Properties

Label 126.3.n.c.19.1
Level $126$
Weight $3$
Character 126.19
Analytic conductor $3.433$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,3,Mod(19,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 126.19
Dual form 126.3.n.c.73.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(-2.74264 - 1.58346i) q^{5} +(-2.24264 - 6.63103i) q^{7} +2.82843 q^{8} +(3.87868 - 2.23936i) q^{10} +(-6.62132 - 11.4685i) q^{11} -5.49333i q^{13} +(9.70711 + 1.94218i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(11.7426 - 6.77962i) q^{17} +(-0.621320 - 0.358719i) q^{19} +6.33386i q^{20} +18.7279 q^{22} +(-1.13604 + 1.96768i) q^{23} +(-7.48528 - 12.9649i) q^{25} +(6.72792 + 3.88437i) q^{26} +(-9.24264 + 10.5154i) q^{28} -20.4853 q^{29} +(21.3198 - 12.3090i) q^{31} +(-2.82843 - 4.89898i) q^{32} +19.1757i q^{34} +(-4.34924 + 21.7377i) q^{35} +(-32.4706 + 56.2407i) q^{37} +(0.878680 - 0.507306i) q^{38} +(-7.75736 - 4.47871i) q^{40} +21.0308i q^{41} +6.48528 q^{43} +(-13.2426 + 22.9369i) q^{44} +(-1.60660 - 2.78272i) q^{46} +(-41.3787 - 23.8900i) q^{47} +(-38.9411 + 29.7420i) q^{49} +21.1716 q^{50} +(-9.51472 + 5.49333i) q^{52} +(11.0147 + 19.0781i) q^{53} +41.9385i q^{55} +(-6.34315 - 18.7554i) q^{56} +(14.4853 - 25.0892i) q^{58} +(72.5330 - 41.8770i) q^{59} +(57.3823 + 33.1297i) q^{61} +34.8151i q^{62} +8.00000 q^{64} +(-8.69848 + 15.0662i) q^{65} +(-46.3198 - 80.2283i) q^{67} +(-23.4853 - 13.5592i) q^{68} +(-23.5477 - 20.6976i) q^{70} +48.4264 q^{71} +(113.441 - 65.4953i) q^{73} +(-45.9203 - 79.5363i) q^{74} +1.43488i q^{76} +(-61.1985 + 69.6258i) q^{77} +(38.1066 - 66.0026i) q^{79} +(10.9706 - 6.33386i) q^{80} +(-25.7574 - 14.8710i) q^{82} -107.981i q^{83} -42.9411 q^{85} +(-4.58579 + 7.94282i) q^{86} +(-18.7279 - 32.4377i) q^{88} +(145.412 + 83.9535i) q^{89} +(-36.4264 + 12.3196i) q^{91} +4.54416 q^{92} +(58.5183 - 33.7856i) q^{94} +(1.13604 + 1.96768i) q^{95} +25.5816i q^{97} +(-8.89087 - 68.7237i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 6 q^{5} + 8 q^{7} + 24 q^{10} - 18 q^{11} + 36 q^{14} - 8 q^{16} + 30 q^{17} + 6 q^{19} + 24 q^{22} - 30 q^{23} + 4 q^{25} - 24 q^{26} - 20 q^{28} - 48 q^{29} - 42 q^{31} + 42 q^{35} - 62 q^{37}+ \cdots + 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) −2.74264 1.58346i −0.548528 0.316693i 0.200000 0.979796i \(-0.435906\pi\)
−0.748528 + 0.663103i \(0.769239\pi\)
\(6\) 0 0
\(7\) −2.24264 6.63103i −0.320377 0.947290i
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 3.87868 2.23936i 0.387868 0.223936i
\(11\) −6.62132 11.4685i −0.601938 1.04259i −0.992527 0.122022i \(-0.961062\pi\)
0.390589 0.920565i \(-0.372271\pi\)
\(12\) 0 0
\(13\) 5.49333i 0.422563i −0.977425 0.211282i \(-0.932236\pi\)
0.977425 0.211282i \(-0.0677638\pi\)
\(14\) 9.70711 + 1.94218i 0.693365 + 0.138727i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 11.7426 6.77962i 0.690744 0.398801i −0.113147 0.993578i \(-0.536093\pi\)
0.803891 + 0.594777i \(0.202760\pi\)
\(18\) 0 0
\(19\) −0.621320 0.358719i −0.0327011 0.0188800i 0.483560 0.875311i \(-0.339343\pi\)
−0.516261 + 0.856431i \(0.672677\pi\)
\(20\) 6.33386i 0.316693i
\(21\) 0 0
\(22\) 18.7279 0.851269
\(23\) −1.13604 + 1.96768i −0.0493930 + 0.0855512i −0.889665 0.456614i \(-0.849062\pi\)
0.840272 + 0.542165i \(0.182395\pi\)
\(24\) 0 0
\(25\) −7.48528 12.9649i −0.299411 0.518596i
\(26\) 6.72792 + 3.88437i 0.258766 + 0.149399i
\(27\) 0 0
\(28\) −9.24264 + 10.5154i −0.330094 + 0.375550i
\(29\) −20.4853 −0.706389 −0.353195 0.935550i \(-0.614905\pi\)
−0.353195 + 0.935550i \(0.614905\pi\)
\(30\) 0 0
\(31\) 21.3198 12.3090i 0.687736 0.397064i −0.115028 0.993362i \(-0.536696\pi\)
0.802763 + 0.596298i \(0.203362\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 19.1757i 0.563990i
\(35\) −4.34924 + 21.7377i −0.124264 + 0.621076i
\(36\) 0 0
\(37\) −32.4706 + 56.2407i −0.877583 + 1.52002i −0.0235970 + 0.999722i \(0.507512\pi\)
−0.853986 + 0.520296i \(0.825821\pi\)
\(38\) 0.878680 0.507306i 0.0231231 0.0133502i
\(39\) 0 0
\(40\) −7.75736 4.47871i −0.193934 0.111968i
\(41\) 21.0308i 0.512946i 0.966551 + 0.256473i \(0.0825605\pi\)
−0.966551 + 0.256473i \(0.917439\pi\)
\(42\) 0 0
\(43\) 6.48528 0.150820 0.0754102 0.997153i \(-0.475973\pi\)
0.0754102 + 0.997153i \(0.475973\pi\)
\(44\) −13.2426 + 22.9369i −0.300969 + 0.521294i
\(45\) 0 0
\(46\) −1.60660 2.78272i −0.0349261 0.0604938i
\(47\) −41.3787 23.8900i −0.880397 0.508298i −0.00960801 0.999954i \(-0.503058\pi\)
−0.870789 + 0.491656i \(0.836392\pi\)
\(48\) 0 0
\(49\) −38.9411 + 29.7420i −0.794717 + 0.606980i
\(50\) 21.1716 0.423431
\(51\) 0 0
\(52\) −9.51472 + 5.49333i −0.182975 + 0.105641i
\(53\) 11.0147 + 19.0781i 0.207825 + 0.359963i 0.951029 0.309101i \(-0.100028\pi\)
−0.743204 + 0.669065i \(0.766695\pi\)
\(54\) 0 0
\(55\) 41.9385i 0.762518i
\(56\) −6.34315 18.7554i −0.113270 0.334918i
\(57\) 0 0
\(58\) 14.4853 25.0892i 0.249746 0.432573i
\(59\) 72.5330 41.8770i 1.22937 0.709779i 0.262474 0.964939i \(-0.415462\pi\)
0.966899 + 0.255160i \(0.0821282\pi\)
\(60\) 0 0
\(61\) 57.3823 + 33.1297i 0.940693 + 0.543109i 0.890177 0.455614i \(-0.150580\pi\)
0.0505153 + 0.998723i \(0.483914\pi\)
\(62\) 34.8151i 0.561534i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −8.69848 + 15.0662i −0.133823 + 0.231788i
\(66\) 0 0
\(67\) −46.3198 80.2283i −0.691340 1.19744i −0.971399 0.237454i \(-0.923687\pi\)
0.280058 0.959983i \(-0.409646\pi\)
\(68\) −23.4853 13.5592i −0.345372 0.199400i
\(69\) 0 0
\(70\) −23.5477 20.6976i −0.336396 0.295680i
\(71\) 48.4264 0.682062 0.341031 0.940052i \(-0.389224\pi\)
0.341031 + 0.940052i \(0.389224\pi\)
\(72\) 0 0
\(73\) 113.441 65.4953i 1.55399 0.897195i 0.556177 0.831064i \(-0.312268\pi\)
0.997811 0.0661316i \(-0.0210657\pi\)
\(74\) −45.9203 79.5363i −0.620545 1.07482i
\(75\) 0 0
\(76\) 1.43488i 0.0188800i
\(77\) −61.1985 + 69.6258i −0.794786 + 0.904231i
\(78\) 0 0
\(79\) 38.1066 66.0026i 0.482362 0.835476i −0.517433 0.855724i \(-0.673112\pi\)
0.999795 + 0.0202482i \(0.00644564\pi\)
\(80\) 10.9706 6.33386i 0.137132 0.0791732i
