Properties

Label 448.4.j.b.335.36
Level $448$
Weight $4$
Character 448.335
Analytic conductor $26.433$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 335.36
Character \(\chi\) \(=\) 448.335
Dual form 448.4.j.b.111.36

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.73059 - 4.73059i) q^{3} +(-5.14976 + 5.14976i) q^{5} +(-10.9791 - 14.9150i) q^{7} -17.7570i q^{9} +(-16.1657 + 16.1657i) q^{11} +(-23.8297 - 23.8297i) q^{13} +48.7228i q^{15} +15.9094i q^{17} +(-3.84826 + 3.84826i) q^{19} +(-122.495 - 18.6192i) q^{21} -38.6350 q^{23} +71.9599i q^{25} +(43.7248 + 43.7248i) q^{27} +(-201.996 + 201.996i) q^{29} -25.5884 q^{31} +152.947i q^{33} +(133.349 + 20.2690i) q^{35} +(-149.092 - 149.092i) q^{37} -225.457 q^{39} -275.363 q^{41} +(180.535 - 180.535i) q^{43} +(91.4444 + 91.4444i) q^{45} -360.435 q^{47} +(-101.917 + 327.509i) q^{49} +(75.2609 + 75.2609i) q^{51} +(-278.986 - 278.986i) q^{53} -166.499i q^{55} +36.4091i q^{57} +(478.902 + 478.902i) q^{59} +(622.588 + 622.588i) q^{61} +(-264.847 + 194.957i) q^{63} +245.434 q^{65} +(-421.140 - 421.140i) q^{67} +(-182.767 + 182.767i) q^{69} -204.915 q^{71} +182.486 q^{73} +(340.413 + 340.413i) q^{75} +(418.599 + 63.6270i) q^{77} -906.929i q^{79} +893.128 q^{81} +(-266.605 + 266.605i) q^{83} +(-81.9296 - 81.9296i) q^{85} +1911.12i q^{87} -490.288 q^{89} +(-93.7917 + 617.050i) q^{91} +(-121.048 + 121.048i) q^{93} -39.6353i q^{95} -1660.46i q^{97} +(287.055 + 287.055i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{7} - 112 q^{11} + 52 q^{21} - 160 q^{23} + 528 q^{29} - 476 q^{35} - 896 q^{37} + 8 q^{39} - 40 q^{43} - 1376 q^{49} - 1504 q^{51} - 1560 q^{53} - 8 q^{65} - 648 q^{67} + 456 q^{71} + 292 q^{77}+ \cdots - 7592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.73059 4.73059i 0.910403 0.910403i −0.0859007 0.996304i \(-0.527377\pi\)
0.996304 + 0.0859007i \(0.0273768\pi\)
\(4\) 0 0
\(5\) −5.14976 + 5.14976i −0.460609 + 0.460609i −0.898855 0.438246i \(-0.855600\pi\)
0.438246 + 0.898855i \(0.355600\pi\)
\(6\) 0 0
\(7\) −10.9791 14.9150i −0.592817 0.805337i
\(8\) 0 0
\(9\) 17.7570i 0.657667i
\(10\) 0 0
\(11\) −16.1657 + 16.1657i −0.443105 + 0.443105i −0.893054 0.449949i \(-0.851442\pi\)
0.449949 + 0.893054i \(0.351442\pi\)
\(12\) 0 0
\(13\) −23.8297 23.8297i −0.508398 0.508398i 0.405637 0.914034i \(-0.367050\pi\)
−0.914034 + 0.405637i \(0.867050\pi\)
\(14\) 0 0
\(15\) 48.7228i 0.838679i
\(16\) 0 0
\(17\) 15.9094i 0.226976i 0.993539 + 0.113488i \(0.0362024\pi\)
−0.993539 + 0.113488i \(0.963798\pi\)
\(18\) 0 0
\(19\) −3.84826 + 3.84826i −0.0464659 + 0.0464659i −0.729958 0.683492i \(-0.760460\pi\)
0.683492 + 0.729958i \(0.260460\pi\)
\(20\) 0 0
\(21\) −122.495 18.6192i −1.27288 0.193478i
\(22\) 0 0
\(23\) −38.6350 −0.350259 −0.175130 0.984545i \(-0.556034\pi\)
−0.175130 + 0.984545i \(0.556034\pi\)
\(24\) 0 0
\(25\) 71.9599i 0.575680i
\(26\) 0 0
\(27\) 43.7248 + 43.7248i 0.311661 + 0.311661i
\(28\) 0 0
\(29\) −201.996 + 201.996i −1.29344 + 1.29344i −0.360795 + 0.932645i \(0.617495\pi\)
−0.932645 + 0.360795i \(0.882505\pi\)
\(30\) 0 0
\(31\) −25.5884 −0.148252 −0.0741260 0.997249i \(-0.523617\pi\)
−0.0741260 + 0.997249i \(0.523617\pi\)
\(32\) 0 0
\(33\) 152.947i 0.806808i
\(34\) 0 0
\(35\) 133.349 + 20.2690i 0.644002 + 0.0978883i
\(36\) 0 0
\(37\) −149.092 149.092i −0.662448 0.662448i 0.293508 0.955957i \(-0.405177\pi\)
−0.955957 + 0.293508i \(0.905177\pi\)
\(38\) 0 0
\(39\) −225.457 −0.925693
\(40\) 0 0
\(41\) −275.363 −1.04889 −0.524445 0.851445i \(-0.675727\pi\)
−0.524445 + 0.851445i \(0.675727\pi\)
\(42\) 0 0
\(43\) 180.535 180.535i 0.640264 0.640264i −0.310356 0.950620i \(-0.600448\pi\)
0.950620 + 0.310356i \(0.100448\pi\)
\(44\) 0 0
\(45\) 91.4444 + 91.4444i 0.302927 + 0.302927i
\(46\) 0 0
\(47\) −360.435 −1.11861 −0.559307 0.828960i \(-0.688933\pi\)
−0.559307 + 0.828960i \(0.688933\pi\)
\(48\) 0 0
\(49\) −101.917 + 327.509i −0.297135 + 0.954835i
\(50\) 0 0
\(51\) 75.2609 + 75.2609i 0.206640 + 0.206640i
\(52\) 0 0
\(53\) −278.986 278.986i −0.723050 0.723050i 0.246176 0.969225i \(-0.420826\pi\)
−0.969225 + 0.246176i \(0.920826\pi\)
\(54\) 0 0
\(55\) 166.499i 0.408196i
\(56\) 0 0
\(57\) 36.4091i 0.0846054i
\(58\) 0 0
\(59\) 478.902 + 478.902i 1.05674 + 1.05674i 0.998290 + 0.0584501i \(0.0186159\pi\)
0.0584501 + 0.998290i \(0.481384\pi\)
\(60\) 0 0
\(61\) 622.588 + 622.588i 1.30679 + 1.30679i 0.923719 + 0.383071i \(0.125134\pi\)
0.383071 + 0.923719i \(0.374866\pi\)
\(62\) 0 0
\(63\) −264.847 + 194.957i −0.529644 + 0.389877i
\(64\) 0 0
\(65\) 245.434 0.468344
\(66\) 0 0
\(67\) −421.140 421.140i −0.767918 0.767918i 0.209822 0.977740i \(-0.432712\pi\)
−0.977740 + 0.209822i \(0.932712\pi\)
\(68\) 0 0
\(69\) −182.767 + 182.767i −0.318877 + 0.318877i
\(70\) 0 0
\(71\) −204.915 −0.342520 −0.171260 0.985226i \(-0.554784\pi\)
−0.171260 + 0.985226i \(0.554784\pi\)
\(72\) 0 0
\(73\) 182.486 0.292580 0.146290 0.989242i \(-0.453267\pi\)
0.146290 + 0.989242i \(0.453267\pi\)
\(74\) 0 0
\(75\) 340.413 + 340.413i 0.524100 + 0.524100i
