Properties

Label 448.4.i.g.65.1
Level $448$
Weight $4$
Character 448.65
Analytic conductor $26.433$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(65,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.65");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.1
Root \(1.77069 + 3.06693i\) of defining polynomial
Character \(\chi\) \(=\) 448.65
Dual form 448.4.i.g.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.04138 - 5.26783i) q^{3} +(-9.58276 + 16.5978i) q^{5} +(6.16553 - 17.4639i) q^{7} +(-5.00000 + 8.66025i) q^{9} +(13.2897 + 23.0184i) q^{11} -10.3311 q^{13} +116.579 q^{15} +(50.6655 + 87.7553i) q^{17} +(46.8759 - 81.1914i) q^{19} +(-110.748 + 20.6353i) q^{21} +(-4.28967 + 7.42992i) q^{23} +(-121.159 - 209.853i) q^{25} -103.407 q^{27} -52.3174 q^{29} +(-27.7103 - 47.9957i) q^{31} +(80.8379 - 140.015i) q^{33} +(230.779 + 269.686i) q^{35} +(214.238 - 371.071i) q^{37} +(31.4207 + 54.4222i) q^{39} -137.007 q^{41} -172.000 q^{43} +(-95.8276 - 165.978i) q^{45} +(-24.6207 + 42.6443i) q^{47} +(-266.973 - 215.348i) q^{49} +(308.186 - 533.794i) q^{51} +(-237.238 - 410.908i) q^{53} -509.407 q^{55} -570.269 q^{57} +(-98.5311 - 170.661i) q^{59} +(-200.562 + 347.384i) q^{61} +(120.414 + 140.714i) q^{63} +(99.0000 - 171.473i) q^{65} +(-62.7103 - 108.617i) q^{67} +52.1861 q^{69} -788.635 q^{71} +(-302.328 - 523.647i) q^{73} +(-736.979 + 1276.49i) q^{75} +(483.928 - 90.1685i) q^{77} +(391.504 - 678.104i) q^{79} +(449.500 + 778.557i) q^{81} -339.283 q^{83} -1942.06 q^{85} +(159.117 + 275.599i) q^{87} +(-255.983 + 443.375i) q^{89} +(-63.6963 + 180.420i) q^{91} +(-168.555 + 291.946i) q^{93} +(898.400 + 1556.08i) q^{95} -672.290 q^{97} -265.793 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{5} - 24 q^{7} - 20 q^{9} - 32 q^{11} + 56 q^{13} + 296 q^{15} + 154 q^{17} + 224 q^{19} - 370 q^{21} + 68 q^{23} - 144 q^{25} + 472 q^{29} - 196 q^{31} + 518 q^{33} + 400 q^{35} + 346 q^{37}+ \cdots + 640 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.04138 5.26783i −0.585314 1.01379i −0.994836 0.101494i \(-0.967638\pi\)
0.409522 0.912300i \(-0.365695\pi\)
\(4\) 0 0
\(5\) −9.58276 + 16.5978i −0.857108 + 1.48456i 0.0175669 + 0.999846i \(0.494408\pi\)
−0.874675 + 0.484709i \(0.838925\pi\)
\(6\) 0 0
\(7\) 6.16553 17.4639i 0.332907 0.942960i
\(8\) 0 0
\(9\) −5.00000 + 8.66025i −0.185185 + 0.320750i
\(10\) 0 0
\(11\) 13.2897 + 23.0184i 0.364271 + 0.630937i 0.988659 0.150178i \(-0.0479847\pi\)
−0.624388 + 0.781115i \(0.714651\pi\)
\(12\) 0 0
\(13\) −10.3311 −0.220409 −0.110205 0.993909i \(-0.535151\pi\)
−0.110205 + 0.993909i \(0.535151\pi\)
\(14\) 0 0
\(15\) 116.579 2.00671
\(16\) 0 0
\(17\) 50.6655 + 87.7553i 0.722835 + 1.25199i 0.959859 + 0.280483i \(0.0904947\pi\)
−0.237024 + 0.971504i \(0.576172\pi\)
\(18\) 0 0
\(19\) 46.8759 81.1914i 0.566003 0.980346i −0.430952 0.902375i \(-0.641822\pi\)
0.996956 0.0779715i \(-0.0248443\pi\)
\(20\) 0 0
\(21\) −110.748 + 20.6353i −1.15082 + 0.214428i
\(22\) 0 0
\(23\) −4.28967 + 7.42992i −0.0388895 + 0.0673585i −0.884815 0.465942i \(-0.845715\pi\)
0.845926 + 0.533301i \(0.179049\pi\)
\(24\) 0 0
\(25\) −121.159 209.853i −0.969269 1.67882i
\(26\) 0 0
\(27\) −103.407 −0.737062
\(28\) 0 0
\(29\) −52.3174 −0.335003 −0.167502 0.985872i \(-0.553570\pi\)
−0.167502 + 0.985872i \(0.553570\pi\)
\(30\) 0 0
\(31\) −27.7103 47.9957i −0.160546 0.278074i 0.774519 0.632551i \(-0.217992\pi\)
−0.935065 + 0.354477i \(0.884659\pi\)
\(32\) 0 0
\(33\) 80.8379 140.015i 0.426426 0.738592i
\(34\) 0 0
\(35\) 230.779 + 269.686i 1.11454 + 1.30244i
\(36\) 0 0
\(37\) 214.238 371.071i 0.951906 1.64875i 0.210610 0.977570i \(-0.432455\pi\)
0.741295 0.671179i \(-0.234212\pi\)
\(38\) 0 0
\(39\) 31.4207 + 54.4222i 0.129009 + 0.223449i
\(40\) 0 0
\(41\) −137.007 −0.521875 −0.260938 0.965356i \(-0.584032\pi\)
−0.260938 + 0.965356i \(0.584032\pi\)
\(42\) 0 0
\(43\) −172.000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −95.8276 165.978i −0.317448 0.549835i
\(46\) 0 0
\(47\) −24.6207 + 42.6443i −0.0764107 + 0.132347i −0.901699 0.432365i \(-0.857679\pi\)
0.825288 + 0.564712i \(0.191013\pi\)
\(48\) 0 0
\(49\) −266.973 215.348i −0.778346 0.627836i
\(50\) 0 0
\(51\) 308.186 533.794i 0.846171 1.46561i
\(52\) 0 0
\(53\) −237.238 410.908i −0.614852 1.06495i −0.990410 0.138156i \(-0.955882\pi\)
0.375559 0.926799i \(-0.377451\pi\)
\(54\) 0 0
\(55\) −509.407 −1.24888
\(56\) 0 0
\(57\) −570.269 −1.32516
\(58\) 0 0
\(59\) −98.5311 170.661i −0.217418 0.376579i 0.736600 0.676329i \(-0.236430\pi\)
−0.954018 + 0.299750i \(0.903097\pi\)
\(60\) 0 0
\(61\) −200.562 + 347.384i −0.420973 + 0.729147i −0.996035 0.0889631i \(-0.971645\pi\)
0.575062 + 0.818110i \(0.304978\pi\)
\(62\) 0 0
\(63\) 120.414 + 140.714i 0.240805 + 0.281402i
\(64\) 0 0
\(65\) 99.0000 171.473i 0.188914 0.327209i
\(66\) 0 0
\(67\) −62.7103 108.617i −0.114348 0.198056i 0.803171 0.595748i \(-0.203144\pi\)
−0.917519 + 0.397693i \(0.869811\pi\)
\(68\) 0 0
\(69\) 52.1861 0.0910502
\(70\) 0 0
\(71\) −788.635 −1.31822 −0.659111 0.752046i \(-0.729067\pi\)
−0.659111 + 0.752046i \(0.729067\pi\)
\(72\) 0 0
\(73\) −302.328 523.647i −0.484723 0.839565i 0.515123 0.857116i \(-0.327746\pi\)
−0.999846 + 0.0175515i \(0.994413\pi\)
\(74\) 0 0
\(75\) −736.979 + 1276.49i −1.13465 + 1.96528i
\(76\) 0 0
\(77\) 483.928 90.1685i 0.716216 0.133450i
\(78\) 0 0