\(81\) 0 0
\(82\) −25.7574 14.8710i −0.314114 0.181354i
\(83\) 107.981i 1.30098i −0.759514 0.650491i \(-0.774563\pi\)
0.759514 0.650491i \(-0.225437\pi\)
\(84\) 0 0
\(85\) −42.9411 −0.505190
\(86\) −4.58579 + 7.94282i −0.0533231 + 0.0923583i
\(87\) 0 0
\(88\) −18.7279 32.4377i −0.212817 0.368610i
\(89\) 145.412 + 83.9535i 1.63384 + 0.943297i 0.982894 + 0.184173i \(0.0589606\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(90\) 0 0
\(91\) −36.4264 + 12.3196i −0.400290 + 0.135380i
\(92\) 4.54416 0.0493930
\(93\) 0 0
\(94\) 58.5183 33.7856i 0.622535 0.359421i
\(95\) 1.13604 + 1.96768i 0.0119583 + 0.0207124i
\(96\) 0 0
\(97\) 25.5816i 0.263728i 0.991268 + 0.131864i \(0.0420962\pi\)
−0.991268 + 0.131864i \(0.957904\pi\)
\(98\) −8.89087 68.7237i −0.0907232 0.701263i
\(99\) 0 0
\(100\) −14.9706 + 25.9298i −0.149706 + 0.259298i
\(101\) −24.6838 + 14.2512i −0.244394 + 0.141101i −0.617194 0.786811i \(-0.711731\pi\)
0.372801 + 0.927911i \(0.378397\pi\)
\(102\) 0 0
\(103\) 48.9228 + 28.2456i 0.474979 + 0.274229i 0.718322 0.695711i \(-0.244911\pi\)
−0.243343 + 0.969940i \(0.578244\pi\)
\(104\) 15.5375i 0.149399i
\(105\) 0 0
\(106\) −31.1543 −0.293909
\(107\) 23.8051 41.2316i 0.222477 0.385342i −0.733082 0.680140i \(-0.761919\pi\)
0.955560 + 0.294798i \(0.0952523\pi\)
\(108\) 0 0
\(109\) −37.6543 65.2192i −0.345453 0.598341i 0.639983 0.768389i \(-0.278941\pi\)
−0.985436 + 0.170047i \(0.945608\pi\)
\(110\) −51.3640 29.6550i −0.466945 0.269591i
\(111\) 0 0
\(112\) 27.4558 + 5.49333i 0.245141 + 0.0490475i
\(113\) −85.4558 −0.756246 −0.378123 0.925755i \(-0.623430\pi\)
−0.378123 + 0.925755i \(0.623430\pi\)
\(114\) 0 0
\(115\) 6.23149 3.59775i 0.0541869 0.0312848i
\(116\) 20.4853 + 35.4815i 0.176597 + 0.305875i
\(117\) 0 0
\(118\) 118.446i 1.00378i
\(119\) −71.2904 62.6616i −0.599079 0.526568i
\(120\) 0 0
\(121\) −27.1838 + 47.0837i −0.224659 + 0.389121i
\(122\) −81.1508 + 46.8524i −0.665170 + 0.384036i
\(123\) 0 0
\(124\) −42.6396 24.6180i −0.343868 0.198532i
\(125\) 126.584i 1.01267i
\(126\) 0 0
\(127\) −60.6619 −0.477653 −0.238826 0.971062i \(-0.576763\pi\)
−0.238826 + 0.971062i \(0.576763\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −12.3015 21.3068i −0.0946270 0.163899i
\(131\) 115.136 + 66.4738i 0.878901 + 0.507434i 0.870296 0.492529i \(-0.163928\pi\)
0.00860515 + 0.999963i \(0.497261\pi\)
\(132\) 0 0
\(133\) −0.985281 + 4.92447i −0.00740813 + 0.0370261i
\(134\) 131.012 0.977703
\(135\) 0 0
\(136\) 33.2132 19.1757i 0.244215 0.140997i
\(137\) −58.7132 101.694i −0.428564 0.742294i 0.568182 0.822903i \(-0.307647\pi\)
−0.996746 + 0.0806089i \(0.974314\pi\)
\(138\) 0 0
\(139\) 68.5857i 0.493422i 0.969089 + 0.246711i \(0.0793499\pi\)
−0.969089 + 0.246711i \(0.920650\pi\)
\(140\) 42.0000 14.2046i 0.300000 0.101461i
\(141\) 0 0
\(142\) −34.2426 + 59.3100i −0.241145 + 0.417676i
\(143\) −63.0000 + 36.3731i −0.440559 + 0.254357i
\(144\) 0 0
\(145\) 56.1838 + 32.4377i 0.387474 + 0.223708i
\(146\) 185.249i 1.26883i
\(147\) 0 0
\(148\) 129.882 0.877583
\(149\) −13.1985 + 22.8604i −0.0885804 + 0.153426i −0.906911 0.421322i \(-0.861566\pi\)
0.818331 + 0.574747i \(0.194900\pi\)
\(150\) 0 0
\(151\) 67.1066 + 116.232i 0.444415 + 0.769749i 0.998011 0.0630363i \(-0.0200784\pi\)
−0.553597 + 0.832785i \(0.686745\pi\)
\(152\) −1.75736 1.01461i −0.0115616 0.00667508i
\(153\) 0 0
\(154\) −42.0000 124.185i −0.272727 0.806399i
\(155\) −77.9634 −0.502990
\(156\) 0 0
\(157\) −196.323 + 113.347i −1.25047 + 0.721958i −0.971202 0.238256i \(-0.923424\pi\)
−0.279265 + 0.960214i \(0.590091\pi\)
\(158\) 53.8909 + 93.3417i 0.341081 + 0.590770i
\(159\) 0 0
\(160\) 17.9149i 0.111968i
\(161\) 15.5955 + 3.12032i 0.0968662 + 0.0193808i
\(162\) 0 0
\(163\) 45.9889 79.6550i 0.282140 0.488681i −0.689771 0.724027i \(-0.742289\pi\)
0.971912 + 0.235346i \(0.0756223\pi\)
\(164\) 36.4264 21.0308i 0.222112 0.128237i
\(165\) 0 0
\(166\) 132.250 + 76.3544i 0.796685 + 0.459967i
\(167\) 203.482i 1.21845i −0.792996 0.609227i \(-0.791480\pi\)
0.792996 0.609227i \(-0.208520\pi\)
\(168\) 0 0
\(169\) 138.823 0.821440
\(170\) 30.3640 52.5919i 0.178612 0.309364i
\(171\) 0 0
\(172\) −6.48528 11.2328i −0.0377051 0.0653072i
\(173\) −61.3234 35.4051i −0.354470 0.204654i 0.312182 0.950022i \(-0.398940\pi\)
−0.666652 + 0.745369i \(0.732273\pi\)
\(174\) 0 0
\(175\) −69.1838 + 78.7107i −0.395336 + 0.449775i
\(176\) 52.9706 0.300969
\(177\) 0 0
\(178\) −205.643 + 118.728i −1.15530 + 0.667012i
\(179\) 54.4081 + 94.2376i 0.303956 + 0.526467i 0.977028 0.213109i \(-0.0683591\pi\)
−0.673072 + 0.739577i \(0.735026\pi\)
\(180\) 0 0
\(181\) 99.6607i 0.550611i −0.961357 0.275306i \(-0.911221\pi\)
0.961357 0.275306i \(-0.0887791\pi\)
\(182\) 10.6690 53.3243i 0.0586211 0.292991i
\(183\) 0 0
\(184\) −3.21320 + 5.56543i −0.0174631 + 0.0302469i
\(185\) 178.110 102.832i 0.962758 0.555848i
\(186\) 0 0
\(187\) −155.504 89.7800i −0.831570 0.480107i
\(188\) 95.5600i 0.508298i
\(189\) 0 0
\(190\) −3.21320 −0.0169116
\(191\) 34.9523 60.5391i 0.182996 0.316959i −0.759903 0.650036i \(-0.774754\pi\)
0.942899 + 0.333077i \(0.108087\pi\)
\(192\) 0 0
\(193\) 16.1690 + 28.0056i 0.0837774 + 0.145107i 0.904870 0.425689i \(-0.139968\pi\)
−0.821092 + 0.570796i \(0.806635\pi\)
\(194\) −31.3310 18.0889i −0.161500 0.0932419i
\(195\) 0 0
\(196\) 90.4558 + 37.7060i 0.461509 + 0.192377i
\(197\) −277.103 −1.40661 −0.703306 0.710887i \(-0.748294\pi\)
−0.703306 + 0.710887i \(0.748294\pi\)
\(198\) 0 0
\(199\) 145.011 83.7222i 0.728699 0.420715i −0.0892469 0.996010i \(-0.528446\pi\)
0.817946 + 0.575295i \(0.195113\pi\)
\(200\) −21.1716 36.6702i −0.105858 0.183351i
\(201\) 0 0
\(202\) 40.3084i 0.199547i
\(203\) 45.9411 + 135.839i 0.226311 + 0.669155i
\(204\) 0 0
\(205\) 33.3015 57.6799i 0.162446 0.281365i
\(206\) −69.1873 + 39.9453i −0.335861 + 0.193909i
\(207\) 0 0
\(208\) 19.0294 + 10.9867i 0.0914877 + 0.0528204i
\(209\) 9.50079i 0.0454583i
\(210\) 0 0
\(211\) −128.073 −0.606982 −0.303491 0.952834i \(-0.598152\pi\)
−0.303491 + 0.952834i \(0.598152\pi\)
