) 0 0
\(611\) −2.31630 8.64456i −0.0937075 0.349721i
\(612\) 0 0
\(613\) 4.89703 + 1.31216i 0.197789 + 0.0529975i 0.356354 0.934351i \(-0.384020\pi\)
−0.158564 + 0.987349i \(0.550687\pi\)
\(614\) 0 0
\(615\) 0.716563i 0.0288946i
\(616\) 0 0
\(617\) 16.4696i 0.663041i 0.943448 + 0.331520i \(0.107562\pi\)
−0.943448 + 0.331520i \(0.892438\pi\)
\(618\) 0 0
\(619\) 14.6852 + 3.93490i 0.590249 + 0.158157i 0.541567 0.840657i \(-0.317831\pi\)
0.0486822 + 0.998814i \(0.484498\pi\)
\(620\) 0 0
\(621\) 0.696000 + 2.59751i 0.0279295 + 0.104234i
\(622\) 0 0
\(623\) 18.5024 + 8.05257i 0.741285 + 0.322619i
\(624\) 0 0
\(625\) −1.03623 + 1.79481i −0.0414493 + 0.0717922i
\(626\) 0 0
\(627\) −19.4602 5.21435i −0.777167 0.208241i
\(628\) 0 0
\(629\) −19.3295 19.3295i −0.770717 0.770717i
\(630\) 0 0
\(631\) 6.82302 0.271620 0.135810 0.990735i \(-0.456636\pi\)
0.135810 + 0.990735i \(0.456636\pi\)
\(632\) 0 0
\(633\) 6.80206 + 11.7815i 0.270357 + 0.468273i
\(634\) 0 0
\(635\) −5.14974 19.2191i −0.204361 0.762686i
\(636\) 0 0
\(637\) −9.69092 + 15.4853i −0.383968 + 0.613549i
\(638\) 0 0
\(639\) −10.1003 5.83143i −0.399563 0.230688i
\(640\) 0 0
\(641\) −16.5379 28.6446i −0.653210 1.13139i −0.982339 0.187108i \(-0.940089\pi\)
0.329130 0.944285i \(-0.393245\pi\)
\(642\) 0 0
\(643\) −14.7445 14.7445i −0.581464 0.581464i 0.353841 0.935306i \(-0.384875\pi\)
−0.935306 + 0.353841i \(0.884875\pi\)
\(644\) 0 0
\(645\) −5.38925 + 5.38925i −0.212201 + 0.212201i
\(646\) 0 0
\(647\) −9.62533 + 5.55719i −0.378411 + 0.218476i −0.677127 0.735867i \(-0.736775\pi\)
0.298716 + 0.954342i \(0.403442\pi\)
\(648\) 0 0
\(649\) 18.7035 32.3955i 0.734178 1.27163i
\(650\) 0 0
\(651\) −8.02937 20.4041i −0.314696 0.799699i
\(652\) 0 0
\(653\) −16.2451 + 4.35285i −0.635718 + 0.170340i −0.562263 0.826958i \(-0.690069\pi\)
−0.0734551 + 0.997299i \(0.523403\pi\)
\(654\) 0 0
\(655\) 3.65548 2.11049i 0.142831 0.0824638i
\(656\) 0 0
\(657\) 26.9114i 1.04991i
\(658\) 0 0
\(659\) 32.5839 32.5839i 1.26929 1.26929i 0.322834 0.946455i \(-0.395364\pi\)
0.946455 0.322834i \(-0.104636\pi\)
\(660\) 0 0
\(661\) −4.53812 + 16.9365i −0.176512 + 0.658753i 0.819777 + 0.572683i \(0.194097\pi\)
−0.996289 + 0.0860697i \(0.972569\pi\)
\(662\) 0 0
\(663\) 16.2201 + 9.36470i 0.629938 + 0.363695i
\(664\) 0 0
\(665\) −7.65398 10.3511i −0.296809 0.401399i
\(666\) 0 0
\(667\) 1.61155 0.431815i 0.0623996 0.0167199i
\(668\) 0 0
\(669\) −1.53939 + 5.74507i −0.0595162 + 0.222117i