\(79\) 391.504 678.104i 0.557565 0.965730i −0.440134 0.897932i \(-0.645069\pi\)
0.997699 0.0677984i \(-0.0215975\pi\)
\(80\) 0 0
\(81\) 449.500 + 778.557i 0.616598 + 1.06798i
\(82\) 0 0
\(83\) −339.283 −0.448689 −0.224344 0.974510i \(-0.572024\pi\)
−0.224344 + 0.974510i \(0.572024\pi\)
\(84\) 0 0
\(85\) −1942.06 −2.47819
\(86\) 0 0
\(87\) 159.117 + 275.599i 0.196082 + 0.339624i
\(88\) 0 0
\(89\) −255.983 + 443.375i −0.304878 + 0.528064i −0.977234 0.212164i \(-0.931949\pi\)
0.672356 + 0.740228i \(0.265282\pi\)
\(90\) 0 0
\(91\) −63.6963 + 180.420i −0.0733757 + 0.207837i
\(92\) 0 0
\(93\) −168.555 + 291.946i −0.187940 + 0.325521i
\(94\) 0 0
\(95\) 898.400 + 1556.08i 0.970252 + 1.68053i
\(96\) 0 0
\(97\) −672.290 −0.703719 −0.351859 0.936053i \(-0.614450\pi\)
−0.351859 + 0.936053i \(0.614450\pi\)
\(98\) 0 0
\(99\) −265.793 −0.269831
\(100\) 0 0
\(101\) 66.8864 + 115.851i 0.0658955 + 0.114134i 0.897091 0.441846i \(-0.145676\pi\)
−0.831195 + 0.555980i \(0.812343\pi\)
\(102\) 0 0
\(103\) 580.372 1005.23i 0.555202 0.961638i −0.442686 0.896677i \(-0.645974\pi\)
0.997888 0.0649611i \(-0.0206923\pi\)
\(104\) 0 0
\(105\) 718.773 2035.92i 0.668048 1.89225i
\(106\) 0 0
\(107\) 654.393 1133.44i 0.591239 1.02406i −0.402827 0.915276i \(-0.631972\pi\)
0.994066 0.108780i \(-0.0346943\pi\)
\(108\) 0 0
\(109\) −522.921 905.725i −0.459511 0.795897i 0.539424 0.842034i \(-0.318642\pi\)
−0.998935 + 0.0461377i \(0.985309\pi\)
\(110\) 0 0
\(111\) −2606.32 −2.22866
\(112\) 0 0
\(113\) −117.587 −0.0978905 −0.0489453 0.998801i \(-0.515586\pi\)
−0.0489453 + 0.998801i \(0.515586\pi\)
\(114\) 0 0
\(115\) −82.2138 142.398i −0.0666650 0.115467i
\(116\) 0 0
\(117\) 51.6553 89.4695i 0.0408165 0.0706962i
\(118\) 0 0
\(119\) 1844.92 343.758i 1.42121 0.264809i
\(120\) 0 0
\(121\) 312.269 540.866i 0.234613 0.406361i
\(122\) 0 0
\(123\) 416.690 + 721.728i 0.305461 + 0.529074i
\(124\) 0 0
\(125\) 2248.45 1.60886
\(126\) 0 0
\(127\) 1788.63 1.24973 0.624865 0.780733i \(-0.285154\pi\)
0.624865 + 0.780733i \(0.285154\pi\)
\(128\) 0 0
\(129\) 523.118 + 906.066i 0.357038 + 0.618408i
\(130\) 0 0
\(131\) 974.642 1688.13i 0.650037 1.12590i −0.333076 0.942900i \(-0.608087\pi\)
0.983113 0.182997i \(-0.0585800\pi\)
\(132\) 0 0
\(133\) −1128.90 1319.22i −0.736000 0.860082i
\(134\) 0 0
\(135\) 990.924 1716.33i 0.631742 1.09421i
\(136\) 0 0
\(137\) 285.769 + 494.967i 0.178211 + 0.308671i 0.941268 0.337661i \(-0.109636\pi\)
−0.763057 + 0.646332i \(0.776302\pi\)
\(138\) 0 0
\(139\) 1176.58 0.717958 0.358979 0.933346i \(-0.383125\pi\)
0.358979 + 0.933346i \(0.383125\pi\)
\(140\) 0 0
\(141\) 299.524 0.178897
\(142\) 0 0
\(143\) −137.296 237.804i −0.0802887 0.139064i
\(144\) 0 0
\(145\) 501.345 868.355i 0.287134 0.497331i
\(146\) 0 0
\(147\) −322.449 + 2061.32i −0.180919 + 1.15656i
\(148\) 0 0
\(149\) 886.666 1535.75i 0.487507 0.844387i −0.512390 0.858753i \(-0.671240\pi\)
0.999897 + 0.0143663i \(0.00457309\pi\)
\(150\) 0 0
\(151\) −251.504 435.617i −0.135544 0.234768i 0.790261 0.612770i \(-0.209945\pi\)
−0.925805 + 0.378002i \(0.876611\pi\)
\(152\) 0 0
\(153\) −1013.31 −0.535433
\(154\) 0 0
\(155\) 1062.17 0.550421
\(156\) 0 0
\(157\) 1168.16 + 2023.31i 0.593815 + 1.02852i 0.993713 + 0.111958i \(0.0357123\pi\)
−0.399898 + 0.916560i \(0.630954\pi\)
\(158\) 0 0
\(159\) −1443.06 + 2499.46i −0.719763 + 1.24667i
\(160\) 0 0
\(161\) 103.307 + 120.724i 0.0505698 + 0.0590953i
\(162\) 0 0
\(163\) 868.297 1503.93i 0.417241 0.722683i −0.578420 0.815739i \(-0.696330\pi\)
0.995661 + 0.0930567i \(0.0296638\pi\)
\(164\) 0 0
\(165\) 1549.30 + 2683.47i 0.730987 + 1.26611i
\(166\) 0 0
\(167\) −668.331 −0.309683 −0.154841 0.987939i \(-0.549487\pi\)
−0.154841 + 0.987939i \(0.549487\pi\)
\(168\) 0 0
\(169\) −2090.27 −0.951420
\(170\) 0 0
\(171\) 468.759 + 811.914i 0.209631 + 0.363091i
\(172\) 0 0
\(173\) −1072.62 + 1857.83i −0.471385 + 0.816462i −0.999464 0.0327327i \(-0.989579\pi\)
0.528079 + 0.849195i \(0.322912\pi\)
\(174\) 0 0
\(175\) −4411.85 + 822.044i −1.90574 + 0.355090i
\(176\) 0 0
\(177\) −599.341 + 1038.09i −0.254516 + 0.440834i
\(178\) 0 0
\(179\) −1883.77 3262.79i −0.786591 1.36242i −0.928044 0.372471i \(-0.878511\pi\)
0.141453 0.989945i \(-0.454823\pi\)
\(180\) 0 0
\(181\) 1752.51 0.719686 0.359843 0.933013i \(-0.382830\pi\)
0.359843 + 0.933013i \(0.382830\pi\)
\(182\) 0 0
\(183\) 2439.94 0.985606
\(184\) 0 0
\(185\) 4105.98 + 7111.77i 1.63177 + 2.82631i
\(186\) 0 0
\(187\) −1346.66 + 2332.48i −0.526616 + 0.912126i
\(188\) 0 0
\(189\) −637.558 + 1805.88i −0.245373 + 0.695020i
\(190\) 0 0
\(191\) −1005.56 + 1741.68i −0.380941 + 0.659809i −0.991197 0.132395i \(-0.957733\pi\)
0.610256 + 0.792204i \(0.291067\pi\)
\(192\) 0 0
\(193\) 789.976 + 1368.28i 0.294631 + 0.510315i 0.974899 0.222648i \(-0.0714700\pi\)
−0.680268 + 0.732963i \(0.738137\pi\)
\(194\) 0 0
\(195\) −1204.39 −0.442297
\(196\) 0 0
\(197\) 26.4132 0.00955262 0.00477631 0.999989i \(-0.498480\pi\)
0.00477631 + 0.999989i \(0.498480\pi\)
\(198\) 0 0
\(199\) −28.7731 49.8365i −0.0102496 0.0177528i 0.860855 0.508850i \(-0.169929\pi\)
−0.871105 + 0.491097i \(0.836596\pi\)
\(200\) 0 0
\(201\) −381.452 + 660.694i −0.133858 + 0.231850i
\(202\) 0 0
\(203\) −322.564 + 913.663i −0.111525 + 0.315894i
\(204\) 0 0
\(205\) 1312.90 2274.02i 0.447303 0.774752i
\(206\) 0 0
\(207\) −42.8967 74.2992i −0.0144035 0.0249476i