\(212\) 22.0294 38.1561i 0.103912 0.179982i
\(213\) 0 0
\(214\) 33.6655 + 58.3103i 0.157315 + 0.272478i
\(215\) −17.7868 10.2692i −0.0827293 0.0477638i
\(216\) 0 0
\(217\) −129.434 113.768i −0.596470 0.524275i
\(218\) 106.503 0.488544
\(219\) 0 0
\(220\) 72.6396 41.9385i 0.330180 0.190630i
\(221\) −37.2426 64.5061i −0.168519 0.291883i
\(222\) 0 0
\(223\) 417.169i 1.87071i −0.353705 0.935357i \(-0.615078\pi\)
0.353705 0.935357i \(-0.384922\pi\)
\(224\) −26.1421 + 29.7420i −0.116706 + 0.132777i
\(225\) 0 0
\(226\) 60.4264 104.662i 0.267373 0.463104i
\(227\) −201.143 + 116.130i −0.886093 + 0.511586i −0.872663 0.488324i \(-0.837609\pi\)
−0.0134307 + 0.999910i \(0.504275\pi\)
\(228\) 0 0
\(229\) −72.4188 41.8110i −0.316239 0.182581i 0.333476 0.942759i \(-0.391778\pi\)
−0.649715 + 0.760178i \(0.725112\pi\)
\(230\) 10.1760i 0.0442434i
\(231\) 0 0
\(232\) −57.9411 −0.249746
\(233\) 109.537 189.723i 0.470114 0.814261i −0.529302 0.848434i \(-0.677546\pi\)
0.999416 + 0.0341721i \(0.0108794\pi\)
\(234\) 0 0
\(235\) 75.6579 + 131.043i 0.321949 + 0.557631i
\(236\) −145.066 83.7539i −0.614687 0.354889i
\(237\) 0 0
\(238\) 127.154 43.0041i 0.534262 0.180689i
\(239\) −193.103 −0.807961 −0.403980 0.914768i \(-0.632374\pi\)
−0.403980 + 0.914768i \(0.632374\pi\)
\(240\) 0 0
\(241\) 42.8970 24.7666i 0.177996 0.102766i −0.408355 0.912823i \(-0.633897\pi\)
0.586351 + 0.810057i \(0.300564\pi\)
\(242\) −38.4437 66.5864i −0.158858 0.275150i
\(243\) 0 0
\(244\) 132.519i 0.543109i
\(245\) 153.897 19.9098i 0.628151 0.0812646i
\(246\) 0 0
\(247\) −1.97056 + 3.41311i −0.00797799 + 0.0138183i
\(248\) 60.3015 34.8151i 0.243151 0.140383i
\(249\) 0 0
\(250\) −155.033 89.5083i −0.620132 0.358033i
\(251\) 162.524i 0.647507i −0.946141 0.323754i \(-0.895055\pi\)
0.946141 0.323754i \(-0.104945\pi\)
\(252\) 0 0
\(253\) 30.0883 0.118926
\(254\) 42.8944 74.2954i 0.168876 0.292501i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 85.8747 + 49.5798i 0.334143 + 0.192917i 0.657679 0.753298i \(-0.271538\pi\)
−0.323536 + 0.946216i \(0.604872\pi\)
\(258\) 0 0
\(259\) 445.753 + 89.1857i 1.72106 + 0.344346i
\(260\) 34.7939 0.133823
\(261\) 0 0
\(262\) −162.827 + 94.0082i −0.621477 + 0.358810i
\(263\) 217.173 + 376.154i 0.825751 + 1.43024i 0.901344 + 0.433105i \(0.142582\pi\)
−0.0755923 + 0.997139i \(0.524085\pi\)
\(264\) 0 0
\(265\) 69.7657i 0.263267i
\(266\) −5.33452 4.68885i −0.0200546 0.0176272i
\(267\) 0 0
\(268\) −92.6396 + 160.457i −0.345670 + 0.598718i
\(269\) 79.1619 45.7041i 0.294282 0.169904i −0.345589 0.938386i \(-0.612321\pi\)
0.639871 + 0.768482i \(0.278988\pi\)
\(270\) 0 0
\(271\) 14.8051 + 8.54772i 0.0546313 + 0.0315414i 0.527067 0.849824i \(-0.323292\pi\)
−0.472436 + 0.881365i \(0.656625\pi\)
\(272\) 54.2369i 0.199400i
\(273\) 0 0
\(274\) 166.066 0.606080
\(275\) −99.1249 + 171.689i −0.360454 + 0.624325i
\(276\) 0 0
\(277\) 200.206 + 346.766i 0.722764 + 1.25186i 0.959888 + 0.280385i \(0.0904620\pi\)
−0.237124 + 0.971479i \(0.576205\pi\)
\(278\) −84.0000 48.4974i −0.302158 0.174451i
\(279\) 0 0
\(280\) −12.3015 + 61.4834i −0.0439340 + 0.219584i
\(281\) 538.690 1.91705 0.958524 0.285012i \(-0.0919976\pi\)
0.958524 + 0.285012i \(0.0919976\pi\)
\(282\) 0 0
\(283\) −267.783 + 154.604i −0.946229 + 0.546306i −0.891907 0.452218i \(-0.850633\pi\)
−0.0543215 + 0.998523i \(0.517300\pi\)
\(284\) −48.4264 83.8770i −0.170516 0.295342i
\(285\) 0 0
\(286\) 102.879i 0.359715i
\(287\) 139.456 47.1645i 0.485909 0.164336i
\(288\) 0 0
\(289\) −52.5736 + 91.0601i −0.181916 + 0.315087i
\(290\) −79.4558 + 45.8739i −0.273986 + 0.158186i
\(291\) 0 0
\(292\) −226.882 130.991i −0.776994 0.448598i
\(293\) 327.391i 1.11738i −0.829378 0.558688i \(-0.811305\pi\)
0.829378 0.558688i \(-0.188695\pi\)
\(294\) 0 0
\(295\) −265.243 −0.899128
\(296\) −91.8406 + 159.073i −0.310272 + 0.537408i
\(297\) 0 0
\(298\) −18.6655 32.3296i −0.0626358 0.108488i
\(299\) 10.8091 + 6.24063i 0.0361508 + 0.0208717i
\(300\) 0 0
\(301\) −14.5442 43.0041i −0.0483195 0.142871i
\(302\) −189.806 −0.628497
\(303\) 0 0
\(304\) 2.48528 1.43488i 0.00817527 0.00471999i
\(305\) −104.919 181.725i −0.343998 0.595821i
\(306\) 0 0
\(307\) 256.140i 0.834331i 0.908831 + 0.417165i \(0.136976\pi\)
−0.908831 + 0.417165i \(0.863024\pi\)
\(308\) 181.794 + 36.3731i 0.590240 + 0.118094i
\(309\) 0 0
\(310\) 55.1285 95.4853i 0.177834 0.308017i
\(311\) −187.349 + 108.166i −0.602409 + 0.347801i −0.769989 0.638057i \(-0.779738\pi\)
0.167580 + 0.985859i \(0.446405\pi\)
\(312\) 0 0
\(313\) 135.809 + 78.4092i 0.433893 + 0.250509i 0.701004 0.713157i \(-0.252736\pi\)
−0.267110 + 0.963666i \(0.586069\pi\)
\(314\) 320.595i 1.02100i
\(315\) 0 0
\(316\) −152.426 −0.482362
\(317\) −224.015 + 388.005i −0.706671 + 1.22399i 0.259414 + 0.965766i \(0.416471\pi\)
−0.966085 + 0.258224i \(0.916863\pi\)
\(318\) 0 0
\(319\) 135.640 + 234.935i 0.425203 + 0.736472i
\(320\) −21.9411 12.6677i −0.0685660 0.0395866i
\(321\) 0 0
\(322\) −14.8492 + 16.8941i −0.0461157 + 0.0524660i
\(323\) −9.72792 −0.0301174
\(324\) 0 0
\(325\) −71.2203 + 41.1191i −0.219140 + 0.126520i
\(326\) 65.0381 + 112.649i 0.199503 + 0.345550i
\(327\) 0 0
\(328\) 59.4841i 0.181354i
\(329\) −65.6177 + 327.960i −0.199446 + 0.996839i
\(330\) 0 0
\(331\) 27.5036 47.6376i 0.0830924 0.143920i −0.821484 0.570231i \(-0.806854\pi\)
0.904577 + 0.426311i \(0.140187\pi\)
\(332\) −187.029 + 107.981i −0.563342 + 0.325245i
\(333\) 0 0
\(334\) 249.213 + 143.883i 0.746147 + 0.430788i
\(335\) 293.383i 0.875770i
\(336\) 0 0
\(337\) −111.632 −0.331254 −0.165627 0.986189i \(-0.552965\pi\)
−0.165627 + 0.986189i \(0.552965\pi\)
\(338\) −98.1630 + 170.023i −0.290423 + 0.503027i
\(339\) 0 0
\(340\) 42.9411 + 74.3762i 0.126297 + 0.218754i
\(341\) −282.331 163.004i −0.827949 0.478016i
\(342\) 0 0
\(343\) 284.551 + 191.519i 0.829596 + 0.558365i
\(344\) 18.3431 0.0533231
\(345\) 0 0
\(346\) 86.7244 50.0703i 0.250648 0.144712i
\(347\) 188.628 + 326.714i 0.543598 + 0.941539i 0.998694 + 0.0510967i \(0.0162717\pi\)
