Properties

Label 448.3.s.c.129.1
Level $448$
Weight $3$
Character 448.129
Analytic conductor $12.207$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,3,Mod(129,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.129");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 129.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 448.129
Dual form 448.3.s.c.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.62132 - 2.09077i) q^{3} +(-2.74264 + 1.58346i) q^{5} +(2.24264 - 6.63103i) q^{7} +(4.24264 + 7.34847i) q^{9} +(6.62132 - 11.4685i) q^{11} -5.49333i q^{13} +13.2426 q^{15} +(-11.7426 - 6.77962i) q^{17} +(-0.621320 + 0.358719i) q^{19} +(-21.9853 + 19.3242i) q^{21} +(-1.13604 - 1.96768i) q^{23} +(-7.48528 + 12.9649i) q^{25} +2.15232i q^{27} -20.4853 q^{29} +(-21.3198 - 12.3090i) q^{31} +(-47.9558 + 27.6873i) q^{33} +(4.34924 + 21.7377i) q^{35} +(32.4706 + 56.2407i) q^{37} +(-11.4853 + 19.8931i) q^{39} +21.0308i q^{41} +6.48528 q^{43} +(-23.2721 - 13.4361i) q^{45} +(-41.3787 + 23.8900i) q^{47} +(-38.9411 - 29.7420i) q^{49} +(28.3492 + 49.1023i) q^{51} +(11.0147 - 19.0781i) q^{53} +41.9385i q^{55} +3.00000 q^{57} +(-72.5330 - 41.8770i) q^{59} +(-57.3823 + 33.1297i) q^{61} +(58.2426 - 11.6531i) q^{63} +(8.69848 + 15.0662i) q^{65} +(-46.3198 + 80.2283i) q^{67} +9.50079i q^{69} +48.4264 q^{71} +(113.441 + 65.4953i) q^{73} +(54.2132 - 31.3000i) q^{75} +(-61.1985 - 69.6258i) q^{77} +(-38.1066 - 66.0026i) q^{79} +(42.6838 - 73.9305i) q^{81} -107.981i q^{83} +42.9411 q^{85} +(74.1838 + 42.8300i) q^{87} +(-145.412 + 83.9535i) q^{89} +(-36.4264 - 12.3196i) q^{91} +(51.4706 + 89.1496i) q^{93} +(1.13604 - 1.96768i) q^{95} -25.5816i q^{97} +112.368 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 6 q^{5} - 8 q^{7} + 18 q^{11} + 36 q^{15} - 30 q^{17} + 6 q^{19} - 54 q^{21} - 30 q^{23} + 4 q^{25} - 48 q^{29} + 42 q^{31} - 90 q^{33} - 42 q^{35} + 62 q^{37} - 12 q^{39} - 8 q^{43} - 144 q^{45}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.62132 2.09077i −1.20711 0.696923i −0.244981 0.969528i \(-0.578782\pi\)
−0.962126 + 0.272605i \(0.912115\pi\)
\(4\) 0 0
\(5\) −2.74264 + 1.58346i −0.548528 + 0.316693i −0.748528 0.663103i \(-0.769239\pi\)
0.200000 + 0.979796i \(0.435906\pi\)
\(6\) 0 0
\(7\) 2.24264 6.63103i 0.320377 0.947290i
\(8\) 0 0
\(9\) 4.24264 + 7.34847i 0.471405 + 0.816497i
\(10\) 0 0
\(11\) 6.62132 11.4685i 0.601938 1.04259i −0.390589 0.920565i \(-0.627729\pi\)
0.992527 0.122022i \(-0.0389380\pi\)
\(12\) 0 0
\(13\) 5.49333i 0.422563i −0.977425 0.211282i \(-0.932236\pi\)
0.977425 0.211282i \(-0.0677638\pi\)
\(14\) 0 0
\(15\) 13.2426 0.882843
\(16\) 0 0
\(17\) −11.7426 6.77962i −0.690744 0.398801i 0.113147 0.993578i \(-0.463907\pi\)
−0.803891 + 0.594777i \(0.797240\pi\)
\(18\) 0 0
\(19\) −0.621320 + 0.358719i −0.0327011 + 0.0188800i −0.516261 0.856431i \(-0.672677\pi\)
0.483560 + 0.875311i \(0.339343\pi\)
\(20\) 0 0
\(21\) −21.9853 + 19.3242i −1.04692 + 0.920202i
\(22\) 0 0
\(23\) −1.13604 1.96768i −0.0493930 0.0855512i 0.840272 0.542165i \(-0.182395\pi\)
−0.889665 + 0.456614i \(0.849062\pi\)
\(24\) 0 0
\(25\) −7.48528 + 12.9649i −0.299411 + 0.518596i
\(26\) 0 0
\(27\) 2.15232i 0.0797154i
\(28\) 0 0
\(29\) −20.4853 −0.706389 −0.353195 0.935550i \(-0.614905\pi\)
−0.353195 + 0.935550i \(0.614905\pi\)
\(30\) 0 0
\(31\) −21.3198 12.3090i −0.687736 0.397064i 0.115028 0.993362i \(-0.463304\pi\)
−0.802763 + 0.596298i \(0.796638\pi\)
\(32\) 0 0
\(33\) −47.9558 + 27.6873i −1.45321 + 0.839010i
\(34\) 0 0
\(35\) 4.34924 + 21.7377i 0.124264 + 0.621076i
\(36\) 0 0
\(37\) 32.4706 + 56.2407i 0.877583 + 1.52002i 0.853986 + 0.520296i \(0.174179\pi\)
0.0235970 + 0.999722i \(0.492488\pi\)
\(38\) 0 0
\(39\) −11.4853 + 19.8931i −0.294494 + 0.510079i
\(40\) 0 0
\(41\) 21.0308i 0.512946i 0.966551 + 0.256473i \(0.0825605\pi\)
−0.966551 + 0.256473i \(0.917439\pi\)
\(42\) 0 0
\(43\) 6.48528 0.150820 0.0754102 0.997153i \(-0.475973\pi\)
0.0754102 + 0.997153i \(0.475973\pi\)
\(44\) 0 0
\(45\) −23.2721 13.4361i −0.517157 0.298581i
\(46\) 0 0
\(47\) −41.3787 + 23.8900i −0.880397 + 0.508298i −0.870789 0.491656i \(-0.836392\pi\)
−0.00960801 + 0.999954i \(0.503058\pi\)
\(48\) 0 0
\(49\) −38.9411 29.7420i −0.794717 0.606980i
\(50\) 0 0
\(51\) 28.3492 + 49.1023i 0.555867 + 0.962791i
\(52\) 0 0
\(53\) 11.0147 19.0781i 0.207825 0.359963i −0.743204 0.669065i \(-0.766695\pi\)
0.951029 + 0.309101i \(0.100028\pi\)
\(54\) 0 0
\(55\) 41.9385i 0.762518i
\(56\) 0 0
\(57\) 3.00000 0.0526316
\(58\) 0 0
\(59\) −72.5330 41.8770i −1.22937 0.709779i −0.262474 0.964939i \(-0.584538\pi\)
−0.966899 + 0.255160i \(0.917872\pi\)
\(60\) 0 0
\(61\) −57.3823 + 33.1297i −0.940693 + 0.543109i −0.890177 0.455614i \(-0.849420\pi\)
−0.0505153 + 0.998723i \(0.516086\pi\)
\(62\) 0 0
\(63\) 58.2426 11.6531i 0.924486 0.184970i
\(64\) 0 0
\(65\) 8.69848 + 15.0662i 0.133823 + 0.231788i
\(66\) 0 0
\(67\) −46.3198 + 80.2283i −0.691340 + 1.19744i 0.280058 + 0.959983i \(0.409646\pi\)
−0.971399 + 0.237454i \(0.923687\pi\)
\(68\) 0 0
\(69\) 9.50079i 0.137693i
\(70\) 0 0
\(71\) 48.4264 0.682062 0.341031 0.940052i \(-0.389224\pi\)
0.341031 + 0.940052i \(0.389224\pi\)
\(72\) 0 0
\(73\) 113.441 + 65.4953i 1.55399 + 0.897195i 0.997811 + 0.0661316i \(0.0210657\pi\)
0.556177 + 0.831064i \(0.312268\pi\)
\(74\) 0 0
\(75\) 54.2132 31.3000i 0.722843 0.417333i
\(76\) 0 0
\(77\) −61.1985 69.6258i −0.794786 0.904231i