\(670\) 0 0
\(671\) −27.7796 −1.07242
\(672\) 0 0
\(673\) 11.0728 0.426827 0.213413 0.976962i \(-0.431542\pi\)
0.213413 + 0.976962i \(0.431542\pi\)
\(674\) 0 0
\(675\) 3.94173 14.7107i 0.151717 0.566217i
\(676\) 0 0
\(677\) −5.69655 + 1.52639i −0.218936 + 0.0586638i −0.366620 0.930371i \(-0.619485\pi\)
0.147684 + 0.989035i \(0.452818\pi\)
\(678\) 0 0
\(679\) 29.4830 3.34902i 1.13145 0.128523i
\(680\) 0 0
\(681\) 1.42258 + 0.821328i 0.0545135 + 0.0314734i
\(682\) 0 0
\(683\) −0.824476 + 3.07699i −0.0315477 + 0.117738i −0.979904 0.199469i \(-0.936078\pi\)
0.948356 + 0.317207i \(0.102745\pi\)
\(684\) 0 0
\(685\) 7.40047 7.40047i 0.282757 0.282757i
\(686\) 0 0
\(687\) 5.40044i 0.206040i
\(688\) 0 0
\(689\) 3.21077 1.85374i 0.122321 0.0706218i
\(690\) 0 0
\(691\) −20.4319 + 5.47470i −0.777265 + 0.208267i −0.625578 0.780161i \(-0.715137\pi\)
−0.151686 + 0.988429i \(0.548470\pi\)
\(692\) 0 0
\(693\) 20.5719 + 16.3751i 0.781462 + 0.622037i
\(694\) 0 0
\(695\) 0.726208 1.25783i 0.0275466 0.0477122i
\(696\) 0 0
\(697\) −2.58056 + 1.48989i −0.0977458 + 0.0564336i
\(698\) 0 0
\(699\) 9.59422 9.59422i 0.362887 0.362887i
\(700\) 0 0
\(701\) −19.0687 19.0687i −0.720214 0.720214i 0.248435 0.968649i \(-0.420084\pi\)
−0.968649 + 0.248435i \(0.920084\pi\)
\(702\) 0 0
\(703\) 6.98246 + 12.0940i 0.263348 + 0.456133i
\(704\) 0 0
\(705\) 4.69591 + 2.71118i 0.176858 + 0.102109i
\(706\) 0 0
\(707\) −50.8975 7.62437i −1.91420 0.286744i
\(708\) 0 0
\(709\) 9.03837 + 33.7317i 0.339443 + 1.26682i 0.898971 + 0.438008i \(0.144316\pi\)
−0.559528 + 0.828812i \(0.689018\pi\)
\(710\) 0 0
\(711\) 3.48527 + 6.03666i 0.130708 + 0.226392i
\(712\) 0 0
\(713\) 3.89011 0.145686
\(714\) 0 0
\(715\) −14.6884 14.6884i −0.549315 0.549315i
\(716\) 0 0
\(717\) −7.73920 2.07371i −0.289026 0.0774442i
\(718\) 0 0
\(719\) −25.7551 + 44.6092i −0.960505 + 1.66364i −0.239268 + 0.970953i \(0.576908\pi\)
−0.721236 + 0.692689i \(0.756426\pi\)
\(720\) 0 0
\(721\) 7.49820 17.2287i 0.279248 0.641629i
\(722\) 0 0
\(723\) −2.93070 10.9375i −0.108994 0.406771i
\(724\) 0 0
\(725\) −9.12690 2.44555i −0.338965 0.0908253i
\(726\) 0 0
\(727\) 10.3415i 0.383546i 0.981439 + 0.191773i \(0.0614237\pi\)
−0.981439 + 0.191773i \(0.938576\pi\)
\(728\) 0 0
\(729\) 17.7358i 0.656881i
\(730\) 0 0
\(731\) 30.6138 + 8.20293i 1.13229 + 0.303396i
\(732\) 0 0
\(733\) −5.21156 19.4498i −0.192493 0.718395i −0.992901 0.118940i \(-0.962051\pi\)