−0.455096 + 0.890442i \(0.650395\pi\)
\(348\) 0 0
\(349\) 204.034i 0.584624i −0.956323 0.292312i \(-0.905575\pi\)
0.956323 0.292312i \(-0.0944246\pi\)
\(350\) −47.4802 140.389i −0.135658 0.401112i
\(351\) 0 0
\(352\) −37.4558 + 64.8754i −0.106409 + 0.184305i
\(353\) 361.198 208.538i 1.02323 0.590759i 0.108189 0.994130i \(-0.465495\pi\)
0.915036 + 0.403371i \(0.132162\pi\)
\(354\) 0 0
\(355\) −132.816 76.6815i −0.374130 0.216004i
\(356\) 335.814i 0.943297i
\(357\) 0 0
\(358\) −153.889 −0.429859
\(359\) −89.4153 + 154.872i −0.249068 + 0.431398i −0.963267 0.268544i \(-0.913457\pi\)
0.714200 + 0.699942i \(0.246791\pi\)
\(360\) 0 0
\(361\) −180.243 312.189i −0.499287 0.864791i
\(362\) 122.059 + 70.4707i 0.337179 + 0.194671i
\(363\) 0 0
\(364\) 57.7645 + 50.7728i 0.158694 + 0.139486i
\(365\) −414.838 −1.13654
\(366\) 0 0
\(367\) −544.724 + 314.497i −1.48426 + 0.856939i −0.999840 0.0178960i \(-0.994303\pi\)
−0.484422 + 0.874835i \(0.660970\pi\)
\(368\) −4.54416 7.87071i −0.0123482 0.0213878i
\(369\) 0 0
\(370\) 290.853i 0.786088i
\(371\) 101.805 115.824i 0.274407 0.312194i
\(372\) 0 0
\(373\) 127.779 221.320i 0.342572 0.593351i −0.642338 0.766422i \(-0.722035\pi\)
0.984910 + 0.173070i \(0.0553687\pi\)
\(374\) 219.915 126.968i 0.588009 0.339487i
\(375\) 0 0
\(376\) −117.037 67.5711i −0.311267 0.179710i
\(377\) 112.532i 0.298494i
\(378\) 0 0
\(379\) 219.750 0.579816 0.289908 0.957055i \(-0.406375\pi\)
0.289908 + 0.957055i \(0.406375\pi\)
\(380\) 2.27208 3.93535i 0.00597915 0.0103562i
\(381\) 0 0
\(382\) 49.4300 + 85.6152i 0.129398 + 0.224124i
\(383\) 14.7534 + 8.51785i 0.0385205 + 0.0222398i 0.519137 0.854691i \(-0.326254\pi\)
−0.480616 + 0.876931i \(0.659587\pi\)
\(384\) 0 0
\(385\) 278.095 94.0530i 0.722326 0.244293i
\(386\) −45.7330 −0.118479
\(387\) 0 0
\(388\) 44.3087 25.5816i 0.114198 0.0659320i
\(389\) −76.1102 131.827i −0.195656 0.338886i 0.751459 0.659779i \(-0.229350\pi\)
−0.947115 + 0.320893i \(0.896017\pi\)
\(390\) 0 0
\(391\) 30.8076i 0.0787919i
\(392\) −110.142 + 84.1232i −0.280975 + 0.214600i
\(393\) 0 0
\(394\) 195.941 339.380i 0.497313 0.861371i
\(395\) −209.025 + 120.681i −0.529178 + 0.305521i
\(396\) 0 0
\(397\) −322.786 186.361i −0.813064 0.469423i 0.0349549 0.999389i \(-0.488871\pi\)
−0.848019 + 0.529966i \(0.822205\pi\)
\(398\) 236.802i 0.594980i
\(399\) 0 0
\(400\) 59.8823 0.149706
\(401\) 325.786 564.279i 0.812435 1.40718i −0.0987205 0.995115i \(-0.531475\pi\)
0.911155 0.412063i \(-0.135192\pi\)
\(402\) 0 0
\(403\) −67.6173 117.117i −0.167785 0.290612i
\(404\) 49.3675 + 28.5024i 0.122197 + 0.0705504i
\(405\) 0 0
\(406\) −198.853 39.7862i −0.489785 0.0979955i
\(407\) 859.992 2.11300
\(408\) 0 0
\(409\) 462.081 266.782i 1.12978 0.652280i 0.185902 0.982568i \(-0.440479\pi\)
0.943880 + 0.330289i \(0.107146\pi\)
\(410\) 47.0955 + 81.5717i 0.114867 + 0.198955i
\(411\) 0 0
\(412\) 112.982i 0.274229i
\(413\) −440.353 387.054i −1.06623 0.937176i
\(414\) 0 0
\(415\) −170.985 + 296.154i −0.412012 + 0.713625i
\(416\) −26.9117 + 15.5375i −0.0646916 + 0.0373497i
\(417\) 0 0
\(418\) −11.6360 6.71807i −0.0278374 0.0160719i
\(419\) 534.252i 1.27507i −0.770423 0.637533i \(-0.779955\pi\)
0.770423 0.637533i \(-0.220045\pi\)
\(420\) 0 0
\(421\) 157.220 0.373445 0.186723 0.982413i \(-0.440213\pi\)
0.186723 + 0.982413i \(0.440213\pi\)
\(422\) 90.5614 156.857i 0.214600 0.371699i
\(423\) 0 0
\(424\) 31.1543 + 53.9609i 0.0734772 + 0.127266i
\(425\) −175.794 101.495i −0.413633 0.238811i
\(426\) 0 0
\(427\) 90.9960 454.801i 0.213105 1.06511i
\(428\) −95.2203 −0.222477
\(429\) 0 0
\(430\) 25.1543 14.5229i 0.0584984 0.0337741i
\(431\) −114.268 197.918i −0.265123 0.459207i 0.702473 0.711711i \(-0.252079\pi\)
−0.967596 + 0.252504i \(0.918746\pi\)
\(432\) 0 0
\(433\) 47.5549i 0.109827i −0.998491 0.0549133i \(-0.982512\pi\)
0.998491 0.0549133i \(-0.0174882\pi\)
\(434\) 230.860 78.0778i 0.531935 0.179903i
\(435\) 0 0
\(436\) −75.3087 + 130.438i −0.172726 + 0.299171i
\(437\) 1.41169 0.815039i 0.00323041 0.00186508i
\(438\) 0 0
\(439\) −63.9594 36.9270i −0.145693 0.0841161i 0.425381 0.905014i \(-0.360140\pi\)
−0.571075 + 0.820898i \(0.693473\pi\)
\(440\) 118.620i 0.269591i
\(441\) 0 0
\(442\) 105.338 0.238321
\(443\) 117.320 203.204i 0.264830 0.458699i −0.702689 0.711497i \(-0.748017\pi\)
0.967519 + 0.252798i \(0.0813507\pi\)
\(444\) 0 0
\(445\) −265.875 460.508i −0.597471 1.03485i
\(446\) 510.926 + 294.983i 1.14557 + 0.661397i
\(447\) 0 0
\(448\) −17.9411 53.0482i −0.0400472 0.118411i
\(449\) 255.161 0.568288 0.284144 0.958782i \(-0.408291\pi\)
0.284144 + 0.958782i \(0.408291\pi\)
\(450\) 0 0
\(451\) 241.191 139.252i 0.534791 0.308762i
\(452\) 85.4558 + 148.014i 0.189062 + 0.327464i
\(453\) 0 0
\(454\) 328.465i 0.723492i
\(455\) 119.412 + 23.8918i 0.262444 + 0.0525095i
\(456\) 0 0
\(457\) 72.8675 126.210i 0.159448 0.276171i −0.775222 0.631689i \(-0.782362\pi\)
0.934670 + 0.355518i \(0.115695\pi\)
\(458\) 102.416 59.1297i 0.223615 0.129104i
\(459\) 0 0
\(460\) −12.4630 7.19551i −0.0270934 0.0156424i
\(461\) 888.329i 1.92696i 0.267777 + 0.963481i \(0.413711\pi\)
−0.267777 + 0.963481i \(0.586289\pi\)
\(462\) 0 0
\(463\) 234.014 0.505430 0.252715 0.967541i \(-0.418676\pi\)
0.252715 + 0.967541i \(0.418676\pi\)
\(464\) 40.9706 70.9631i 0.0882986 0.152938i
\(465\) 0 0
\(466\) 154.908 + 268.309i 0.332421 + 0.575770i
\(467\) −681.231 393.309i −1.45874 0.842204i −0.459790 0.888028i \(-0.652075\pi\)
−0.998950 + 0.0458237i \(0.985409\pi\)
\(468\) 0 0
\(469\) −428.117 + 487.071i −0.912830 + 1.03853i
\(470\) −213.993 −0.455304
\(471\) 0 0
\(472\) 205.154 118.446i 0.434649 0.250945i
\(473\) −42.9411 74.3762i −0.0907846 0.157244i
\(474\) 0 0
\(475\) 10.7405i 0.0226115i
\(476\) −37.2426 + 186.140i −0.0782408 + 0.391051i
\(477\) 0 0
\(478\) 136.544 236.501i 0.285657 0.494773i
\(479\) −638.202 + 368.466i −1.33236 + 0.769240i −0.985661 0.168735i \(-0.946032\pi\)
−0.346702 + 0.937975i \(0.612698\pi\)
\(480\) 0 0
\(481\) 308.948 + 178.371i 0.642304 + 0.370834i
\(482\) 70.0505i 0.145333i
\(483\) 0 0