\(78\) 0 0
\(79\) −38.1066 66.0026i −0.482362 0.835476i 0.517433 0.855724i \(-0.326888\pi\)
−0.999795 + 0.0202482i \(0.993554\pi\)
\(80\) 0 0
\(81\) 42.6838 73.9305i 0.526960 0.912722i
\(82\) 0 0
\(83\) 107.981i 1.30098i −0.759514 0.650491i \(-0.774563\pi\)
0.759514 0.650491i \(-0.225437\pi\)
\(84\) 0 0
\(85\) 42.9411 0.505190
\(86\) 0 0
\(87\) 74.1838 + 42.8300i 0.852687 + 0.492299i
\(88\) 0 0
\(89\) −145.412 + 83.9535i −1.63384 + 0.943297i −0.650945 + 0.759125i \(0.725627\pi\)
−0.982894 + 0.184173i \(0.941039\pi\)
\(90\) 0 0
\(91\) −36.4264 12.3196i −0.400290 0.135380i
\(92\) 0 0
\(93\) 51.4706 + 89.1496i 0.553447 + 0.958598i
\(94\) 0 0
\(95\) 1.13604 1.96768i 0.0119583 0.0207124i
\(96\) 0 0
\(97\) 25.5816i 0.263728i −0.991268 0.131864i \(-0.957904\pi\)
0.991268 0.131864i \(-0.0420962\pi\)
\(98\) 0 0
\(99\) 112.368 1.13503
\(100\) 0 0
\(101\) −24.6838 14.2512i −0.244394 0.141101i 0.372801 0.927911i \(-0.378397\pi\)
−0.617194 + 0.786811i \(0.711731\pi\)
\(102\) 0 0
\(103\) −48.9228 + 28.2456i −0.474979 + 0.274229i −0.718322 0.695711i \(-0.755089\pi\)
0.243343 + 0.969940i \(0.421756\pi\)
\(104\) 0 0
\(105\) 29.6985 87.8124i 0.282843 0.836308i
\(106\) 0 0
\(107\) −23.8051 41.2316i −0.222477 0.385342i 0.733082 0.680140i \(-0.238081\pi\)
−0.955560 + 0.294798i \(0.904748\pi\)
\(108\) 0 0
\(109\) 37.6543 65.2192i 0.345453 0.598341i −0.639983 0.768389i \(-0.721059\pi\)
0.985436 + 0.170047i \(0.0543921\pi\)
\(110\) 0 0
\(111\) 271.554i 2.44643i
\(112\) 0 0
\(113\) 85.4558 0.756246 0.378123 0.925755i \(-0.376570\pi\)
0.378123 + 0.925755i \(0.376570\pi\)
\(114\) 0 0
\(115\) 6.23149 + 3.59775i 0.0541869 + 0.0312848i
\(116\) 0 0
\(117\) 40.3675 23.3062i 0.345022 0.199198i
\(118\) 0 0
\(119\) −71.2904 + 62.6616i −0.599079 + 0.526568i
\(120\) 0 0
\(121\) −27.1838 47.0837i −0.224659 0.389121i
\(122\) 0 0
\(123\) 43.9706 76.1592i 0.357484 0.619181i
\(124\) 0 0
\(125\) 126.584i 1.01267i
\(126\) 0 0
\(127\) 60.6619 0.477653 0.238826 0.971062i \(-0.423237\pi\)
0.238826 + 0.971062i \(0.423237\pi\)
\(128\) 0 0
\(129\) −23.4853 13.5592i −0.182056 0.105110i
\(130\) 0 0
\(131\) −115.136 + 66.4738i −0.878901 + 0.507434i −0.870296 0.492529i \(-0.836072\pi\)
−0.00860515 + 0.999963i \(0.502739\pi\)
\(132\) 0 0
\(133\) 0.985281 + 4.92447i 0.00740813 + 0.0370261i
\(134\) 0 0
\(135\) −3.40812 5.90303i −0.0252453 0.0437262i
\(136\) 0 0
\(137\) 58.7132 101.694i 0.428564 0.742294i −0.568182 0.822903i \(-0.692353\pi\)
0.996746 + 0.0806089i \(0.0256865\pi\)
\(138\) 0 0
\(139\) 68.5857i 0.493422i −0.969089 0.246711i \(-0.920650\pi\)
0.969089 0.246711i \(-0.0793499\pi\)
\(140\) 0 0
\(141\) 199.794 1.41698
\(142\) 0 0
\(143\) −63.0000 36.3731i −0.440559 0.254357i
\(144\) 0 0
\(145\) 56.1838 32.4377i 0.387474 0.223708i
\(146\) 0 0
\(147\) 78.8345 + 189.122i 0.536289 + 1.28655i
\(148\) 0 0
\(149\) −13.1985 22.8604i −0.0885804 0.153426i 0.818331 0.574747i \(-0.194900\pi\)
−0.906911 + 0.421322i \(0.861566\pi\)
\(150\) 0 0
\(151\) −67.1066 + 116.232i −0.444415 + 0.769749i −0.998011 0.0630363i \(-0.979922\pi\)
0.553597 + 0.832785i \(0.313255\pi\)
\(152\) 0 0
\(153\) 115.054i 0.751986i
\(154\) 0 0
\(155\) 77.9634 0.502990
\(156\) 0 0
\(157\) 196.323 + 113.347i 1.25047 + 0.721958i 0.971202 0.238256i \(-0.0765759\pi\)
0.279265 + 0.960214i \(0.409909\pi\)
\(158\) 0 0
\(159\) −79.7756 + 46.0585i −0.501734 + 0.289676i
\(160\) 0 0
\(161\) −15.5955 + 3.12032i −0.0968662 + 0.0193808i
\(162\) 0 0
\(163\) 45.9889 + 79.6550i 0.282140 + 0.488681i 0.971912 0.235346i \(-0.0756223\pi\)
−0.689771 + 0.724027i \(0.742289\pi\)
\(164\) 0 0
\(165\) 87.6838 151.873i 0.531417 0.920441i
\(166\) 0 0
\(167\) 203.482i 1.21845i 0.792996 + 0.609227i \(0.208520\pi\)
−0.792996 + 0.609227i \(0.791480\pi\)
\(168\) 0 0
\(169\) 138.823 0.821440
\(170\) 0 0
\(171\) −5.27208 3.04384i −0.0308309 0.0178002i
\(172\) 0 0
\(173\) −61.3234 + 35.4051i −0.354470 + 0.204654i −0.666652 0.745369i \(-0.732273\pi\)
0.312182 + 0.950022i \(0.398940\pi\)
\(174\) 0 0
\(175\) 69.1838 + 78.7107i 0.395336 + 0.449775i
\(176\) 0 0
\(177\) 175.110 + 303.300i 0.989323 + 1.71356i
\(178\) 0 0
\(179\) −54.4081 + 94.2376i −0.303956 + 0.526467i −0.977028 0.213109i \(-0.931641\pi\)
0.673072 + 0.739577i \(0.264974\pi\)
\(180\) 0 0
\(181\) 99.6607i 0.550611i −0.961357 0.275306i \(-0.911221\pi\)
0.961357 0.275306i \(-0.0887791\pi\)
\(182\) 0 0
\(183\) 277.066 1.51402
\(184\) 0 0
\(185\) −178.110 102.832i −0.962758 0.555848i
\(186\) 0 0
\(187\) −155.504 + 89.7800i −0.831570 + 0.480107i
\(188\) 0 0
\(189\) 14.2721 + 4.82687i 0.0755136 + 0.0255390i
\(190\) 0 0
\(191\) 34.9523 + 60.5391i 0.182996 + 0.316959i 0.942899 0.333077i \(-0.108087\pi\)
−0.759903 + 0.650036i \(0.774754\pi\)
\(192\) 0 0
\(193\) 16.1690 28.0056i 0.0837774 0.145107i −0.821092 0.570796i \(-0.806635\pi\)
0.904870 + 0.425689i \(0.139968\pi\)
\(194\) 0 0
\(195\) 72.7461i 0.373057i
\(196\) 0 0
\(197\) −277.103 −1.40661 −0.703306 0.710887i \(-0.748294\pi\)
−0.703306 + 0.710887i \(0.748294\pi\)
\(198\) 0 0
\(199\) −145.011 83.7222i −0.728699 0.420715i 0.0892469 0.996010i \(-0.471554\pi\)
−0.817946 + 0.575295i \(0.804887\pi\)
\(200\) 0 0
\(201\) 335.478 193.688i 1.66904 0.963623i
\(202\) 0 0
\(203\) −45.9411 + 135.839i −0.226311 + 0.669155i
\(204\) 0 0
\(205\) −33.3015 57.6799i −0.162446 0.281365i
\(206\) 0 0
\(207\) 9.63961 16.6963i 0.0465682 0.0806584i
\(208\) 0 0
\(209\) 9.50079i 0.0454583i