0.800408 0.599455i \(-0.204616\pi\)
\(734\) 0 0
\(735\) −2.48245 10.7861i −0.0915666 0.397852i
\(736\) 0 0
\(737\) −17.6300 + 30.5361i −0.649411 + 1.12481i
\(738\) 0 0
\(739\) 29.5182 + 7.90938i 1.08584 + 0.290951i 0.756988 0.653429i \(-0.226670\pi\)
0.328856 + 0.944380i \(0.393337\pi\)
\(740\) 0 0
\(741\) −6.76569 6.76569i −0.248544 0.248544i
\(742\) 0 0
\(743\) 36.5659 1.34147 0.670735 0.741697i \(-0.265979\pi\)
0.670735 + 0.741697i \(0.265979\pi\)
\(744\) 0 0
\(745\) −6.89526 11.9429i −0.252623 0.437556i
\(746\) 0 0
\(747\) 1.61558 + 6.02943i 0.0591110 + 0.220605i
\(748\) 0 0
\(749\) −11.6179 29.5232i −0.424509 1.07875i
\(750\) 0 0
\(751\) −30.5955 17.6643i −1.11644 0.644580i −0.175954 0.984398i \(-0.556301\pi\)
−0.940491 + 0.339819i \(0.889634\pi\)
\(752\) 0 0
\(753\) −0.310057 0.537034i −0.0112991 0.0195706i
\(754\) 0 0
\(755\) −7.27401 7.27401i −0.264728 0.264728i
\(756\) 0 0
\(757\) 1.06021 1.06021i 0.0385339 0.0385339i −0.687577 0.726111i \(-0.741326\pi\)
0.726111 + 0.687577i \(0.241326\pi\)
\(758\) 0 0
\(759\) 2.66127 1.53649i 0.0965981 0.0557709i
\(760\) 0 0
\(761\) −15.2003 + 26.3277i −0.551010 + 0.954378i 0.447192 + 0.894438i \(0.352424\pi\)
−0.998202 + 0.0599396i \(0.980909\pi\)
\(762\) 0 0
\(763\) −27.1535 4.06755i −0.983023 0.147255i
\(764\) 0 0
\(765\) 16.6390 4.45840i 0.601584 0.161194i
\(766\) 0 0
\(767\) 15.3853 8.88274i 0.555533 0.320737i
\(768\) 0 0
\(769\) 38.0523i 1.37220i 0.727507 + 0.686101i \(0.240679\pi\)
−0.727507 + 0.686101i \(0.759321\pi\)
\(770\) 0 0
\(771\) −7.06039 + 7.06039i −0.254274 + 0.254274i
\(772\) 0 0
\(773\) 4.02680 15.0282i 0.144834 0.540528i −0.854929 0.518746i \(-0.826399\pi\)
0.999763 0.0217825i \(-0.00693413\pi\)
\(774\) 0 0
\(775\) −19.0796 11.0156i −0.685361 0.395693i
\(776\) 0 0
\(777\) 1.35511 + 11.9297i 0.0486142 + 0.427975i
\(778\) 0 0
\(779\) 1.47039 0.393989i 0.0526820 0.0141161i
\(780\) 0 0
\(781\) −9.17123 + 34.2275i −0.328172 + 1.22476i
\(782\) 0 0
\(783\) −17.0918 −0.610812
\(784\) 0 0
\(785\) −12.7134 −0.453760
\(786\) 0 0
\(787\) 4.32518 16.1418i 0.154176 0.575393i −0.844998 0.534769i \(-0.820399\pi\)
0.999175 0.0406241i \(-0.0129346\pi\)
\(788\) 0 0
\(789\) −4.83129 + 1.29454i −0.171998 + 0.0460868i
\(790\) 0 0
\(791\) −4.01937 35.3845i −0.142912 1.25813i
\(792\) 0 0
\(793\) −11.4256 6.59659i −0.405736 0.234252i
\(794\) 0 0
\(795\) −0.581386 + 2.16976i −0.0206196 + 0.0769535i
\(796\) 0 0