\(208\) 0 0
\(209\) 2491.86 0.824715
\(210\) 0 0
\(211\) −1193.90 −0.389534 −0.194767 0.980850i \(-0.562395\pi\)
−0.194767 + 0.980850i \(0.562395\pi\)
\(212\) 0 0
\(213\) 2398.54 + 4154.39i 0.771574 + 1.33640i
\(214\) 0 0
\(215\) 1648.24 2854.83i 0.522831 0.905570i
\(216\) 0 0
\(217\) −1009.04 + 188.011i −0.315659 + 0.0588156i
\(218\) 0 0
\(219\) −1838.99 + 3185.22i −0.567430 + 0.982818i
\(220\) 0 0
\(221\) −523.428 906.604i −0.159319 0.275949i
\(222\) 0 0
\(223\) 2921.66 0.877348 0.438674 0.898646i \(-0.355448\pi\)
0.438674 + 0.898646i \(0.355448\pi\)
\(224\) 0 0
\(225\) 2423.17 0.717977
\(226\) 0 0
\(227\) 1556.17 + 2695.37i 0.455008 + 0.788097i 0.998689 0.0511954i \(-0.0163031\pi\)
−0.543681 + 0.839292i \(0.682970\pi\)
\(228\) 0 0
\(229\) −2667.65 + 4620.51i −0.769797 + 1.33333i 0.167876 + 0.985808i \(0.446309\pi\)
−0.937673 + 0.347519i \(0.887024\pi\)
\(230\) 0 0
\(231\) −1946.80 2275.01i −0.554502 0.647985i
\(232\) 0 0
\(233\) 2619.04 4536.31i 0.736390 1.27547i −0.217720 0.976011i \(-0.569862\pi\)
0.954111 0.299454i \(-0.0968046\pi\)
\(234\) 0 0
\(235\) −471.869 817.301i −0.130984 0.226872i
\(236\) 0 0
\(237\) −4762.85 −1.30540
\(238\) 0 0
\(239\) −4181.05 −1.13159 −0.565794 0.824547i \(-0.691430\pi\)
−0.565794 + 0.824547i \(0.691430\pi\)
\(240\) 0 0
\(241\) −2732.44 4732.72i −0.730340 1.26499i −0.956738 0.290950i \(-0.906029\pi\)
0.226399 0.974035i \(-0.427305\pi\)
\(242\) 0 0
\(243\) 1338.21 2317.84i 0.353276 0.611892i
\(244\) 0 0
\(245\) 6132.64 2367.54i 1.59918 0.617374i
\(246\) 0 0
\(247\) −484.277 + 838.792i −0.124752 + 0.216077i
\(248\) 0 0
\(249\) 1031.89 + 1787.28i 0.262624 + 0.454878i
\(250\) 0 0
\(251\) −5718.95 −1.43816 −0.719078 0.694930i \(-0.755436\pi\)
−0.719078 + 0.694930i \(0.755436\pi\)
\(252\) 0 0
\(253\) −228.033 −0.0566653
\(254\) 0 0
\(255\) 5906.55 + 10230.5i 1.45052 + 2.51238i
\(256\) 0 0
\(257\) −509.140 + 881.857i −0.123577 + 0.214042i −0.921176 0.389147i \(-0.872770\pi\)
0.797599 + 0.603188i \(0.206103\pi\)
\(258\) 0 0
\(259\) −5159.44 6029.27i −1.23781 1.44649i
\(260\) 0 0
\(261\) 261.587 453.082i 0.0620376 0.107452i
\(262\) 0 0
\(263\) −4112.15 7122.46i −0.964130 1.66992i −0.711934 0.702246i \(-0.752181\pi\)
−0.252196 0.967676i \(-0.581153\pi\)
\(264\) 0 0
\(265\) 9093.58 2.10798
\(266\) 0 0
\(267\) 3114.17 0.713797
\(268\) 0 0
\(269\) −2933.94 5081.74i −0.665002 1.15182i −0.979285 0.202488i \(-0.935097\pi\)
0.314282 0.949330i \(-0.398236\pi\)
\(270\) 0 0
\(271\) 3108.39 5383.88i 0.696757 1.20682i −0.272828 0.962063i \(-0.587959\pi\)
0.969585 0.244755i \(-0.0787076\pi\)
\(272\) 0 0
\(273\) 1144.15 213.185i 0.253652 0.0472620i
\(274\) 0 0
\(275\) 3220.32 5577.75i 0.706154 1.22310i
\(276\) 0 0
\(277\) 738.762 + 1279.57i 0.160245 + 0.277553i 0.934957 0.354762i \(-0.115438\pi\)
−0.774711 + 0.632315i \(0.782105\pi\)
\(278\) 0 0
\(279\) 554.207 0.118923
\(280\) 0 0
\(281\) −3611.93 −0.766797 −0.383398 0.923583i \(-0.625246\pi\)
−0.383398 + 0.923583i \(0.625246\pi\)
\(282\) 0 0
\(283\) 3814.04 + 6606.10i 0.801134 + 1.38760i 0.918870 + 0.394560i \(0.129103\pi\)
−0.117736 + 0.993045i \(0.537564\pi\)
\(284\) 0 0
\(285\) 5464.76 9465.24i 1.13580 1.96727i
\(286\) 0 0
\(287\) −844.719 + 2392.67i −0.173736 + 0.492107i
\(288\) 0 0
\(289\) −2677.49 + 4637.55i −0.544981 + 0.943935i
\(290\) 0 0
\(291\) 2044.69 + 3541.51i 0.411896 + 0.713426i
\(292\) 0 0
\(293\) 5393.67 1.07543 0.537716 0.843126i \(-0.319287\pi\)
0.537716 + 0.843126i \(0.319287\pi\)
\(294\) 0 0
\(295\) 3776.80 0.745403
\(296\) 0 0
\(297\) −1374.24 2380.26i −0.268491 0.465040i
\(298\) 0 0
\(299\) 44.3168 76.7589i 0.00857159 0.0148464i
\(300\) 0 0
\(301\) −1060.47 + 3003.78i −0.203071 + 0.575200i
\(302\) 0 0
\(303\) 406.854 704.692i 0.0771391 0.133609i
\(304\) 0 0
\(305\) −3843.88 6657.80i −0.721639 1.24992i
\(306\) 0 0
\(307\) 8054.16 1.49731 0.748656 0.662958i \(-0.230699\pi\)
0.748656 + 0.662958i \(0.230699\pi\)
\(308\) 0 0
\(309\) −7060.54 −1.29987
\(310\) 0 0
\(311\) 1142.30 + 1978.53i 0.208277 + 0.360746i 0.951172 0.308662i \(-0.0998812\pi\)
−0.742895 + 0.669408i \(0.766548\pi\)
\(312\) 0 0
\(313\) −4168.07 + 7219.30i −0.752694 + 1.30370i 0.193819 + 0.981037i \(0.437912\pi\)
−0.946513 + 0.322666i \(0.895421\pi\)
\(314\) 0 0
\(315\) −3489.45 + 650.176i −0.624153 + 0.116296i
\(316\) 0 0
\(317\) −5208.09 + 9020.68i −0.922762 + 1.59827i −0.127642 + 0.991820i \(0.540741\pi\)
−0.795121 + 0.606451i \(0.792593\pi\)
\(318\) 0 0
\(319\) −695.280 1204.26i −0.122032 0.211366i
\(320\) 0 0
\(321\) −7961.03 −1.38424
\(322\) 0 0
\(323\) 9499.96 1.63651
\(324\) 0 0
\(325\) 1251.70 + 2168.00i 0.213636 + 0.370028i
\(326\) 0 0
\(327\) −3180.80 + 5509.31i −0.537917 + 0.931699i
\(328\) 0 0
\(329\) 592.935 + 692.897i 0.0993604 + 0.116111i
\(330\) 0 0
\(331\) −3471.94 + 6013.58i −0.576541 + 0.998598i 0.419331 + 0.907833i \(0.362265\pi\)
−0.995872 + 0.0907649i \(0.971069\pi\)
\(332\) 0 0
\(333\) 2142.38 + 3710.71i 0.352558 + 0.610648i
\(334\) 0 0
\(335\) 2403.75 0.392033
\(336\) 0 0
\(337\) 4951.93 0.800442 0.400221 0.916419i \(-0.368933\pi\)
0.400221 + 0.916419i \(0.368933\pi\)
\(338\) 0 0
\(339\) 357.626 + 619.427i 0.0572967 + 0.0992408i
\(340\) 0 0
\(341\) 736.522 1275.69i 0.116965 0.202589i
\(342\) 0 0
\(343\) −5406.83 + 3334.64i −0.851141 + 0.524938i
\(344\) 0 0
\(345\) −500.087 + 866.176i −0.0780399 + 0.135169i