\(210\) 0 0
\(211\) −128.073 −0.606982 −0.303491 0.952834i \(-0.598152\pi\)
−0.303491 + 0.952834i \(0.598152\pi\)
\(212\) 0 0
\(213\) −175.368 101.248i −0.823322 0.475345i
\(214\) 0 0
\(215\) −17.7868 + 10.2692i −0.0827293 + 0.0477638i
\(216\) 0 0
\(217\) −129.434 + 113.768i −0.596470 + 0.524275i
\(218\) 0 0
\(219\) −273.871 474.359i −1.25055 2.16602i
\(220\) 0 0
\(221\) −37.2426 + 64.5061i −0.168519 + 0.291883i
\(222\) 0 0
\(223\) 417.169i 1.87071i −0.353705 0.935357i \(-0.615078\pi\)
0.353705 0.935357i \(-0.384922\pi\)
\(224\) 0 0
\(225\) −127.029 −0.564575
\(226\) 0 0
\(227\) 201.143 + 116.130i 0.886093 + 0.511586i 0.872663 0.488324i \(-0.162391\pi\)
0.0134307 + 0.999910i \(0.495725\pi\)
\(228\) 0 0
\(229\) 72.4188 41.8110i 0.316239 0.182581i −0.333476 0.942759i \(-0.608222\pi\)
0.649715 + 0.760178i \(0.274888\pi\)
\(230\) 0 0
\(231\) 76.0477 + 380.089i 0.329211 + 1.64541i
\(232\) 0 0
\(233\) −109.537 189.723i −0.470114 0.814261i 0.529302 0.848434i \(-0.322454\pi\)
−0.999416 + 0.0341721i \(0.989121\pi\)
\(234\) 0 0
\(235\) 75.6579 131.043i 0.321949 0.557631i
\(236\) 0 0
\(237\) 318.689i 1.34468i
\(238\) 0 0
\(239\) −193.103 −0.807961 −0.403980 0.914768i \(-0.632374\pi\)
−0.403980 + 0.914768i \(0.632374\pi\)
\(240\) 0 0
\(241\) 42.8970 + 24.7666i 0.177996 + 0.102766i 0.586351 0.810057i \(-0.300564\pi\)
−0.408355 + 0.912823i \(0.633897\pi\)
\(242\) 0 0
\(243\) −292.368 + 168.798i −1.20316 + 0.694644i
\(244\) 0 0
\(245\) 153.897 + 19.9098i 0.628151 + 0.0812646i
\(246\) 0 0
\(247\) 1.97056 + 3.41311i 0.00797799 + 0.0138183i
\(248\) 0 0
\(249\) −225.765 + 391.036i −0.906685 + 1.57042i
\(250\) 0 0
\(251\) 162.524i 0.647507i −0.946141 0.323754i \(-0.895055\pi\)
0.946141 0.323754i \(-0.104945\pi\)
\(252\) 0 0
\(253\) −30.0883 −0.118926
\(254\) 0 0
\(255\) −155.504 89.7800i −0.609818 0.352079i
\(256\) 0 0
\(257\) −85.8747 + 49.5798i −0.334143 + 0.192917i −0.657679 0.753298i \(-0.728462\pi\)
0.323536 + 0.946216i \(0.395128\pi\)
\(258\) 0 0
\(259\) 445.753 89.1857i 1.72106 0.344346i
\(260\) 0 0
\(261\) −86.9117 150.535i −0.332995 0.576764i
\(262\) 0 0
\(263\) 217.173 376.154i 0.825751 1.43024i −0.0755923 0.997139i \(-0.524085\pi\)
0.901344 0.433105i \(-0.142582\pi\)
\(264\) 0 0
\(265\) 69.7657i 0.263267i
\(266\) 0 0
\(267\) 702.110 2.62962
\(268\) 0 0
\(269\) 79.1619 + 45.7041i 0.294282 + 0.169904i 0.639871 0.768482i \(-0.278988\pi\)
−0.345589 + 0.938386i \(0.612321\pi\)
\(270\) 0 0
\(271\) −14.8051 + 8.54772i −0.0546313 + 0.0315414i −0.527067 0.849824i \(-0.676708\pi\)
0.472436 + 0.881365i \(0.343375\pi\)
\(272\) 0 0
\(273\) 106.154 + 120.772i 0.388844 + 0.442389i
\(274\) 0 0
\(275\) 99.1249 + 171.689i 0.360454 + 0.624325i
\(276\) 0 0
\(277\) −200.206 + 346.766i −0.722764 + 1.25186i 0.237124 + 0.971479i \(0.423795\pi\)
−0.959888 + 0.280385i \(0.909538\pi\)
\(278\) 0 0
\(279\) 208.891i 0.748712i
\(280\) 0 0
\(281\) −538.690 −1.91705 −0.958524 0.285012i \(-0.908002\pi\)
−0.958524 + 0.285012i \(0.908002\pi\)
\(282\) 0 0
\(283\) −267.783 154.604i −0.946229 0.546306i −0.0543215 0.998523i \(-0.517300\pi\)
−0.891907 + 0.452218i \(0.850633\pi\)
\(284\) 0 0
\(285\) −8.22792 + 4.75039i −0.0288699 + 0.0166680i
\(286\) 0 0
\(287\) 139.456 + 47.1645i 0.485909 + 0.164336i
\(288\) 0 0
\(289\) −52.5736 91.0601i −0.181916 0.315087i
\(290\) 0 0
\(291\) −53.4853 + 92.6392i −0.183798 + 0.318348i
\(292\) 0 0
\(293\) 327.391i 1.11738i 0.829378 + 0.558688i \(0.188695\pi\)
−0.829378 + 0.558688i \(0.811305\pi\)
\(294\) 0 0
\(295\) 265.243 0.899128
\(296\) 0 0
\(297\) 24.6838 + 14.2512i 0.0831103 + 0.0479838i
\(298\) 0 0
\(299\) −10.8091 + 6.24063i −0.0361508 + 0.0208717i
\(300\) 0 0
\(301\) 14.5442 43.0041i 0.0483195 0.142871i
\(302\) 0 0
\(303\) 59.5919 + 103.216i 0.196673 + 0.340647i
\(304\) 0 0
\(305\) 104.919 181.725i 0.343998 0.595821i
\(306\) 0 0
\(307\) 256.140i 0.834331i −0.908831 0.417165i \(-0.863024\pi\)
0.908831 0.417165i \(-0.136976\pi\)
\(308\) 0 0
\(309\) 236.220 0.764467
\(310\) 0 0
\(311\) −187.349 108.166i −0.602409 0.347801i 0.167580 0.985859i \(-0.446405\pi\)
−0.769989 + 0.638057i \(0.779738\pi\)
\(312\) 0 0
\(313\) 135.809 78.4092i 0.433893 0.250509i −0.267110 0.963666i \(-0.586069\pi\)
0.701004 + 0.713157i \(0.252736\pi\)
\(314\) 0 0
\(315\) −141.286 + 124.185i −0.448528 + 0.394239i
\(316\) 0 0
\(317\) −224.015 388.005i −0.706671 1.22399i −0.966085 0.258224i \(-0.916863\pi\)
0.259414 0.965766i \(-0.416471\pi\)
\(318\) 0 0
\(319\) −135.640 + 234.935i −0.425203 + 0.736472i
\(320\) 0 0
\(321\) 199.084i 0.620199i
\(322\) 0 0
\(323\) 9.72792 0.0301174
\(324\) 0 0
\(325\) 71.2203 + 41.1191i 0.219140 + 0.126520i
\(326\) 0 0
\(327\) −272.717 + 157.453i −0.833996 + 0.481508i
\(328\) 0 0
\(329\) 65.6177 + 327.960i 0.199446 + 0.996839i
\(330\) 0 0
\(331\) 27.5036 + 47.6376i 0.0830924 + 0.143920i 0.904577 0.426311i \(-0.140187\pi\)
−0.821484 + 0.570231i \(0.806854\pi\)
\(332\) 0 0
\(333\) −275.522 + 477.218i −0.827393 + 1.43309i
\(334\) 0 0
\(335\) 293.383i 0.875770i
\(336\) 0 0
\(337\) −111.632 −0.331254 −0.165627 0.986189i \(-0.552965\pi\)
−0.165627 + 0.986189i \(0.552965\pi\)
\(338\) 0 0
\(339\) −309.463 178.669i −0.912870 0.527046i
\(340\) 0 0
\(341\) −282.331 + 163.004i −0.827949 + 0.478016i
\(342\) 0 0
\(343\) −284.551 + 191.519i −0.829596 + 0.558365i
\(344\) 0 0
\(345\) −15.0442 26.0572i −0.0436062 0.0755282i
\(346\) 0 0
