Properties

Label 448.4.p.h.255.2
Level $448$
Weight $4$
Character 448.255
Analytic conductor $26.433$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(255,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.255");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{18} - 24 x^{17} + 28 x^{16} + 56 x^{15} - 192 x^{14} + 352 x^{13} - 448 x^{12} + \cdots + 1073741824 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{44} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 255.2
Root \(-1.75840 - 2.21540i\) of defining polynomial
Character \(\chi\) \(=\) 448.255
Dual form 448.4.p.h.383.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.44104 + 5.96006i) q^{3} +(4.17670 - 2.41142i) q^{5} +(5.03893 - 17.8216i) q^{7} +(-10.1816 - 17.6350i) q^{9} +(-36.6380 - 21.1529i) q^{11} -3.39776i q^{13} +33.1912i q^{15} +(101.660 + 58.6935i) q^{17} +(45.5858 + 78.9570i) q^{19} +(88.8786 + 91.3572i) q^{21} +(-147.782 + 85.3222i) q^{23} +(-50.8701 + 88.1096i) q^{25} -45.6757 q^{27} +131.473 q^{29} +(-5.70011 + 9.87288i) q^{31} +(252.146 - 145.576i) q^{33} +(-21.9293 - 86.5865i) q^{35} +(-59.2181 - 102.569i) q^{37} +(20.2508 + 11.6918i) q^{39} +109.956i q^{41} +82.5542i q^{43} +(-85.0507 - 49.1040i) q^{45} +(36.7384 + 63.6328i) q^{47} +(-292.218 - 179.603i) q^{49} +(-699.634 + 403.934i) q^{51} +(-87.2160 + 151.062i) q^{53} -204.035 q^{55} -627.451 q^{57} +(-166.628 + 288.607i) q^{59} +(-472.266 + 272.663i) q^{61} +(-365.587 + 92.5901i) q^{63} +(-8.19342 - 14.1914i) q^{65} +(516.318 + 298.096i) q^{67} -1174.39i q^{69} +384.641i q^{71} +(187.557 + 108.286i) q^{73} +(-350.092 - 606.378i) q^{75} +(-561.595 + 546.359i) q^{77} +(-868.356 + 501.346i) q^{79} +(432.074 - 748.374i) q^{81} -459.471 q^{83} +566.139 q^{85} +(-452.403 + 783.585i) q^{87} +(-771.258 + 445.286i) q^{89} +(-60.5534 - 17.1210i) q^{91} +(-39.2287 - 67.9460i) q^{93} +(380.797 + 219.853i) q^{95} +282.888i q^{97} +861.479i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 56 q^{9} - 6 q^{17} - 238 q^{21} - 36 q^{25} + 352 q^{29} + 30 q^{33} - 258 q^{37} + 504 q^{45} - 644 q^{49} - 570 q^{53} + 1452 q^{57} - 294 q^{61} - 124 q^{65} + 966 q^{73} + 378 q^{77}+ \cdots + 306 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.44104 + 5.96006i −0.662229 + 1.14701i 0.317800 + 0.948158i \(0.397056\pi\)
−0.980029 + 0.198856i \(0.936277\pi\)
\(4\) 0 0
\(5\) 4.17670 2.41142i 0.373576 0.215684i −0.301444 0.953484i \(-0.597469\pi\)
0.675020 + 0.737800i \(0.264135\pi\)
\(6\) 0 0
\(7\) 5.03893 17.8216i 0.272077 0.962276i
\(8\) 0 0
\(9\) −10.1816 17.6350i −0.377094 0.653147i
\(10\) 0 0
\(11\) −36.6380 21.1529i −1.00425 0.579805i −0.0947480 0.995501i \(-0.530205\pi\)
−0.909503 + 0.415696i \(0.863538\pi\)
\(12\) 0 0
\(13\) 3.39776i 0.0724898i −0.999343 0.0362449i \(-0.988460\pi\)
0.999343 0.0362449i \(-0.0115396\pi\)
\(14\) 0 0
\(15\) 33.1912i 0.571329i
\(16\) 0 0
\(17\) 101.660 + 58.6935i 1.45036 + 0.837369i 0.998502 0.0547188i \(-0.0174262\pi\)
0.451863 + 0.892087i \(0.350760\pi\)
\(18\) 0 0
\(19\) 45.5858 + 78.9570i 0.550427 + 0.953367i 0.998244 + 0.0592419i \(0.0188683\pi\)
−0.447817 + 0.894125i \(0.647798\pi\)
\(20\) 0 0
\(21\) 88.8786 + 91.3572i 0.923567 + 0.949322i
\(22\) 0 0
\(23\) −147.782 + 85.3222i −1.33977 + 0.773518i −0.986773 0.162105i \(-0.948172\pi\)
−0.352999 + 0.935624i \(0.614838\pi\)
\(24\) 0 0
\(25\) −50.8701 + 88.1096i −0.406961 + 0.704877i
\(26\) 0 0
\(27\) −45.6757 −0.325566
\(28\) 0 0
\(29\) 131.473 0.841857 0.420928 0.907094i \(-0.361704\pi\)
0.420928 + 0.907094i \(0.361704\pi\)
\(30\) 0 0
\(31\) −5.70011 + 9.87288i −0.0330249 + 0.0572007i −0.882065 0.471127i \(-0.843847\pi\)
0.849041 + 0.528328i \(0.177181\pi\)
\(32\) 0 0
\(33\) 252.146 145.576i 1.33009 0.767927i
\(34\) 0 0
\(35\) −21.9293 86.5865i −0.105906 0.418166i
\(36\) 0 0
\(37\) −59.2181 102.569i −0.263119 0.455735i 0.703950 0.710249i \(-0.251418\pi\)
−0.967069 + 0.254514i \(0.918085\pi\)
\(38\) 0 0
\(39\) 20.2508 + 11.6918i 0.0831469 + 0.0480049i
\(40\) 0 0
\(41\) 109.956i 0.418833i 0.977826 + 0.209417i \(0.0671565\pi\)
−0.977826 + 0.209417i \(0.932844\pi\)
\(42\) 0 0
\(43\) 82.5542i 0.292777i 0.989227 + 0.146388i \(0.0467649\pi\)
−0.989227 + 0.146388i \(0.953235\pi\)
\(44\) 0 0
\(45\) −85.0507 49.1040i −0.281747 0.162667i
\(46\) 0 0
\(47\) 36.7384 + 63.6328i 0.114018 + 0.197485i 0.917387 0.397997i \(-0.130294\pi\)
−0.803369 + 0.595482i \(0.796961\pi\)
\(48\) 0 0
\(49\) −292.218 179.603i −0.851949 0.523625i
\(50\) 0 0
\(51\) −699.634 + 403.934i −1.92095 + 1.10906i
\(52\) 0 0
\(53\) −87.2160 + 151.062i −0.226038 + 0.391510i −0.956630 0.291304i \(-0.905911\pi\)
0.730592 + 0.682814i \(0.239244\pi\)
\(54\) 0 0
\(55\) −204.035 −0.500219
\(56\) 0 0
\(57\) −627.451 −1.45803
\(58\) 0 0
\(59\) −166.628 + 288.607i −0.367679 + 0.636839i −0.989202 0.146557i \(-0.953181\pi\)
0.621523 + 0.783396i \(0.286514\pi\)
\(60\) 0 0
\(61\) −472.266 + 272.663i −0.991271 + 0.572310i −0.905654 0.424018i \(-0.860619\pi\)
−0.0856167 + 0.996328i \(0.527286\pi\)
\(62\) 0 0
\(63\) −365.587 + 92.5901i −0.731106 + 0.185163i
\(64\) 0 0
\(65\) −8.19342 14.1914i −0.0156349 0.0270805i
\(66\) 0 0