\(346\) 0 0
\(347\) −3637.68 6300.64i −0.562769 0.974744i −0.997253 0.0740648i \(-0.976403\pi\)
0.434485 0.900679i \(-0.356931\pi\)
\(348\) 0 0
\(349\) −3433.29 −0.526589 −0.263294 0.964716i \(-0.584809\pi\)
−0.263294 + 0.964716i \(0.584809\pi\)
\(350\) 0 0
\(351\) 1068.30 0.162455
\(352\) 0 0
\(353\) −3079.54 5333.93i −0.464328 0.804239i 0.534843 0.844951i \(-0.320371\pi\)
−0.999171 + 0.0407124i \(0.987037\pi\)
\(354\) 0 0
\(355\) 7557.30 13089.6i 1.12986 1.95697i
\(356\) 0 0
\(357\) −7421.98 8673.25i −1.10032 1.28582i
\(358\) 0 0
\(359\) 4003.31 6933.94i 0.588542 1.01939i −0.405881 0.913926i \(-0.633035\pi\)
0.994424 0.105459i \(-0.0336313\pi\)
\(360\) 0 0
\(361\) −965.192 1671.76i −0.140719 0.243733i
\(362\) 0 0
\(363\) −3798.92 −0.549288
\(364\) 0 0
\(365\) 11588.5 1.66184
\(366\) 0 0
\(367\) 592.247 + 1025.80i 0.0842372 + 0.145903i 0.905066 0.425271i \(-0.139821\pi\)
−0.820829 + 0.571174i \(0.806488\pi\)
\(368\) 0 0
\(369\) 685.034 1186.51i 0.0966435 0.167391i
\(370\) 0 0
\(371\) −8638.74 + 1609.63i −1.20890 + 0.225250i
\(372\) 0 0
\(373\) −472.109 + 817.717i −0.0655359 + 0.113511i −0.896932 0.442169i \(-0.854209\pi\)
0.831396 + 0.555681i \(0.187542\pi\)
\(374\) 0 0
\(375\) −6838.39 11844.4i −0.941688 1.63105i
\(376\) 0 0
\(377\) 540.493 0.0738377
\(378\) 0 0
\(379\) −2906.32 −0.393898 −0.196949 0.980414i \(-0.563103\pi\)
−0.196949 + 0.980414i \(0.563103\pi\)
\(380\) 0 0
\(381\) −5439.92 9422.22i −0.731484 1.26697i
\(382\) 0 0
\(383\) −573.420 + 993.192i −0.0765023 + 0.132506i −0.901739 0.432282i \(-0.857709\pi\)
0.825236 + 0.564788i \(0.191042\pi\)
\(384\) 0 0
\(385\) −3140.76 + 8896.21i −0.415761 + 1.17764i
\(386\) 0 0
\(387\) 860.000 1489.56i 0.112962 0.195656i
\(388\) 0 0
\(389\) −2794.74 4840.64i −0.364265 0.630926i 0.624393 0.781110i \(-0.285346\pi\)
−0.988658 + 0.150185i \(0.952013\pi\)
\(390\) 0 0
\(391\) −869.353 −0.112443
\(392\) 0 0
\(393\) −11857.0 −1.52190
\(394\) 0 0
\(395\) 7503.37 + 12996.2i 0.955787 + 1.65547i
\(396\) 0 0
\(397\) 1577.05 2731.53i 0.199370 0.345319i −0.748954 0.662622i \(-0.769444\pi\)
0.948324 + 0.317303i \(0.102777\pi\)
\(398\) 0 0
\(399\) −3516.01 + 9959.10i −0.441155 + 1.24957i
\(400\) 0 0
\(401\) 3195.88 5535.43i 0.397992 0.689342i −0.595486 0.803365i \(-0.703041\pi\)
0.993478 + 0.114024i \(0.0363740\pi\)
\(402\) 0 0
\(403\) 286.277 + 495.846i 0.0353858 + 0.0612899i
\(404\) 0 0
\(405\) −17229.8 −2.11397
\(406\) 0 0
\(407\) 11388.6 1.38701
\(408\) 0 0
\(409\) −98.3151 170.287i −0.0118860 0.0205871i 0.860021 0.510258i \(-0.170450\pi\)
−0.871907 + 0.489671i \(0.837117\pi\)
\(410\) 0 0
\(411\) 1738.27 3010.77i 0.208619 0.361339i
\(412\) 0 0
\(413\) −3587.89 + 668.519i −0.427479 + 0.0796506i
\(414\) 0 0
\(415\) 3251.27 5631.36i 0.384575 0.666103i
\(416\) 0 0
\(417\) −3578.43 6198.02i −0.420231 0.727862i
\(418\) 0 0
\(419\) −15699.9 −1.83052 −0.915262 0.402858i \(-0.868017\pi\)
−0.915262 + 0.402858i \(0.868017\pi\)
\(420\) 0 0
\(421\) 8097.20 0.937372 0.468686 0.883365i \(-0.344728\pi\)
0.468686 + 0.883365i \(0.344728\pi\)
\(422\) 0 0
\(423\) −246.207 426.443i −0.0283002 0.0490175i
\(424\) 0 0
\(425\) 12277.1 21264.6i 1.40124 2.42703i
\(426\) 0 0
\(427\) 4830.09 + 5644.39i 0.547411 + 0.639699i
\(428\) 0 0
\(429\) −835.140 + 1446.51i −0.0939882 + 0.162792i
\(430\) 0 0
\(431\) 5789.18 + 10027.1i 0.646995 + 1.12063i 0.983837 + 0.179067i \(0.0573078\pi\)
−0.336842 + 0.941561i \(0.609359\pi\)
\(432\) 0 0
\(433\) −7270.25 −0.806896 −0.403448 0.915003i \(-0.632188\pi\)
−0.403448 + 0.915003i \(0.632188\pi\)
\(434\) 0 0
\(435\) −6099.12 −0.672254
\(436\) 0 0
\(437\) 402.164 + 696.568i 0.0440231 + 0.0762503i
\(438\) 0 0
\(439\) −2063.69 + 3574.42i −0.224362 + 0.388606i −0.956128 0.292950i \(-0.905363\pi\)
0.731766 + 0.681556i \(0.238696\pi\)
\(440\) 0 0
\(441\) 3199.83 1235.31i 0.345517 0.133389i
\(442\) 0 0
\(443\) 95.2195 164.925i 0.0102122 0.0176881i −0.860874 0.508818i \(-0.830083\pi\)
0.871086 + 0.491130i \(0.163416\pi\)
\(444\) 0 0
\(445\) −4906.05 8497.52i −0.522627 0.905216i
\(446\) 0 0
\(447\) −10786.8 −1.14138
\(448\) 0 0
\(449\) 17175.2 1.80523 0.902613 0.430454i \(-0.141646\pi\)
0.902613 + 0.430454i \(0.141646\pi\)
\(450\) 0 0
\(451\) −1820.78 3153.68i −0.190104 0.329270i
\(452\) 0 0
\(453\) −1529.84 + 2649.76i −0.158671 + 0.274826i
\(454\) 0 0
\(455\) −2384.19 2786.14i −0.245654 0.287069i
\(456\) 0 0
\(457\) 1752.90 3036.11i 0.179425 0.310773i −0.762259 0.647272i \(-0.775910\pi\)
0.941684 + 0.336499i \(0.109243\pi\)
\(458\) 0 0
\(459\) −5239.17 9074.51i −0.532774 0.922792i
\(460\) 0 0
\(461\) −5983.80 −0.604541 −0.302270 0.953222i \(-0.597745\pi\)
−0.302270 + 0.953222i \(0.597745\pi\)
\(462\) 0 0
\(463\) −14057.4 −1.41102 −0.705510 0.708700i \(-0.749282\pi\)
−0.705510 + 0.708700i \(0.749282\pi\)
\(464\) 0 0
\(465\) −3230.45 5595.31i −0.322169 0.558013i
\(466\) 0 0
\(467\) −9386.91 + 16258.6i −0.930137 + 1.61105i −0.147054 + 0.989128i \(0.546979\pi\)
−0.783083 + 0.621917i \(0.786354\pi\)
\(468\) 0 0
\(469\) −2283.52 + 425.480i −0.224826 + 0.0418910i
\(470\) 0 0
\(471\) 7105.61 12307.3i 0.695137 1.20401i
\(472\) 0 0
\(473\) −2285.82 3959.16i −0.222204 0.384868i
\(474\) 0 0
\(475\) −22717.7 −2.19444
\(476\) 0 0
\(477\) 4744.76 0.455446
\(478\) 0 0
\(479\) 131.887 + 228.435i 0.0125805 + 0.0217901i 0.872247 0.489065i \(-0.162662\pi\)