\(347\) −188.628 + 326.714i −0.543598 + 0.941539i 0.455096 + 0.890442i \(0.349605\pi\)
−0.998694 + 0.0510967i \(0.983728\pi\)
\(348\) 0 0
\(349\) 204.034i 0.584624i −0.956323 0.292312i \(-0.905575\pi\)
0.956323 0.292312i \(-0.0944246\pi\)
\(350\) 0 0
\(351\) 11.8234 0.0336848
\(352\) 0 0
\(353\) −361.198 208.538i −1.02323 0.590759i −0.108189 0.994130i \(-0.534505\pi\)
−0.915036 + 0.403371i \(0.867838\pi\)
\(354\) 0 0
\(355\) −132.816 + 76.6815i −0.374130 + 0.216004i
\(356\) 0 0
\(357\) 389.176 77.8658i 1.09013 0.218112i
\(358\) 0 0
\(359\) −89.4153 154.872i −0.249068 0.431398i 0.714200 0.699942i \(-0.246791\pi\)
−0.963267 + 0.268544i \(0.913457\pi\)
\(360\) 0 0
\(361\) −180.243 + 312.189i −0.499287 + 0.864791i
\(362\) 0 0
\(363\) 227.340i 0.626281i
\(364\) 0 0
\(365\) −414.838 −1.13654
\(366\) 0 0
\(367\) 544.724 + 314.497i 1.48426 + 0.856939i 0.999840 0.0178960i \(-0.00569679\pi\)
0.484422 + 0.874835i \(0.339030\pi\)
\(368\) 0 0
\(369\) −154.544 + 89.2261i −0.418819 + 0.241805i
\(370\) 0 0
\(371\) −101.805 115.824i −0.274407 0.312194i
\(372\) 0 0
\(373\) −127.779 221.320i −0.342572 0.593351i 0.642338 0.766422i \(-0.277965\pi\)
−0.984910 + 0.173070i \(0.944631\pi\)
\(374\) 0 0
\(375\) −264.658 + 458.401i −0.705754 + 1.22240i
\(376\) 0 0
\(377\) 112.532i 0.298494i
\(378\) 0 0
\(379\) 219.750 0.579816 0.289908 0.957055i \(-0.406375\pi\)
0.289908 + 0.957055i \(0.406375\pi\)
\(380\) 0 0
\(381\) −219.676 126.830i −0.576578 0.332887i
\(382\) 0 0
\(383\) 14.7534 8.51785i 0.0385205 0.0222398i −0.480616 0.876931i \(-0.659587\pi\)
0.519137 + 0.854691i \(0.326254\pi\)
\(384\) 0 0
\(385\) 278.095 + 94.0530i 0.722326 + 0.244293i
\(386\) 0 0
\(387\) 27.5147 + 47.6569i 0.0710975 + 0.123144i
\(388\) 0 0
\(389\) −76.1102 + 131.827i −0.195656 + 0.338886i −0.947115 0.320893i \(-0.896017\pi\)
0.751459 + 0.659779i \(0.229350\pi\)
\(390\) 0 0
\(391\) 30.8076i 0.0787919i
\(392\) 0 0
\(393\) 555.926 1.41457
\(394\) 0 0
\(395\) 209.025 + 120.681i 0.529178 + 0.305521i
\(396\) 0 0
\(397\) 322.786 186.361i 0.813064 0.469423i −0.0349549 0.999389i \(-0.511129\pi\)
0.848019 + 0.529966i \(0.177795\pi\)
\(398\) 0 0
\(399\) 6.72792 19.8931i 0.0168620 0.0498574i
\(400\) 0 0
\(401\) −325.786 564.279i −0.812435 1.40718i −0.911155 0.412063i \(-0.864808\pi\)
0.0987205 0.995115i \(-0.468525\pi\)
\(402\) 0 0
\(403\) −67.6173 + 117.117i −0.167785 + 0.290612i
\(404\) 0 0
\(405\) 270.353i 0.667538i
\(406\) 0 0
\(407\) 859.992 2.11300
\(408\) 0 0
\(409\) 462.081 + 266.782i 1.12978 + 0.652280i 0.943880 0.330289i \(-0.107146\pi\)
0.185902 + 0.982568i \(0.440479\pi\)
\(410\) 0 0
\(411\) −425.239 + 245.512i −1.03464 + 0.597352i
\(412\) 0 0
\(413\) −440.353 + 387.054i −1.06623 + 0.937176i
\(414\) 0 0
\(415\) 170.985 + 296.154i 0.412012 + 0.713625i
\(416\) 0 0
\(417\) −143.397 + 248.371i −0.343878 + 0.595614i
\(418\) 0 0
\(419\) 534.252i 1.27507i −0.770423 0.637533i \(-0.779955\pi\)
0.770423 0.637533i \(-0.220045\pi\)
\(420\) 0 0
\(421\) −157.220 −0.373445 −0.186723 0.982413i \(-0.559787\pi\)
−0.186723 + 0.982413i \(0.559787\pi\)
\(422\) 0 0
\(423\) −351.110 202.713i −0.830047 0.479228i
\(424\) 0 0
\(425\) 175.794 101.495i 0.413633 0.238811i
\(426\) 0 0
\(427\) 90.9960 + 454.801i 0.213105 + 1.06511i
\(428\) 0 0
\(429\) 152.095 + 263.437i 0.354535 + 0.614072i
\(430\) 0 0
\(431\) −114.268 + 197.918i −0.265123 + 0.459207i −0.967596 0.252504i \(-0.918746\pi\)
0.702473 + 0.711711i \(0.252079\pi\)
\(432\) 0 0
\(433\) 47.5549i 0.109827i 0.998491 + 0.0549133i \(0.0174882\pi\)
−0.998491 + 0.0549133i \(0.982512\pi\)
\(434\) 0 0
\(435\) −271.279 −0.623630
\(436\) 0 0
\(437\) 1.41169 + 0.815039i 0.00323041 + 0.00186508i
\(438\) 0 0
\(439\) 63.9594 36.9270i 0.145693 0.0841161i −0.425381 0.905014i \(-0.639860\pi\)
0.571075 + 0.820898i \(0.306527\pi\)
\(440\) 0 0
\(441\) 53.3452 412.342i 0.120964 0.935017i
\(442\) 0 0
\(443\) −117.320 203.204i −0.264830 0.458699i 0.702689 0.711497i \(-0.251983\pi\)
−0.967519 + 0.252798i \(0.918649\pi\)
\(444\) 0 0
\(445\) 265.875 460.508i 0.597471 1.03485i
\(446\) 0 0
\(447\) 110.380i 0.246935i
\(448\) 0 0
\(449\) −255.161 −0.568288 −0.284144 0.958782i \(-0.591709\pi\)
−0.284144 + 0.958782i \(0.591709\pi\)
\(450\) 0 0
\(451\) 241.191 + 139.252i 0.534791 + 0.308762i
\(452\) 0 0
\(453\) 486.029 280.609i 1.07291 0.619446i
\(454\) 0 0
\(455\) 119.412 23.8918i 0.262444 0.0525095i
\(456\) 0 0
\(457\) 72.8675 + 126.210i 0.159448 + 0.276171i 0.934670 0.355518i \(-0.115695\pi\)
−0.775222 + 0.631689i \(0.782362\pi\)
\(458\) 0 0
\(459\) 14.5919 25.2739i 0.0317906 0.0550629i
\(460\) 0 0
\(461\) 888.329i 1.92696i −0.267777 0.963481i \(-0.586289\pi\)
0.267777 0.963481i \(-0.413711\pi\)
\(462\) 0 0
\(463\) −234.014 −0.505430 −0.252715 0.967541i \(-0.581324\pi\)
−0.252715 + 0.967541i \(0.581324\pi\)
\(464\) 0 0
\(465\) −282.331 163.004i −0.607162 0.350545i
\(466\) 0 0
\(467\) 681.231 393.309i 1.45874 0.842204i 0.459790 0.888028i \(-0.347925\pi\)
0.998950 + 0.0458237i \(0.0145912\pi\)
\(468\) 0 0
\(469\) 428.117 + 487.071i 0.912830 + 1.03853i
\(470\) 0 0
\(471\) −473.967 820.934i −1.00630 1.74296i
\(472\) 0 0
\(473\) 42.9411 74.3762i 0.0907846 0.157244i
\(474\) 0 0
\(475\) 10.7405i 0.0226115i
\(476\) 0 0
\(477\) 186.926 0.391878
\(478\) 0 0
\(479\) −638.202 368.466i −1.33236 0.769240i −0.346702 0.937975i \(-0.612698\pi\)
−0.985661 + 0.168735i \(0.946032\pi\)
\(480\) 0 0
\(481\) 308.948 178.371i 0.642304 0.370834i