\(67\) 516.318 + 298.096i 0.941466 + 0.543556i 0.890420 0.455141i \(-0.150411\pi\)
0.0510465 + 0.998696i \(0.483744\pi\)
\(68\) 0 0
\(69\) 1174.39i 2.04898i
\(70\) 0 0
\(71\) 384.641i 0.642937i 0.946920 + 0.321468i \(0.104176\pi\)
−0.946920 + 0.321468i \(0.895824\pi\)
\(72\) 0 0
\(73\) 187.557 + 108.286i 0.300710 + 0.173615i 0.642762 0.766066i \(-0.277788\pi\)
−0.342052 + 0.939681i \(0.611122\pi\)
\(74\) 0 0
\(75\) −350.092 606.378i −0.539002 0.933580i
\(76\) 0 0
\(77\) −561.595 + 546.359i −0.831165 + 0.808615i
\(78\) 0 0
\(79\) −868.356 + 501.346i −1.23668 + 0.713997i −0.968414 0.249347i \(-0.919784\pi\)
−0.268266 + 0.963345i \(0.586451\pi\)
\(80\) 0 0
\(81\) 432.074 748.374i 0.592694 1.02658i
\(82\) 0 0
\(83\) −459.471 −0.607632 −0.303816 0.952731i \(-0.598261\pi\)
−0.303816 + 0.952731i \(0.598261\pi\)
\(84\) 0 0
\(85\) 566.139 0.722428
\(86\) 0 0
\(87\) −452.403 + 783.585i −0.557502 + 0.965622i
\(88\) 0 0
\(89\) −771.258 + 445.286i −0.918575 + 0.530340i −0.883180 0.469034i \(-0.844602\pi\)
−0.0353951 + 0.999373i \(0.511269\pi\)
\(90\) 0 0
\(91\) −60.5534 17.1210i −0.0697552 0.0197228i
\(92\) 0 0
\(93\) −39.2287 67.9460i −0.0437400 0.0757600i
\(94\) 0 0
\(95\) 380.797 + 219.853i 0.411252 + 0.237437i
\(96\) 0 0
\(97\) 282.888i 0.296113i 0.988979 + 0.148056i \(0.0473017\pi\)
−0.988979 + 0.148056i \(0.952698\pi\)
\(98\) 0 0
\(99\) 861.479i 0.874565i
\(100\) 0 0
\(101\) 696.516 + 402.134i 0.686197 + 0.396176i 0.802186 0.597074i \(-0.203670\pi\)
−0.115988 + 0.993251i \(0.537004\pi\)
\(102\) 0 0
\(103\) −887.054 1536.42i −0.848583 1.46979i −0.882473 0.470363i \(-0.844123\pi\)
0.0338902 0.999426i \(-0.489210\pi\)
\(104\) 0 0
\(105\) 591.520 + 167.248i 0.549776 + 0.155445i
\(106\) 0 0
\(107\) −64.5675 + 37.2781i −0.0583362 + 0.0336804i −0.528884 0.848694i \(-0.677390\pi\)
0.470548 + 0.882374i \(0.344056\pi\)
\(108\) 0 0
\(109\) 38.8638 67.3141i 0.0341512 0.0591516i −0.848445 0.529284i \(-0.822461\pi\)
0.882596 + 0.470133i \(0.155794\pi\)
\(110\) 0 0
\(111\) 815.089 0.696980
\(112\) 0 0
\(113\) 1026.99 0.854969 0.427484 0.904023i \(-0.359400\pi\)
0.427484 + 0.904023i \(0.359400\pi\)
\(114\) 0 0
\(115\) −411.496 + 712.732i −0.333671 + 0.577935i
\(116\) 0 0
\(117\) −59.9193 + 34.5944i −0.0473465 + 0.0273355i
\(118\) 0 0
\(119\) 1558.27 1515.99i 1.20039 1.16782i
\(120\) 0 0
\(121\) 229.394 + 397.322i 0.172347 + 0.298514i
\(122\) 0 0
\(123\) −655.342 378.362i −0.480408 0.277364i
\(124\) 0 0
\(125\) 1093.53i 0.782468i
\(126\) 0 0
\(127\) 1645.64i 1.14982i 0.818217 + 0.574909i \(0.194963\pi\)
−0.818217 + 0.574909i \(0.805037\pi\)
\(128\) 0 0
\(129\) −492.028 284.072i −0.335819 0.193885i
\(130\) 0 0
\(131\) −381.520 660.812i −0.254455 0.440729i 0.710293 0.703907i \(-0.248563\pi\)
−0.964747 + 0.263178i \(0.915229\pi\)
\(132\) 0 0
\(133\) 1636.84 414.554i 1.06716 0.270273i
\(134\) 0 0
\(135\) −190.774 + 110.143i −0.121624 + 0.0702195i
\(136\) 0 0
\(137\) −361.462 + 626.070i −0.225414 + 0.390429i −0.956444 0.291917i \(-0.905707\pi\)
0.731029 + 0.682346i \(0.239040\pi\)
\(138\) 0 0
\(139\) 1639.34 1.00034 0.500168 0.865928i \(-0.333271\pi\)
0.500168 + 0.865928i \(0.333271\pi\)
\(140\) 0 0
\(141\) −505.674 −0.302024
\(142\) 0 0
\(143\) −71.8725 + 124.487i −0.0420300 + 0.0727980i
\(144\) 0 0
\(145\) 549.122 317.036i 0.314497 0.181575i
\(146\) 0 0
\(147\) 2075.98 1123.62i 1.16479 0.630437i
\(148\) 0 0
\(149\) 30.1479 + 52.2177i 0.0165759 + 0.0287103i 0.874194 0.485576i \(-0.161390\pi\)
−0.857618 + 0.514286i \(0.828057\pi\)
\(150\) 0 0
\(151\) 816.384 + 471.339i 0.439976 + 0.254020i 0.703587 0.710609i \(-0.251580\pi\)
−0.263611 + 0.964629i \(0.584914\pi\)
\(152\) 0 0
\(153\) 2390.36i 1.26307i
\(154\) 0 0
\(155\) 54.9815i 0.0284917i
\(156\) 0 0
\(157\) −1152.45 665.369i −0.585833 0.338231i 0.177615 0.984100i \(-0.443162\pi\)
−0.763448 + 0.645869i \(0.776495\pi\)
\(158\) 0 0
\(159\) −600.228 1039.62i −0.299378 0.518538i
\(160\) 0 0
\(161\) 775.913 + 3063.65i 0.379817 + 1.49969i
\(162\) 0 0
\(163\) −853.496 + 492.766i −0.410129 + 0.236788i −0.690845 0.723003i \(-0.742761\pi\)
0.280716 + 0.959791i \(0.409428\pi\)
\(164\) 0 0
\(165\) 702.092 1216.06i 0.331259 0.573758i
\(166\) 0 0
\(167\) −1020.34 −0.472793 −0.236396 0.971657i \(-0.575966\pi\)
−0.236396 + 0.971657i \(0.575966\pi\)
\(168\) 0 0
\(169\) 2185.46 0.994745
\(170\) 0 0
\(171\) 928.269 1607.81i 0.415126 0.719019i
\(172\) 0 0
\(173\) 1538.61 888.319i 0.676177 0.390391i −0.122236 0.992501i \(-0.539007\pi\)
0.798413 + 0.602110i \(0.205673\pi\)
\(174\) 0 0
\(175\) 1313.92 + 1350.56i 0.567561 + 0.583389i
\(176\) 0 0
\(177\) −1146.74 1986.22i −0.486975 0.843466i
\(178\) 0 0
\(179\) 3863.93 + 2230.84i 1.61343 + 0.931513i 0.988568 + 0.150777i \(0.0481775\pi\)
0.624860 + 0.780736i \(0.285156\pi\)
\(180\) 0 0
\(181\) 2630.44i 1.08021i 0.841596 + 0.540107i \(0.181616\pi\)
−0.841596 + 0.540107i \(0.818384\pi\)
\(182\) 0 0
\(183\) 3752.98i 1.51600i
\(184\) 0 0
\(185\) −494.673 285.600i −0.196590 0.113501i
\(186\) 0 0
\(187\) −2483.08 4300.82i −0.971021 1.68186i
\(188\) 0 0
\(189\) −230.157 + 814.014i −0.0885790 + 0.313285i
\(190\) 0 0
\(191\) −350.362 + 202.282i −0.132729 + 0.0766313i −0.564894 0.825163i \(-0.691083\pi\)