−0.859667 + 0.510855i \(0.829329\pi\)
\(480\) 0 0
\(481\) −2213.30 + 3833.55i −0.209809 + 0.363399i
\(482\) 0 0
\(483\) 321.755 911.370i 0.0303113 0.0858567i
\(484\) 0 0
\(485\) 6442.39 11158.6i 0.603163 1.04471i
\(486\) 0 0
\(487\) 6327.46 + 10959.5i 0.588757 + 1.01976i 0.994396 + 0.105724i \(0.0337159\pi\)
−0.405638 + 0.914034i \(0.632951\pi\)
\(488\) 0 0
\(489\) −10563.3 −0.976868
\(490\) 0 0
\(491\) 19041.6 1.75017 0.875087 0.483965i \(-0.160804\pi\)
0.875087 + 0.483965i \(0.160804\pi\)
\(492\) 0 0
\(493\) −2650.69 4591.12i −0.242152 0.419419i
\(494\) 0 0
\(495\) 2547.03 4411.59i 0.231274 0.400579i
\(496\) 0 0
\(497\) −4862.35 + 13772.6i −0.438845 + 1.24303i
\(498\) 0 0
\(499\) 8999.69 15587.9i 0.807378 1.39842i −0.107296 0.994227i \(-0.534219\pi\)
0.914674 0.404192i \(-0.132447\pi\)
\(500\) 0 0
\(501\) 2032.65 + 3520.65i 0.181262 + 0.313954i
\(502\) 0 0
\(503\) −15245.1 −1.35139 −0.675693 0.737183i \(-0.736155\pi\)
−0.675693 + 0.737183i \(0.736155\pi\)
\(504\) 0 0
\(505\) −2563.83 −0.225918
\(506\) 0 0
\(507\) 6357.31 + 11011.2i 0.556879 + 0.964543i
\(508\) 0 0
\(509\) 2403.92 4163.72i 0.209336 0.362581i −0.742170 0.670212i \(-0.766203\pi\)
0.951506 + 0.307632i \(0.0995364\pi\)
\(510\) 0 0
\(511\) −11008.9 + 2051.25i −0.953043 + 0.177577i
\(512\) 0 0
\(513\) −4847.29 + 8395.75i −0.417179 + 0.722576i
\(514\) 0 0
\(515\) 11123.1 + 19265.8i 0.951736 + 1.64846i
\(516\) 0 0
\(517\) −1308.80 −0.111337
\(518\) 0 0
\(519\) 13048.9 1.10363
\(520\) 0 0
\(521\) 150.113 + 260.003i 0.0126230 + 0.0218636i 0.872268 0.489028i \(-0.162649\pi\)
−0.859645 + 0.510892i \(0.829315\pi\)
\(522\) 0 0
\(523\) −397.744 + 688.913i −0.0332546 + 0.0575986i −0.882174 0.470924i \(-0.843921\pi\)
0.848919 + 0.528523i \(0.177254\pi\)
\(524\) 0 0
\(525\) 17748.5 + 20740.7i 1.47544 + 1.72419i
\(526\) 0 0
\(527\) 2807.92 4863.45i 0.232096 0.402003i
\(528\) 0 0
\(529\) 6046.70 + 10473.2i 0.496975 + 0.860786i
\(530\) 0 0
\(531\) 1970.62 0.161050
\(532\) 0 0
\(533\) 1415.42 0.115026
\(534\) 0 0
\(535\) 12541.8 + 21723.0i 1.01351 + 1.75545i
\(536\) 0 0
\(537\) −11458.5 + 19846.8i −0.920806 + 1.59488i
\(538\) 0 0
\(539\) 1408.98 9007.18i 0.112596 0.719790i
\(540\) 0 0
\(541\) −9334.84 + 16168.4i −0.741841 + 1.28491i 0.209815 + 0.977741i \(0.432714\pi\)
−0.951656 + 0.307166i \(0.900619\pi\)
\(542\) 0 0
\(543\) −5330.06 9231.93i −0.421242 0.729613i
\(544\) 0 0
\(545\) 20044.1 1.57540
\(546\) 0 0
\(547\) −3264.72 −0.255191 −0.127596 0.991826i \(-0.540726\pi\)
−0.127596 + 0.991826i \(0.540726\pi\)
\(548\) 0 0
\(549\) −2005.62 3473.84i −0.155916 0.270054i
\(550\) 0 0
\(551\) −2452.42 + 4247.72i −0.189613 + 0.328419i
\(552\) 0 0
\(553\) −9428.49 11018.0i −0.725028 0.847259i
\(554\) 0 0
\(555\) 24975.7 43259.2i 1.91020 3.30856i
\(556\) 0 0
\(557\) 6702.35 + 11608.8i 0.509852 + 0.883090i 0.999935 + 0.0114139i \(0.00363322\pi\)
−0.490083 + 0.871676i \(0.663033\pi\)
\(558\) 0 0
\(559\) 1776.94 0.134448
\(560\) 0 0
\(561\) 16382.8 1.23294
\(562\) 0 0
\(563\) −4649.50 8053.17i −0.348051 0.602843i 0.637852 0.770159i \(-0.279823\pi\)
−0.985903 + 0.167316i \(0.946490\pi\)
\(564\) 0 0
\(565\) 1126.81 1951.69i 0.0839028 0.145324i
\(566\) 0 0
\(567\) 16368.0 3049.79i 1.21233 0.225889i
\(568\) 0 0
\(569\) −10098.9 + 17491.8i −0.744055 + 1.28874i 0.206581 + 0.978430i \(0.433766\pi\)
−0.950635 + 0.310311i \(0.899567\pi\)
\(570\) 0 0
\(571\) 4706.78 + 8152.38i 0.344961 + 0.597490i 0.985347 0.170564i \(-0.0545589\pi\)
−0.640386 + 0.768053i \(0.721226\pi\)
\(572\) 0 0
\(573\) 12233.2 0.891880
\(574\) 0 0
\(575\) 2078.92 0.150777
\(576\) 0 0
\(577\) −3868.85 6701.05i −0.279138 0.483481i 0.692033 0.721866i \(-0.256715\pi\)
−0.971171 + 0.238385i \(0.923382\pi\)
\(578\) 0 0
\(579\) 4805.24 8322.91i 0.344903 0.597389i
\(580\) 0 0
\(581\) −2091.86 + 5925.19i −0.149372 + 0.423095i
\(582\) 0 0
\(583\) 6305.63 10921.7i 0.447946 0.775865i
\(584\) 0 0
\(585\) 990.000 + 1714.73i 0.0699683 + 0.121189i
\(586\) 0 0
\(587\) 16755.0 1.17811 0.589057 0.808091i \(-0.299499\pi\)
0.589057 + 0.808091i \(0.299499\pi\)
\(588\) 0 0
\(589\) −5195.78 −0.363478
\(590\) 0 0
\(591\) −80.3328 139.140i −0.00559128 0.00968438i
\(592\) 0 0
\(593\) 5886.45 10195.6i 0.407635 0.706044i −0.586989 0.809595i \(-0.699687\pi\)
0.994624 + 0.103550i \(0.0330203\pi\)
\(594\) 0 0
\(595\) −11973.8 + 33915.9i −0.825007 + 2.33683i
\(596\) 0 0
\(597\) −175.020 + 303.144i −0.0119985 + 0.0207820i
\(598\) 0 0
\(599\) −12629.7 21875.2i −0.861493 1.49215i −0.870487 0.492191i \(-0.836196\pi\)
0.00899417 0.999960i \(-0.497137\pi\)
\(600\) 0 0
\(601\) 187.801 0.0127464 0.00637319 0.999980i \(-0.497971\pi\)
0.00637319 + 0.999980i \(0.497971\pi\)
\(602\) 0 0
\(603\) 1254.21 0.0847019
\(604\) 0 0
\(605\) 5984.81 + 10366.0i 0.402177 + 0.696591i
\(606\) 0 0
\(607\) 8827.63 15289.9i 0.590284 1.02240i −0.403910 0.914799i \(-0.632349\pi\)
0.994194 0.107603i \(-0.0343176\pi\)
\(608\) 0 0
\(609\) 5794.06 1079.59i 0.385529 0.0718342i
\(610\) 0 0
\(611\) 254.358 440.561i 0.0168416 0.0291705i
\(612\) 0 0
\(613\) −502.463 870.291i −0.0331065 0.0573421i 0.848997 0.528397i \(-0.177207\pi\)
−0.882104 + 0.471055i \(0.843873\pi\)
\(614\) 0 0
\(615\) −15972.2 −1.04725
\(616\) 0 0
\(617\) 8416.05 0.549137 0.274568 0.961568i \(-0.411465\pi\)
0.274568 + 0.961568i \(0.411465\pi\)
\(618\) 0 0