\(76\) 0 0
\(77\) 418.599 + 63.6270i 0.619529 + 0.0941684i
\(78\) 0 0
\(79\) 906.929i 1.29161i −0.763501 0.645807i \(-0.776521\pi\)
0.763501 0.645807i \(-0.223479\pi\)
\(80\) 0 0
\(81\) 893.128 1.22514
\(82\) 0 0
\(83\) −266.605 + 266.605i −0.352574 + 0.352574i −0.861066 0.508492i \(-0.830203\pi\)
0.508492 + 0.861066i \(0.330203\pi\)
\(84\) 0 0
\(85\) −81.9296 81.9296i −0.104547 0.104547i
\(86\) 0 0
\(87\) 1911.12i 2.35510i
\(88\) 0 0
\(89\) −490.288 −0.583938 −0.291969 0.956428i \(-0.594310\pi\)
−0.291969 + 0.956428i \(0.594310\pi\)
\(90\) 0 0
\(91\) −93.7917 + 617.050i −0.108044 + 0.710818i
\(92\) 0 0
\(93\) −121.048 + 121.048i −0.134969 + 0.134969i
\(94\) 0 0
\(95\) 39.6353i 0.0428052i
\(96\) 0 0
\(97\) 1660.46i 1.73808i −0.494741 0.869040i \(-0.664737\pi\)
0.494741 0.869040i \(-0.335263\pi\)
\(98\) 0 0
\(99\) 287.055 + 287.055i 0.291416 + 0.291416i
\(100\) 0 0
\(101\) −780.879 + 780.879i −0.769311 + 0.769311i −0.977985 0.208674i \(-0.933085\pi\)
0.208674 + 0.977985i \(0.433085\pi\)
\(102\) 0 0
\(103\) 403.749i 0.386238i 0.981175 + 0.193119i \(0.0618604\pi\)
−0.981175 + 0.193119i \(0.938140\pi\)
\(104\) 0 0
\(105\) 726.703 534.934i 0.675419 0.497183i
\(106\) 0 0
\(107\) −796.715 + 796.715i −0.719825 + 0.719825i −0.968569 0.248744i \(-0.919982\pi\)
0.248744 + 0.968569i \(0.419982\pi\)
\(108\) 0 0
\(109\) −441.435 + 441.435i −0.387907 + 0.387907i −0.873940 0.486033i \(-0.838443\pi\)
0.486033 + 0.873940i \(0.338443\pi\)
\(110\) 0 0
\(111\) −1410.59 −1.20619
\(112\) 0 0
\(113\) −1222.51 −1.01773 −0.508867 0.860845i \(-0.669935\pi\)
−0.508867 + 0.860845i \(0.669935\pi\)
\(114\) 0 0
\(115\) 198.961 198.961i 0.161332 0.161332i
\(116\) 0 0
\(117\) −423.144 + 423.144i −0.334356 + 0.334356i
\(118\) 0 0
\(119\) 237.289 174.671i 0.182792 0.134555i
\(120\) 0 0
\(121\) 808.338i 0.607316i
\(122\) 0 0
\(123\) −1302.63 + 1302.63i −0.954912 + 0.954912i
\(124\) 0 0
\(125\) −1014.30 1014.30i −0.725771 0.725771i
\(126\) 0 0
\(127\) 1991.93i 1.39178i −0.718150 0.695888i \(-0.755011\pi\)
0.718150 0.695888i \(-0.244989\pi\)
\(128\) 0 0
\(129\) 1708.08i 1.16580i
\(130\) 0 0
\(131\) 1890.69 1890.69i 1.26099 1.26099i 0.310381 0.950612i \(-0.399543\pi\)
0.950612 0.310381i \(-0.100457\pi\)
\(132\) 0 0
\(133\) 99.6476 + 15.1464i 0.0649665 + 0.00987491i
\(134\) 0 0
\(135\) −450.344 −0.287107
\(136\) 0 0
\(137\) 1122.77i 0.700180i −0.936716 0.350090i \(-0.886151\pi\)
0.936716 0.350090i \(-0.113849\pi\)
\(138\) 0 0
\(139\) −1578.34 1578.34i −0.963118 0.963118i 0.0362256 0.999344i \(-0.488467\pi\)
−0.999344 + 0.0362256i \(0.988467\pi\)
\(140\) 0 0
\(141\) −1705.07 + 1705.07i −1.01839 + 1.01839i
\(142\) 0 0
\(143\) 770.449 0.450547
\(144\) 0 0
\(145\) 2080.46i 1.19154i
\(146\) 0 0
\(147\) 1067.18 + 2031.44i 0.598772 + 1.13980i
\(148\) 0 0
\(149\) 2027.35 + 2027.35i 1.11468 + 1.11468i 0.992510 + 0.122166i \(0.0389840\pi\)
0.122166 + 0.992510i \(0.461016\pi\)
\(150\) 0 0
\(151\) −1631.87 −0.879470 −0.439735 0.898127i \(-0.644928\pi\)
−0.439735 + 0.898127i \(0.644928\pi\)
\(152\) 0 0
\(153\) 282.503 0.149275
\(154\) 0 0
\(155\) 131.774 131.774i 0.0682861 0.0682861i
\(156\) 0 0
\(157\) 2254.09 + 2254.09i 1.14584 + 1.14584i 0.987363 + 0.158473i \(0.0506571\pi\)
0.158473 + 0.987363i \(0.449343\pi\)
\(158\) 0 0
\(159\) −2639.54 −1.31653
\(160\) 0 0
\(161\) 424.179 + 576.243i 0.207640 + 0.282077i
\(162\) 0 0
\(163\) −286.759 286.759i −0.137796 0.137796i 0.634844 0.772640i \(-0.281064\pi\)
−0.772640 + 0.634844i \(0.781064\pi\)
\(164\) 0 0
\(165\) −787.641 787.641i −0.371623 0.371623i
\(166\) 0 0
\(167\) 3940.83i 1.82605i −0.407904 0.913025i \(-0.633740\pi\)
0.407904 0.913025i \(-0.366260\pi\)
\(168\) 0 0
\(169\) 1061.29i 0.483064i
\(170\) 0 0
\(171\) 68.3337 + 68.3337i 0.0305591 + 0.0305591i
\(172\) 0 0
\(173\) 1329.23 + 1329.23i 0.584158 + 0.584158i 0.936043 0.351885i \(-0.114459\pi\)
−0.351885 + 0.936043i \(0.614459\pi\)
\(174\) 0 0
\(175\) 1073.29 790.058i 0.463616 0.341273i
\(176\) 0 0
\(177\) 4530.98 1.92412
\(178\) 0 0
\(179\) 1865.77 + 1865.77i 0.779072 + 0.779072i 0.979673 0.200601i \(-0.0642895\pi\)
−0.200601 + 0.979673i \(0.564290\pi\)
\(180\) 0 0
\(181\) −817.801 + 817.801i −0.335838 + 0.335838i −0.854798 0.518960i \(-0.826319\pi\)
0.518960 + 0.854798i \(0.326319\pi\)
\(182\) 0 0
\(183\) 5890.42 2.37941
\(184\) 0 0
\(185\) 1535.58 0.610259
\(186\) 0 0
\(187\) −257.187 257.187i −0.100574 0.100574i
\(188\) 0 0
\(189\) 172.097 1132.22i 0.0662340 0.435750i
\(190\) 0 0
\(191\) 2062.36i 0.781293i −0.920541 0.390646i \(-0.872252\pi\)
0.920541 0.390646i \(-0.127748\pi\)
\(192\) 0 0
\(193\) −1093.60 −0.407872 −0.203936 0.978984i \(-0.565373\pi\)
−0.203936 + 0.978984i \(0.565373\pi\)
\(194\) 0 0
\(195\) 1161.05 1161.05i 0.426382 0.426382i
\(196\) 0 0
\(197\) −2236.95 2236.95i −0.809017 0.809017i 0.175468 0.984485i \(-0.443856\pi\)
−0.984485 + 0.175468i \(0.943856\pi\)
\(198\) 0 0
\(199\) 1535.84i 0.547100i −0.961858 0.273550i \(-0.911802\pi\)
0.961858 0.273550i \(-0.0881979\pi\)
\(200\) 0 0
\(201\) −3984.49 −1.39823