0.432165 + 0.901795i \(0.357750\pi\)
\(192\) 0 0
\(193\) −1508.72 + 2613.17i −0.562693 + 0.974613i 0.434567 + 0.900640i \(0.356901\pi\)
−0.997260 + 0.0739738i \(0.976432\pi\)
\(194\) 0 0
\(195\) 112.776 0.0414156
\(196\) 0 0
\(197\) −2643.88 −0.956185 −0.478093 0.878309i \(-0.658672\pi\)
−0.478093 + 0.878309i \(0.658672\pi\)
\(198\) 0 0
\(199\) 2077.01 3597.48i 0.739875 1.28150i −0.212676 0.977123i \(-0.568218\pi\)
0.952551 0.304378i \(-0.0984487\pi\)
\(200\) 0 0
\(201\) −3553.34 + 2051.52i −1.24693 + 0.719917i
\(202\) 0 0
\(203\) 662.481 2343.05i 0.229049 0.810098i
\(204\) 0 0
\(205\) 265.149 + 459.252i 0.0903357 + 0.156466i
\(206\) 0 0
\(207\) 3009.31 + 1737.43i 1.01044 + 0.583379i
\(208\) 0 0
\(209\) 3857.10i 1.27656i
\(210\) 0 0
\(211\) 592.260i 0.193236i 0.995322 + 0.0966182i \(0.0308026\pi\)
−0.995322 + 0.0966182i \(0.969197\pi\)
\(212\) 0 0
\(213\) −2292.49 1323.57i −0.737458 0.425771i
\(214\) 0 0
\(215\) 199.073 + 344.804i 0.0631473 + 0.109374i
\(216\) 0 0
\(217\) 147.228 + 151.334i 0.0460576 + 0.0473420i
\(218\) 0 0
\(219\) −1290.78 + 745.233i −0.398278 + 0.229946i
\(220\) 0 0
\(221\) 199.426 345.416i 0.0607007 0.105137i
\(222\) 0 0
\(223\) 3985.59 1.19684 0.598419 0.801183i \(-0.295796\pi\)
0.598419 + 0.801183i \(0.295796\pi\)
\(224\) 0 0
\(225\) 2071.75 0.613851
\(226\) 0 0
\(227\) −119.836 + 207.561i −0.0350386 + 0.0606887i −0.883013 0.469349i \(-0.844489\pi\)
0.847974 + 0.530037i \(0.177822\pi\)
\(228\) 0 0
\(229\) −3722.53 + 2149.20i −1.07420 + 0.620190i −0.929326 0.369261i \(-0.879611\pi\)
−0.144874 + 0.989450i \(0.546278\pi\)
\(230\) 0 0
\(231\) −1323.86 5227.19i −0.377072 1.48885i
\(232\) 0 0
\(233\) −617.944 1070.31i −0.173746 0.300937i 0.765981 0.642864i \(-0.222254\pi\)
−0.939727 + 0.341927i \(0.888921\pi\)
\(234\) 0 0
\(235\) 306.891 + 177.184i 0.0851888 + 0.0491838i
\(236\) 0 0
\(237\) 6900.61i 1.89132i
\(238\) 0 0
\(239\) 1777.38i 0.481042i 0.970644 + 0.240521i \(0.0773183\pi\)
−0.970644 + 0.240521i \(0.922682\pi\)
\(240\) 0 0
\(241\) −4291.94 2477.95i −1.14717 0.662320i −0.198975 0.980005i \(-0.563761\pi\)
−0.948196 + 0.317685i \(0.897095\pi\)
\(242\) 0 0
\(243\) 2356.95 + 4082.35i 0.622215 + 1.07771i
\(244\) 0 0
\(245\) −1653.61 45.4889i −0.431205 0.0118620i
\(246\) 0 0
\(247\) 268.277 154.890i 0.0691094 0.0399003i
\(248\) 0 0
\(249\) 1581.06 2738.47i 0.402392 0.696963i
\(250\) 0 0
\(251\) 5191.12 1.30542 0.652710 0.757608i \(-0.273632\pi\)
0.652710 + 0.757608i \(0.273632\pi\)
\(252\) 0 0
\(253\) 7219.27 1.79396
\(254\) 0 0
\(255\) −1948.11 + 3374.22i −0.478413 + 0.828636i
\(256\) 0 0
\(257\) −3574.00 + 2063.45i −0.867471 + 0.500835i −0.866507 0.499165i \(-0.833640\pi\)
−0.000963893 1.00000i \(0.500307\pi\)
\(258\) 0 0
\(259\) −2126.34 + 538.525i −0.510132 + 0.129198i
\(260\) 0 0
\(261\) −1338.59 2318.51i −0.317459 0.549856i
\(262\) 0 0
\(263\) 543.813 + 313.970i 0.127502 + 0.0736131i 0.562394 0.826869i \(-0.309880\pi\)
−0.434893 + 0.900482i \(0.643214\pi\)
\(264\) 0 0
\(265\) 841.258i 0.195012i
\(266\) 0 0
\(267\) 6128.99i 1.40483i
\(268\) 0 0
\(269\) 2662.88 + 1537.42i 0.603565 + 0.348468i 0.770443 0.637509i \(-0.220035\pi\)
−0.166878 + 0.985978i \(0.553369\pi\)
\(270\) 0 0
\(271\) −944.601 1636.10i −0.211736 0.366737i 0.740522 0.672032i \(-0.234578\pi\)
−0.952258 + 0.305295i \(0.901245\pi\)
\(272\) 0 0
\(273\) 310.409 301.988i 0.0688162 0.0669492i
\(274\) 0 0
\(275\) 3727.55 2152.10i 0.817382 0.471916i
\(276\) 0 0
\(277\) −4255.31 + 7370.41i −0.923020 + 1.59872i −0.128305 + 0.991735i \(0.540954\pi\)
−0.794715 + 0.606983i \(0.792380\pi\)
\(278\) 0 0
\(279\) 232.144 0.0498140
\(280\) 0 0
\(281\) 6028.10 1.27974 0.639869 0.768484i \(-0.278989\pi\)
0.639869 + 0.768484i \(0.278989\pi\)
\(282\) 0 0
\(283\) 2229.39 3861.42i 0.468281 0.811087i −0.531062 0.847333i \(-0.678207\pi\)
0.999343 + 0.0362463i \(0.0115401\pi\)
\(284\) 0 0
\(285\) −2620.68 + 1513.05i −0.544686 + 0.314475i
\(286\) 0 0
\(287\) 1959.58 + 554.058i 0.403033 + 0.113955i
\(288\) 0 0
\(289\) 4433.35 + 7678.80i 0.902372 + 1.56295i
\(290\) 0 0
\(291\) −1686.03 973.430i −0.339646 0.196094i
\(292\) 0 0
\(293\) 3220.71i 0.642171i −0.947050 0.321085i \(-0.895952\pi\)
0.947050 0.321085i \(-0.104048\pi\)
\(294\) 0 0
\(295\) 1607.24i 0.317210i
\(296\) 0 0
\(297\) 1673.47 + 966.176i 0.326951 + 0.188765i
\(298\) 0 0
\(299\) 289.904 + 502.129i 0.0560722 + 0.0971199i
\(300\) 0 0
\(301\) 1471.25 + 415.985i 0.281732 + 0.0796577i
\(302\) 0 0
\(303\) −4793.48 + 2767.52i −0.908840 + 0.524719i
\(304\) 0 0
\(305\) −1315.01 + 2277.67i −0.246876 + 0.427603i
\(306\) 0 0
\(307\) −6242.78 −1.16057 −0.580284 0.814414i \(-0.697058\pi\)
−0.580284 + 0.814414i \(0.697058\pi\)
\(308\) 0 0
\(309\) 12209.6 2.24782
\(310\) 0 0
\(311\) 1146.70 1986.14i 0.209078 0.362134i −0.742346 0.670016i \(-0.766287\pi\)
0.951424 + 0.307883i \(0.0996204\pi\)
\(312\) 0 0
\(313\) 4989.49 2880.68i 0.901030 0.520210i 0.0234959 0.999724i \(-0.492520\pi\)
0.877534 + 0.479514i \(0.159187\pi\)
\(314\) 0 0
\(315\) −1303.68 + 1268.31i −0.233187 + 0.226860i
\(316\) 0 0
\(317\) 2197.71 + 3806.54i 0.389386 + 0.674437i 0.992367 0.123319i \(-0.0393538\pi\)