\(619\) −3142.62 5443.17i −0.204059 0.353440i 0.745774 0.666200i \(-0.232080\pi\)
−0.949832 + 0.312759i \(0.898747\pi\)
\(620\) 0 0
\(621\) 443.582 768.306i 0.0286640 0.0496474i
\(622\) 0 0
\(623\) 6164.77 + 7204.09i 0.396447 + 0.463284i
\(624\) 0 0
\(625\) −6401.51 + 11087.7i −0.409697 + 0.709616i
\(626\) 0 0
\(627\) −7578.69 13126.7i −0.482717 0.836091i
\(628\) 0 0
\(629\) 43417.9 2.75228
\(630\) 0 0
\(631\) −15928.9 −1.00495 −0.502473 0.864593i \(-0.667576\pi\)
−0.502473 + 0.864593i \(0.667576\pi\)
\(632\) 0 0
\(633\) 3631.12 + 6289.28i 0.228000 + 0.394907i
\(634\) 0 0
\(635\) −17140.1 + 29687.5i −1.07115 + 1.85529i
\(636\) 0 0
\(637\) 2758.11 + 2224.77i 0.171554 + 0.138381i
\(638\) 0 0
\(639\) 3943.17 6829.78i 0.244115 0.422820i
\(640\) 0 0
\(641\) 6341.52 + 10983.8i 0.390756 + 0.676810i 0.992550 0.121842i \(-0.0388801\pi\)
−0.601793 + 0.798652i \(0.705547\pi\)
\(642\) 0 0
\(643\) −1461.21 −0.0896179 −0.0448090 0.998996i \(-0.514268\pi\)
−0.0448090 + 0.998996i \(0.514268\pi\)
\(644\) 0 0
\(645\) −20051.6 −1.22408
\(646\) 0 0
\(647\) 12000.7 + 20785.8i 0.729206 + 1.26302i 0.957219 + 0.289364i \(0.0934438\pi\)
−0.228013 + 0.973658i \(0.573223\pi\)
\(648\) 0 0
\(649\) 2618.89 4536.05i 0.158398 0.274354i
\(650\) 0 0
\(651\) 4059.28 + 4743.63i 0.244387 + 0.285588i
\(652\) 0 0
\(653\) 4548.57 7878.35i 0.272587 0.472135i −0.696937 0.717133i \(-0.745454\pi\)
0.969524 + 0.244998i \(0.0787874\pi\)
\(654\) 0 0
\(655\) 18679.5 + 32353.9i 1.11430 + 1.93003i
\(656\) 0 0
\(657\) 6046.55 0.359054
\(658\) 0 0
\(659\) −15018.0 −0.887738 −0.443869 0.896092i \(-0.646394\pi\)
−0.443869 + 0.896092i \(0.646394\pi\)
\(660\) 0 0
\(661\) −12248.6 21215.2i −0.720748 1.24837i −0.960700 0.277588i \(-0.910465\pi\)
0.239952 0.970785i \(-0.422868\pi\)
\(662\) 0 0
\(663\) −3183.89 + 5514.66i −0.186504 + 0.323034i
\(664\) 0 0
\(665\) 32714.2 6095.52i 1.90767 0.355450i
\(666\) 0 0
\(667\) 224.424 388.714i 0.0130281 0.0225653i
\(668\) 0 0
\(669\) −8885.87 15390.8i −0.513524 0.889450i
\(670\) 0 0
\(671\) −10661.6 −0.613394
\(672\) 0 0
\(673\) 1378.86 0.0789762 0.0394881 0.999220i \(-0.487427\pi\)
0.0394881 + 0.999220i \(0.487427\pi\)
\(674\) 0 0
\(675\) 12528.7 + 21700.3i 0.714412 + 1.23740i
\(676\) 0 0
\(677\) −6267.48 + 10855.6i −0.355804 + 0.616270i −0.987255 0.159145i \(-0.949126\pi\)
0.631452 + 0.775415i \(0.282459\pi\)
\(678\) 0 0
\(679\) −4145.02 + 11740.8i −0.234273 + 0.663578i
\(680\) 0 0
\(681\) 9465.83 16395.3i 0.532645 0.922568i
\(682\) 0 0
\(683\) −13527.1 23429.5i −0.757830 1.31260i −0.943955 0.330075i \(-0.892926\pi\)
0.186124 0.982526i \(-0.440407\pi\)
\(684\) 0 0
\(685\) −10953.8 −0.610985
\(686\) 0 0
\(687\) 32453.4 1.80229
\(688\) 0 0
\(689\) 2450.92 + 4245.11i 0.135519 + 0.234726i
\(690\) 0 0
\(691\) 12921.8 22381.1i 0.711385 1.23215i −0.252952 0.967479i \(-0.581402\pi\)
0.964337 0.264676i \(-0.0852651\pi\)
\(692\) 0 0
\(693\) −1638.76 + 4641.78i −0.0898285 + 0.254439i
\(694\) 0 0
\(695\) −11274.9 + 19528.7i −0.615368 + 1.06585i
\(696\) 0 0
\(697\) −6941.52 12023.1i −0.377230 0.653381i
\(698\) 0 0
\(699\) −31862.0 −1.72408
\(700\) 0 0
\(701\) 29351.6 1.58145 0.790723 0.612174i \(-0.209705\pi\)
0.790723 + 0.612174i \(0.209705\pi\)
\(702\) 0 0
\(703\) −20085.2 34788.6i −1.07756 1.86639i
\(704\) 0 0
\(705\) −2870.27 + 4971.45i −0.153334 + 0.265582i
\(706\) 0 0
\(707\) 2435.59 453.815i 0.129561 0.0241407i
\(708\) 0 0
\(709\) −8506.71 + 14734.0i −0.450601 + 0.780464i −0.998423 0.0561308i \(-0.982124\pi\)
0.547822 + 0.836595i \(0.315457\pi\)
\(710\) 0 0
\(711\) 3915.04 + 6781.04i 0.206505 + 0.357678i
\(712\) 0 0
\(713\) 475.473 0.0249742
\(714\) 0 0
\(715\) 5262.71 0.275265
\(716\) 0 0
\(717\) 12716.2 + 22025.0i 0.662334 + 1.14720i
\(718\) 0 0
\(719\) 7273.25 12597.6i 0.377255 0.653425i −0.613407 0.789767i \(-0.710201\pi\)
0.990662 + 0.136342i \(0.0435347\pi\)
\(720\) 0 0
\(721\) −13977.0 16333.3i −0.721955 0.843669i
\(722\) 0 0
\(723\) −16620.8 + 28788.0i −0.854956 + 1.48083i
\(724\) 0 0
\(725\) 6338.70 + 10979.0i 0.324708 + 0.562411i
\(726\) 0 0
\(727\) −25023.9 −1.27660 −0.638298 0.769790i \(-0.720361\pi\)
−0.638298 + 0.769790i \(0.720361\pi\)
\(728\) 0 0
\(729\) 7993.00 0.406086
\(730\) 0 0
\(731\) −8714.47 15093.9i −0.440925 0.763705i
\(732\) 0 0
\(733\) −6449.58 + 11171.0i −0.324994 + 0.562907i −0.981511 0.191405i \(-0.938696\pi\)
0.656517 + 0.754311i \(0.272029\pi\)
\(734\) 0 0
\(735\) −31123.5 25105.1i −1.56191 1.25988i
\(736\) 0 0
\(737\) 1666.80 2886.98i 0.0833071 0.144292i
\(738\) 0 0
\(739\) 7626.63 + 13209.7i 0.379635 + 0.657547i 0.991009 0.133795i \(-0.0427163\pi\)
−0.611374 + 0.791342i \(0.709383\pi\)
\(740\) 0 0
\(741\) 5891.48 0.292077
\(742\) 0 0
\(743\) 7984.56 0.394247 0.197123 0.980379i \(-0.436840\pi\)
0.197123 + 0.980379i \(0.436840\pi\)
\(744\) 0 0
\(745\) 16993.4 + 29433.5i 0.835692 + 1.44746i
\(746\) 0 0
\(747\) 1696.42 2938.28i 0.0830905 0.143917i
\(748\) 0 0
\(749\) −15759.6 18416.5i −0.768816 0.898430i
\(750\) 0 0
\(751\) 16390.8 28389.7i 0.796416 1.37943i −0.125521 0.992091i \(-0.540060\pi\)
0.921936 0.387341i \(-0.126606\pi\)
\(752\) 0 0
\(753\) 17393.5 + 30126.4i 0.841773 + 1.45799i
\(754\) 0 0
\(755\) 9640.40 0.464702
\(756\) 0 0
\(757\) 16431.5 0.788920 0.394460 0.918913i \(-0.370932\pi\)
0.394460 + 0.918913i \(0.370932\pi\)
\(758\) 0 0
\(759\) 693.536 + 1201.24i 0.0331670 + 0.0574469i