\(482\) 0 0
\(483\) 63.0000 + 21.3068i 0.130435 + 0.0441136i
\(484\) 0 0
\(485\) 40.5076 + 70.1612i 0.0835208 + 0.144662i
\(486\) 0 0
\(487\) 135.349 234.432i 0.277925 0.481379i −0.692944 0.720991i \(-0.743687\pi\)
0.970869 + 0.239612i \(0.0770202\pi\)
\(488\) 0 0
\(489\) 384.609i 0.786520i
\(490\) 0 0
\(491\) 760.161 1.54819 0.774094 0.633070i \(-0.218206\pi\)
0.774094 + 0.633070i \(0.218206\pi\)
\(492\) 0 0
\(493\) 240.551 + 138.882i 0.487934 + 0.281709i
\(494\) 0 0
\(495\) −308.184 + 177.930i −0.622593 + 0.359455i
\(496\) 0 0
\(497\) 108.603 321.117i 0.218517 0.646111i
\(498\) 0 0
\(499\) −62.7462 108.680i −0.125744 0.217795i 0.796280 0.604929i \(-0.206798\pi\)
−0.922023 + 0.387134i \(0.873465\pi\)
\(500\) 0 0
\(501\) 425.434 736.873i 0.849169 1.47080i
\(502\) 0 0
\(503\) 117.083i 0.232770i −0.993204 0.116385i \(-0.962869\pi\)
0.993204 0.116385i \(-0.0371306\pi\)
\(504\) 0 0
\(505\) 90.2649 0.178742
\(506\) 0 0
\(507\) −502.724 290.248i −0.991566 0.572481i
\(508\) 0 0
\(509\) 574.110 331.463i 1.12792 0.651204i 0.184507 0.982831i \(-0.440931\pi\)
0.943410 + 0.331627i \(0.107598\pi\)
\(510\) 0 0
\(511\) 688.709 605.349i 1.34777 1.18464i
\(512\) 0 0
\(513\) −0.772078 1.33728i −0.00150503 0.00260678i
\(514\) 0 0
\(515\) 89.4518 154.935i 0.173693 0.300845i
\(516\) 0 0
\(517\) 632.733i 1.22386i
\(518\) 0 0
\(519\) 296.095 0.570511
\(520\) 0 0
\(521\) −40.8229 23.5691i −0.0783550 0.0452383i 0.460311 0.887758i \(-0.347738\pi\)
−0.538666 + 0.842520i \(0.681071\pi\)
\(522\) 0 0
\(523\) 432.554 249.735i 0.827064 0.477506i −0.0257824 0.999668i \(-0.508208\pi\)
0.852846 + 0.522162i \(0.174874\pi\)
\(524\) 0 0
\(525\) −85.9706 429.684i −0.163753 0.818446i
\(526\) 0 0
\(527\) 166.901 + 289.080i 0.316699 + 0.548539i
\(528\) 0 0
\(529\) 261.919 453.657i 0.495121 0.857574i
\(530\) 0 0
\(531\) 710.675i 1.33837i
\(532\) 0 0
\(533\) 115.529 0.216752
\(534\) 0 0
\(535\) 130.578 + 75.3890i 0.244070 + 0.140914i
\(536\) 0 0
\(537\) 394.058 227.510i 0.733815 0.423668i
\(538\) 0 0
\(539\) −598.937 + 249.663i −1.11120 + 0.463197i
\(540\) 0 0
\(541\) 249.405 + 431.981i 0.461007 + 0.798487i 0.999011 0.0444550i \(-0.0141551\pi\)
−0.538005 + 0.842942i \(0.680822\pi\)
\(542\) 0 0
\(543\) −208.368 + 360.903i −0.383734 + 0.664647i
\(544\) 0 0
\(545\) 238.497i 0.437609i
\(546\) 0 0
\(547\) −279.897 −0.511694 −0.255847 0.966717i \(-0.582354\pi\)
−0.255847 + 0.966717i \(0.582354\pi\)
\(548\) 0 0
\(549\) −486.905 281.114i −0.886894 0.512048i
\(550\) 0 0
\(551\) 12.7279 7.34847i 0.0230997 0.0133366i
\(552\) 0 0
\(553\) −523.124 + 104.666i −0.945976 + 0.189269i
\(554\) 0 0
\(555\) 429.996 + 744.775i 0.774768 + 1.34194i
\(556\) 0 0
\(557\) −130.890 + 226.708i −0.234991 + 0.407016i −0.959270 0.282491i \(-0.908839\pi\)
0.724279 + 0.689507i \(0.242173\pi\)
\(558\) 0 0
\(559\) 35.6258i 0.0637312i
\(560\) 0 0
\(561\) 750.838 1.33839
\(562\) 0 0
\(563\) −420.076 242.531i −0.746139 0.430784i 0.0781581 0.996941i \(-0.475096\pi\)
−0.824297 + 0.566157i \(0.808429\pi\)
\(564\) 0 0
\(565\) −234.375 + 135.316i −0.414822 + 0.239498i
\(566\) 0 0
\(567\) −394.511 448.837i −0.695786 0.791599i
\(568\) 0 0
\(569\) 227.000 + 393.175i 0.398945 + 0.690993i 0.993596 0.112991i \(-0.0360432\pi\)
−0.594651 + 0.803984i \(0.702710\pi\)
\(570\) 0 0
\(571\) 115.769 200.517i 0.202747 0.351168i −0.746666 0.665200i \(-0.768346\pi\)
0.949413 + 0.314032i \(0.101680\pi\)
\(572\) 0 0
\(573\) 292.309i 0.510137i
\(574\) 0 0
\(575\) 34.0143 0.0591553
\(576\) 0 0
\(577\) 564.014 + 325.634i 0.977494 + 0.564356i 0.901513 0.432753i \(-0.142458\pi\)
0.0759812 + 0.997109i \(0.475791\pi\)
\(578\) 0 0
\(579\) −117.107 + 67.6115i −0.202257 + 0.116773i
\(580\) 0 0
\(581\) −716.029 242.164i −1.23241 0.416805i
\(582\) 0 0
\(583\) −145.864 252.644i −0.250195 0.433351i
\(584\) 0 0
\(585\) −73.8091 + 127.841i −0.126169 + 0.218532i
\(586\) 0 0
\(587\) 823.029i 1.40209i 0.713116 + 0.701046i \(0.247283\pi\)
−0.713116 + 0.701046i \(0.752717\pi\)
\(588\) 0 0
\(589\) 17.6619 0.0299863
\(590\) 0 0
\(591\) 1003.48 + 579.358i 1.69793 + 0.980301i
\(592\) 0 0
\(593\) −700.110 + 404.209i −1.18062 + 0.681634i −0.956159 0.292848i \(-0.905397\pi\)
−0.224465 + 0.974482i \(0.572064\pi\)
\(594\) 0 0
\(595\) 96.3015 284.744i 0.161851 0.478561i
\(596\) 0 0
\(597\) 350.088 + 606.370i 0.586412 + 1.01570i
\(598\) 0 0
\(599\) 265.422 459.725i 0.443109 0.767488i −0.554809 0.831978i \(-0.687209\pi\)
0.997918 + 0.0644900i \(0.0205421\pi\)
\(600\) 0 0
\(601\) 936.503i 1.55824i −0.626874 0.779121i \(-0.715666\pi\)
0.626874 0.779121i \(-0.284334\pi\)
\(602\) 0 0
\(603\) −786.073 −1.30360
\(604\) 0 0
\(605\) 149.111 + 86.0890i 0.246464 + 0.142296i
\(606\) 0 0
\(607\) −521.452 + 301.060i −0.859064 + 0.495981i −0.863699 0.504008i \(-0.831858\pi\)
0.00463474 + 0.999989i \(0.498525\pi\)
\(608\) 0 0
\(609\) 450.375 395.862i 0.739531 0.650020i
\(610\) 0 0
\(611\) 131.235 + 227.307i 0.214788 + 0.372024i
\(612\) 0 0
\(613\) 548.448 949.940i 0.894695 1.54966i 0.0605142 0.998167i \(-0.480726\pi\)
0.834181 0.551491i \(-0.185941\pi\)
\(614\) 0 0
\(615\) 278.503i 0.452851i
\(616\) 0 0
\(617\) −432.956 −0.701712 −0.350856 0.936429i \(-0.614109\pi\)
−0.350856 + 0.936429i \(0.614109\pi\)
\(618\) 0 0
\(619\) 194.951 + 112.555i 0.314946 + 0.181834i 0.649137 0.760671i \(-0.275130\pi\)
−0.334192 + 0.942505i \(0.608463\pi\)
\(620\) 0 0
\(621\) 4.23506 2.44512i 0.00681975 0.00393738i