\(797\) 6.46029 6.46029i 0.228835 0.228835i −0.583371 0.812206i \(-0.698267\pi\)
0.812206 + 0.583371i \(0.198267\pi\)
\(798\) 0 0
\(799\) 22.5486i 0.797710i
\(800\) 0 0
\(801\) 11.9457 6.89688i 0.422082 0.243689i
\(802\) 0 0
\(803\) 78.9780 21.1621i 2.78707 0.746794i
\(804\) 0 0
\(805\) 1.94194 + 0.290899i 0.0684442 + 0.0102528i
\(806\) 0 0
\(807\) −5.21101 + 9.02573i −0.183436 + 0.317721i
\(808\) 0 0
\(809\) −24.9554 + 14.4080i −0.877386 + 0.506559i −0.869796 0.493412i \(-0.835750\pi\)
−0.00759061 + 0.999971i \(0.502416\pi\)
\(810\) 0 0
\(811\) −32.3761 + 32.3761i −1.13688 + 1.13688i −0.147873 + 0.989006i \(0.547243\pi\)
−0.989006 + 0.147873i \(0.952757\pi\)
\(812\) 0 0
\(813\) −5.62163 5.62163i −0.197159 0.197159i
\(814\) 0 0
\(815\) −9.19808 15.9315i −0.322195 0.558058i
\(816\) 0 0
\(817\) −14.0219 8.09555i −0.490564 0.283227i
\(818\) 0 0
\(819\) 4.57268 + 11.6200i 0.159782 + 0.406036i
\(820\) 0 0
\(821\) −7.00094 26.1279i −0.244334 0.911869i −0.973717 0.227762i \(-0.926859\pi\)
0.729382 0.684106i \(-0.239808\pi\)
\(822\) 0 0
\(823\) 12.1699 + 21.0790i 0.424218 + 0.734767i 0.996347 0.0853968i \(-0.0272158\pi\)
−0.572129 + 0.820163i \(0.693882\pi\)
\(824\) 0 0
\(825\) −17.4035 −0.605913
\(826\) 0 0
\(827\) −31.7583 31.7583i −1.10435 1.10435i −0.993880 0.110466i \(-0.964766\pi\)
−0.110466 0.993880i \(-0.535234\pi\)
\(828\) 0 0
\(829\) −39.6910 10.6352i −1.37853 0.369375i −0.507941 0.861392i \(-0.669593\pi\)
−0.870586 + 0.492017i \(0.836260\pi\)
\(830\) 0 0
\(831\) 17.6694 30.6042i 0.612944 1.06165i
\(832\) 0 0
\(833\) −33.6826 + 31.3668i −1.16703 + 1.08679i
\(834\) 0 0
\(835\) −8.07125 30.1223i −0.279317 1.04243i
\(836\) 0 0
\(837\) −38.4939 10.3144i −1.33054 0.356518i
\(838\) 0 0
\(839\) 12.4384i 0.429423i 0.976678 + 0.214711i \(0.0688811\pi\)
−0.976678 + 0.214711i \(0.931119\pi\)
\(840\) 0 0
\(841\) 18.3958i 0.634339i
\(842\) 0 0
\(843\) 4.32149 + 1.15794i 0.148840 + 0.0398816i
\(844\) 0 0
\(845\) 2.32061 + 8.66065i 0.0798316 + 0.297935i
\(846\) 0 0
\(847\) 20.2656 46.5645i 0.696335 1.59997i
\(848\) 0 0
\(849\) −7.45561 + 12.9135i −0.255876 + 0.443190i
\(850\) 0 0
\(851\) −2.05748 0.551301i −0.0705297 0.0188984i
\(852\) 0 0
\(853\) 11.8456 + 11.8456i 0.405585 + 0.405585i 0.880196 0.474611i \(-0.157411\pi\)
−0.474611 + 0.880196i \(0.657411\pi\)
\(854\) 0 0
\(855\) −8.80008 −0.300956
\(856\) 0 0
\(857\) 7.54656 + 13.0710i 0.257786 + 0.446498i 0.965648 0.259852i \(-0.0836738\pi\)