\(484\) 108.735 0.224659
\(485\) 40.5076 70.1612i 0.0835208 0.144662i
\(486\) 0 0
\(487\) −135.349 234.432i −0.277925 0.481379i 0.692944 0.720991i \(-0.256313\pi\)
−0.970869 + 0.239612i \(0.922980\pi\)
\(488\) 162.302 + 93.7048i 0.332585 + 0.192018i
\(489\) 0 0
\(490\) −84.4371 + 202.563i −0.172321 + 0.413394i
\(491\) −760.161 −1.54819 −0.774094 0.633070i \(-0.781794\pi\)
−0.774094 + 0.633070i \(0.781794\pi\)
\(492\) 0 0
\(493\) −240.551 + 138.882i −0.487934 + 0.281709i
\(494\) −2.78680 4.82687i −0.00564129 0.00977100i
\(495\) 0 0
\(496\) 98.4720i 0.198532i
\(497\) −108.603 321.117i −0.218517 0.646111i
\(498\) 0 0
\(499\) −62.7462 + 108.680i −0.125744 + 0.217795i −0.922023 0.387134i \(-0.873465\pi\)
0.796280 + 0.604929i \(0.206798\pi\)
\(500\) 219.250 126.584i 0.438500 0.253168i
\(501\) 0 0
\(502\) 199.051 + 114.922i 0.396516 + 0.228928i
\(503\) 117.083i 0.232770i 0.993204 + 0.116385i \(0.0371306\pi\)
−0.993204 + 0.116385i \(0.962869\pi\)
\(504\) 0 0
\(505\) 90.2649 0.178742
\(506\) −21.2756 + 36.8505i −0.0420467 + 0.0728271i
\(507\) 0 0
\(508\) 60.6619 + 105.070i 0.119413 + 0.206830i
\(509\) 574.110 + 331.463i 1.12792 + 0.651204i 0.943410 0.331627i \(-0.107598\pi\)
0.184507 + 0.982831i \(0.440931\pi\)
\(510\) 0 0
\(511\) −688.709 605.349i −1.34777 1.18464i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) −121.445 + 70.1164i −0.236275 + 0.136413i
\(515\) −89.4518 154.935i −0.173693 0.300845i
\(516\) 0 0
\(517\) 632.733i 1.22386i
\(518\) −424.425 + 482.870i −0.819353 + 0.932182i
\(519\) 0 0
\(520\) −24.6030 + 42.6137i −0.0473135 + 0.0819494i
\(521\) 40.8229 23.5691i 0.0783550 0.0452383i −0.460311 0.887758i \(-0.652262\pi\)
0.538666 + 0.842520i \(0.318929\pi\)
\(522\) 0 0
\(523\) 432.554 + 249.735i 0.827064 + 0.477506i 0.852846 0.522162i \(-0.174874\pi\)
−0.0257824 + 0.999668i \(0.508208\pi\)
\(524\) 265.895i 0.507434i
\(525\) 0 0
\(526\) −614.257 −1.16779
\(527\) 166.901 289.080i 0.316699 0.548539i
\(528\) 0 0
\(529\) 261.919 + 453.657i 0.495121 + 0.857574i
\(530\) 85.4451 + 49.3318i 0.161217 + 0.0930788i
\(531\) 0 0
\(532\) 9.51472 3.21792i 0.0178848 0.00604871i
\(533\) 115.529 0.216752
\(534\) 0 0
\(535\) −130.578 + 75.3890i −0.244070 + 0.140914i
\(536\) −131.012 226.920i −0.244426 0.423358i
\(537\) 0 0
\(538\) 129.271i 0.240280i
\(539\) 598.937 + 249.663i 1.11120 + 0.463197i
\(540\) 0 0
\(541\) −249.405 + 431.981i −0.461007 + 0.798487i −0.999011 0.0444550i \(-0.985845\pi\)
0.538005 + 0.842942i \(0.319178\pi\)
\(542\) −20.9376 + 12.0883i −0.0386302 + 0.0223031i
\(543\) 0 0
\(544\) −66.4264 38.3513i −0.122107 0.0704987i
\(545\) 238.497i 0.437609i
\(546\) 0 0
\(547\) −279.897 −0.511694 −0.255847 0.966717i \(-0.582354\pi\)
−0.255847 + 0.966717i \(0.582354\pi\)
\(548\) −117.426 + 203.389i −0.214282 + 0.371147i
\(549\) 0 0
\(550\) −140.184 242.805i −0.254880 0.441464i
\(551\) 12.7279 + 7.34847i 0.0230997 + 0.0133366i
\(552\) 0 0
\(553\) −523.124 104.666i −0.945976 0.189269i
\(554\) −566.267 −1.02214
\(555\) 0 0
\(556\) 118.794 68.5857i 0.213658 0.123356i
\(557\) −130.890 226.708i −0.234991 0.407016i 0.724279 0.689507i \(-0.242173\pi\)
−0.959270 + 0.282491i \(0.908839\pi\)
\(558\) 0 0
\(559\) 35.6258i 0.0637312i
\(560\) −66.6030 58.5416i −0.118934 0.104539i
\(561\) 0 0
\(562\) −380.912 + 659.758i −0.677779 + 1.17395i
\(563\) 420.076 242.531i 0.746139 0.430784i −0.0781581 0.996941i \(-0.524904\pi\)
0.824297 + 0.566157i \(0.191571\pi\)
\(564\) 0 0
\(565\) 234.375 + 135.316i 0.414822 + 0.239498i
\(566\) 437.287i 0.772593i
\(567\) 0 0
\(568\) 136.971 0.241145
\(569\) −227.000 + 393.175i −0.398945 + 0.690993i −0.993596 0.112991i \(-0.963957\pi\)
0.594651 + 0.803984i \(0.297290\pi\)
\(570\) 0 0
\(571\) 115.769 + 200.517i 0.202747 + 0.351168i 0.949413 0.314032i \(-0.101680\pi\)
−0.746666 + 0.665200i \(0.768346\pi\)
\(572\) 126.000 + 72.7461i 0.220280 + 0.127179i
\(573\) 0 0
\(574\) −40.8457 + 204.148i −0.0711597 + 0.355659i
\(575\) 34.0143 0.0591553
\(576\) 0 0
\(577\) 564.014 325.634i 0.977494 0.564356i 0.0759812 0.997109i \(-0.475791\pi\)
0.901513 + 0.432753i \(0.142458\pi\)
\(578\) −74.3503 128.778i −0.128634 0.222800i
\(579\) 0 0
\(580\) 129.751i 0.223708i
\(581\) −716.029 + 242.164i −1.23241 + 0.416805i
\(582\) 0 0
\(583\) 145.864 252.644i 0.250195 0.433351i
\(584\) 320.860 185.249i 0.549418 0.317206i
\(585\) 0 0
\(586\) 400.971 + 231.500i 0.684250 + 0.395052i
\(587\) 823.029i 1.40209i 0.713116 + 0.701046i \(0.247283\pi\)
−0.713116 + 0.701046i \(0.752717\pi\)
\(588\) 0 0
\(589\) −17.6619 −0.0299863
\(590\) 187.555 324.855i 0.317890 0.550601i
\(591\) 0 0
\(592\) −129.882 224.963i −0.219396 0.380004i
\(593\) 700.110 + 404.209i 1.18062 + 0.681634i 0.956159 0.292848i \(-0.0946031\pi\)
0.224465 + 0.974482i \(0.427936\pi\)
\(594\) 0 0
\(595\) 96.3015 + 284.744i 0.161851 + 0.478561i
\(596\) 52.7939 0.0885804
\(597\) 0 0
\(598\) −15.2864 + 8.82559i −0.0255625 + 0.0147585i
\(599\) 265.422 + 459.725i 0.443109 + 0.767488i 0.997918 0.0644900i \(-0.0205421\pi\)
−0.554809 + 0.831978i \(0.687209\pi\)
\(600\) 0 0
\(601\) 936.503i 1.55824i 0.626874 + 0.779121i \(0.284334\pi\)
−0.626874 + 0.779121i \(0.715666\pi\)
\(602\) 62.9533 + 12.5956i 0.104574 + 0.0209229i
\(603\) 0 0
\(604\) 134.213 232.464i 0.222207 0.384874i
\(605\) 149.111 86.0890i 0.246464 0.142296i
\(606\) 0 0
\(607\) 521.452 + 301.060i 0.859064 + 0.495981i 0.863699 0.504008i \(-0.168142\pi\)
−0.00463474 + 0.999989i \(0.501475\pi\)
\(608\) 4.05845i 0.00667508i
\(609\) 0 0
\(610\) 296.756 0.486486
\(611\) −131.235 + 227.307i −0.214788 + 0.372024i
\(612\) 0 0
\(613\) −548.448 949.940i −0.894695 1.54966i −0.834181 0.551491i \(-0.814059\pi\)
−0.0605142 0.998167i \(-0.519274\pi\)
\(614\) −313.706 181.118i −0.510921 0.294981i
\(615\) 0 0
\(616\) −173.095 + 196.932i −0.280999 + 0.319694i
\(617\) 432.956 0.701712 0.350856 0.936429i \(-0.385891\pi\)
0.350856 + 0.936429i \(0.385891\pi\)
\(618\) 0 0
\(619\) 194.951 112.555i 0.314946 0.181834i −0.334192 0.942505i \(-0.608463\pi\)
0.649137 + 0.760671i \(0.275130\pi\)