\(622\) 0 0
\(623\) 230.592 + 1152.51i 0.370131 + 1.84993i
\(624\) 0 0
\(625\) 13.3091 + 23.0520i 0.0212945 + 0.0368832i
\(626\) 0 0
\(627\) 19.8640 34.4054i 0.0316810 0.0548730i
\(628\) 0 0
\(629\) 880.552i 1.39992i
\(630\) 0 0
\(631\) −750.514 −1.18940 −0.594702 0.803946i \(-0.702730\pi\)
−0.594702 + 0.803946i \(0.702730\pi\)
\(632\) 0 0
\(633\) 463.794 + 267.772i 0.732692 + 0.423020i
\(634\) 0 0
\(635\) −166.374 + 96.0560i −0.262006 + 0.151269i
\(636\) 0 0
\(637\) −163.383 + 213.916i −0.256488 + 0.335818i
\(638\) 0 0
\(639\) 205.456 + 355.860i 0.321527 + 0.556901i
\(640\) 0 0
\(641\) 580.926 1006.19i 0.906281 1.56973i 0.0870937 0.996200i \(-0.472242\pi\)
0.819188 0.573525i \(-0.194425\pi\)
\(642\) 0 0
\(643\) 121.957i 0.189669i 0.995493 + 0.0948347i \(0.0302322\pi\)
−0.995493 + 0.0948347i \(0.969768\pi\)
\(644\) 0 0
\(645\) 85.8823 0.133151
\(646\) 0 0
\(647\) 137.504 + 79.3877i 0.212525 + 0.122701i 0.602484 0.798131i \(-0.294178\pi\)
−0.389959 + 0.920832i \(0.627511\pi\)
\(648\) 0 0
\(649\) −960.529 + 554.561i −1.48001 + 0.854486i
\(650\) 0 0
\(651\) 706.584 141.372i 1.08538 0.217162i
\(652\) 0 0
\(653\) −195.471 338.565i −0.299342 0.518476i 0.676643 0.736311i \(-0.263434\pi\)
−0.975986 + 0.217835i \(0.930101\pi\)
\(654\) 0 0
\(655\) 210.518 364.628i 0.321401 0.556683i
\(656\) 0 0
\(657\) 1111.49i 1.69177i
\(658\) 0 0
\(659\) −331.955 −0.503726 −0.251863 0.967763i \(-0.581043\pi\)
−0.251863 + 0.967763i \(0.581043\pi\)
\(660\) 0 0
\(661\) −561.029 323.910i −0.848758 0.490031i 0.0114736 0.999934i \(-0.496348\pi\)
−0.860232 + 0.509904i \(0.829681\pi\)
\(662\) 0 0
\(663\) 269.735 155.732i 0.406840 0.234889i
\(664\) 0 0
\(665\) −10.5000 11.9459i −0.0157895 0.0179638i
\(666\) 0 0
\(667\) 23.2721 + 40.3084i 0.0348907 + 0.0604324i
\(668\) 0 0
\(669\) −872.205 + 1510.70i −1.30374 + 2.25815i
\(670\) 0 0
\(671\) 877.448i 1.30767i
\(672\) 0 0
\(673\) 100.956 0.150009 0.0750047 0.997183i \(-0.476103\pi\)
0.0750047 + 0.997183i \(0.476103\pi\)
\(674\) 0 0
\(675\) −27.9045 16.1107i −0.0413401 0.0238677i
\(676\) 0 0
\(677\) −643.610 + 371.588i −0.950679 + 0.548875i −0.893292 0.449477i \(-0.851610\pi\)
−0.0573873 + 0.998352i \(0.518277\pi\)
\(678\) 0 0
\(679\) −169.632 57.3704i −0.249827 0.0844924i
\(680\) 0 0
\(681\) −485.603 841.088i −0.713073 1.23508i
\(682\) 0 0
\(683\) −2.21721 + 3.84032i −0.00324628 + 0.00562272i −0.867644 0.497186i \(-0.834367\pi\)
0.864398 + 0.502809i \(0.167700\pi\)
\(684\) 0 0
\(685\) 371.881i 0.542892i
\(686\) 0 0
\(687\) −349.669 −0.508980
\(688\) 0 0
\(689\) −104.802 60.5074i −0.152107 0.0878192i
\(690\) 0 0
\(691\) −846.253 + 488.584i −1.22468 + 0.707069i −0.965912 0.258871i \(-0.916649\pi\)
−0.258767 + 0.965940i \(0.583316\pi\)
\(692\) 0 0
\(693\) 252.000 745.113i 0.363636 1.07520i
\(694\) 0 0
\(695\) 108.603 + 188.106i 0.156263 + 0.270656i
\(696\) 0 0
\(697\) 142.581 246.957i 0.204563 0.354314i
\(698\) 0 0
\(699\) 916.063i 1.31053i
\(700\) 0 0
\(701\) 840.177 1.19854 0.599270 0.800547i \(-0.295458\pi\)
0.599270 + 0.800547i \(0.295458\pi\)
\(702\) 0 0
\(703\) −40.3492 23.2956i −0.0573958 0.0331375i
\(704\) 0 0
\(705\) −547.963 + 316.367i −0.777252 + 0.448747i
\(706\) 0 0
\(707\) −149.857 + 131.719i −0.211962 + 0.186306i
\(708\) 0 0
\(709\) 341.279 + 591.112i 0.481352 + 0.833727i 0.999771 0.0214003i \(-0.00681244\pi\)
−0.518419 + 0.855127i \(0.673479\pi\)
\(710\) 0 0
\(711\) 323.345 560.050i 0.454775 0.787694i
\(712\) 0 0
\(713\) 55.9340i 0.0784488i
\(714\) 0 0
\(715\) 230.382 0.322212
\(716\) 0 0
\(717\) 699.286 + 403.733i 0.975295 + 0.563087i
\(718\) 0 0
\(719\) −119.187 + 68.8126i −0.165768 + 0.0957060i −0.580589 0.814197i \(-0.697178\pi\)
0.414821 + 0.909903i \(0.363844\pi\)
\(720\) 0 0
\(721\) 77.5812 + 387.754i 0.107602 + 0.537800i
\(722\) 0 0
\(723\) −103.562 179.375i −0.143240 0.248099i
\(724\) 0 0
\(725\) 153.338 265.589i 0.211501 0.366330i
\(726\) 0 0
\(727\) 264.137i 0.363325i −0.983361 0.181662i \(-0.941852\pi\)
0.983361 0.181662i \(-0.0581478\pi\)
\(728\) 0 0
\(729\) 643.368 0.882534
\(730\) 0 0
\(731\) −76.1543 43.9677i −0.104178 0.0601474i
\(732\) 0 0
\(733\) −501.705 + 289.660i −0.684455 + 0.395170i −0.801531 0.597953i \(-0.795981\pi\)
0.117077 + 0.993123i \(0.462648\pi\)
\(734\) 0 0
\(735\) −515.683 393.863i −0.701610 0.535868i
\(736\) 0 0
\(737\) 613.397 + 1062.43i 0.832288 + 1.44157i
\(738\) 0 0
\(739\) 99.0477 171.556i 0.134029 0.232146i −0.791197 0.611562i \(-0.790542\pi\)
0.925226 + 0.379416i \(0.123875\pi\)
\(740\) 0 0
\(741\) 16.4800i 0.0222402i
\(742\) 0 0
\(743\) −976.690 −1.31452 −0.657261 0.753663i \(-0.728285\pi\)
−0.657261 + 0.753663i \(0.728285\pi\)
\(744\) 0 0
\(745\) 72.3974 + 41.7987i 0.0971777 + 0.0561056i
\(746\) 0 0
\(747\) 793.499 458.127i 1.06225 0.613289i
\(748\) 0 0
\(749\) −326.794 + 65.3845i −0.436308 + 0.0872958i
\(750\) 0 0
\(751\) −417.665 723.417i −0.556145 0.963272i −0.997813 0.0660933i \(-0.978947\pi\)
0.441668 0.897178i \(-0.354387\pi\)
\(752\) 0 0
\(753\) −339.801 + 588.553i −0.451263 + 0.781611i
\(754\) 0 0
\(755\) 425.044i 0.562972i
\(756\) 0 0
\(757\) −104.221 −0.137677 −0.0688383 0.997628i \(-0.521929\pi\)
−0.0688383 + 0.997628i \(0.521929\pi\)
\(758\) 0 0
\(759\) 108.959 + 62.9077i 0.143557 + 0.0828824i
\(760\) 0 0
\(761\) −473.785 + 273.540i −0.622583 + 0.359448i −0.777874 0.628420i \(-0.783702\pi\)
0.155291 + 0.987869i \(0.450368\pi\)