\(202\) 0 0
\(203\) 5230.53 + 795.040i 1.80843 + 0.274881i
\(204\) 0 0
\(205\) 1418.05 1418.05i 0.483127 0.483127i
\(206\) 0 0
\(207\) 686.043i 0.230354i
\(208\) 0 0
\(209\) 124.420i 0.0411785i
\(210\) 0 0
\(211\) 721.942 + 721.942i 0.235548 + 0.235548i 0.815004 0.579456i \(-0.196735\pi\)
−0.579456 + 0.815004i \(0.696735\pi\)
\(212\) 0 0
\(213\) −969.368 + 969.368i −0.311831 + 0.311831i
\(214\) 0 0
\(215\) 1859.43i 0.589822i
\(216\) 0 0
\(217\) 280.938 + 381.652i 0.0878864 + 0.119393i
\(218\) 0 0
\(219\) 863.267 863.267i 0.266366 0.266366i
\(220\) 0 0
\(221\) 379.116 379.116i 0.115394 0.115394i
\(222\) 0 0
\(223\) 1558.81 0.468098 0.234049 0.972225i \(-0.424802\pi\)
0.234049 + 0.972225i \(0.424802\pi\)
\(224\) 0 0
\(225\) 1277.79 0.378606
\(226\) 0 0
\(227\) 2832.12 2832.12i 0.828082 0.828082i −0.159170 0.987251i \(-0.550882\pi\)
0.987251 + 0.159170i \(0.0508816\pi\)
\(228\) 0 0
\(229\) 3341.32 3341.32i 0.964194 0.964194i −0.0351867 0.999381i \(-0.511203\pi\)
0.999381 + 0.0351867i \(0.0112026\pi\)
\(230\) 0 0
\(231\) 2281.21 1679.23i 0.649752 0.478290i
\(232\) 0 0
\(233\) 691.664i 0.194474i 0.995261 + 0.0972370i \(0.0310005\pi\)
−0.995261 + 0.0972370i \(0.969000\pi\)
\(234\) 0 0
\(235\) 1856.15 1856.15i 0.515243 0.515243i
\(236\) 0 0
\(237\) −4290.31 4290.31i −1.17589 1.17589i
\(238\) 0 0
\(239\) 4229.73i 1.14476i 0.819988 + 0.572381i \(0.193980\pi\)
−0.819988 + 0.572381i \(0.806020\pi\)
\(240\) 0 0
\(241\) 972.399i 0.259908i 0.991520 + 0.129954i \(0.0414829\pi\)
−0.991520 + 0.129954i \(0.958517\pi\)
\(242\) 0 0
\(243\) 3044.45 3044.45i 0.803711 0.803711i
\(244\) 0 0
\(245\) −1161.74 2211.44i −0.302942 0.576668i
\(246\) 0 0
\(247\) 183.406 0.0472463
\(248\) 0 0
\(249\) 2522.39i 0.641969i
\(250\) 0 0
\(251\) 490.000 + 490.000i 0.123221 + 0.123221i 0.766028 0.642807i \(-0.222230\pi\)
−0.642807 + 0.766028i \(0.722230\pi\)
\(252\) 0 0
\(253\) 624.564 624.564i 0.155202 0.155202i
\(254\) 0 0
\(255\) −775.151 −0.190360
\(256\) 0 0
\(257\) 5361.50i 1.30133i −0.759366 0.650664i \(-0.774491\pi\)
0.759366 0.650664i \(-0.225509\pi\)
\(258\) 0 0
\(259\) −586.814 + 3860.62i −0.140783 + 0.926205i
\(260\) 0 0
\(261\) 3586.85 + 3586.85i 0.850653 + 0.850653i
\(262\) 0 0
\(263\) −6070.76 −1.42334 −0.711671 0.702513i \(-0.752061\pi\)
−0.711671 + 0.702513i \(0.752061\pi\)
\(264\) 0 0
\(265\) 2873.42 0.666086
\(266\) 0 0
\(267\) −2319.35 + 2319.35i −0.531619 + 0.531619i
\(268\) 0 0
\(269\) 2788.04 + 2788.04i 0.631933 + 0.631933i 0.948552 0.316620i \(-0.102548\pi\)
−0.316620 + 0.948552i \(0.602548\pi\)
\(270\) 0 0
\(271\) −6455.58 −1.44704 −0.723522 0.690302i \(-0.757478\pi\)
−0.723522 + 0.690302i \(0.757478\pi\)
\(272\) 0 0
\(273\) 2475.32 + 3362.70i 0.548767 + 0.745495i
\(274\) 0 0
\(275\) −1163.29 1163.29i −0.255086 0.255086i
\(276\) 0 0
\(277\) −2686.97 2686.97i −0.582832 0.582832i 0.352848 0.935681i \(-0.385213\pi\)
−0.935681 + 0.352848i \(0.885213\pi\)
\(278\) 0 0
\(279\) 454.374i 0.0975005i
\(280\) 0 0
\(281\) 503.134i 0.106813i −0.998573 0.0534065i \(-0.982992\pi\)
0.998573 0.0534065i \(-0.0170079\pi\)
\(282\) 0 0
\(283\) −4641.91 4641.91i −0.975028 0.975028i 0.0246674 0.999696i \(-0.492147\pi\)
−0.999696 + 0.0246674i \(0.992147\pi\)
\(284\) 0 0
\(285\) −187.498 187.498i −0.0389700 0.0389700i
\(286\) 0 0
\(287\) 3023.25 + 4107.05i 0.621800 + 0.844709i
\(288\) 0 0
\(289\) 4659.89 0.948482
\(290\) 0 0
\(291\) −7854.94 7854.94i −1.58235 1.58235i
\(292\) 0 0
\(293\) 2038.37 2038.37i 0.406425 0.406425i −0.474065 0.880490i \(-0.657214\pi\)
0.880490 + 0.474065i \(0.157214\pi\)
\(294\) 0 0
\(295\) −4932.46 −0.973487
\(296\) 0 0
\(297\) −1413.69 −0.276197
\(298\) 0 0
\(299\) 920.661 + 920.661i 0.178071 + 0.178071i
\(300\) 0 0
\(301\) −4674.81 710.571i −0.895188 0.136069i
\(302\) 0 0
\(303\) 7388.05i 1.40077i
\(304\) 0 0
\(305\) −6412.35 −1.20384
\(306\) 0 0
\(307\) −6109.18 + 6109.18i −1.13573 + 1.13573i −0.146523 + 0.989207i \(0.546808\pi\)
−0.989207 + 0.146523i \(0.953192\pi\)
\(308\) 0 0
\(309\) 1909.97 + 1909.97i 0.351633 + 0.351633i
\(310\) 0 0
\(311\) 1081.07i 0.197112i 0.995131 + 0.0985562i \(0.0314224\pi\)
−0.995131 + 0.0985562i \(0.968578\pi\)
\(312\) 0 0
\(313\) −6343.09 −1.14547 −0.572736 0.819740i \(-0.694118\pi\)
−0.572736 + 0.819740i \(0.694118\pi\)
\(314\) 0 0
\(315\) 359.917 2367.88i 0.0643779 0.423539i
\(316\) 0 0
\(317\) 2324.60 2324.60i 0.411869 0.411869i −0.470520 0.882389i \(-0.655934\pi\)
0.882389 + 0.470520i \(0.155934\pi\)
\(318\) 0 0
\(319\) 6530.84i 1.14626i
\(320\) 0 0
\(321\) 7537.86i 1.31066i
\(322\) 0 0
\(323\) −61.2235 61.2235i −0.0105467 0.0105467i
\(324\) 0 0
\(325\) 1714.78 1714.78i 0.292674 0.292674i
\(326\) 0 0
\(327\) 4176.50i 0.706303i
\(328\) 0 0
\(329\) 3957.27 + 5375.91i 0.663134 + 0.900862i
\(330\) 0 0
\(331\) 3988.06 3988.06i 0.662246 0.662246i −0.293663 0.955909i \(-0.594874\pi\)
0.955909 + 0.293663i \(0.0948743\pi\)
\(332\) 0 0
\(333\) −2647.43 + 2647.43i −0.435671 + 0.435671i
\(334\) 0 0
\(335\) 4337.54 0.707419
\(336\) 0 0