\(760\) 0 0
\(761\) 16929.2 29322.2i 0.806415 1.39675i −0.108917 0.994051i \(-0.534738\pi\)
0.915332 0.402701i \(-0.131928\pi\)
\(762\) 0 0
\(763\) −19041.5 + 3547.94i −0.903473 + 0.168341i
\(764\) 0 0
\(765\) 9710.31 16818.8i 0.458924 0.794880i
\(766\) 0 0
\(767\) 1017.93 + 1763.11i 0.0479209 + 0.0830014i
\(768\) 0 0
\(769\) −36173.6 −1.69630 −0.848149 0.529758i \(-0.822283\pi\)
−0.848149 + 0.529758i \(0.822283\pi\)
\(770\) 0 0
\(771\) 6193.96 0.289326
\(772\) 0 0
\(773\) 10406.4 + 18024.4i 0.484208 + 0.838673i 0.999835 0.0181398i \(-0.00577440\pi\)
−0.515627 + 0.856813i \(0.672441\pi\)
\(774\) 0 0
\(775\) −6714.69 + 11630.2i −0.311224 + 0.539057i
\(776\) 0 0
\(777\) −16069.3 + 45516.4i −0.741935 + 2.10153i
\(778\) 0 0
\(779\) −6422.31 + 11123.8i −0.295383 + 0.511618i
\(780\) 0 0
\(781\) −10480.7 18153.1i −0.480190 0.831714i
\(782\) 0 0
\(783\) 5409.98 0.246918
\(784\) 0 0
\(785\) −44776.6 −2.03586
\(786\) 0 0
\(787\) 14861.1 + 25740.2i 0.673114 + 1.16587i 0.977016 + 0.213165i \(0.0683772\pi\)
−0.303902 + 0.952703i \(0.598289\pi\)
\(788\) 0 0
\(789\) −25013.3 + 43324.2i −1.12864 + 1.95486i
\(790\) 0 0
\(791\) −724.984 + 2053.52i −0.0325885 + 0.0923068i
\(792\) 0 0
\(793\) 2072.02 3588.84i 0.0927863 0.160711i
\(794\) 0 0
\(795\) −27657.1 47903.4i −1.23383 2.13706i
\(796\) 0 0
\(797\) −6475.82 −0.287811 −0.143905 0.989591i \(-0.545966\pi\)
−0.143905 + 0.989591i \(0.545966\pi\)
\(798\) 0 0
\(799\) −4989.69 −0.220929
\(800\) 0 0
\(801\) −2559.83 4433.75i −0.112918 0.195579i
\(802\) 0 0
\(803\) 8035.67 13918.2i 0.353141 0.611659i
\(804\) 0 0
\(805\) −2993.72 + 557.808i −0.131074 + 0.0244226i
\(806\) 0 0
\(807\) −17846.5 + 30911.0i −0.778470 + 1.34835i
\(808\) 0 0
\(809\) 19709.4 + 34137.7i 0.856547 + 1.48358i 0.875202 + 0.483757i \(0.160728\pi\)
−0.0186550 + 0.999826i \(0.505938\pi\)
\(810\) 0 0
\(811\) 38728.6 1.67688 0.838438 0.544997i \(-0.183469\pi\)
0.838438 + 0.544997i \(0.183469\pi\)
\(812\) 0 0
\(813\) −37815.2 −1.63129
\(814\) 0 0
\(815\) 16641.4 + 28823.7i 0.715241 + 1.23883i
\(816\) 0 0
\(817\) −8062.65 + 13964.9i −0.345259 + 0.598006i
\(818\) 0 0
\(819\) −1244.00 1453.73i −0.0530756 0.0620236i
\(820\) 0 0
\(821\) 16005.0 27721.4i 0.680363 1.17842i −0.294508 0.955649i \(-0.595156\pi\)
0.974870 0.222774i \(-0.0715111\pi\)
\(822\) 0 0
\(823\) 5068.92 + 8779.63i 0.214692 + 0.371858i 0.953177 0.302412i \(-0.0977919\pi\)
−0.738485 + 0.674270i \(0.764459\pi\)
\(824\) 0 0
\(825\) −39176.9 −1.65329
\(826\) 0 0
\(827\) 9064.96 0.381160 0.190580 0.981672i \(-0.438963\pi\)
0.190580 + 0.981672i \(0.438963\pi\)
\(828\) 0 0
\(829\) 9655.15 + 16723.2i 0.404508 + 0.700629i 0.994264 0.106953i \(-0.0341093\pi\)
−0.589756 + 0.807582i \(0.700776\pi\)
\(830\) 0 0
\(831\) 4493.71 7783.34i 0.187587 0.324911i
\(832\) 0 0
\(833\) 5371.59 34339.0i 0.223427 1.42830i
\(834\) 0 0
\(835\) 6404.46 11092.8i 0.265432 0.459741i
\(836\) 0 0
\(837\) 2865.44 + 4963.09i 0.118332 + 0.204958i
\(838\) 0 0
\(839\) −11458.4 −0.471498 −0.235749 0.971814i \(-0.575754\pi\)
−0.235749 + 0.971814i \(0.575754\pi\)
\(840\) 0 0
\(841\) −21651.9 −0.887773
\(842\) 0 0
\(843\) 10985.3 + 19027.0i 0.448817 + 0.777374i
\(844\) 0 0
\(845\) 20030.6 34693.9i 0.815470 1.41244i
\(846\) 0 0
\(847\) −7520.31 8788.15i −0.305078 0.356511i
\(848\) 0 0
\(849\) 23199.9 40183.4i 0.937830 1.62437i
\(850\) 0 0
\(851\) 1838.02 + 3183.54i 0.0740382 + 0.128238i
\(852\) 0 0
\(853\) −6203.94 −0.249026 −0.124513 0.992218i \(-0.539737\pi\)
−0.124513 + 0.992218i \(0.539737\pi\)
\(854\) 0 0
\(855\) −17968.0 −0.718705
\(856\) 0 0
\(857\) 7788.91 + 13490.8i 0.310460 + 0.537732i 0.978462 0.206427i \(-0.0661837\pi\)
−0.668002 + 0.744159i \(0.732850\pi\)
\(858\) 0 0
\(859\) 5946.86 10300.3i 0.236210 0.409127i −0.723414 0.690415i \(-0.757428\pi\)
0.959624 + 0.281287i \(0.0907614\pi\)
\(860\) 0 0
\(861\) 15173.3 2827.18i 0.600585 0.111905i
\(862\) 0 0
\(863\) −5836.78 + 10109.6i −0.230227 + 0.398765i −0.957875 0.287186i \(-0.907280\pi\)
0.727648 + 0.685951i \(0.240614\pi\)
\(864\) 0 0
\(865\) −20557.3 35606.2i −0.808056 1.39959i
\(866\) 0 0
\(867\) 32573.1 1.27594
\(868\) 0 0
\(869\) 20811.8 0.812420
\(870\) 0 0
\(871\) 647.864 + 1122.13i 0.0252032 + 0.0436533i
\(872\) 0 0
\(873\) 3361.45 5822.20i 0.130318 0.225718i
\(874\) 0 0
\(875\) 13862.9 39266.6i 0.535600 1.51709i
\(876\) 0 0
\(877\) −1531.83 + 2653.20i −0.0589808 + 0.102158i −0.894008 0.448051i \(-0.852118\pi\)
0.835027 + 0.550208i \(0.185452\pi\)
\(878\) 0 0
\(879\) −16404.2 28412.9i −0.629466 1.09027i
\(880\) 0 0
\(881\) 19236.9 0.735649 0.367825 0.929895i \(-0.380103\pi\)
0.367825 + 0.929895i \(0.380103\pi\)
\(882\) 0 0
\(883\) −35556.9 −1.35514 −0.677569 0.735459i \(-0.736966\pi\)
−0.677569 + 0.735459i \(0.736966\pi\)
\(884\) 0 0
\(885\) −11486.7 19895.5i −0.436295 0.755685i
\(886\) 0 0
\(887\) 11609.4 20108.0i 0.439464 0.761174i −0.558184 0.829717i \(-0.688502\pi\)
0.997648 + 0.0685430i \(0.0218350\pi\)
\(888\) 0 0
\(889\) 11027.9 31236.5i 0.416044 1.17844i
\(890\) 0 0
\(891\) −11947.4 + 20693.5i −0.449218 + 0.778069i
\(892\) 0 0
\(893\) 2308.23 + 3997.98i 0.0864973 + 0.149818i
\(894\) 0 0
\(895\) 72207.0 2.69678
\(896\) 0 0
\(897\) −539.137 −0.0200683
\(898\) 0 0
\(899\) 1449.73 + 2511.01i 0.0537834 + 0.0931555i
\(900\) 0 0
\(901\) 24039.6 41637.8i 0.888873 1.53957i
\(902\) 0 0