−0.602981 + 0.797756i \(0.706020\pi\)
\(318\) 0 0
\(319\) −4816.89 2781.03i −0.845436 0.488113i
\(320\) 0 0
\(321\) 513.102i 0.0892166i
\(322\) 0 0
\(323\) 10702.4i 1.84364i
\(324\) 0 0
\(325\) 299.375 + 172.844i 0.0510964 + 0.0295005i
\(326\) 0 0
\(327\) 267.464 + 463.262i 0.0452318 + 0.0783438i
\(328\) 0 0
\(329\) 1319.16 334.096i 0.221057 0.0559857i
\(330\) 0 0
\(331\) −5522.08 + 3188.18i −0.916983 + 0.529420i −0.882671 0.469991i \(-0.844257\pi\)
−0.0343114 + 0.999411i \(0.510924\pi\)
\(332\) 0 0
\(333\) −1205.87 + 2088.62i −0.198441 + 0.343711i
\(334\) 0 0
\(335\) 2875.34 0.468945
\(336\) 0 0
\(337\) −5111.05 −0.826163 −0.413081 0.910694i \(-0.635547\pi\)
−0.413081 + 0.910694i \(0.635547\pi\)
\(338\) 0 0
\(339\) −3533.93 + 6120.95i −0.566185 + 0.980661i
\(340\) 0 0
\(341\) 417.681 241.148i 0.0663305 0.0382959i
\(342\) 0 0
\(343\) −4673.29 + 4302.79i −0.735667 + 0.677343i
\(344\) 0 0
\(345\) −2831.95 4905.08i −0.441933 0.765451i
\(346\) 0 0
\(347\) −4393.00 2536.30i −0.679621 0.392379i 0.120091 0.992763i \(-0.461681\pi\)
−0.799712 + 0.600384i \(0.795015\pi\)
\(348\) 0 0
\(349\) 11661.1i 1.78856i −0.447512 0.894278i \(-0.647690\pi\)
0.447512 0.894278i \(-0.352310\pi\)
\(350\) 0 0
\(351\) 155.195i 0.0236003i
\(352\) 0 0
\(353\) 5552.29 + 3205.62i 0.837163 + 0.483337i 0.856299 0.516480i \(-0.172758\pi\)
−0.0191356 + 0.999817i \(0.506091\pi\)
\(354\) 0 0
\(355\) 927.532 + 1606.53i 0.138671 + 0.240186i
\(356\) 0 0
\(357\) 3673.34 + 14504.0i 0.544576 + 2.15023i
\(358\) 0 0
\(359\) 8337.73 4813.79i 1.22576 0.707694i 0.259621 0.965711i \(-0.416402\pi\)
0.966140 + 0.258017i \(0.0830690\pi\)
\(360\) 0 0
\(361\) −726.638 + 1258.57i −0.105939 + 0.183492i
\(362\) 0 0
\(363\) −3157.42 −0.456533
\(364\) 0 0
\(365\) 1044.49 0.149784
\(366\) 0 0
\(367\) −1753.92 + 3037.88i −0.249466 + 0.432087i −0.963378 0.268148i \(-0.913588\pi\)
0.713912 + 0.700235i \(0.246922\pi\)
\(368\) 0 0
\(369\) 1939.06 1119.52i 0.273560 0.157940i
\(370\) 0 0
\(371\) 2252.70 + 2315.52i 0.315241 + 0.324032i
\(372\) 0 0
\(373\) −4053.65 7021.12i −0.562707 0.974638i −0.997259 0.0739909i \(-0.976426\pi\)
0.434551 0.900647i \(-0.356907\pi\)
\(374\) 0 0
\(375\) −6517.52 3762.89i −0.897502 0.518173i
\(376\) 0 0
\(377\) 446.712i 0.0610261i
\(378\) 0 0
\(379\) 6838.23i 0.926798i −0.886150 0.463399i \(-0.846630\pi\)
0.886150 0.463399i \(-0.153370\pi\)
\(380\) 0 0
\(381\) −9808.11 5662.71i −1.31886 0.761443i
\(382\) 0 0
\(383\) 6010.60 + 10410.7i 0.801899 + 1.38893i 0.918365 + 0.395735i \(0.129510\pi\)
−0.116466 + 0.993195i \(0.537157\pi\)
\(384\) 0 0
\(385\) −1028.12 + 3636.22i −0.136098 + 0.481348i
\(386\) 0 0
\(387\) 1455.84 840.530i 0.191226 0.110404i
\(388\) 0 0
\(389\) 1922.93 3330.62i 0.250634 0.434111i −0.713067 0.701096i \(-0.752694\pi\)
0.963701 + 0.266986i \(0.0860276\pi\)
\(390\) 0 0
\(391\) −20031.4 −2.59088
\(392\) 0 0
\(393\) 5251.31 0.674029
\(394\) 0 0
\(395\) −2417.91 + 4187.95i −0.307996 + 0.533464i
\(396\) 0 0
\(397\) −10023.9 + 5787.30i −1.26722 + 0.731628i −0.974460 0.224560i \(-0.927906\pi\)
−0.292756 + 0.956187i \(0.594572\pi\)
\(398\) 0 0
\(399\) −3161.68 + 11182.2i −0.396697 + 1.40303i
\(400\) 0 0
\(401\) −6583.03 11402.1i −0.819803 1.41994i −0.905827 0.423647i \(-0.860750\pi\)
0.0860245 0.996293i \(-0.472584\pi\)
\(402\) 0 0
\(403\) 33.5456 + 19.3676i 0.00414647 + 0.00239397i
\(404\) 0 0
\(405\) 4167.65i 0.511339i
\(406\) 0 0
\(407\) 5010.55i 0.610231i
\(408\) 0 0
\(409\) −9916.78 5725.46i −1.19891 0.692190i −0.238596 0.971119i \(-0.576687\pi\)
−0.960312 + 0.278929i \(0.910021\pi\)
\(410\) 0 0
\(411\) −2487.61 4308.67i −0.298552 0.517107i
\(412\) 0 0
\(413\) 4303.82 + 4423.84i 0.512777 + 0.527077i
\(414\) 0 0
\(415\) −1919.07 + 1107.98i −0.226997 + 0.131057i
\(416\) 0 0
\(417\) −5641.03 + 9770.55i −0.662452 + 1.14740i
\(418\) 0 0
\(419\) −4195.08 −0.489124 −0.244562 0.969634i \(-0.578644\pi\)
−0.244562 + 0.969634i \(0.578644\pi\)
\(420\) 0 0
\(421\) 3710.27 0.429520 0.214760 0.976667i \(-0.431103\pi\)
0.214760 + 0.976667i \(0.431103\pi\)
\(422\) 0 0
\(423\) 748.108 1295.76i 0.0859912 0.148941i
\(424\) 0 0
\(425\) −10342.9 + 5971.49i −1.18048 + 0.681552i
\(426\) 0 0
\(427\) 2479.57 + 9790.47i 0.281019 + 1.10959i
\(428\) 0 0
\(429\) −494.633 856.729i −0.0556669 0.0964179i
\(430\) 0 0
\(431\) 2084.43 + 1203.45i 0.232955 + 0.134497i 0.611935 0.790908i \(-0.290392\pi\)
−0.378979 + 0.925405i \(0.623725\pi\)
\(432\) 0 0
\(433\) 15138.8i 1.68019i −0.542436 0.840097i \(-0.682498\pi\)
0.542436 0.840097i \(-0.317502\pi\)
\(434\) 0 0
\(435\) 4363.74i 0.480977i
\(436\) 0 0
\(437\) −13473.6 7778.97i −1.47489 0.851530i
\(438\) 0 0
\(439\) −2889.10 5004.08i −0.314099 0.544035i 0.665147 0.746713i \(-0.268369\pi\)
−0.979246 + 0.202677i \(0.935036\pi\)
\(440\) 0 0
\(441\) −192.064 + 6981.90i −0.0207390 + 0.753904i
\(442\) 0 0
\(443\) 7143.22 4124.14i 0.766106 0.442311i −0.0653780 0.997861i \(-0.520825\pi\)
0.831484 + 0.555549i \(0.187492\pi\)
\(444\) 0 0
\(445\) −2147.55 + 3719.66i −0.228772 + 0.396244i
\(446\) 0 0
\(447\) −414.961 −0.0439082
\(448\) 0 0
\(449\) 6493.19 0.682478 0.341239 0.939977i \(-0.389153\pi\)