\(337\) −8978.60 −1.45132 −0.725661 0.688053i \(-0.758466\pi\)
−0.725661 + 0.688053i \(0.758466\pi\)
\(338\) 0 0
\(339\) −5783.19 + 5783.19i −0.926548 + 0.926548i
\(340\) 0 0
\(341\) 413.655 413.655i 0.0656912 0.0656912i
\(342\) 0 0
\(343\) 6003.77 2075.66i 0.945111 0.326749i
\(344\) 0 0
\(345\) 1882.41i 0.293755i
\(346\) 0 0
\(347\) −3062.89 + 3062.89i −0.473847 + 0.473847i −0.903157 0.429310i \(-0.858757\pi\)
0.429310 + 0.903157i \(0.358757\pi\)
\(348\) 0 0
\(349\) 542.447 + 542.447i 0.0831993 + 0.0831993i 0.747482 0.664282i \(-0.231263\pi\)
−0.664282 + 0.747482i \(0.731263\pi\)
\(350\) 0 0
\(351\) 2083.90i 0.316895i
\(352\) 0 0
\(353\) 1222.13i 0.184271i 0.995746 + 0.0921355i \(0.0293693\pi\)
−0.995746 + 0.0921355i \(0.970631\pi\)
\(354\) 0 0
\(355\) 1055.26 1055.26i 0.157767 0.157767i
\(356\) 0 0
\(357\) 296.220 1948.82i 0.0439150 0.288914i
\(358\) 0 0
\(359\) −929.162 −0.136600 −0.0682998 0.997665i \(-0.521757\pi\)
−0.0682998 + 0.997665i \(0.521757\pi\)
\(360\) 0 0
\(361\) 6829.38i 0.995682i
\(362\) 0 0
\(363\) 3823.92 + 3823.92i 0.552902 + 0.552902i
\(364\) 0 0
\(365\) −939.759 + 939.759i −0.134765 + 0.134765i
\(366\) 0 0
\(367\) −20.3599 −0.00289586 −0.00144793 0.999999i \(-0.500461\pi\)
−0.00144793 + 0.999999i \(0.500461\pi\)
\(368\) 0 0
\(369\) 4889.62i 0.689820i
\(370\) 0 0
\(371\) −1098.06 + 7224.10i −0.153662 + 1.01093i
\(372\) 0 0
\(373\) 1666.13 + 1666.13i 0.231284 + 0.231284i 0.813228 0.581945i \(-0.197708\pi\)
−0.581945 + 0.813228i \(0.697708\pi\)
\(374\) 0 0
\(375\) −9596.45 −1.32149
\(376\) 0 0
\(377\) 9627.02 1.31516
\(378\) 0 0
\(379\) −5852.10 + 5852.10i −0.793146 + 0.793146i −0.982004 0.188858i \(-0.939521\pi\)
0.188858 + 0.982004i \(0.439521\pi\)
\(380\) 0 0
\(381\) −9423.03 9423.03i −1.26708 1.26708i
\(382\) 0 0
\(383\) 10176.6 1.35771 0.678854 0.734273i \(-0.262477\pi\)
0.678854 + 0.734273i \(0.262477\pi\)
\(384\) 0 0
\(385\) −2483.35 + 1828.02i −0.328735 + 0.241986i
\(386\) 0 0
\(387\) −3205.77 3205.77i −0.421081 0.421081i
\(388\) 0 0
\(389\) 622.058 + 622.058i 0.0810786 + 0.0810786i 0.746483 0.665404i \(-0.231741\pi\)
−0.665404 + 0.746483i \(0.731741\pi\)
\(390\) 0 0
\(391\) 614.660i 0.0795005i
\(392\) 0 0
\(393\) 17888.1i 2.29602i
\(394\) 0 0
\(395\) 4670.47 + 4670.47i 0.594928 + 0.594928i
\(396\) 0 0
\(397\) 8725.65 + 8725.65i 1.10309 + 1.10309i 0.994035 + 0.109058i \(0.0347833\pi\)
0.109058 + 0.994035i \(0.465217\pi\)
\(398\) 0 0
\(399\) 543.044 399.741i 0.0681358 0.0501555i
\(400\) 0 0
\(401\) 765.185 0.0952906 0.0476453 0.998864i \(-0.484828\pi\)
0.0476453 + 0.998864i \(0.484828\pi\)
\(402\) 0 0
\(403\) 609.764 + 609.764i 0.0753710 + 0.0753710i
\(404\) 0 0
\(405\) −4599.39 + 4599.39i −0.564310 + 0.564310i
\(406\) 0 0
\(407\) 4820.37 0.587068
\(408\) 0 0
\(409\) −5690.42 −0.687954 −0.343977 0.938978i \(-0.611774\pi\)
−0.343977 + 0.938978i \(0.611774\pi\)
\(410\) 0 0
\(411\) −5311.37 5311.37i −0.637446 0.637446i
\(412\) 0 0
\(413\) 1884.92 12400.8i 0.224578 1.47749i
\(414\) 0 0
\(415\) 2745.90i 0.324797i
\(416\) 0 0
\(417\) −14933.0 −1.75365
\(418\) 0 0
\(419\) −11135.9 + 11135.9i −1.29839 + 1.29839i −0.368935 + 0.929455i \(0.620277\pi\)
−0.929455 + 0.368935i \(0.879723\pi\)
\(420\) 0 0
\(421\) 4414.00 + 4414.00i 0.510986 + 0.510986i 0.914828 0.403843i \(-0.132326\pi\)
−0.403843 + 0.914828i \(0.632326\pi\)
\(422\) 0 0
\(423\) 6400.26i 0.735676i
\(424\) 0 0
\(425\) −1144.84 −0.130666
\(426\) 0 0
\(427\) 2450.45 16121.4i 0.277718 1.82709i
\(428\) 0 0
\(429\) 3644.68 3644.68i 0.410179 0.410179i
\(430\) 0 0
\(431\) 2766.42i 0.309173i 0.987979 + 0.154587i \(0.0494045\pi\)
−0.987979 + 0.154587i \(0.950595\pi\)
\(432\) 0 0
\(433\) 14228.8i 1.57919i 0.613627 + 0.789596i \(0.289710\pi\)
−0.613627 + 0.789596i \(0.710290\pi\)
\(434\) 0 0
\(435\) −9841.83 9841.83i −1.08478 1.08478i
\(436\) 0 0
\(437\) 148.678 148.678i 0.0162751 0.0162751i
\(438\) 0 0
\(439\) 8483.17i 0.922277i 0.887328 + 0.461139i \(0.152559\pi\)
−0.887328 + 0.461139i \(0.847441\pi\)
\(440\) 0 0
\(441\) 5815.58 + 1809.75i 0.627964 + 0.195416i
\(442\) 0 0
\(443\) −7329.19 + 7329.19i −0.786051 + 0.786051i −0.980844 0.194793i \(-0.937596\pi\)
0.194793 + 0.980844i \(0.437596\pi\)
\(444\) 0 0
\(445\) 2524.87 2524.87i 0.268967 0.268967i
\(446\) 0 0
\(447\) 19181.1 2.02961
\(448\) 0 0
\(449\) −4339.50 −0.456111 −0.228055 0.973648i \(-0.573237\pi\)
−0.228055 + 0.973648i \(0.573237\pi\)
\(450\) 0 0
\(451\) 4451.45 4451.45i 0.464768 0.464768i
\(452\) 0 0
\(453\) −7719.73 + 7719.73i −0.800672 + 0.800672i
\(454\) 0 0
\(455\) −2694.66 3660.67i −0.277643 0.377175i
\(456\) 0 0
\(457\) 8607.23i 0.881027i −0.897746 0.440514i \(-0.854796\pi\)
0.897746 0.440514i \(-0.145204\pi\)
\(458\) 0 0
\(459\) −695.635 + 695.635i −0.0707395 + 0.0707395i
\(460\) 0 0
\(461\) 6006.00 + 6006.00i 0.606783 + 0.606783i 0.942104 0.335321i \(-0.108845\pi\)
−0.335321 + 0.942104i \(0.608845\pi\)
\(462\) 0 0
\(463\) 7562.97i 0.759138i 0.925163 + 0.379569i \(0.123928\pi\)
−0.925163 + 0.379569i \(0.876072\pi\)
\(464\) 0 0
\(465\) 1246.74i 0.124336i