\(762\) 0 0
\(763\) −348.025 395.950i −0.456128 0.518939i
\(764\) 0 0
\(765\) 182.184 + 315.552i 0.238149 + 0.412486i
\(766\) 0 0
\(767\) −230.044 + 398.447i −0.299927 + 0.519488i
\(768\) 0 0
\(769\) 341.205i 0.443700i −0.975081 0.221850i \(-0.928790\pi\)
0.975081 0.221850i \(-0.0712095\pi\)
\(770\) 0 0
\(771\) 414.640 0.537795
\(772\) 0 0
\(773\) 425.213 + 245.497i 0.550081 + 0.317590i 0.749155 0.662395i \(-0.230460\pi\)
−0.199074 + 0.979985i \(0.563793\pi\)
\(774\) 0 0
\(775\) 319.169 184.273i 0.411832 0.237771i
\(776\) 0 0
\(777\) −1800.68 608.998i −2.31748 0.783781i
\(778\) 0 0
\(779\) −7.54416 13.0669i −0.00968441 0.0167739i
\(780\) 0 0
\(781\) 320.647 555.376i 0.410559 0.711109i
\(782\) 0 0
\(783\) 44.0908i 0.0563101i
\(784\) 0 0
\(785\) −717.926 −0.914555
\(786\) 0 0
\(787\) 260.202 + 150.228i 0.330625 + 0.190887i 0.656119 0.754658i \(-0.272197\pi\)
−0.325493 + 0.945544i \(0.605530\pi\)
\(788\) 0 0
\(789\) −1572.90 + 908.116i −1.99354 + 1.15097i
\(790\) 0 0
\(791\) 191.647 566.660i 0.242284 0.716385i
\(792\) 0 0
\(793\) 181.992 + 315.219i 0.229498 + 0.397502i
\(794\) 0 0
\(795\) 145.864 252.644i 0.183477 0.317791i
\(796\) 0 0
\(797\) 370.072i 0.464331i 0.972676 + 0.232165i \(0.0745811\pi\)
−0.972676 + 0.232165i \(0.925419\pi\)
\(798\) 0 0
\(799\) 647.860 0.810838
\(800\) 0 0
\(801\) −1233.86 712.369i −1.54040 0.889349i
\(802\) 0 0
\(803\) 1502.26 867.330i 1.87081 1.08011i
\(804\) 0 0
\(805\) 37.8318 33.2528i 0.0469960 0.0413078i
\(806\) 0 0
\(807\) −191.114 331.019i −0.236820 0.410184i
\(808\) 0 0
\(809\) −245.618 + 425.422i −0.303607 + 0.525862i −0.976950 0.213468i \(-0.931524\pi\)
0.673344 + 0.739330i \(0.264858\pi\)
\(810\) 0 0
\(811\) 156.802i 0.193344i 0.995316 + 0.0966722i \(0.0308199\pi\)
−0.995316 + 0.0966722i \(0.969180\pi\)
\(812\) 0 0
\(813\) 71.4853 0.0879278
\(814\) 0 0
\(815\) −252.262 145.643i −0.309524 0.178704i
\(816\) 0 0
\(817\) −4.02944 + 2.32640i −0.00493199 + 0.00284749i
\(818\) 0 0
\(819\) −64.0143 319.946i −0.0781615 0.390654i
\(820\) 0 0
\(821\) −215.316 372.939i −0.262261 0.454249i 0.704581 0.709623i \(-0.251135\pi\)
−0.966842 + 0.255374i \(0.917801\pi\)
\(822\) 0 0
\(823\) −354.371 + 613.788i −0.430584 + 0.745793i −0.996924 0.0783785i \(-0.975026\pi\)
0.566340 + 0.824172i \(0.308359\pi\)
\(824\) 0 0
\(825\) 828.990i 1.00484i
\(826\) 0 0
\(827\) −1460.10 −1.76554 −0.882770 0.469805i \(-0.844324\pi\)
−0.882770 + 0.469805i \(0.844324\pi\)
\(828\) 0 0
\(829\) 223.095 + 128.804i 0.269113 + 0.155373i 0.628485 0.777822i \(-0.283675\pi\)
−0.359371 + 0.933195i \(0.617009\pi\)
\(830\) 0 0
\(831\) 1450.02 837.168i 1.74491 1.00742i
\(832\) 0 0
\(833\) 255.632 + 613.256i 0.306881 + 0.736202i
\(834\) 0 0
\(835\) −322.206 558.077i −0.385876 0.668356i
\(836\) 0 0
\(837\) 26.4929 45.8870i 0.0316522 0.0548231i
\(838\) 0 0
\(839\) 213.621i 0.254613i 0.991863 + 0.127307i \(0.0406332\pi\)
−0.991863 + 0.127307i \(0.959367\pi\)
\(840\) 0 0
\(841\) −421.353 −0.501015
\(842\) 0 0
\(843\) 1950.77 + 1126.28i 2.31408 + 1.33604i
\(844\) 0 0
\(845\) −380.743 + 219.822i −0.450583 + 0.260144i
\(846\) 0 0
\(847\) −373.177 + 74.6646i −0.440586 + 0.0881519i
\(848\) 0 0
\(849\) 646.485 + 1119.74i 0.761466 + 1.31890i
\(850\) 0 0
\(851\) 73.7756 127.783i 0.0866929 0.150156i
\(852\) 0 0
\(853\) 1127.37i 1.32165i 0.750539 + 0.660826i \(0.229794\pi\)
−0.750539 + 0.660826i \(0.770206\pi\)
\(854\) 0 0
\(855\) 19.2792 0.0225488
\(856\) 0 0
\(857\) 1100.22 + 635.212i 1.28380 + 0.741204i 0.977541 0.210744i \(-0.0675885\pi\)
0.306261 + 0.951947i \(0.400922\pi\)
\(858\) 0 0
\(859\) −221.488 + 127.876i −0.257844 + 0.148867i −0.623351 0.781942i \(-0.714229\pi\)
0.365506 + 0.930809i \(0.380896\pi\)
\(860\) 0 0
\(861\) −406.404 462.368i −0.472014 0.537013i
\(862\) 0 0
\(863\) 557.364 + 965.382i 0.645844 + 1.11863i 0.984106 + 0.177583i \(0.0568278\pi\)
−0.338262 + 0.941052i \(0.609839\pi\)
\(864\) 0 0
\(865\) 112.125 194.207i 0.129625 0.224516i
\(866\) 0 0
\(867\) 439.677i 0.507125i
\(868\) 0 0
\(869\) −1009.26 −1.16141
\(870\) 0 0
\(871\) 440.720 + 254.450i 0.505993 + 0.292135i
\(872\) 0 0
\(873\) 187.986 108.534i 0.215333 0.124323i
\(874\) 0 0
\(875\) −839.382 283.882i −0.959294 0.324437i
\(876\) 0 0
\(877\) −550.904 954.194i −0.628169 1.08802i −0.987919 0.154972i \(-0.950471\pi\)
0.359750 0.933049i \(-0.382862\pi\)
\(878\) 0 0
\(879\) 684.500 1185.59i 0.778725 1.34879i
\(880\) 0 0
\(881\) 217.067i 0.246387i 0.992383 + 0.123194i \(0.0393136\pi\)
−0.992383 + 0.123194i \(0.960686\pi\)
\(882\) 0 0
\(883\) −516.544 −0.584988 −0.292494 0.956267i \(-0.594485\pi\)
−0.292494 + 0.956267i \(0.594485\pi\)
\(884\) 0 0
\(885\) −960.529 554.561i −1.08534 0.626623i
\(886\) 0 0
\(887\) 978.445 564.905i 1.10309 0.636872i 0.166062 0.986115i \(-0.446895\pi\)
0.937032 + 0.349243i \(0.113561\pi\)
\(888\) 0 0
\(889\) 136.043 402.251i 0.153029 0.452476i
\(890\) 0 0
\(891\) −565.246 979.034i −0.634395 1.09880i
\(892\) 0 0
\(893\) 17.1396 29.6867i 0.0191933 0.0332438i
\(894\) 0 0
\(895\) 344.613i 0.385043i
\(896\) 0 0
\(897\) 52.1909 0.0581838
\(898\) 0 0
\(899\) 436.742 + 252.153i 0.485809 + 0.280482i
\(900\) 0 0
\(901\) −258.684 + 149.351i −0.287107 + 0.165762i
\(902\) 0 0
\(903\) −142.581 + 125.323i −0.157897 + 0.138785i
\(904\) 0 0
\(905\) 157.809 + 273.333i 0.174375 + 0.302026i
\(906\) 0 0
\(907\) −30.0111 + 51.9808i −0.0330884 + 0.0573107i −0.882095 0.471071i \(-0.843868\pi\)