0.341239 + 0.939977i \(0.389153\pi\)
\(450\) 0 0
\(451\) 2325.88 4028.55i 0.242842 0.420614i
\(452\) 0 0
\(453\) −5618.42 + 3243.80i −0.582730 + 0.336439i
\(454\) 0 0
\(455\) −294.200 + 74.5103i −0.0303127 + 0.00767713i
\(456\) 0 0
\(457\) 5548.06 + 9609.52i 0.567893 + 0.983620i 0.996774 + 0.0802591i \(0.0255748\pi\)
−0.428881 + 0.903361i \(0.641092\pi\)
\(458\) 0 0
\(459\) −4643.40 2680.87i −0.472190 0.272619i
\(460\) 0 0
\(461\) 4976.01i 0.502724i 0.967893 + 0.251362i \(0.0808784\pi\)
−0.967893 + 0.251362i \(0.919122\pi\)
\(462\) 0 0
\(463\) 16003.8i 1.60639i −0.595716 0.803195i \(-0.703132\pi\)
0.595716 0.803195i \(-0.296868\pi\)
\(464\) 0 0
\(465\) −327.693 189.194i −0.0326804 0.0188681i
\(466\) 0 0
\(467\) 8856.55 + 15340.0i 0.877585 + 1.52002i 0.853984 + 0.520300i \(0.174180\pi\)
0.0236011 + 0.999721i \(0.492487\pi\)
\(468\) 0 0
\(469\) 7914.23 7699.52i 0.779201 0.758061i
\(470\) 0 0
\(471\) 7931.28 4579.13i 0.775911 0.447972i
\(472\) 0 0
\(473\) 1746.26 3024.62i 0.169753 0.294021i
\(474\) 0 0
\(475\) −9275.82 −0.896008
\(476\) 0 0
\(477\) 3551.97 0.340951
\(478\) 0 0
\(479\) −5044.30 + 8736.99i −0.481169 + 0.833410i −0.999766 0.0216091i \(-0.993121\pi\)
0.518597 + 0.855019i \(0.326454\pi\)
\(480\) 0 0
\(481\) −348.504 + 201.209i −0.0330362 + 0.0190735i
\(482\) 0 0
\(483\) −20929.5 5917.67i −1.97169 0.557481i
\(484\) 0 0
\(485\) 682.162 + 1181.54i 0.0638668 + 0.110621i
\(486\) 0 0
\(487\) 2053.73 + 1185.72i 0.191095 + 0.110329i 0.592495 0.805574i \(-0.298143\pi\)
−0.401400 + 0.915903i \(0.631476\pi\)
\(488\) 0 0
\(489\) 6782.52i 0.627231i
\(490\) 0 0
\(491\) 11069.3i 1.01741i −0.860940 0.508706i \(-0.830124\pi\)
0.860940 0.508706i \(-0.169876\pi\)
\(492\) 0 0
\(493\) 13365.5 + 7716.59i 1.22100 + 0.704944i
\(494\) 0 0
\(495\) 2077.39 + 3598.14i 0.188630 + 0.326716i
\(496\) 0 0
\(497\) 6854.92 + 1938.18i 0.618682 + 0.174928i
\(498\) 0 0
\(499\) 9842.36 5682.49i 0.882975 0.509786i 0.0113371 0.999936i \(-0.496391\pi\)
0.871638 + 0.490150i \(0.163058\pi\)
\(500\) 0 0
\(501\) 3511.04 6081.30i 0.313097 0.542300i
\(502\) 0 0
\(503\) 11337.8 1.00503 0.502513 0.864570i \(-0.332409\pi\)
0.502513 + 0.864570i \(0.332409\pi\)
\(504\) 0 0
\(505\) 3878.86 0.341796
\(506\) 0 0
\(507\) −7520.24 + 13025.4i −0.658749 + 1.14099i
\(508\) 0 0
\(509\) −2352.86 + 1358.43i −0.204890 + 0.118293i −0.598934 0.800798i \(-0.704409\pi\)
0.394045 + 0.919091i \(0.371076\pi\)
\(510\) 0 0
\(511\) 2874.91 2796.92i 0.248882 0.242130i
\(512\) 0 0
\(513\) −2082.17 3606.42i −0.179200 0.310384i
\(514\) 0 0
\(515\) −7409.93 4278.12i −0.634020 0.366052i
\(516\) 0 0
\(517\) 3108.50i 0.264433i
\(518\) 0 0
\(519\) 12227.0i 1.03411i
\(520\) 0 0
\(521\) −6728.44 3884.67i −0.565793 0.326661i 0.189674 0.981847i \(-0.439257\pi\)
−0.755467 + 0.655186i \(0.772590\pi\)
\(522\) 0 0
\(523\) 8189.91 + 14185.3i 0.684742 + 1.18601i 0.973518 + 0.228611i \(0.0734182\pi\)
−0.288776 + 0.957397i \(0.593248\pi\)
\(524\) 0 0
\(525\) −12570.7 + 3183.71i −1.04501 + 0.264664i
\(526\) 0 0
\(527\) −1158.95 + 669.119i −0.0957962 + 0.0553079i
\(528\) 0 0
\(529\) 8476.27 14681.3i 0.696661 1.20665i
\(530\) 0 0
\(531\) 6786.11 0.554599
\(532\) 0 0
\(533\) 373.602 0.0303612
\(534\) 0 0
\(535\) −179.786 + 311.399i −0.0145287 + 0.0251644i
\(536\) 0 0
\(537\) −26591.9 + 15352.8i −2.13692 + 1.23375i
\(538\) 0 0
\(539\) 6907.15 + 12761.6i 0.551970 + 1.01982i
\(540\) 0 0
\(541\) −3348.80 5800.29i −0.266129 0.460950i 0.701729 0.712444i \(-0.252412\pi\)
−0.967859 + 0.251494i \(0.919078\pi\)
\(542\) 0 0
\(543\) −15677.6 9051.45i −1.23902 0.715350i
\(544\) 0 0
\(545\) 374.868i 0.0294635i
\(546\) 0 0
\(547\) 2582.34i 0.201851i 0.994894 + 0.100926i \(0.0321804\pi\)
−0.994894 + 0.100926i \(0.967820\pi\)
\(548\) 0 0
\(549\) 9616.81 + 5552.27i 0.747605 + 0.431630i
\(550\) 0 0
\(551\) 5993.29 + 10380.7i 0.463380 + 0.802599i
\(552\) 0 0
\(553\) 4559.19 + 18001.7i 0.350591 + 1.38429i
\(554\) 0 0
\(555\) 3404.38 1965.52i 0.260375 0.150328i
\(556\) 0 0
\(557\) 224.120 388.188i 0.0170490 0.0295297i −0.857375 0.514692i \(-0.827906\pi\)
0.874424 + 0.485162i \(0.161240\pi\)
\(558\) 0 0
\(559\) 280.499 0.0212233
\(560\) 0 0
\(561\) 34177.5 2.57215
\(562\) 0 0
\(563\) 12501.7 21653.5i 0.935849 1.62094i 0.162736 0.986670i \(-0.447968\pi\)
0.773113 0.634268i \(-0.218698\pi\)
\(564\) 0 0
\(565\) 4289.45 2476.52i 0.319396 0.184403i
\(566\) 0 0
\(567\) −11160.0 11471.2i −0.826591 0.849642i
\(568\) 0 0
\(569\) 3287.22 + 5693.64i 0.242193 + 0.419490i 0.961339 0.275369i \(-0.0888001\pi\)
−0.719146 + 0.694859i \(0.755467\pi\)
\(570\) 0 0
\(571\) −9610.58 5548.67i −0.704361 0.406663i 0.104608 0.994513i \(-0.466641\pi\)
−0.808970 + 0.587850i \(0.799974\pi\)
\(572\) 0 0
\(573\) 2784.24i 0.202990i
\(574\) 0 0
\(575\) 17361.4i 1.25917i
\(576\) 0 0
\(577\) −1236.76 714.046i −0.0892325 0.0515184i 0.454720 0.890635i \(-0.349739\pi\)
−0.543952 + 0.839116i \(0.683073\pi\)
\(578\) 0 0
\(579\) −10383.1 17984.1i −0.745264 1.29083i
\(580\) 0 0
\(581\) −2315.24 + 8188.50i −0.165322 + 0.584710i
\(582\) 0 0
\(583\) 6390.83 3689.75i 0.453999 0.262116i
\(584\) 0 0
\(585\) −166.843 + 288.981i −0.0117917 + 0.0204238i