\(466\) 0 0
\(467\) 2253.37 2253.37i 0.223284 0.223284i −0.586596 0.809880i \(-0.699532\pi\)
0.809880 + 0.586596i \(0.199532\pi\)
\(468\) 0 0
\(469\) −1657.57 + 10905.1i −0.163197 + 1.07367i
\(470\) 0 0
\(471\) 21326.4 2.08635
\(472\) 0 0
\(473\) 5836.97i 0.567408i
\(474\) 0 0
\(475\) −276.921 276.921i −0.0267495 0.0267495i
\(476\) 0 0
\(477\) −4953.95 + 4953.95i −0.475526 + 0.475526i
\(478\) 0 0
\(479\) 4768.48 0.454859 0.227430 0.973795i \(-0.426968\pi\)
0.227430 + 0.973795i \(0.426968\pi\)
\(480\) 0 0
\(481\) 7105.64i 0.673574i
\(482\) 0 0
\(483\) 4732.59 + 719.354i 0.445839 + 0.0677676i
\(484\) 0 0
\(485\) 8550.95 + 8550.95i 0.800575 + 0.800575i
\(486\) 0 0
\(487\) −9882.70 −0.919565 −0.459782 0.888032i \(-0.652073\pi\)
−0.459782 + 0.888032i \(0.652073\pi\)
\(488\) 0 0
\(489\) −2713.08 −0.250899
\(490\) 0 0
\(491\) −2353.08 + 2353.08i −0.216279 + 0.216279i −0.806929 0.590649i \(-0.798872\pi\)
0.590649 + 0.806929i \(0.298872\pi\)
\(492\) 0 0
\(493\) −3213.64 3213.64i −0.293580 0.293580i
\(494\) 0 0
\(495\) −2956.53 −0.268457
\(496\) 0 0
\(497\) 2249.78 + 3056.31i 0.203052 + 0.275844i
\(498\) 0 0
\(499\) 10238.7 + 10238.7i 0.918530 + 0.918530i 0.996923 0.0783925i \(-0.0249787\pi\)
−0.0783925 + 0.996923i \(0.524979\pi\)
\(500\) 0 0
\(501\) −18642.4 18642.4i −1.66244 1.66244i
\(502\) 0 0
\(503\) 5116.51i 0.453547i 0.973948 + 0.226773i \(0.0728177\pi\)
−0.973948 + 0.226773i \(0.927182\pi\)
\(504\) 0 0
\(505\) 8042.68i 0.708702i
\(506\) 0 0
\(507\) −5020.54 5020.54i −0.439783 0.439783i
\(508\) 0 0
\(509\) 4950.17 + 4950.17i 0.431065 + 0.431065i 0.888991 0.457925i \(-0.151407\pi\)
−0.457925 + 0.888991i \(0.651407\pi\)
\(510\) 0 0
\(511\) −2003.54 2721.79i −0.173447 0.235626i
\(512\) 0 0
\(513\) −336.529 −0.0289632
\(514\) 0 0
\(515\) −2079.21 2079.21i −0.177905 0.177905i
\(516\) 0 0
\(517\) 5826.70 5826.70i 0.495664 0.495664i
\(518\) 0 0
\(519\) 12576.1 1.06364
\(520\) 0 0
\(521\) −5752.30 −0.483710 −0.241855 0.970312i \(-0.577756\pi\)
−0.241855 + 0.970312i \(0.577756\pi\)
\(522\) 0 0
\(523\) −3872.88 3872.88i −0.323804 0.323804i 0.526421 0.850224i \(-0.323534\pi\)
−0.850224 + 0.526421i \(0.823534\pi\)
\(524\) 0 0
\(525\) 1339.84 8814.72i 0.111382 0.732773i
\(526\) 0 0
\(527\) 407.096i 0.0336497i
\(528\) 0 0
\(529\) −10674.3 −0.877319
\(530\) 0 0
\(531\) 8503.87 8503.87i 0.694984 0.694984i
\(532\) 0 0
\(533\) 6561.81 + 6561.81i 0.533253 + 0.533253i
\(534\) 0 0
\(535\) 8205.78i 0.663115i
\(536\) 0 0
\(537\) 17652.4 1.41854
\(538\) 0 0
\(539\) −3646.85 6941.99i −0.291430 0.554754i
\(540\) 0 0
\(541\) −2609.55 + 2609.55i −0.207382 + 0.207382i −0.803154 0.595772i \(-0.796846\pi\)
0.595772 + 0.803154i \(0.296846\pi\)
\(542\) 0 0
\(543\) 7737.37i 0.611496i
\(544\) 0 0
\(545\) 4546.57i 0.357346i
\(546\) 0 0
\(547\) −12196.5 12196.5i −0.953352 0.953352i 0.0456071 0.998959i \(-0.485478\pi\)
−0.998959 + 0.0456071i \(0.985478\pi\)
\(548\) 0 0
\(549\) 11055.3 11055.3i 0.859433 0.859433i
\(550\) 0 0
\(551\) 1554.67i 0.120202i
\(552\) 0 0
\(553\) −13526.9 + 9957.29i −1.04018 + 0.765691i
\(554\) 0 0
\(555\) 7264.19 7264.19i 0.555581 0.555581i
\(556\) 0 0
\(557\) −7286.28 + 7286.28i −0.554272 + 0.554272i −0.927671 0.373399i \(-0.878192\pi\)
0.373399 + 0.927671i \(0.378192\pi\)
\(558\) 0 0
\(559\) −8604.20 −0.651017
\(560\) 0 0
\(561\) −2433.30 −0.183126
\(562\) 0 0
\(563\) 521.072 521.072i 0.0390064 0.0390064i −0.687335 0.726341i \(-0.741219\pi\)
0.726341 + 0.687335i \(0.241219\pi\)
\(564\) 0 0
\(565\) 6295.63 6295.63i 0.468777 0.468777i
\(566\) 0 0
\(567\) −9805.77 13321.0i −0.726285 0.986651i
\(568\) 0 0
\(569\) 25701.7i 1.89362i 0.321792 + 0.946811i \(0.395715\pi\)
−0.321792 + 0.946811i \(0.604285\pi\)
\(570\) 0 0
\(571\) 10099.1 10099.1i 0.740167 0.740167i −0.232443 0.972610i \(-0.574672\pi\)
0.972610 + 0.232443i \(0.0746720\pi\)
\(572\) 0 0
\(573\) −9756.17 9756.17i −0.711291 0.711291i
\(574\) 0 0
\(575\) 2780.17i 0.201637i
\(576\) 0 0
\(577\) 7848.90i 0.566298i −0.959076 0.283149i \(-0.908621\pi\)
0.959076 0.283149i \(-0.0913791\pi\)
\(578\) 0 0
\(579\) −5173.39 + 5173.39i −0.371328 + 0.371328i
\(580\) 0 0
\(581\) 6903.51 + 1049.33i 0.492953 + 0.0749289i
\(582\) 0 0
\(583\) 9020.02 0.640774
\(584\) 0 0
\(585\) 4358.18i 0.308015i
\(586\) 0 0
\(587\) 7598.36 + 7598.36i 0.534272 + 0.534272i 0.921841 0.387569i \(-0.126685\pi\)
−0.387569 + 0.921841i \(0.626685\pi\)
\(588\) 0 0
\(589\) 98.4709 98.4709i 0.00688866 0.00688866i
\(590\) 0 0
\(591\) −21164.2 −1.47306
\(592\) 0 0
\(593\) 7410.34i 0.513164i −0.966522 0.256582i \(-0.917404\pi\)
0.966522 0.256582i \(-0.0825963\pi\)
\(594\) 0 0
\(595\) −322.468 + 2121.50i −0.0222183 + 0.146173i
\(596\) 0 0
\(597\) −7265.44 7265.44i −0.498081 0.498081i
\(598\) 0 0
\(599\) −19708.9 −1.34438 −0.672190 0.740379i \(-0.734646\pi\)
−0.672190 + 0.740379i \(0.734646\pi\)
\(600\) 0 0
\(601\) −2893.01 −0.196354 −0.0981768 0.995169i \(-0.531301\pi\)
−0.0981768 + 0.995169i \(0.531301\pi\)
\(602\) 0 0
\(603\) −7478.20 + 7478.20i −0.505034 + 0.505034i