−0.707863 + 0.706350i \(0.750340\pi\)
\(858\) 0 0
\(859\) 11.8045 + 44.0551i 0.402765 + 1.50314i 0.808141 + 0.588990i \(0.200474\pi\)
−0.405375 + 0.914150i \(0.632859\pi\)
\(860\) 0 0
\(861\) 1.29432 + 0.193888i 0.0441104 + 0.00660767i
\(862\) 0 0
\(863\) 23.4497 + 13.5387i 0.798237 + 0.460862i 0.842854 0.538142i \(-0.180874\pi\)
−0.0446175 + 0.999004i \(0.514207\pi\)
\(864\) 0 0
\(865\) −14.5080 25.1285i −0.493286 0.854396i
\(866\) 0 0
\(867\) 20.2469 + 20.2469i 0.687619 + 0.687619i
\(868\) 0 0
\(869\) 14.9754 14.9754i 0.508004 0.508004i
\(870\) 0 0
\(871\) −14.5023 + 8.37290i −0.491391 + 0.283705i
\(872\) 0 0
\(873\) 10.1418 17.5660i 0.343246 0.594520i
\(874\) 0 0
\(875\) −23.6938 18.8600i −0.800995 0.637585i
\(876\) 0 0
\(877\) 8.80425 2.35909i 0.297298 0.0796609i −0.107087 0.994250i \(-0.534152\pi\)
0.404385 + 0.914589i \(0.367486\pi\)
\(878\) 0 0
\(879\) −22.3173 + 12.8849i −0.752745 + 0.434598i
\(880\) 0 0
\(881\) 0.723819i 0.0243861i −0.999926 0.0121930i \(-0.996119\pi\)
0.999926 0.0121930i \(-0.00388126\pi\)
\(882\) 0 0
\(883\) −21.2381 + 21.2381i −0.714718 + 0.714718i −0.967518 0.252800i \(-0.918648\pi\)
0.252800 + 0.967518i \(0.418648\pi\)
\(884\) 0 0
\(885\) −2.78588 + 10.3971i −0.0936464 + 0.349493i
\(886\) 0 0
\(887\) −17.5247 10.1179i −0.588422 0.339726i 0.176051 0.984381i \(-0.443668\pi\)
−0.764473 + 0.644655i \(0.777001\pi\)
\(888\) 0 0
\(889\) 36.1088 4.10164i 1.21105 0.137565i
\(890\) 0 0
\(891\) −1.61002 + 0.431403i −0.0539377 + 0.0144526i
\(892\) 0 0
\(893\) −2.98139 + 11.1267i −0.0997683 + 0.372340i
\(894\) 0 0
\(895\) −9.86738 −0.329830
\(896\) 0 0
\(897\) 1.45942 0.0487288
\(898\) 0 0
\(899\) −6.39931 + 23.8825i −0.213429 + 0.796528i
\(900\) 0 0
\(901\) 9.02281 2.41766i 0.300594 0.0805438i
\(902\) 0 0
\(903\) −8.27634 11.1928i −0.275419 0.372473i
\(904\) 0 0
\(905\) 11.2129 + 6.47376i 0.372729 + 0.215195i
\(906\) 0 0
\(907\) 3.46515 12.9321i 0.115058 0.429404i −0.884233 0.467046i \(-0.845318\pi\)
0.999291 + 0.0376423i \(0.0119848\pi\)
\(908\) 0 0
\(909\) −24.8764 + 24.8764i −0.825099 + 0.825099i
\(910\) 0 0
\(911\) 34.5549i 1.14485i −0.819955 0.572427i \(-0.806002\pi\)
0.819955 0.572427i \(-0.193998\pi\)
\(912\) 0 0
\(913\) 16.4244 9.48262i 0.543568 0.313829i
\(914\) 0 0
\(915\) 7.72117 2.06888i 0.255254 0.0683951i
\(916\) 0 0
\(917\) 2.82307 + 7.17393i 0.0932260 + 0.236904i
\(918\) 0 0
\(919\) 26.7589 46.3478i 0.882695 1.52887i 0.0343626 0.999409i \(-0.489060\pi\)