\(586\) 0 0
\(587\) 27212.3 1.91341 0.956704 0.291063i \(-0.0940089\pi\)
0.956704 + 0.291063i \(0.0940089\pi\)
\(588\) 0 0
\(589\) −1039.38 −0.0727111
\(590\) 0 0
\(591\) 9097.69 15757.7i 0.633213 1.09676i
\(592\) 0 0
\(593\) −7855.97 + 4535.65i −0.544024 + 0.314092i −0.746708 0.665152i \(-0.768367\pi\)
0.202684 + 0.979244i \(0.435033\pi\)
\(594\) 0 0
\(595\) 2852.73 10089.5i 0.196556 0.695175i
\(596\) 0 0
\(597\) 14294.1 + 24758.2i 0.979933 + 1.69729i
\(598\) 0 0
\(599\) 6261.35 + 3614.99i 0.427098 + 0.246585i 0.698110 0.715991i \(-0.254025\pi\)
−0.271011 + 0.962576i \(0.587358\pi\)
\(600\) 0 0
\(601\) 18772.6i 1.27413i −0.770810 0.637065i \(-0.780148\pi\)
0.770810 0.637065i \(-0.219852\pi\)
\(602\) 0 0
\(603\) 12140.3i 0.819887i
\(604\) 0 0
\(605\) 1916.22 + 1106.33i 0.128770 + 0.0743451i
\(606\) 0 0
\(607\) 6114.97 + 10591.4i 0.408895 + 0.708226i 0.994766 0.102178i \(-0.0325810\pi\)
−0.585871 + 0.810404i \(0.699248\pi\)
\(608\) 0 0
\(609\) 11685.1 + 12011.0i 0.777511 + 0.799193i
\(610\) 0 0
\(611\) 216.209 124.828i 0.0143157 0.00826515i
\(612\) 0 0
\(613\) 5994.59 10382.9i 0.394974 0.684116i −0.598124 0.801404i \(-0.704087\pi\)
0.993098 + 0.117288i \(0.0374201\pi\)
\(614\) 0 0
\(615\) −3649.56 −0.239292
\(616\) 0 0
\(617\) −1209.26 −0.0789030 −0.0394515 0.999221i \(-0.512561\pi\)
−0.0394515 + 0.999221i \(0.512561\pi\)
\(618\) 0 0
\(619\) 9171.91 15886.2i 0.595558 1.03154i −0.397910 0.917424i \(-0.630264\pi\)
0.993468 0.114112i \(-0.0364022\pi\)
\(620\) 0 0
\(621\) 6750.07 3897.15i 0.436185 0.251832i
\(622\) 0 0
\(623\) 4049.39 + 15988.8i 0.260410 + 1.02822i
\(624\) 0 0
\(625\) −3721.79 6446.34i −0.238195 0.412565i
\(626\) 0 0
\(627\) 22988.5 + 13272.4i 1.46423 + 0.845375i
\(628\) 0 0
\(629\) 13902.9i 0.881310i
\(630\) 0 0
\(631\) 7055.98i 0.445157i 0.974915 + 0.222579i \(0.0714474\pi\)
−0.974915 + 0.222579i \(0.928553\pi\)
\(632\) 0 0
\(633\) −3529.91 2037.99i −0.221645 0.127967i
\(634\) 0 0
\(635\) 3968.33 + 6873.35i 0.247997 + 0.429544i
\(636\) 0 0
\(637\) −610.249 + 992.887i −0.0379575 + 0.0617576i
\(638\) 0 0
\(639\) 6783.13 3916.24i 0.419932 0.242448i
\(640\) 0 0
\(641\) −5116.60 + 8862.20i −0.315278 + 0.546078i −0.979497 0.201461i \(-0.935431\pi\)
0.664218 + 0.747539i \(0.268765\pi\)
\(642\) 0 0
\(643\) −20543.5 −1.25996 −0.629982 0.776610i \(-0.716938\pi\)
−0.629982 + 0.776610i \(0.716938\pi\)
\(644\) 0 0
\(645\) −2740.07 −0.167272
\(646\) 0 0
\(647\) 12712.8 22019.1i 0.772473 1.33796i −0.163731 0.986505i \(-0.552353\pi\)
0.936204 0.351457i \(-0.114314\pi\)
\(648\) 0 0
\(649\) 12209.8 7049.33i 0.738484 0.426364i
\(650\) 0 0
\(651\) −1408.58 + 356.742i −0.0848026 + 0.0214775i
\(652\) 0 0
\(653\) −9127.03 15808.5i −0.546965 0.947371i −0.998480 0.0551081i \(-0.982450\pi\)
0.451515 0.892263i \(-0.350884\pi\)
\(654\) 0 0
\(655\) −3186.99 1840.01i −0.190116 0.109764i
\(656\) 0 0
\(657\) 4410.08i 0.261877i
\(658\) 0 0
\(659\) 16252.1i 0.960683i 0.877081 + 0.480342i \(0.159487\pi\)
−0.877081 + 0.480342i \(0.840513\pi\)
\(660\) 0 0
\(661\) −6622.84 3823.70i −0.389711 0.224999i 0.292324 0.956319i \(-0.405571\pi\)
−0.682035 + 0.731320i \(0.738905\pi\)
\(662\) 0 0
\(663\) 1372.47 + 2377.18i 0.0803955 + 0.139249i
\(664\) 0 0
\(665\) 5836.95 5678.59i 0.340372 0.331137i
\(666\) 0 0
\(667\) −19429.3 + 11217.5i −1.12790 + 0.651191i
\(668\) 0 0
\(669\) −13714.6 + 23754.4i −0.792581 + 1.37279i
\(670\) 0 0
\(671\) 23070.5 1.32731
\(672\) 0 0
\(673\) −4057.51 −0.232400 −0.116200 0.993226i \(-0.537071\pi\)
−0.116200 + 0.993226i \(0.537071\pi\)
\(674\) 0 0
\(675\) 2323.53 4024.47i 0.132493 0.229484i
\(676\) 0 0
\(677\) −3916.39 + 2261.13i −0.222333 + 0.128364i −0.607030 0.794679i \(-0.707639\pi\)
0.384697 + 0.923043i \(0.374306\pi\)
\(678\) 0 0
\(679\) 5041.52 + 1425.45i 0.284942 + 0.0805653i
\(680\) 0 0
\(681\) −824.719 1428.45i −0.0464072 0.0803796i
\(682\) 0 0
\(683\) 12667.7 + 7313.73i 0.709690 + 0.409739i 0.810946 0.585121i \(-0.198953\pi\)
−0.101257 + 0.994860i \(0.532286\pi\)
\(684\) 0 0
\(685\) 3486.55i 0.194473i
\(686\) 0 0
\(687\) 29582.0i 1.64283i
\(688\) 0 0
\(689\) 513.273 + 296.339i 0.0283805 + 0.0163855i
\(690\) 0 0
\(691\) −6100.92 10567.1i −0.335875 0.581753i 0.647777 0.761830i \(-0.275699\pi\)
−0.983653 + 0.180077i \(0.942365\pi\)
\(692\) 0 0
\(693\) 15352.9 + 4340.93i 0.841572 + 0.237949i
\(694\) 0 0
\(695\) 6847.03 3953.13i 0.373702 0.215757i
\(696\) 0 0
\(697\) −6453.67 + 11178.1i −0.350718 + 0.607461i
\(698\) 0 0
\(699\) 8505.48 0.460239
\(700\) 0 0
\(701\) 31433.5 1.69362 0.846808 0.531898i \(-0.178521\pi\)
0.846808 + 0.531898i \(0.178521\pi\)
\(702\) 0 0
\(703\) 5399.02 9351.37i 0.289655 0.501698i
\(704\) 0 0
\(705\) −2112.05 + 1219.39i −0.112829 + 0.0651418i
\(706\) 0 0
\(707\) 10676.4 10386.7i 0.567929 0.552521i
\(708\) 0 0
\(709\) −12216.8 21160.2i −0.647126 1.12086i −0.983806 0.179237i \(-0.942637\pi\)
0.336680 0.941619i \(-0.390696\pi\)
\(710\) 0 0
\(711\) 17682.4 + 10209.0i 0.932690 + 0.538489i
\(712\) 0 0
\(713\) 1945.39i 0.102181i
\(714\) 0 0
\(715\) 693.260i 0.0362608i
\(716\) 0 0
\(717\) −10593.3 6116.04i −0.551762 0.318560i
\(718\) 0 0