\(604\) 0 0
\(605\) −4162.74 4162.74i −0.279735 0.279735i
\(606\) 0 0
\(607\) −3597.17 −0.240535 −0.120267 0.992742i \(-0.538375\pi\)
−0.120267 + 0.992742i \(0.538375\pi\)
\(608\) 0 0
\(609\) 28504.5 20982.5i 1.89665 1.39615i
\(610\) 0 0
\(611\) 8589.06 + 8589.06i 0.568701 + 0.568701i
\(612\) 0 0
\(613\) −10075.9 10075.9i −0.663886 0.663886i 0.292408 0.956294i \(-0.405544\pi\)
−0.956294 + 0.292408i \(0.905544\pi\)
\(614\) 0 0
\(615\) 13416.5i 0.879681i
\(616\) 0 0
\(617\) 11242.5i 0.733561i 0.930308 + 0.366780i \(0.119540\pi\)
−0.930308 + 0.366780i \(0.880460\pi\)
\(618\) 0 0
\(619\) 6197.22 + 6197.22i 0.402403 + 0.402403i 0.879079 0.476676i \(-0.158159\pi\)
−0.476676 + 0.879079i \(0.658159\pi\)
\(620\) 0 0
\(621\) −1689.31 1689.31i −0.109162 0.109162i
\(622\) 0 0
\(623\) 5382.94 + 7312.67i 0.346168 + 0.470267i
\(624\) 0 0
\(625\) 1451.77 0.0929134
\(626\) 0 0
\(627\) −588.581 588.581i −0.0374891 0.0374891i
\(628\) 0 0
\(629\) 2371.97 2371.97i 0.150360 0.150360i
\(630\) 0 0
\(631\) −1652.18 −0.104235 −0.0521174 0.998641i \(-0.516597\pi\)
−0.0521174 + 0.998641i \(0.516597\pi\)
\(632\) 0 0
\(633\) 6830.43 0.428886
\(634\) 0 0
\(635\) 10258.0 + 10258.0i 0.641064 + 0.641064i
\(636\) 0 0
\(637\) 10233.1 5375.77i 0.636499 0.334373i
\(638\) 0 0
\(639\) 3638.67i 0.225264i
\(640\) 0 0
\(641\) 21643.0 1.33362 0.666808 0.745229i \(-0.267660\pi\)
0.666808 + 0.745229i \(0.267660\pi\)
\(642\) 0 0
\(643\) 7451.23 7451.23i 0.456995 0.456995i −0.440673 0.897668i \(-0.645260\pi\)
0.897668 + 0.440673i \(0.145260\pi\)
\(644\) 0 0
\(645\) 8796.19 + 8796.19i 0.536976 + 0.536976i
\(646\) 0 0
\(647\) 20059.5i 1.21889i −0.792828 0.609445i \(-0.791392\pi\)
0.792828 0.609445i \(-0.208608\pi\)
\(648\) 0 0
\(649\) −15483.6 −0.936494
\(650\) 0 0
\(651\) 3134.45 + 476.436i 0.188708 + 0.0286836i
\(652\) 0 0
\(653\) −794.802 + 794.802i −0.0476310 + 0.0476310i −0.730521 0.682890i \(-0.760723\pi\)
0.682890 + 0.730521i \(0.260723\pi\)
\(654\) 0 0
\(655\) 19473.2i 1.16165i
\(656\) 0 0
\(657\) 3240.41i 0.192421i
\(658\) 0 0
\(659\) 5170.21 + 5170.21i 0.305619 + 0.305619i 0.843207 0.537588i \(-0.180665\pi\)
−0.537588 + 0.843207i \(0.680665\pi\)
\(660\) 0 0
\(661\) 2888.45 2888.45i 0.169967 0.169967i −0.616998 0.786965i \(-0.711651\pi\)
0.786965 + 0.616998i \(0.211651\pi\)
\(662\) 0 0
\(663\) 3586.89i 0.210110i
\(664\) 0 0
\(665\) −591.162 + 435.161i −0.0344726 + 0.0253757i
\(666\) 0 0
\(667\) 7804.13 7804.13i 0.453039 0.453039i
\(668\) 0 0
\(669\) 7374.11 7374.11i 0.426158 0.426158i
\(670\) 0 0
\(671\) −20129.2 −1.15809
\(672\) 0 0
\(673\) 30030.6 1.72005 0.860026 0.510251i \(-0.170447\pi\)
0.860026 + 0.510251i \(0.170447\pi\)
\(674\) 0 0
\(675\) −3146.43 + 3146.43i −0.179417 + 0.179417i
\(676\) 0 0
\(677\) 6465.93 6465.93i 0.367069 0.367069i −0.499338 0.866407i \(-0.666423\pi\)
0.866407 + 0.499338i \(0.166423\pi\)
\(678\) 0 0
\(679\) −24765.8 + 18230.4i −1.39974 + 1.03036i
\(680\) 0 0
\(681\) 26795.2i 1.50778i
\(682\) 0 0
\(683\) −5685.87 + 5685.87i −0.318541 + 0.318541i −0.848207 0.529665i \(-0.822318\pi\)
0.529665 + 0.848207i \(0.322318\pi\)
\(684\) 0 0
\(685\) 5781.99 + 5781.99i 0.322509 + 0.322509i
\(686\) 0 0
\(687\) 31612.8i 1.75561i
\(688\) 0 0
\(689\) 13296.3i 0.735193i
\(690\) 0 0
\(691\) 4300.39 4300.39i 0.236751 0.236751i −0.578753 0.815503i \(-0.696460\pi\)
0.815503 + 0.578753i \(0.196460\pi\)
\(692\) 0 0
\(693\) 1129.83 7433.06i 0.0619315 0.407444i
\(694\) 0 0
\(695\) 16256.2 0.887241
\(696\) 0 0
\(697\) 4380.86i 0.238073i
\(698\) 0 0
\(699\) 3271.98 + 3271.98i 0.177050 + 0.177050i
\(700\) 0 0
\(701\) −18283.2 + 18283.2i −0.985088 + 0.985088i −0.999890 0.0148024i \(-0.995288\pi\)
0.0148024 + 0.999890i \(0.495288\pi\)
\(702\) 0 0
\(703\) 1147.49 0.0615625
\(704\) 0 0
\(705\) 17561.4i 0.938158i
\(706\) 0 0
\(707\) 20220.2 + 3073.48i 1.07562 + 0.163494i
\(708\) 0 0
\(709\) 5068.76 + 5068.76i 0.268493 + 0.268493i 0.828493 0.560000i \(-0.189199\pi\)
−0.560000 + 0.828493i \(0.689199\pi\)
\(710\) 0 0
\(711\) −16104.4 −0.849452
\(712\) 0 0
\(713\) 988.609 0.0519266
\(714\) 0 0
\(715\) −3967.63 + 3967.63i −0.207526 + 0.207526i
\(716\) 0 0
\(717\) 20009.1 + 20009.1i 1.04220 + 1.04220i
\(718\) 0 0
\(719\) 26087.1 1.35311 0.676555 0.736392i \(-0.263472\pi\)
0.676555 + 0.736392i \(0.263472\pi\)
\(720\) 0 0
\(721\) 6021.93 4432.81i 0.311052 0.228969i
\(722\) 0 0
\(723\) 4600.02 + 4600.02i 0.236621 + 0.236621i
\(724\) 0 0
\(725\) −14535.6 14535.6i −0.744607 0.744607i
\(726\) 0 0
\(727\) 25168.8i 1.28399i 0.766709 + 0.641995i \(0.221893\pi\)
−0.766709 + 0.641995i \(0.778107\pi\)
\(728\) 0 0
\(729\) 4689.70i 0.238262i
\(730\) 0 0
\(731\) 2872.21 + 2872.21i 0.145325 + 0.145325i
\(732\) 0 0
\(733\) −27526.8 27526.8i −1.38708 1.38708i −0.831395 0.555682i \(-0.812457\pi\)
−0.555682 0.831395i \(-0.687543\pi\)
\(734\) 0 0
\(735\) −15957.1 4965.70i −0.800800 0.249201i
\(736\) 0 0
\(737\) 13616.1 0.680536
\(738\) 0 0
\(739\) 14687.0 + 14687.0i 0.731083 + 0.731083i 0.970834 0.239752i \(-0.0770660\pi\)
−0.239752 + 0.970834i \(0.577066\pi\)