0.848333 0.529464i \(-0.177607\pi\)
\(920\) 0 0
\(921\) 22.4040 12.9350i 0.738238 0.426222i
\(922\) 0 0
\(923\) −11.8998 + 11.8998i −0.391686 + 0.391686i
\(924\) 0 0
\(925\) 8.53014 + 8.53014i 0.280469 + 0.280469i
\(926\) 0 0
\(927\) −6.42208 11.1234i −0.210929 0.365339i
\(928\) 0 0
\(929\) −0.0427340 0.0246725i −0.00140206 0.000809477i 0.499299 0.866430i \(-0.333591\pi\)
−0.500701 + 0.865620i \(0.666924\pi\)
\(930\) 0 0
\(931\) 20.7682 11.0245i 0.680649 0.361314i
\(932\) 0 0
\(933\) 6.06927 + 22.6508i 0.198699 + 0.741554i
\(934\) 0 0
\(935\) −26.1685 45.3252i −0.855802 1.48229i
\(936\) 0 0
\(937\) −0.977039 −0.0319185 −0.0159592 0.999873i \(-0.505080\pi\)
−0.0159592 + 0.999873i \(0.505080\pi\)
\(938\) 0 0
\(939\) 16.0925 + 16.0925i 0.525157 + 0.525157i
\(940\) 0 0
\(941\) 37.6344 + 10.0841i 1.22685 + 0.328733i 0.813351 0.581773i \(-0.197641\pi\)
0.413496 + 0.910506i \(0.364307\pi\)
\(942\) 0 0
\(943\) −0.116095 + 0.201082i −0.00378056 + 0.00654812i
\(944\) 0 0
\(945\) −18.4448 8.02748i −0.600010 0.261134i
\(946\) 0 0
\(947\) −5.93312 22.1427i −0.192801 0.719541i −0.992825 0.119574i \(-0.961847\pi\)
0.800025 0.599967i \(-0.204820\pi\)
\(948\) 0 0
\(949\) 37.5084 + 10.0504i 1.21757 + 0.326248i
\(950\) 0 0
\(951\) 16.2702i 0.527599i
\(952\) 0 0
\(953\) 34.2308i 1.10884i −0.832235 0.554422i \(-0.812939\pi\)
0.832235 0.554422i \(-0.187061\pi\)
\(954\) 0 0
\(955\) −18.6407 4.99477i −0.603200 0.161627i
\(956\) 0 0
\(957\) 5.05511 + 18.8659i 0.163408 + 0.609849i
\(958\) 0 0
\(959\) 11.3650 + 15.3698i 0.366995 + 0.496318i
\(960\) 0 0
\(961\) −13.3248 + 23.0793i −0.429834 + 0.744494i
\(962\) 0 0
\(963\) −20.9487 5.61320i −0.675064 0.180883i
\(964\) 0 0
\(965\) 10.7710 + 10.7710i 0.346729 + 0.346729i
\(966\) 0 0
\(967\) −21.2761 −0.684193 −0.342096 0.939665i \(-0.611137\pi\)
−0.342096 + 0.939665i \(0.611137\pi\)
\(968\) 0 0
\(969\) −12.0536 20.8775i −0.387218 0.670680i
\(970\) 0 0
\(971\) 7.74616 + 28.9091i 0.248586 + 0.927736i 0.971547 + 0.236847i \(0.0761139\pi\)
−0.722961 + 0.690889i \(0.757219\pi\)
\(972\) 0 0
\(973\) 2.07551 + 1.65209i 0.0665379 + 0.0529635i
\(974\) 0 0
\(975\) −7.15798 4.13266i −0.229239 0.132351i
\(976\) 0 0
\(977\) 1.50722 + 2.61058i 0.0482201 + 0.0835197i 0.889128 0.457659i \(-0.151312\pi\)
−0.840908 + 0.541178i \(0.817978\pi\)
\(978\) 0 0
\(979\) −29.6342 29.6342i −0.947115 0.947115i
\(980\) 0 0
\(981\) −13.2714 + 13.2714i −0.423724 + 0.423724i