\(719\) −14584.0 25260.1i −0.756453 1.31021i −0.944649 0.328083i \(-0.893597\pi\)
0.188196 0.982132i \(-0.439736\pi\)
\(720\) 0 0
\(721\) −31851.3 + 8066.79i −1.64522 + 0.416676i
\(722\) 0 0
\(723\) 29537.5 17053.5i 1.51938 0.877215i
\(724\) 0 0
\(725\) −6688.02 + 11584.0i −0.342603 + 0.593405i
\(726\) 0 0
\(727\) −14802.2 −0.755135 −0.377567 0.925982i \(-0.623239\pi\)
−0.377567 + 0.925982i \(0.623239\pi\)
\(728\) 0 0
\(729\) −9109.44 −0.462807
\(730\) 0 0
\(731\) −4845.39 + 8392.47i −0.245162 + 0.424633i
\(732\) 0 0
\(733\) −24302.0 + 14030.8i −1.22458 + 0.707010i −0.965890 0.258951i \(-0.916623\pi\)
−0.258687 + 0.965961i \(0.583290\pi\)
\(734\) 0 0
\(735\) 5961.26 9699.09i 0.299162 0.486743i
\(736\) 0 0
\(737\) −12611.2 21843.3i −0.630312 1.09173i
\(738\) 0 0
\(739\) −19623.3 11329.5i −0.976798 0.563955i −0.0754963 0.997146i \(-0.524054\pi\)
−0.901302 + 0.433191i \(0.857387\pi\)
\(740\) 0 0
\(741\) 2131.93i 0.105693i
\(742\) 0 0
\(743\) 36038.3i 1.77943i 0.456514 + 0.889716i \(0.349098\pi\)
−0.456514 + 0.889716i \(0.650902\pi\)
\(744\) 0 0
\(745\) 251.838 + 145.398i 0.0123847 + 0.00715032i
\(746\) 0 0
\(747\) 4678.13 + 8102.75i 0.229135 + 0.396873i
\(748\) 0 0
\(749\) 339.004 + 1338.54i 0.0165379 + 0.0652992i
\(750\) 0 0
\(751\) −10031.0 + 5791.41i −0.487399 + 0.281400i −0.723495 0.690330i \(-0.757465\pi\)
0.236096 + 0.971730i \(0.424132\pi\)
\(752\) 0 0
\(753\) −17862.9 + 30939.4i −0.864487 + 1.49733i
\(754\) 0 0
\(755\) 4546.39 0.219153
\(756\) 0 0
\(757\) −24698.1 −1.18582 −0.592910 0.805268i \(-0.702021\pi\)
−0.592910 + 0.805268i \(0.702021\pi\)
\(758\) 0 0
\(759\) −24841.8 + 43027.3i −1.18801 + 2.05770i
\(760\) 0 0
\(761\) 21831.6 12604.5i 1.03994 0.600410i 0.120124 0.992759i \(-0.461671\pi\)
0.919816 + 0.392349i \(0.128338\pi\)
\(762\) 0 0
\(763\) −1003.81 1031.81i −0.0476284 0.0489566i
\(764\) 0 0
\(765\) −5764.17 9983.84i −0.272424 0.471852i
\(766\) 0 0
\(767\) 980.617 + 566.160i 0.0461643 + 0.0266530i
\(768\) 0 0
\(769\) 16983.7i 0.796423i −0.917294 0.398212i \(-0.869631\pi\)
0.917294 0.398212i \(-0.130369\pi\)
\(770\) 0 0
\(771\) 28401.7i 1.32667i
\(772\) 0 0
\(773\) −26702.2 15416.5i −1.24245 0.717326i −0.272854 0.962056i \(-0.587967\pi\)
−0.969591 + 0.244730i \(0.921301\pi\)
\(774\) 0 0
\(775\) −579.930 1004.47i −0.0268796 0.0465569i
\(776\) 0 0
\(777\) 4107.17 14526.2i 0.189632 0.670687i
\(778\) 0 0
\(779\) −8681.76 + 5012.41i −0.399302 + 0.230537i
\(780\) 0 0
\(781\) 8136.30 14092.5i 0.372778 0.645670i
\(782\) 0 0
\(783\) −6005.10 −0.274080
\(784\) 0 0
\(785\) −6417.94 −0.291804
\(786\) 0 0
\(787\) −7483.59 + 12962.0i −0.338960 + 0.587095i −0.984237 0.176853i \(-0.943408\pi\)
0.645278 + 0.763948i \(0.276742\pi\)
\(788\) 0 0
\(789\) −3742.56 + 2160.77i −0.168871 + 0.0974974i
\(790\) 0 0
\(791\) 5174.95 18302.7i 0.232617 0.822715i
\(792\) 0 0
\(793\) 926.443 + 1604.65i 0.0414867 + 0.0718570i
\(794\) 0 0
\(795\) −5013.95 2894.80i −0.223681 0.129142i
\(796\) 0 0
\(797\) 39166.5i 1.74071i −0.492421 0.870357i \(-0.663888\pi\)
0.492421 0.870357i \(-0.336112\pi\)
\(798\) 0 0
\(799\) 8625.23i 0.381901i
\(800\) 0 0
\(801\) 15705.2 + 9067.41i 0.692779 + 0.399976i
\(802\) 0 0
\(803\) −4581.13 7934.76i −0.201326 0.348707i
\(804\) 0 0
\(805\) 10628.5 + 10924.9i 0.465349 + 0.478326i
\(806\) 0 0
\(807\) −18326.2 + 10580.6i −0.799396 + 0.461532i
\(808\) 0 0
\(809\) 13908.0 24089.3i 0.604422 1.04689i −0.387720 0.921777i \(-0.626737\pi\)
0.992143 0.125113i \(-0.0399293\pi\)
\(810\) 0 0
\(811\) 20600.5 0.891962 0.445981 0.895042i \(-0.352855\pi\)
0.445981 + 0.895042i \(0.352855\pi\)
\(812\) 0 0
\(813\) 13001.7 0.560871
\(814\) 0 0
\(815\) −2376.53 + 4116.28i −0.102143 + 0.176916i
\(816\) 0 0
\(817\) −6518.23 + 3763.30i −0.279124 + 0.161152i
\(818\) 0 0
\(819\) 314.599 + 1242.18i 0.0134224 + 0.0529977i
\(820\) 0 0
\(821\) 8179.13 + 14166.7i 0.347690 + 0.602217i 0.985839 0.167696i \(-0.0536328\pi\)
−0.638149 + 0.769913i \(0.720299\pi\)
\(822\) 0 0
\(823\) 8972.43 + 5180.24i 0.380024 + 0.219407i 0.677828 0.735220i \(-0.262921\pi\)
−0.297805 + 0.954627i \(0.596255\pi\)
\(824\) 0 0
\(825\) 29621.9i 1.25006i
\(826\) 0 0
\(827\) 9204.30i 0.387019i 0.981098 + 0.193510i \(0.0619871\pi\)
−0.981098 + 0.193510i \(0.938013\pi\)
\(828\) 0 0
\(829\) 26296.5 + 15182.3i 1.10171 + 0.636071i 0.936669 0.350216i \(-0.113892\pi\)
0.165039 + 0.986287i \(0.447225\pi\)
\(830\) 0 0
\(831\) −29285.4 50723.8i −1.22250 2.11743i
\(832\) 0 0
\(833\) −19165.4 35409.8i −0.797169 1.47284i
\(834\) 0 0
\(835\) −4261.66 + 2460.47i −0.176624 + 0.101974i
\(836\) 0 0
\(837\) 260.357 450.951i 0.0107518 0.0186226i
\(838\) 0 0
\(839\) 7688.40 0.316369 0.158184 0.987410i \(-0.449436\pi\)
0.158184 + 0.987410i \(0.449436\pi\)
\(840\) 0 0
\(841\) −7103.96 −0.291277
\(842\) 0 0
\(843\) −20742.9 + 35927.8i −0.847479 + 1.46788i
\(844\) 0 0
\(845\) 9128.00 5270.05i 0.371613 0.214551i
\(846\) 0 0
\(847\) 8236.82 2086.09i 0.334145 0.0846268i
\(848\) 0 0
\(849\) 15342.9 + 26574.6i 0.620219 + 1.07425i
\(850\) 0 0
\(851\) 17502.8 + 10105.2i 0.705039 + 0.407055i
\(852\) 0 0
\(853\) 16264.6i 0.652860i 0.945221 + 0.326430i \(0.105846\pi\)
−0.945221 + 0.326430i \(0.894154\pi\)
\(854\) 0 0