\(740\) 0 0
\(741\) 867.618 867.618i 0.0430132 0.0430132i
\(742\) 0 0
\(743\) 38504.7 1.90121 0.950606 0.310402i \(-0.100463\pi\)
0.950606 + 0.310402i \(0.100463\pi\)
\(744\) 0 0
\(745\) −20880.7 −1.02686
\(746\) 0 0
\(747\) 4734.10 + 4734.10i 0.231876 + 0.231876i
\(748\) 0 0
\(749\) 20630.3 + 3135.80i 1.00643 + 0.152977i
\(750\) 0 0
\(751\) 18878.3i 0.917284i −0.888621 0.458642i \(-0.848336\pi\)
0.888621 0.458642i \(-0.151664\pi\)
\(752\) 0 0
\(753\) 4635.98 0.224362
\(754\) 0 0
\(755\) 8403.76 8403.76i 0.405092 0.405092i
\(756\) 0 0
\(757\) 16826.2 + 16826.2i 0.807872 + 0.807872i 0.984311 0.176440i \(-0.0564581\pi\)
−0.176440 + 0.984311i \(0.556458\pi\)
\(758\) 0 0
\(759\) 5909.12i 0.282592i
\(760\) 0 0
\(761\) 32996.0 1.57175 0.785877 0.618382i \(-0.212212\pi\)
0.785877 + 0.618382i \(0.212212\pi\)
\(762\) 0 0
\(763\) 11430.6 + 1737.45i 0.542354 + 0.0824378i
\(764\) 0 0
\(765\) −1454.82 + 1454.82i −0.0687573 + 0.0687573i
\(766\) 0 0
\(767\) 22824.2i 1.07449i
\(768\) 0 0
\(769\) 40080.7i 1.87952i −0.341840 0.939758i \(-0.611050\pi\)
0.341840 0.939758i \(-0.388950\pi\)
\(770\) 0 0
\(771\) −25363.1 25363.1i −1.18473 1.18473i
\(772\) 0 0
\(773\) −14826.6 + 14826.6i −0.689877 + 0.689877i −0.962205 0.272327i \(-0.912207\pi\)
0.272327 + 0.962205i \(0.412207\pi\)
\(774\) 0 0
\(775\) 1841.34i 0.0853457i
\(776\) 0 0
\(777\) 15487.0 + 21039.0i 0.715050 + 0.971389i
\(778\) 0 0
\(779\) 1059.67 1059.67i 0.0487376 0.0487376i
\(780\) 0 0
\(781\) 3312.60 3312.60i 0.151772 0.151772i
\(782\) 0 0
\(783\) −17664.5 −0.806229
\(784\) 0 0
\(785\) −23216.1 −1.05556
\(786\) 0 0
\(787\) 10969.0 10969.0i 0.496825 0.496825i −0.413623 0.910448i \(-0.635737\pi\)
0.910448 + 0.413623i \(0.135737\pi\)
\(788\) 0 0
\(789\) −28718.3 + 28718.3i −1.29581 + 1.29581i
\(790\) 0 0
\(791\) 13422.1 + 18233.8i 0.603330 + 0.819619i
\(792\) 0 0
\(793\) 29672.1i 1.32874i
\(794\) 0 0
\(795\) 13593.0 13593.0i 0.606406 0.606406i
\(796\) 0 0
\(797\) 13341.7 + 13341.7i 0.592956 + 0.592956i 0.938429 0.345473i \(-0.112281\pi\)
−0.345473 + 0.938429i \(0.612281\pi\)
\(798\) 0 0
\(799\) 5734.31i 0.253899i
\(800\) 0 0
\(801\) 8706.06i 0.384037i
\(802\) 0 0
\(803\) −2950.02 + 2950.02i −0.129644 + 0.129644i
\(804\) 0 0
\(805\) −5151.94 783.094i −0.225568 0.0342863i
\(806\) 0 0
\(807\) 26378.2 1.15063
\(808\) 0 0
\(809\) 32335.9i 1.40528i 0.711547 + 0.702639i \(0.247995\pi\)
−0.711547 + 0.702639i \(0.752005\pi\)
\(810\) 0 0
\(811\) −28797.0 28797.0i −1.24685 1.24685i −0.957102 0.289751i \(-0.906427\pi\)
−0.289751 0.957102i \(-0.593573\pi\)
\(812\) 0 0
\(813\) −30538.7 + 30538.7i −1.31739 + 1.31739i
\(814\) 0 0
\(815\) 2953.48 0.126940
\(816\) 0 0
\(817\) 1389.49i 0.0595009i
\(818\) 0 0
\(819\) 10957.0 + 1665.46i 0.467482 + 0.0710573i
\(820\) 0 0
\(821\) −15051.0 15051.0i −0.639810 0.639810i 0.310699 0.950508i \(-0.399437\pi\)
−0.950508 + 0.310699i \(0.899437\pi\)
\(822\) 0 0
\(823\) −22273.8 −0.943396 −0.471698 0.881760i \(-0.656359\pi\)
−0.471698 + 0.881760i \(0.656359\pi\)
\(824\) 0 0
\(825\) −11006.1 −0.464463
\(826\) 0 0
\(827\) −27641.1 + 27641.1i −1.16224 + 1.16224i −0.178260 + 0.983983i \(0.557047\pi\)
−0.983983 + 0.178260i \(0.942953\pi\)
\(828\) 0 0
\(829\) 13182.6 + 13182.6i 0.552291 + 0.552291i 0.927101 0.374811i \(-0.122292\pi\)
−0.374811 + 0.927101i \(0.622292\pi\)
\(830\) 0 0
\(831\) −25421.9 −1.06122
\(832\) 0 0
\(833\) −5210.46 1621.44i −0.216725 0.0674426i
\(834\) 0 0
\(835\) 20294.3 + 20294.3i 0.841094 + 0.841094i
\(836\) 0 0
\(837\) −1118.85 1118.85i −0.0462043 0.0462043i
\(838\) 0 0
\(839\) 1761.39i 0.0724791i −0.999343 0.0362396i \(-0.988462\pi\)
0.999343 0.0362396i \(-0.0115379\pi\)
\(840\) 0 0
\(841\) 57216.0i 2.34598i
\(842\) 0 0
\(843\) −2380.12 2380.12i −0.0972429 0.0972429i
\(844\) 0 0
\(845\) 5465.40 + 5465.40i 0.222503 + 0.222503i
\(846\) 0 0
\(847\) 12056.4 8874.84i 0.489094 0.360027i
\(848\) 0 0
\(849\) −43918.0 −1.77534
\(850\) 0 0
\(851\) 5760.18 + 5760.18i 0.232029 + 0.232029i
\(852\) 0 0
\(853\) −19594.2 + 19594.2i −0.786508 + 0.786508i −0.980920 0.194412i \(-0.937720\pi\)
0.194412 + 0.980920i \(0.437720\pi\)
\(854\) 0 0
\(855\) −703.804 −0.0281516
\(856\) 0 0
\(857\) 49926.5 1.99003 0.995016 0.0997152i \(-0.0317932\pi\)
0.995016 + 0.0997152i \(0.0317932\pi\)
\(858\) 0 0
\(859\) 267.320 + 267.320i 0.0106180 + 0.0106180i 0.712396 0.701778i \(-0.247610\pi\)
−0.701778 + 0.712396i \(0.747610\pi\)
\(860\) 0 0
\(861\) 33730.5 + 5127.04i 1.33511 + 0.202937i
\(862\) 0 0
\(863\) 28802.7i 1.13610i 0.822993 + 0.568051i \(0.192302\pi\)
−0.822993 + 0.568051i \(0.807698\pi\)
\(864\) 0 0
\(865\) −13690.4 −0.538136
\(866\) 0 0
\(867\) 22044.0 22044.0i 0.863501 0.863501i
\(868\) 0 0
\(869\) 14661.2 + 14661.2i 0.572320 + 0.572320i
\(870\) 0 0
\(871\) 20071.3i 0.780815i
\(872\) 0 0
\(873\) −29484.8 −1.14308
\(874\) 0 0
\(875\) −3992.19 + 26264.4i −0.154241 + 1.01474i
\(876\) 0 0
\(877\) −22654.2 + 22654.2i −0.872266 + 0.872266i −0.992719 0.120453i \(-0.961565\pi\)
0.120453 + 0.992719i \(0.461565\pi\)