\(982\) 0 0
\(983\) −35.2886 + 20.3739i −1.12553 + 0.649826i −0.942807 0.333339i \(-0.891825\pi\)
−0.182724 + 0.983164i \(0.558491\pi\)
\(984\) 0 0
\(985\) −14.4059 + 24.9517i −0.459010 + 0.795029i
\(986\) 0 0
\(987\) −6.16781 + 7.74860i −0.196324 + 0.246641i
\(988\) 0 0
\(989\) 2.38547 0.639186i 0.0758536 0.0203249i
\(990\) 0 0
\(991\) 21.1944 12.2366i 0.673262 0.388708i −0.124049 0.992276i \(-0.539588\pi\)
0.797312 + 0.603568i \(0.206255\pi\)
\(992\) 0 0
\(993\) 3.26581i 0.103637i
\(994\) 0 0
\(995\) 24.7792 24.7792i 0.785552 0.785552i
\(996\) 0 0
\(997\) 11.1506 41.6146i 0.353143 1.31795i −0.529662 0.848209i \(-0.677681\pi\)
0.882805 0.469740i \(-0.155652\pi\)
\(998\) 0 0
\(999\) 18.8978 + 10.9106i 0.597899 + 0.345197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.a.607.5 56
4.3 odd 2 896.2.z.b.607.10 56
7.3 odd 6 inner 896.2.z.a.479.5 56
8.3 odd 2 112.2.v.a.19.12 yes 56
8.5 even 2 448.2.z.a.47.10 56
16.3 odd 4 448.2.z.a.271.10 56
16.5 even 4 896.2.z.b.159.10 56
16.11 odd 4 inner 896.2.z.a.159.5 56
16.13 even 4 112.2.v.a.75.3 yes 56
28.3 even 6 896.2.z.b.479.10 56
56.3 even 6 112.2.v.a.3.3 56
56.11 odd 6 784.2.w.f.227.3 56
56.19 even 6 784.2.j.a.195.14 56
56.27 even 2 784.2.w.f.19.12 56
56.45 odd 6 448.2.z.a.367.10 56
56.51 odd 6 784.2.j.a.195.13 56
112.3 even 12 448.2.z.a.143.10 56
112.13 odd 4 784.2.w.f.411.3 56
112.45 odd 12 112.2.v.a.59.12 yes 56
112.59 even 12 inner 896.2.z.a.31.5 56
112.61 odd 12 784.2.j.a.587.13 56
112.93 even 12 784.2.j.a.587.14 56
112.101 odd 12 896.2.z.b.31.10 56
112.109 even 12 784.2.w.f.619.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.3 56 56.3 even 6
112.2.v.a.19.12 yes 56 8.3 odd 2
112.2.v.a.59.12 yes 56 112.45 odd 12
112.2.v.a.75.3 yes 56 16.13 even 4
448.2.z.a.47.10 56 8.5 even 2
448.2.z.a.143.10 56 112.3 even 12
448.2.z.a.271.10 56 16.3 odd 4
448.2.z.a.367.10 56 56.45 odd 6
784.2.j.a.195.13 56 56.51 odd 6
784.2.j.a.195.14 56 56.19 even 6
784.2.j.a.587.13 56 112.61 odd 12
784.2.j.a.587.14 56 112.93 even 12
784.2.w.f.19.12 56 56.27 even 2
784.2.w.f.227.3 56 56.11 odd 6
784.2.w.f.411.3 56 112.13 odd 4
784.2.w.f.619.12 56 112.109 even 12
896.2.z.a.31.5 56 112.59 even 12 inner
896.2.z.a.159.5 56 16.11 odd 4 inner
896.2.z.a.479.5 56 7.3 odd 6 inner
896.2.z.a.607.5 56 1.1 even 1 trivial
896.2.z.b.31.10 56 112.101 odd 12
896.2.z.b.159.10 56 16.5 even 4
896.2.z.b.479.10 56 28.3 even 6
896.2.z.b.607.10 56 4.3 odd 2