\(620\) 77.9634 + 135.037i 0.125747 + 0.217801i
\(621\) 0 0
\(622\) 305.940i 0.491865i
\(623\) 230.592 1152.51i 0.370131 1.84993i
\(624\) 0 0
\(625\) 13.3091 23.0520i 0.0212945 0.0368832i
\(626\) −192.062 + 110.887i −0.306809 + 0.177136i
\(627\) 0 0
\(628\) 392.647 + 226.695i 0.625234 + 0.360979i
\(629\) 880.552i 1.39992i
\(630\) 0 0
\(631\) 750.514 1.18940 0.594702 0.803946i \(-0.297270\pi\)
0.594702 + 0.803946i \(0.297270\pi\)
\(632\) 107.782 186.683i 0.170541 0.295385i
\(633\) 0 0
\(634\) −316.805 548.722i −0.499692 0.865492i
\(635\) 166.374 + 96.0560i 0.262006 + 0.151269i
\(636\) 0 0
\(637\) 163.383 + 213.916i 0.256488 + 0.335818i
\(638\) −383.647 −0.601327
\(639\) 0 0
\(640\) 31.0294 17.9149i 0.0484835 0.0279920i
\(641\) −580.926 1006.19i −0.906281 1.56973i −0.819188 0.573525i \(-0.805575\pi\)
−0.0870937 0.996200i \(-0.527758\pi\)
\(642\) 0 0
\(643\) 121.957i 0.189669i −0.995493 0.0948347i \(-0.969768\pi\)
0.995493 0.0948347i \(-0.0302322\pi\)
\(644\) −10.1909 30.1324i −0.0158244 0.0467895i
\(645\) 0 0
\(646\) 6.87868 11.9142i 0.0106481 0.0184431i
\(647\) 137.504 79.3877i 0.212525 0.122701i −0.389959 0.920832i \(-0.627511\pi\)
0.602484 + 0.798131i \(0.294178\pi\)
\(648\) 0 0
\(649\) −960.529 554.561i −1.48001 0.854486i
\(650\) 116.302i 0.178927i
\(651\) 0 0
\(652\) −183.955 −0.282140
\(653\) −195.471 + 338.565i −0.299342 + 0.518476i −0.975986 0.217835i \(-0.930101\pi\)
0.676643 + 0.736311i \(0.263434\pi\)
\(654\) 0 0
\(655\) −210.518 364.628i −0.321401 0.556683i
\(656\) −72.8528 42.0616i −0.111056 0.0641183i
\(657\) 0 0
\(658\) −355.269 312.268i −0.539922 0.474571i
\(659\) 331.955 0.503726 0.251863 0.967763i \(-0.418957\pi\)
0.251863 + 0.967763i \(0.418957\pi\)
\(660\) 0 0
\(661\) 561.029 323.910i 0.848758 0.490031i −0.0114736 0.999934i \(-0.503652\pi\)
0.860232 + 0.509904i \(0.170319\pi\)
\(662\) 38.8959 + 67.3697i 0.0587552 + 0.101767i
\(663\) 0 0
\(664\) 305.418i 0.459967i
\(665\) 10.5000 11.9459i 0.0157895 0.0179638i
\(666\) 0 0
\(667\) 23.2721 40.3084i 0.0348907 0.0604324i
\(668\) −352.441 + 203.482i −0.527606 + 0.304613i
\(669\) 0 0
\(670\) −359.319 207.453i −0.536298 0.309632i
\(671\) 877.448i 1.30767i
\(672\) 0 0
\(673\) 100.956 0.150009 0.0750047 0.997183i \(-0.476103\pi\)
0.0750047 + 0.997183i \(0.476103\pi\)
\(674\) 78.9361 136.721i 0.117116 0.202851i
\(675\) 0 0
\(676\) −138.823 240.449i −0.205360 0.355694i
\(677\) −643.610 371.588i −0.950679 0.548875i −0.0573873 0.998352i \(-0.518277\pi\)
−0.893292 + 0.449477i \(0.851610\pi\)
\(678\) 0 0
\(679\) 169.632 57.3704i 0.249827 0.0844924i
\(680\) −121.456 −0.178612
\(681\) 0 0
\(682\) 399.276 230.522i 0.585448 0.338009i
\(683\) 2.21721 + 3.84032i 0.00324628 + 0.00562272i 0.867644 0.497186i \(-0.165633\pi\)
−0.864398 + 0.502809i \(0.832300\pi\)
\(684\) 0 0
\(685\) 371.881i 0.542892i
\(686\) −435.770 + 213.078i −0.635233 + 0.310610i
\(687\) 0 0
\(688\) −12.9706 + 22.4657i −0.0188526 + 0.0326536i
\(689\) 104.802 60.5074i 0.152107 0.0878192i
\(690\) 0 0
\(691\) −846.253 488.584i −1.22468 0.707069i −0.258767 0.965940i \(-0.583316\pi\)
−0.965912 + 0.258871i \(0.916649\pi\)
\(692\) 141.620i 0.204654i
\(693\) 0 0
\(694\) −533.522 −0.768763
\(695\) 108.603 188.106i 0.156263 0.270656i
\(696\) 0 0
\(697\) 142.581 + 246.957i 0.204563 + 0.354314i
\(698\) 249.889 + 144.274i 0.358008 + 0.206696i
\(699\) 0 0
\(700\) 205.515 + 41.1191i 0.293592 + 0.0587416i
\(701\) 840.177 1.19854 0.599270 0.800547i \(-0.295458\pi\)
0.599270 + 0.800547i \(0.295458\pi\)
\(702\) 0 0
\(703\) 40.3492 23.2956i 0.0573958 0.0331375i
\(704\) −52.9706 91.7477i −0.0752423 0.130323i
\(705\) 0 0
\(706\) 589.835i 0.835460i
\(707\) 149.857 + 131.719i 0.211962 + 0.186306i
\(708\) 0 0
\(709\) −341.279 + 591.112i −0.481352 + 0.833727i −0.999771 0.0214003i \(-0.993188\pi\)
0.518419 + 0.855127i \(0.326521\pi\)
\(710\) 187.831 108.444i 0.264550 0.152738i
\(711\) 0 0
\(712\) 411.286 + 237.456i 0.577649 + 0.333506i
\(713\) 55.9340i 0.0784488i
\(714\) 0 0
\(715\) 230.382 0.322212
\(716\) 108.816 188.475i 0.151978 0.263234i
\(717\) 0 0
\(718\) −126.452 219.022i −0.176117 0.305044i
\(719\) −119.187 68.8126i −0.165768 0.0957060i 0.414821 0.909903i \(-0.363844\pi\)
−0.580589 + 0.814197i \(0.697178\pi\)
\(720\) 0 0
\(721\) 77.5812 387.754i 0.107602 0.537800i
\(722\) 509.803 0.706099
\(723\) 0 0
\(724\) −172.617 + 99.6607i −0.238422 + 0.137653i
\(725\) 153.338 + 265.589i 0.211501 + 0.366330i
\(726\) 0 0
\(727\) 264.137i 0.363325i −0.983361 0.181662i \(-0.941852\pi\)
0.983361 0.181662i \(-0.0581478\pi\)
\(728\) −103.029 + 34.8450i −0.141524 + 0.0478640i
\(729\) 0 0
\(730\) 293.335 508.070i 0.401828 0.695987i
\(731\) 76.1543 43.9677i 0.104178 0.0601474i
\(732\) 0 0
\(733\) 501.705 + 289.660i 0.684455 + 0.395170i 0.801531 0.597953i \(-0.204019\pi\)
−0.117077 + 0.993123i \(0.537352\pi\)
\(734\) 889.530i 1.21189i
\(735\) 0 0
\(736\) 12.8528 0.0174631
\(737\) −613.397 + 1062.43i −0.832288 + 1.44157i
\(738\) 0 0
\(739\) 99.0477 + 171.556i 0.134029 + 0.232146i 0.925226 0.379416i \(-0.123875\pi\)
−0.791197 + 0.611562i \(0.790542\pi\)
\(740\) −356.220 205.664i −0.481379 0.277924i
\(741\) 0 0
\(742\) 69.8680 + 206.585i 0.0941617 + 0.278417i
\(743\) −976.690 −1.31452 −0.657261 0.753663i \(-0.728285\pi\)
−0.657261 + 0.753663i \(0.728285\pi\)
\(744\) 0 0
\(745\) 72.3974 41.7987i 0.0971777 0.0561056i
\(746\) 180.707 + 312.994i 0.242235 + 0.419563i
\(747\) 0 0
\(748\) 359.120i 0.480107i
\(749\) −326.794 65.3845i −0.436308 0.0872958i
\(750\) 0 0
\(751\) 417.665 723.417i 0.556145 0.963272i −0.441668 0.897178i \(-0.645613\pi\)
0.997813 0.0660933i \(-0.0210535\pi\)
\(752\) 165.515 95.5600i 0.220099 0.127074i
\(753\) 0 0
\(754\) −137.823 79.5724i −0.182790 0.105534i
\(755\) 425.044i 0.562972i
\(756\) 0 0
\(757\) 104.221 0.137677 0.0688383 0.997628i \(-0.478071\pi\)
0.0688383 + 0.997628i \(0.478071\pi\)
\(758\) −155.387 + 269.138i −0.204996 + 0.355063i
\(759\) 0 0
\(760\) 3.21320 + 5.56543i 0.00422790 + 0.00732294i
\(761\) 473.785 + 273.540i 0.622583 + 0.359448i 0.777874 0.628420i \(-0.216298\pi\)