\(878\) 0 0
\(879\) 19285.4i 0.740022i
\(880\) 0 0
\(881\) 12370.9i 0.473082i 0.971621 + 0.236541i \(0.0760138\pi\)
−0.971621 + 0.236541i \(0.923986\pi\)
\(882\) 0 0
\(883\) −11486.6 11486.6i −0.437773 0.437773i 0.453489 0.891262i \(-0.350179\pi\)
−0.891262 + 0.453489i \(0.850179\pi\)
\(884\) 0 0
\(885\) −23333.4 + 23333.4i −0.886266 + 0.886266i
\(886\) 0 0
\(887\) 39896.1i 1.51024i −0.655588 0.755119i \(-0.727579\pi\)
0.655588 0.755119i \(-0.272421\pi\)
\(888\) 0 0
\(889\) −29709.8 + 21869.7i −1.12085 + 0.825069i
\(890\) 0 0
\(891\) −14438.1 + 14438.1i −0.542866 + 0.542866i
\(892\) 0 0
\(893\) 1387.05 1387.05i 0.0519774 0.0519774i
\(894\) 0 0
\(895\) −19216.5 −0.717694
\(896\) 0 0
\(897\) 8710.54 0.324233
\(898\) 0 0
\(899\) 5168.76 5168.76i 0.191755 0.191755i
\(900\) 0 0
\(901\) 4438.49 4438.49i 0.164115 0.164115i
\(902\) 0 0
\(903\) −25476.0 + 18753.2i −0.938859 + 0.691105i
\(904\) 0 0
\(905\) 8422.96i 0.309380i
\(906\) 0 0
\(907\) −25295.4 + 25295.4i −0.926041 + 0.926041i −0.997447 0.0714064i \(-0.977251\pi\)
0.0714064 + 0.997447i \(0.477251\pi\)
\(908\) 0 0
\(909\) 13866.1 + 13866.1i 0.505951 + 0.505951i
\(910\) 0 0
\(911\) 7335.63i 0.266784i −0.991063 0.133392i \(-0.957413\pi\)
0.991063 0.133392i \(-0.0425870\pi\)
\(912\) 0 0
\(913\) 8619.72i 0.312455i
\(914\) 0 0
\(915\) −30334.2 + 30334.2i −1.09598 + 1.09598i
\(916\) 0 0
\(917\) −48957.8 7441.59i −1.76306 0.267986i
\(918\) 0 0
\(919\) −8970.16 −0.321979 −0.160989 0.986956i \(-0.551468\pi\)
−0.160989 + 0.986956i \(0.551468\pi\)
\(920\) 0 0
\(921\) 57800.0i 2.06794i
\(922\) 0 0
\(923\) 4883.05 + 4883.05i 0.174136 + 0.174136i
\(924\) 0 0
\(925\) 10728.7 10728.7i 0.381358 0.381358i
\(926\) 0 0
\(927\) 7169.38 0.254016
\(928\) 0 0
\(929\) 20647.8i 0.729205i 0.931163 + 0.364603i \(0.118795\pi\)
−0.931163 + 0.364603i \(0.881205\pi\)
\(930\) 0 0
\(931\) −868.134 1652.54i −0.0305606 0.0581739i
\(932\) 0 0
\(933\) 5114.11 + 5114.11i 0.179452 + 0.179452i
\(934\) 0 0
\(935\) 2648.90 0.0926507
\(936\) 0 0
\(937\) −42203.8 −1.47144 −0.735720 0.677286i \(-0.763156\pi\)
−0.735720 + 0.677286i \(0.763156\pi\)
\(938\) 0 0
\(939\) −30006.6 + 30006.6i −1.04284 + 1.04284i
\(940\) 0 0
\(941\) −3986.63 3986.63i −0.138109 0.138109i 0.634672 0.772781i \(-0.281135\pi\)
−0.772781 + 0.634672i \(0.781135\pi\)
\(942\) 0 0
\(943\) 10638.7 0.367383
\(944\) 0 0
\(945\) 4944.39 + 6716.91i 0.170202 + 0.231218i
\(946\) 0 0
\(947\) −32201.4 32201.4i −1.10497 1.10497i −0.993802 0.111166i \(-0.964542\pi\)
−0.111166 0.993802i \(-0.535458\pi\)
\(948\) 0 0
\(949\) −4348.59 4348.59i −0.148747 0.148747i
\(950\) 0 0
\(951\) 21993.5i 0.749933i
\(952\) 0 0
\(953\) 28099.9i 0.955135i −0.878595 0.477568i \(-0.841519\pi\)
0.878595 0.477568i \(-0.158481\pi\)
\(954\) 0 0
\(955\) 10620.6 + 10620.6i 0.359870 + 0.359870i
\(956\) 0 0
\(957\) −30894.7 30894.7i −1.04356 1.04356i
\(958\) 0 0
\(959\) −16746.2 + 12327.0i −0.563881 + 0.415079i
\(960\) 0 0
\(961\) −29136.2 −0.978021
\(962\) 0 0
\(963\) 14147.3 + 14147.3i 0.473406 + 0.473406i
\(964\) 0 0
\(965\) 5631.79 5631.79i 0.187869 0.187869i
\(966\) 0 0
\(967\) 8908.61 0.296258 0.148129 0.988968i \(-0.452675\pi\)
0.148129 + 0.988968i \(0.452675\pi\)
\(968\) 0 0
\(969\) −579.247 −0.0192034
\(970\) 0 0
\(971\) −20802.3 20802.3i −0.687516 0.687516i 0.274166 0.961682i \(-0.411598\pi\)
−0.961682 + 0.274166i \(0.911598\pi\)
\(972\) 0 0
\(973\) −6212.23 + 40869.9i −0.204681 + 1.34659i
\(974\) 0 0
\(975\) 16223.9i 0.532903i
\(976\) 0 0
\(977\) −10844.3 −0.355108 −0.177554 0.984111i \(-0.556818\pi\)
−0.177554 + 0.984111i \(0.556818\pi\)
\(978\) 0 0
\(979\) 7925.87 7925.87i 0.258746 0.258746i
\(980\) 0 0
\(981\) 7838.58 + 7838.58i 0.255114 + 0.255114i
\(982\) 0 0
\(983\) 42864.7i 1.39082i 0.718615 + 0.695408i \(0.244776\pi\)
−0.718615 + 0.695408i \(0.755224\pi\)
\(984\) 0 0
\(985\) 23039.6 0.745280
\(986\) 0 0
\(987\) 44151.5 + 6711.02i 1.42387 + 0.216428i
\(988\) 0 0
\(989\) −6974.98 + 6974.98i −0.224258 + 0.224258i
\(990\) 0 0
\(991\) 12792.6i 0.410060i 0.978756 + 0.205030i \(0.0657292\pi\)
−0.978756 + 0.205030i \(0.934271\pi\)
\(992\) 0 0
\(993\) 37731.8i 1.20582i
\(994\) 0 0
\(995\) 7909.21 + 7909.21i 0.251999 + 0.251999i
\(996\) 0 0
\(997\) 12421.8 12421.8i 0.394587 0.394587i −0.481732 0.876319i \(-0.659992\pi\)
0.876319 + 0.481732i \(0.159992\pi\)
\(998\) 0 0
\(999\) 13038.0i 0.412918i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.j.b.335.36 88
4.3 odd 2 112.4.j.b.27.27 88
7.6 odd 2 inner 448.4.j.b.335.9 88
16.3 odd 4 inner 448.4.j.b.111.9 88
16.13 even 4 112.4.j.b.83.28 yes 88
28.27 even 2 112.4.j.b.27.28 yes 88
112.13 odd 4 112.4.j.b.83.27 yes 88
112.83 even 4 inner 448.4.j.b.111.36 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.4.j.b.27.27 88 4.3 odd 2
112.4.j.b.27.28 yes 88 28.27 even 2
112.4.j.b.83.27 yes 88 112.13 odd 4
112.4.j.b.83.28 yes 88 16.13 even 4
448.4.j.b.111.9 88 16.3 odd 4 inner
448.4.j.b.111.36 88 112.83 even 4 inner
448.4.j.b.335.9 88 7.6 odd 2 inner
448.4.j.b.335.36 88 1.1 even 1 trivial