0.849007 + 0.528382i \(0.177201\pi\)
\(908\) 0 0
\(909\) 241.851i 0.266062i
\(910\) 0 0
\(911\) −1422.25 −1.56120 −0.780598 0.625033i \(-0.785085\pi\)
−0.780598 + 0.625033i \(0.785085\pi\)
\(912\) 0 0
\(913\) −1238.38 714.980i −1.35639 0.783111i
\(914\) 0 0
\(915\) −759.893 + 438.724i −0.830484 + 0.479480i
\(916\) 0 0
\(917\) 182.581 + 912.547i 0.199107 + 0.995144i
\(918\) 0 0
\(919\) 834.849 + 1446.00i 0.908432 + 1.57345i 0.816243 + 0.577708i \(0.196053\pi\)
0.0921886 + 0.995742i \(0.470614\pi\)
\(920\) 0 0
\(921\) −535.529 + 927.563i −0.581465 + 1.00713i
\(922\) 0 0
\(923\) 266.022i 0.288215i
\(924\) 0 0
\(925\) −972.205 −1.05103
\(926\) 0 0
\(927\) −415.124 239.672i −0.447814 0.258546i
\(928\) 0 0
\(929\) 839.058 484.430i 0.903184 0.521453i 0.0249519 0.999689i \(-0.492057\pi\)
0.878232 + 0.478235i \(0.158723\pi\)
\(930\) 0 0
\(931\) 34.8640 + 4.51039i 0.0374479 + 0.00484468i
\(932\) 0 0
\(933\) 452.301 + 783.408i 0.484781 + 0.839666i
\(934\) 0 0
\(935\) 284.327 492.469i 0.304093 0.526705i
\(936\) 0 0
\(937\) 1212.57i 1.29410i 0.762449 + 0.647049i \(0.223997\pi\)
−0.762449 + 0.647049i \(0.776003\pi\)
\(938\) 0 0
\(939\) −655.742 −0.698341
\(940\) 0 0
\(941\) 1293.90 + 747.032i 1.37502 + 0.793870i 0.991555 0.129684i \(-0.0413963\pi\)
0.383468 + 0.923554i \(0.374730\pi\)
\(942\) 0 0
\(943\) 41.3818 23.8918i 0.0438832 0.0253360i
\(944\) 0 0
\(945\) −46.7864 + 9.36095i −0.0495094 + 0.00990576i
\(946\) 0 0
\(947\) −387.731 671.570i −0.409431 0.709155i 0.585395 0.810748i \(-0.300939\pi\)
−0.994826 + 0.101593i \(0.967606\pi\)
\(948\) 0 0
\(949\) 359.787 623.169i 0.379122 0.656659i
\(950\) 0 0
\(951\) 1873.45i 1.96998i
\(952\) 0 0
\(953\) 1055.40 1.10745 0.553723 0.832701i \(-0.313206\pi\)
0.553723 + 0.832701i \(0.313206\pi\)
\(954\) 0 0
\(955\) −191.723 110.691i −0.200757 0.115907i
\(956\) 0 0
\(957\) 982.389 567.183i 1.02653 0.592667i
\(958\) 0 0
\(959\) −542.665 617.393i −0.565866 0.643788i
\(960\) 0 0
\(961\) −177.477 307.400i −0.184680 0.319875i
\(962\) 0 0
\(963\) 201.993 349.862i 0.209754 0.363304i
\(964\) 0 0
\(965\) 102.412i 0.106127i
\(966\) 0 0
\(967\) −1221.63 −1.26332 −0.631661 0.775245i \(-0.717627\pi\)
−0.631661 + 0.775245i \(0.717627\pi\)
\(968\) 0 0
\(969\) −35.2279 20.3389i −0.0363549 0.0209895i
\(970\) 0 0
\(971\) −455.753 + 263.129i −0.469365 + 0.270988i −0.715974 0.698127i \(-0.754017\pi\)
0.246609 + 0.969115i \(0.420684\pi\)
\(972\) 0 0
\(973\) −454.794 153.813i −0.467414 0.158081i
\(974\) 0 0
\(975\) −171.941 297.811i −0.176350 0.305447i
\(976\) 0 0
\(977\) 500.051 866.114i 0.511823 0.886504i −0.488083 0.872797i \(-0.662304\pi\)
0.999906 0.0137065i \(-0.00436306\pi\)
\(978\) 0 0
\(979\) 2223.53i 2.27123i
\(980\) 0 0
\(981\) 639.015 0.651392
\(982\) 0 0
\(983\) −931.584 537.850i −0.947695 0.547152i −0.0553306 0.998468i \(-0.517621\pi\)
−0.892364 + 0.451316i \(0.850955\pi\)
\(984\) 0 0
\(985\) 759.993 438.782i 0.771566 0.445464i
\(986\) 0 0
\(987\) 448.066 1324.84i 0.453968 1.34229i
\(988\) 0 0
\(989\) −7.36753 12.7609i −0.00744948 0.0129029i
\(990\) 0 0
\(991\) −938.017 + 1624.69i −0.946536 + 1.63945i −0.193891 + 0.981023i \(0.562111\pi\)
−0.752646 + 0.658426i \(0.771223\pi\)
\(992\) 0 0
\(993\) 230.015i 0.231636i
\(994\) 0 0
\(995\) 530.285 0.532949
\(996\) 0 0
\(997\) −504.221 291.112i −0.505738 0.291988i 0.225342 0.974280i \(-0.427650\pi\)
−0.731080 + 0.682292i \(0.760983\pi\)
\(998\) 0 0
\(999\) −121.048 + 69.8869i −0.121169 + 0.0699569i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.s.c.129.1 4
4.3 odd 2 448.3.s.d.129.2 4
7.5 odd 6 inner 448.3.s.c.257.1 4
8.3 odd 2 14.3.d.a.3.2 4
8.5 even 2 112.3.s.b.17.2 4
24.5 odd 2 1008.3.cg.l.577.1 4
24.11 even 2 126.3.n.c.73.1 4
28.19 even 6 448.3.s.d.257.2 4
40.3 even 4 350.3.i.a.199.4 8
40.19 odd 2 350.3.k.a.101.1 4
40.27 even 4 350.3.i.a.199.1 8
56.3 even 6 98.3.b.b.97.1 4
56.5 odd 6 112.3.s.b.33.2 4
56.11 odd 6 98.3.b.b.97.2 4
56.13 odd 2 784.3.s.c.129.1 4
56.19 even 6 14.3.d.a.5.2 yes 4
56.27 even 2 98.3.d.a.31.2 4
56.37 even 6 784.3.s.c.705.1 4
56.45 odd 6 784.3.c.e.97.4 4
56.51 odd 6 98.3.d.a.19.2 4
56.53 even 6 784.3.c.e.97.1 4
168.5 even 6 1008.3.cg.l.145.1 4
168.11 even 6 882.3.c.f.685.3 4
168.59 odd 6 882.3.c.f.685.4 4
168.83 odd 2 882.3.n.b.325.1 4
168.107 even 6 882.3.n.b.19.1 4
168.131 odd 6 126.3.n.c.19.1 4
280.19 even 6 350.3.k.a.201.1 4
280.187 odd 12 350.3.i.a.299.4 8
280.243 odd 12 350.3.i.a.299.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.3.d.a.3.2 4 8.3 odd 2
14.3.d.a.5.2 yes 4 56.19 even 6
98.3.b.b.97.1 4 56.3 even 6
98.3.b.b.97.2 4 56.11 odd 6
98.3.d.a.19.2 4 56.51 odd 6
98.3.d.a.31.2 4 56.27 even 2
112.3.s.b.17.2 4 8.5 even 2
112.3.s.b.33.2 4 56.5 odd 6
126.3.n.c.19.1 4 168.131 odd 6
126.3.n.c.73.1 4 24.11 even 2
350.3.i.a.199.1 8 40.27 even 4
350.3.i.a.199.4 8 40.3 even 4
350.3.i.a.299.1 8 280.243 odd 12
350.3.i.a.299.4 8 280.187 odd 12
350.3.k.a.101.1 4 40.19 odd 2
350.3.k.a.201.1 4 280.19 even 6
448.3.s.c.129.1 4 1.1 even 1 trivial
448.3.s.c.257.1 4 7.5 odd 6 inner
448.3.s.d.129.2 4 4.3 odd 2
448.3.s.d.257.2 4 28.19 even 6
784.3.c.e.97.1 4 56.53 even 6
784.3.c.e.97.4 4 56.45 odd 6
784.3.s.c.129.1 4 56.13 odd 2
784.3.s.c.705.1 4 56.37 even 6
882.3.c.f.685.3 4 168.11 even 6
882.3.c.f.685.4 4 168.59 odd 6
882.3.n.b.19.1 4 168.107 even 6
882.3.n.b.325.1 4 168.83 odd 2
1008.3.cg.l.145.1 4 168.5 even 6
1008.3.cg.l.577.1 4 24.5 odd 2