−0.155291 + 0.987869i \(0.549632\pi\)
\(762\) 0 0
\(763\) −348.025 + 395.950i −0.456128 + 0.518939i
\(764\) −139.809 −0.182996
\(765\) 0 0
\(766\) −20.8644 + 12.0461i −0.0272381 + 0.0157259i
\(767\) −230.044 398.447i −0.299927 0.519488i
\(768\) 0 0
\(769\) 341.205i 0.443700i 0.975081 + 0.221850i \(0.0712095\pi\)
−0.975081 + 0.221850i \(0.928790\pi\)
\(770\) −81.4523 + 407.101i −0.105782 + 0.528703i
\(771\) 0 0
\(772\) 32.3381 56.0112i 0.0418887 0.0725534i
\(773\) 425.213 245.497i 0.550081 0.317590i −0.199074 0.979985i \(-0.563793\pi\)
0.749155 + 0.662395i \(0.230460\pi\)
\(774\) 0 0
\(775\) −319.169 184.273i −0.411832 0.237771i
\(776\) 72.3557i 0.0932419i
\(777\) 0 0
\(778\) 215.272 0.276699
\(779\) 7.54416 13.0669i 0.00968441 0.0167739i
\(780\) 0 0
\(781\) −320.647 555.376i −0.410559 0.711109i
\(782\) −37.7315 21.7843i −0.0482500 0.0278571i
\(783\) 0 0
\(784\) −25.1472 194.380i −0.0320755 0.247934i
\(785\) 717.926 0.914555
\(786\) 0 0
\(787\) 260.202 150.228i 0.330625 0.190887i −0.325493 0.945544i \(-0.605530\pi\)
0.656119 + 0.754658i \(0.272197\pi\)
\(788\) 277.103 + 479.956i 0.351653 + 0.609081i
\(789\) 0 0
\(790\) 341.337i 0.432072i
\(791\) 191.647 + 566.660i 0.242284 + 0.716385i
\(792\) 0 0
\(793\) 181.992 315.219i 0.229498 0.397502i
\(794\) 456.489 263.554i 0.574923 0.331932i
\(795\) 0 0
\(796\) −290.022 167.444i −0.364350 0.210357i
\(797\) 370.072i 0.464331i −0.972676 0.232165i \(-0.925419\pi\)
0.972676 0.232165i \(-0.0745811\pi\)
\(798\) 0 0
\(799\) −647.860 −0.810838
\(800\) −42.3431 + 73.3405i −0.0529289 + 0.0916756i
\(801\) 0 0
\(802\) 460.731 + 798.010i 0.574478 + 0.995025i
\(803\) −1502.26 867.330i −1.87081 1.08011i
\(804\) 0 0
\(805\) −37.8318 33.2528i −0.0469960 0.0413078i
\(806\) 191.251 0.237284
\(807\) 0 0
\(808\) −69.8162 + 40.3084i −0.0864062 + 0.0498867i
\(809\) 245.618 + 425.422i 0.303607 + 0.525862i 0.976950 0.213468i \(-0.0684758\pi\)
−0.673344 + 0.739330i \(0.735142\pi\)
\(810\) 0 0
\(811\) 156.802i 0.193344i −0.995316 0.0966722i \(-0.969180\pi\)
0.995316 0.0966722i \(-0.0308199\pi\)
\(812\) 189.338 215.411i 0.233175 0.265284i
\(813\) 0 0
\(814\) −608.106 + 1053.27i −0.747059 + 1.29394i
\(815\) −252.262 + 145.643i −0.309524 + 0.178704i
\(816\) 0 0
\(817\) −4.02944 2.32640i −0.00493199 0.00284749i
\(818\) 754.575i 0.922463i
\(819\) 0 0
\(820\) −133.206 −0.162446
\(821\) −215.316 + 372.939i −0.262261 + 0.454249i −0.966842 0.255374i \(-0.917801\pi\)
0.704581 + 0.709623i \(0.251135\pi\)
\(822\) 0 0
\(823\) 354.371 + 613.788i 0.430584 + 0.745793i 0.996924 0.0783785i \(-0.0249743\pi\)
−0.566340 + 0.824172i \(0.691641\pi\)
\(824\) 138.375 + 79.8907i 0.167930 + 0.0969547i
\(825\) 0 0
\(826\) 785.418 265.632i 0.950870 0.321588i
\(827\) 1460.10 1.76554 0.882770 0.469805i \(-0.155676\pi\)
0.882770 + 0.469805i \(0.155676\pi\)
\(828\) 0 0
\(829\) −223.095 + 128.804i −0.269113 + 0.155373i −0.628485 0.777822i \(-0.716325\pi\)
0.359371 + 0.933195i \(0.382991\pi\)
\(830\) −241.809 418.826i −0.291336 0.504609i
\(831\) 0 0
\(832\) 43.9466i 0.0528204i
\(833\) −255.632 + 613.256i −0.306881 + 0.736202i
\(834\) 0 0
\(835\) −322.206 + 558.077i −0.385876 + 0.668356i
\(836\) 16.4558 9.50079i 0.0196840 0.0113646i
\(837\) 0 0
\(838\) 654.323 + 377.774i 0.780815 + 0.450804i
\(839\) 213.621i 0.254613i −0.991863 0.127307i \(-0.959367\pi\)
0.991863 0.127307i \(-0.0406332\pi\)
\(840\) 0 0
\(841\) −421.353 −0.501015
\(842\) −111.172 + 192.555i −0.132033 + 0.228687i
\(843\) 0 0
\(844\) 128.073 + 221.829i 0.151745 + 0.262831i
\(845\) −380.743 219.822i −0.450583 0.260144i
\(846\) 0 0
\(847\) 373.177 + 74.6646i 0.440586 + 0.0881519i
\(848\) −88.1177 −0.103912
\(849\) 0 0
\(850\) 248.610 143.535i 0.292483 0.168865i
\(851\) −73.7756 127.783i −0.0866929 0.150156i
\(852\) 0 0
\(853\) 1127.37i 1.32165i 0.750539 + 0.660826i \(0.229794\pi\)
−0.750539 + 0.660826i \(0.770206\pi\)
\(854\) 492.672 + 433.040i 0.576899 + 0.507073i
\(855\) 0 0
\(856\) 67.3310 116.621i 0.0786577 0.136239i
\(857\) −1100.22 + 635.212i −1.28380 + 0.741204i −0.977541 0.210744i \(-0.932412\pi\)
−0.306261 + 0.951947i \(0.599078\pi\)
\(858\) 0 0
\(859\) −221.488 127.876i −0.257844 0.148867i 0.365506 0.930809i \(-0.380896\pi\)
−0.623351 + 0.781942i \(0.714229\pi\)
\(860\) 41.0768i 0.0477638i
\(861\) 0 0
\(862\) 323.199 0.374941
\(863\) 557.364 965.382i 0.645844 1.11863i −0.338262 0.941052i \(-0.609839\pi\)
0.984106 0.177583i \(-0.0568278\pi\)
\(864\) 0 0
\(865\) 112.125 + 194.207i 0.129625 + 0.224516i
\(866\) 58.2426 + 33.6264i 0.0672548 + 0.0388296i
\(867\) 0 0
\(868\) −67.6173 + 337.954i −0.0779001 + 0.389348i
\(869\) −1009.26 −1.16141
\(870\) 0 0
\(871\) −440.720 + 254.450i −0.505993 + 0.292135i
\(872\) −106.503 184.468i −0.122136 0.211546i
\(873\) 0 0
\(874\) 2.30528i 0.00263762i
\(875\) 839.382 283.882i 0.959294 0.324437i
\(876\) 0 0
\(877\) 550.904 954.194i 0.628169 1.08802i −0.359750 0.933049i \(-0.617138\pi\)
0.987919 0.154972i \(-0.0495286\pi\)
\(878\) 90.4523 52.2226i 0.103021 0.0594791i
\(879\) 0 0
\(880\) −145.279 83.8770i −0.165090 0.0953148i
\(881\) 217.067i 0.246387i 0.992383 + 0.123194i \(0.0393136\pi\)
−0.992383 + 0.123194i \(0.960686\pi\)
\(882\) 0 0
\(883\) −516.544 −0.584988 −0.292494 0.956267i \(-0.594485\pi\)
−0.292494 + 0.956267i \(0.594485\pi\)
\(884\) −74.4853 + 129.012i −0.0842594 + 0.145942i
\(885\) 0 0
\(886\) 165.915 + 287.374i 0.187263 + 0.324350i
\(887\) 978.445 + 564.905i 1.10309 + 0.636872i 0.937032 0.349243i \(-0.113561\pi\)
0.166062 + 0.986115i \(0.446895\pi\)
\(888\) 0 0
\(889\) 136.043 + 402.251i 0.153029 + 0.452476i
\(890\) 752.007 0.844952
\(891\) 0 0
\(892\) −722.558 + 417.169i −0.810043 + 0.467679i
\(893\) 17.1396 + 29.6867i 0.0191933 + 0.0332438i
\(894\) 0 0
\(895\) 344.613i 0.385043i
\(896\) 77.6569 + 15.5375i 0.0866706 + 0.0173409i
\(897\) 0 0
\(898\) −180.426 + 312.508i −0.200920 + 0.348004i
\(899\) −436.742 + 252.153i −0.485809 + 0.280482i
\(900\) 0 0
\(901\) 258.684 + 149.351i 0.287107 + 0.165762i
\(902\) 393.863i 0.436655i