\(903\) 19048.7 3549.28i 0.701995 0.130800i
\(904\) 0 0
\(905\) −16793.9 + 29087.9i −0.616849 + 1.06841i
\(906\) 0 0
\(907\) 10258.4 + 17768.0i 0.375549 + 0.650470i 0.990409 0.138166i \(-0.0441208\pi\)
−0.614860 + 0.788636i \(0.710787\pi\)
\(908\) 0 0
\(909\) −1337.73 −0.0488115
\(910\) 0 0
\(911\) −18247.6 −0.663634 −0.331817 0.943344i \(-0.607662\pi\)
−0.331817 + 0.943344i \(0.607662\pi\)
\(912\) 0 0
\(913\) −4508.96 7809.75i −0.163444 0.283094i
\(914\) 0 0
\(915\) −23381.4 + 40497.8i −0.844771 + 1.46319i
\(916\) 0 0
\(917\) −23472.1 27429.2i −0.845274 0.987778i
\(918\) 0 0
\(919\) −13681.1 + 23696.3i −0.491074 + 0.850566i −0.999947 0.0102758i \(-0.996729\pi\)
0.508873 + 0.860842i \(0.330062\pi\)
\(920\) 0 0
\(921\) −24495.8 42427.9i −0.876398 1.51797i
\(922\) 0 0
\(923\) 8147.42 0.290548
\(924\) 0 0
\(925\) −103827. −3.69061
\(926\) 0 0
\(927\) 5803.72 + 10052.3i 0.205630 + 0.356162i
\(928\) 0 0
\(929\) −21771.3 + 37709.0i −0.768884 + 1.33175i 0.169285 + 0.985567i \(0.445854\pi\)
−0.938169 + 0.346178i \(0.887479\pi\)
\(930\) 0 0
\(931\) −29998.9 + 11581.3i −1.05604 + 0.407691i
\(932\) 0 0
\(933\) 6948.36 12034.9i 0.243815 0.422299i
\(934\) 0 0
\(935\) −25809.4 44703.1i −0.902734 1.56358i
\(936\) 0 0
\(937\) 32990.1 1.15020 0.575101 0.818083i \(-0.304963\pi\)
0.575101 + 0.818083i \(0.304963\pi\)
\(938\) 0 0
\(939\) 50706.7 1.76225
\(940\) 0 0
\(941\) −8655.80 14992.3i −0.299863 0.519378i 0.676241 0.736680i \(-0.263608\pi\)
−0.976104 + 0.217302i \(0.930274\pi\)
\(942\) 0 0
\(943\) 587.714 1017.95i 0.0202954 0.0351527i
\(944\) 0 0
\(945\) −23864.2 27887.4i −0.821484 0.959977i
\(946\) 0 0
\(947\) 667.854 1156.76i 0.0229169 0.0396933i −0.854339 0.519715i \(-0.826038\pi\)
0.877256 + 0.480022i \(0.159371\pi\)
\(948\) 0 0
\(949\) 3123.36 + 5409.82i 0.106837 + 0.185048i
\(950\) 0 0
\(951\) 63359.2 2.16042
\(952\) 0 0
\(953\) 18877.6 0.641663 0.320831 0.947136i \(-0.396038\pi\)
0.320831 + 0.947136i \(0.396038\pi\)
\(954\) 0 0
\(955\) −19272.1 33380.2i −0.653015 1.13106i
\(956\) 0 0
\(957\) −4229.22 + 7325.23i −0.142854 + 0.247431i
\(958\) 0 0
\(959\) 10406.0 1938.90i 0.350392 0.0652872i
\(960\) 0 0
\(961\) 13359.8 23139.8i 0.448450 0.776738i
\(962\) 0 0
\(963\) 6543.93 + 11334.4i 0.218977 + 0.379280i
\(964\) 0 0
\(965\) −30280.6 −1.01012
\(966\) 0 0
\(967\) 39814.6 1.32405 0.662023 0.749483i \(-0.269698\pi\)
0.662023 + 0.749483i \(0.269698\pi\)
\(968\) 0 0
\(969\) −28893.0 50044.1i −0.957871 1.65908i
\(970\) 0 0
\(971\) 11422.4 19784.2i 0.377511 0.653868i −0.613189 0.789936i \(-0.710114\pi\)
0.990699 + 0.136069i \(0.0434468\pi\)
\(972\) 0 0
\(973\) 7254.23 20547.6i 0.239013 0.677006i
\(974\) 0 0
\(975\) 7613.77 13187.4i 0.250088 0.433165i
\(976\) 0 0
\(977\) −12198.3 21128.1i −0.399446 0.691860i 0.594212 0.804308i \(-0.297464\pi\)
−0.993658 + 0.112448i \(0.964131\pi\)
\(978\) 0 0
\(979\) −13607.7 −0.444233
\(980\) 0 0
\(981\) 10458.4 0.340379
\(982\) 0 0
\(983\) 16487.8 + 28557.6i 0.534972 + 0.926599i 0.999165 + 0.0408650i \(0.0130113\pi\)
−0.464192 + 0.885734i \(0.653655\pi\)
\(984\) 0 0
\(985\) −253.112 + 438.403i −0.00818763 + 0.0141814i
\(986\) 0 0
\(987\) 1846.72 5230.84i 0.0595561 0.168693i
\(988\) 0 0
\(989\) 737.823 1277.95i 0.0237224 0.0410883i
\(990\) 0 0
\(991\) −5938.57 10285.9i −0.190358 0.329710i 0.755011 0.655712i \(-0.227632\pi\)
−0.945369 + 0.326002i \(0.894298\pi\)
\(992\) 0 0
\(993\) 42238.0 1.34983
\(994\) 0 0
\(995\) 1102.90 0.0351401
\(996\) 0 0
\(997\) 8193.17 + 14191.0i 0.260261 + 0.450786i 0.966311 0.257376i \(-0.0828580\pi\)
−0.706050 + 0.708162i \(0.749525\pi\)
\(998\) 0 0
\(999\) −22153.7 + 38371.3i −0.701614 + 1.21523i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.i.g.65.1 4
4.3 odd 2 448.4.i.h.65.2 4
7.4 even 3 inner 448.4.i.g.193.1 4
8.3 odd 2 28.4.e.a.9.1 4
8.5 even 2 112.4.i.d.65.2 4
24.11 even 2 252.4.k.c.37.1 4
28.11 odd 6 448.4.i.h.193.2 4
40.3 even 4 700.4.r.d.149.4 8
40.19 odd 2 700.4.i.g.401.2 4
40.27 even 4 700.4.r.d.149.1 8
56.3 even 6 196.4.e.g.165.2 4
56.5 odd 6 784.4.a.ba.1.2 2
56.11 odd 6 28.4.e.a.25.1 yes 4
56.19 even 6 196.4.a.g.1.1 2
56.27 even 2 196.4.e.g.177.2 4
56.37 even 6 784.4.a.u.1.1 2
56.51 odd 6 196.4.a.e.1.2 2
56.53 even 6 112.4.i.d.81.2 4
168.11 even 6 252.4.k.c.109.1 4
168.59 odd 6 1764.4.k.ba.361.2 4
168.83 odd 2 1764.4.k.ba.1549.2 4
168.107 even 6 1764.4.a.z.1.2 2
168.131 odd 6 1764.4.a.n.1.1 2
280.67 even 12 700.4.r.d.249.4 8
280.123 even 12 700.4.r.d.249.1 8
280.179 odd 6 700.4.i.g.501.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.4.e.a.9.1 4 8.3 odd 2
28.4.e.a.25.1 yes 4 56.11 odd 6
112.4.i.d.65.2 4 8.5 even 2
112.4.i.d.81.2 4 56.53 even 6
196.4.a.e.1.2 2 56.51 odd 6
196.4.a.g.1.1 2 56.19 even 6
196.4.e.g.165.2 4 56.3 even 6
196.4.e.g.177.2 4 56.27 even 2
252.4.k.c.37.1 4 24.11 even 2
252.4.k.c.109.1 4 168.11 even 6
448.4.i.g.65.1 4 1.1 even 1 trivial
448.4.i.g.193.1 4 7.4 even 3 inner
448.4.i.h.65.2 4 4.3 odd 2
448.4.i.h.193.2 4 28.11 odd 6
700.4.i.g.401.2 4 40.19 odd 2
700.4.i.g.501.2 4 280.179 odd 6
700.4.r.d.149.1 8 40.27 even 4
700.4.r.d.149.4 8 40.3 even 4
700.4.r.d.249.1 8 280.123 even 12
700.4.r.d.249.4 8 280.67 even 12
784.4.a.u.1.1 2 56.37 even 6
784.4.a.ba.1.2 2 56.5 odd 6
1764.4.a.n.1.1 2 168.131 odd 6
1764.4.a.z.1.2 2 168.107 even 6
1764.4.k.ba.361.2 4 168.59 odd 6
1764.4.k.ba.1549.2 4 168.83 odd 2