\(903\) 0 0
\(904\) −241.706 −0.267373
\(905\) −157.809 + 273.333i −0.174375 + 0.302026i
\(906\) 0 0
\(907\) −30.0111 51.9808i −0.0330884 0.0573107i 0.849007 0.528382i \(-0.177201\pi\)
−0.882095 + 0.471071i \(0.843868\pi\)
\(908\) 402.286 + 232.260i 0.443047 + 0.255793i
\(909\) 0 0
\(910\) −113.698 + 129.355i −0.124943 + 0.142149i
\(911\) −1422.25 −1.56120 −0.780598 0.625033i \(-0.785085\pi\)
−0.780598 + 0.625033i \(0.785085\pi\)
\(912\) 0 0
\(913\) −1238.38 + 714.980i −1.35639 + 0.783111i
\(914\) 103.050 + 178.488i 0.112746 + 0.195283i
\(915\) 0 0
\(916\) 167.244i 0.182581i
\(917\) 182.581 912.547i 0.199107 0.995144i
\(918\) 0 0
\(919\) −834.849 + 1446.00i −0.908432 + 1.57345i −0.0921886 + 0.995742i \(0.529386\pi\)
−0.816243 + 0.577708i \(0.803947\pi\)
\(920\) 17.6253 10.1760i 0.0191580 0.0110609i
\(921\) 0 0
\(922\) −1087.98 628.144i −1.18002 0.681284i
\(923\) 266.022i 0.288215i
\(924\) 0 0
\(925\) 972.205 1.05103
\(926\) −165.473 + 286.608i −0.178697 + 0.309512i
\(927\) 0 0
\(928\) 57.9411 + 100.357i 0.0624366 + 0.108143i
\(929\) −839.058 484.430i −0.903184 0.521453i −0.0249519 0.999689i \(-0.507943\pi\)
−0.878232 + 0.478235i \(0.841277\pi\)
\(930\) 0 0
\(931\) 34.8640 4.51039i 0.0374479 0.00484468i
\(932\) −438.146 −0.470114
\(933\) 0 0
\(934\) 963.407 556.223i 1.03148 0.595528i
\(935\) 284.327 + 492.469i 0.304093 + 0.526705i
\(936\) 0 0
\(937\) 1212.57i 1.29410i −0.762449 0.647049i \(-0.776003\pi\)
0.762449 0.647049i \(-0.223997\pi\)
\(938\) −293.813 868.746i −0.313234 0.926168i
\(939\) 0 0
\(940\) 151.316 262.087i 0.160974 0.278816i
\(941\) 1293.90 747.032i 1.37502 0.793870i 0.383468 0.923554i \(-0.374730\pi\)
0.991555 + 0.129684i \(0.0413963\pi\)
\(942\) 0 0
\(943\) −41.3818 23.8918i −0.0438832 0.0253360i
\(944\) 335.016i 0.354889i
\(945\) 0 0
\(946\) 121.456 0.128389
\(947\) 387.731 671.570i 0.409431 0.709155i −0.585395 0.810748i \(-0.699061\pi\)
0.994826 + 0.101593i \(0.0323939\pi\)
\(948\) 0 0
\(949\) −359.787 623.169i −0.379122 0.656659i
\(950\) −13.1543 7.59466i −0.0138467 0.00799437i
\(951\) 0 0
\(952\) −201.640 177.234i −0.211806 0.186170i
\(953\) −1055.40 −1.10745 −0.553723 0.832701i \(-0.686794\pi\)
−0.553723 + 0.832701i \(0.686794\pi\)
\(954\) 0 0
\(955\) −191.723 + 110.691i −0.200757 + 0.115907i
\(956\) 193.103 + 334.464i 0.201990 + 0.349857i
\(957\) 0 0
\(958\) 1042.18i 1.08787i
\(959\) −542.665 + 617.393i −0.565866 + 0.643788i
\(960\) 0 0
\(961\) −177.477 + 307.400i −0.184680 + 0.319875i
\(962\) −436.919 + 252.255i −0.454178 + 0.262220i
\(963\) 0 0
\(964\) −85.7939 49.5332i −0.0889979 0.0513829i
\(965\) 102.412i 0.106127i
\(966\) 0 0
\(967\) 1221.63 1.26332 0.631661 0.775245i \(-0.282373\pi\)
0.631661 + 0.775245i \(0.282373\pi\)
\(968\) −76.8873 + 133.173i −0.0794290 + 0.137575i
\(969\) 0 0
\(970\) 57.2864 + 99.2229i 0.0590581 + 0.102292i
\(971\) 455.753 + 263.129i 0.469365 + 0.270988i 0.715974 0.698127i \(-0.245983\pi\)
−0.246609 + 0.969115i \(0.579316\pi\)
\(972\) 0 0
\(973\) 454.794 153.813i 0.467414 0.158081i
\(974\) 382.825 0.393045
\(975\) 0 0
\(976\) −229.529 + 132.519i −0.235173 + 0.135777i
\(977\) −500.051 866.114i −0.511823 0.886504i −0.999906 0.0137065i \(-0.995637\pi\)
0.488083 0.872797i \(-0.337696\pi\)
\(978\) 0 0
\(979\) 2223.53i 2.27123i
\(980\) −188.382 246.648i −0.192226 0.251681i
\(981\) 0 0
\(982\) 537.515 931.003i 0.547367 0.948068i
\(983\) −931.584 + 537.850i −0.947695 + 0.547152i −0.892364 0.451316i \(-0.850955\pi\)
−0.0553306 + 0.998468i \(0.517621\pi\)
\(984\) 0 0
\(985\) 759.993 + 438.782i 0.771566 + 0.445464i
\(986\) 392.819i 0.398396i
\(987\) 0 0
\(988\) 7.88225 0.00797799
\(989\) −7.36753 + 12.7609i −0.00744948 + 0.0129029i
\(990\) 0 0
\(991\) 938.017 + 1624.69i 0.946536 + 1.63945i 0.752646 + 0.658426i \(0.228777\pi\)
0.193891 + 0.981023i \(0.437889\pi\)
\(992\) −120.603 69.6302i −0.121576 0.0701917i
\(993\) 0 0
\(994\) 470.080 + 94.0530i 0.472918 + 0.0946207i
\(995\) −530.285 −0.532949
\(996\) 0 0
\(997\) 504.221 291.112i 0.505738 0.291988i −0.225342 0.974280i \(-0.572350\pi\)
0.731080 + 0.682292i \(0.239017\pi\)
\(998\) −88.7365 153.696i −0.0889144 0.154004i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.n.c.19.1 4
3.2 odd 2 14.3.d.a.5.2 yes 4
4.3 odd 2 1008.3.cg.l.145.1 4
7.2 even 3 882.3.c.f.685.4 4
7.3 odd 6 inner 126.3.n.c.73.1 4
7.4 even 3 882.3.n.b.325.1 4
7.5 odd 6 882.3.c.f.685.3 4
7.6 odd 2 882.3.n.b.19.1 4
12.11 even 2 112.3.s.b.33.2 4
15.2 even 4 350.3.i.a.299.4 8
15.8 even 4 350.3.i.a.299.1 8
15.14 odd 2 350.3.k.a.201.1 4
21.2 odd 6 98.3.b.b.97.1 4
21.5 even 6 98.3.b.b.97.2 4
21.11 odd 6 98.3.d.a.31.2 4
21.17 even 6 14.3.d.a.3.2 4
21.20 even 2 98.3.d.a.19.2 4
24.5 odd 2 448.3.s.d.257.2 4
24.11 even 2 448.3.s.c.257.1 4
28.3 even 6 1008.3.cg.l.577.1 4
84.11 even 6 784.3.s.c.129.1 4
84.23 even 6 784.3.c.e.97.4 4
84.47 odd 6 784.3.c.e.97.1 4
84.59 odd 6 112.3.s.b.17.2 4
84.83 odd 2 784.3.s.c.705.1 4
105.17 odd 12 350.3.i.a.199.1 8
105.38 odd 12 350.3.i.a.199.4 8
105.59 even 6 350.3.k.a.101.1 4
168.59 odd 6 448.3.s.c.129.1 4
168.101 even 6 448.3.s.d.129.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.3.d.a.3.2 4 21.17 even 6
14.3.d.a.5.2 yes 4 3.2 odd 2
98.3.b.b.97.1 4 21.2 odd 6
98.3.b.b.97.2 4 21.5 even 6
98.3.d.a.19.2 4 21.20 even 2
98.3.d.a.31.2 4 21.11 odd 6
112.3.s.b.17.2 4 84.59 odd 6
112.3.s.b.33.2 4 12.11 even 2
126.3.n.c.19.1 4 1.1 even 1 trivial
126.3.n.c.73.1 4 7.3 odd 6 inner
350.3.i.a.199.1 8 105.17 odd 12
350.3.i.a.199.4 8 105.38 odd 12
350.3.i.a.299.1 8 15.8 even 4
350.3.i.a.299.4 8 15.2 even 4
350.3.k.a.101.1 4 105.59 even 6
350.3.k.a.201.1 4 15.14 odd 2
448.3.s.c.129.1 4 168.59 odd 6
448.3.s.c.257.1 4 24.11 even 2
448.3.s.d.129.2 4 168.101 even 6
448.3.s.d.257.2 4 24.5 odd 2
784.3.c.e.97.1 4 84.47 odd 6
784.3.c.e.97.4 4 84.23 even 6
784.3.s.c.129.1 4 84.11 even 6
784.3.s.c.705.1 4 84.83 odd 2
882.3.c.f.685.3 4 7.5 odd 6
882.3.c.f.685.4 4 7.2 even 3
882.3.n.b.19.1 4 7.6 odd 2
882.3.n.b.325.1 4 7.4 even 3
1008.3.cg.l.145.1 4 4.3 odd 2
1008.3.cg.l.577.1 4 28.3 even 6