\(855\) 8953.79i 0.358144i
\(856\) 0 0
\(857\) 9676.46 + 5586.71i 0.385696 + 0.222682i 0.680294 0.732940i \(-0.261852\pi\)
−0.294598 + 0.955621i \(0.595186\pi\)
\(858\) 0 0
\(859\) −10035.8 17382.6i −0.398624 0.690437i 0.594932 0.803776i \(-0.297179\pi\)
−0.993556 + 0.113339i \(0.963845\pi\)
\(860\) 0 0
\(861\) −10045.2 + 9772.69i −0.397608 + 0.386821i
\(862\) 0 0
\(863\) −16644.7 + 9609.81i −0.656537 + 0.379052i −0.790956 0.611873i \(-0.790416\pi\)
0.134419 + 0.990925i \(0.457083\pi\)
\(864\) 0 0
\(865\) 4284.22 7420.49i 0.168402 0.291681i
\(866\) 0 0
\(867\) −61021.5 −2.39031
\(868\) 0 0
\(869\) 42419.8 1.65592
\(870\) 0 0
\(871\) 1012.86 1754.32i 0.0394023 0.0682467i
\(872\) 0 0
\(873\) 4988.72 2880.24i 0.193405 0.111662i
\(874\) 0 0
\(875\) 19488.5 + 5510.23i 0.752950 + 0.212891i
\(876\) 0 0
\(877\) 15336.1 + 26563.0i 0.590496 + 1.02277i 0.994166 + 0.107864i \(0.0344010\pi\)
−0.403670 + 0.914905i \(0.632266\pi\)
\(878\) 0 0
\(879\) 19195.6 + 11082.6i 0.736579 + 0.425264i
\(880\) 0 0
\(881\) 37453.2i 1.43227i 0.697962 + 0.716135i \(0.254091\pi\)
−0.697962 + 0.716135i \(0.745909\pi\)
\(882\) 0 0
\(883\) 28915.6i 1.10202i 0.834497 + 0.551012i \(0.185758\pi\)
−0.834497 + 0.551012i \(0.814242\pi\)
\(884\) 0 0
\(885\) −9579.23 5530.57i −0.363844 0.210066i
\(886\) 0 0
\(887\) 18831.9 + 32617.7i 0.712866 + 1.23472i 0.963777 + 0.266710i \(0.0859365\pi\)
−0.250911 + 0.968010i \(0.580730\pi\)
\(888\) 0 0
\(889\) 29327.9 + 8292.26i 1.10644 + 0.312838i
\(890\) 0 0
\(891\) −31660.6 + 18279.3i −1.19043 + 0.687294i
\(892\) 0 0
\(893\) −3349.50 + 5801.51i −0.125517 + 0.217402i
\(894\) 0 0
\(895\) 21518.0 0.803650
\(896\) 0 0
\(897\) −3990.29 −0.148531
\(898\) 0 0
\(899\) −749.408 + 1298.01i −0.0278022 + 0.0481548i
\(900\) 0 0
\(901\) −17732.8 + 10238.0i −0.655676 + 0.378555i
\(902\) 0 0
\(903\) −7541.92 + 7337.30i −0.277939 + 0.270399i
\(904\) 0 0
\(905\) 6343.09 + 10986.6i 0.232985 + 0.403542i
\(906\) 0 0
\(907\) 18222.8 + 10520.9i 0.667119 + 0.385161i 0.794984 0.606630i \(-0.207479\pi\)
−0.127865 + 0.991792i \(0.540813\pi\)
\(908\) 0 0
\(909\) 16377.4i 0.597584i
\(910\) 0 0
\(911\) 9510.87i 0.345894i 0.984931 + 0.172947i \(0.0553289\pi\)
−0.984931 + 0.172947i \(0.944671\pi\)
\(912\) 0 0
\(913\) 16834.1 + 9719.16i 0.610215 + 0.352308i
\(914\) 0 0
\(915\) −9050.02 15675.1i −0.326978 0.566342i
\(916\) 0 0
\(917\) −13699.2 + 3469.51i −0.493333 + 0.124944i
\(918\) 0 0
\(919\) −6898.95 + 3983.11i −0.247634 + 0.142971i −0.618680 0.785643i \(-0.712332\pi\)
0.371047 + 0.928614i \(0.378999\pi\)
\(920\) 0 0
\(921\) 21481.7 37207.4i 0.768562 1.33119i
\(922\) 0 0
\(923\) 1306.92 0.0466064
\(924\) 0 0
\(925\) 12049.7 0.428316
\(926\) 0 0
\(927\) −18063.2 + 31286.3i −0.639992 + 1.10850i
\(928\) 0 0
\(929\) 1439.51 831.103i 0.0508384 0.0293516i −0.474365 0.880328i \(-0.657322\pi\)
0.525204 + 0.850976i \(0.323989\pi\)
\(930\) 0 0
\(931\) 859.929 31260.1i 0.0302718 1.10044i
\(932\) 0 0
\(933\) 7891.67 + 13668.8i 0.276915 + 0.479631i
\(934\) 0 0
\(935\) −20742.2 11975.5i −0.725500 0.418867i
\(936\) 0 0
\(937\) 11523.9i 0.401783i 0.979614 + 0.200891i \(0.0643838\pi\)
−0.979614 + 0.200891i \(0.935616\pi\)
\(938\) 0 0
\(939\) 39650.2i 1.37799i
\(940\) 0 0
\(941\) 13692.6 + 7905.45i 0.474354 + 0.273868i 0.718061 0.695981i \(-0.245030\pi\)
−0.243707 + 0.969849i \(0.578363\pi\)
\(942\) 0 0
\(943\) −9381.65 16249.5i −0.323975 0.561141i
\(944\) 0 0
\(945\) 1001.63 + 3954.90i 0.0344795 + 0.136141i
\(946\) 0 0
\(947\) −20479.9 + 11824.1i −0.702752 + 0.405734i −0.808372 0.588672i \(-0.799651\pi\)
0.105619 + 0.994407i \(0.466317\pi\)
\(948\) 0 0
\(949\) 367.929 637.272i 0.0125853 0.0217984i
\(950\) 0 0
\(951\) −30249.6 −1.03145
\(952\) 0 0
\(953\) 23736.6 0.806825 0.403413 0.915018i \(-0.367824\pi\)
0.403413 + 0.915018i \(0.367824\pi\)
\(954\) 0 0
\(955\) −975.572 + 1689.74i −0.0330563 + 0.0572552i
\(956\) 0 0
\(957\) 33150.2 19139.3i 1.11974 0.646485i
\(958\) 0 0
\(959\) 9336.18 + 9596.54i 0.314370 + 0.323137i
\(960\) 0 0
\(961\) 14830.5 + 25687.2i 0.497819 + 0.862247i
\(962\) 0 0
\(963\) 1314.79 + 759.097i 0.0439965 + 0.0254014i
\(964\) 0 0
\(965\) 14552.6i 0.485456i
\(966\) 0 0
\(967\) 37667.0i 1.25263i 0.779571 + 0.626314i \(0.215437\pi\)
−0.779571 + 0.626314i \(0.784563\pi\)
\(968\) 0 0
\(969\) −63786.8 36827.3i −2.11468 1.22091i
\(970\) 0 0
\(971\) −14502.0 25118.3i −0.479292 0.830159i 0.520426 0.853907i \(-0.325773\pi\)
−0.999718 + 0.0237484i \(0.992440\pi\)
\(972\) 0 0
\(973\) 8260.51 29215.6i 0.272168 0.962600i
\(974\) 0 0
\(975\) −2060.32 + 1189.53i −0.0676750 + 0.0390722i
\(976\) 0 0
\(977\) −11699.4 + 20263.9i −0.383108 + 0.663563i −0.991505 0.130070i \(-0.958480\pi\)
0.608397 + 0.793633i \(0.291813\pi\)
\(978\) 0 0
\(979\) 37676.5 1.22997
\(980\) 0 0
\(981\) −1582.78 −0.0515129
\(982\) 0 0
\(983\) 5578.49 9662.22i 0.181003 0.313507i −0.761219 0.648495i \(-0.775399\pi\)
0.942222 + 0.334988i \(0.108732\pi\)
\(984\) 0 0
\(985\) −11042.7 + 6375.50i −0.357208 + 0.206234i
\(986\) 0 0
\(987\) −2548.05 + 9011.91i −0.0821737 + 0.290631i
\(988\) 0 0
\(989\) −7043.71 12200.1i −0.226468 0.392254i
\(990\) 0 0
\(991\) −49165.5 28385.7i −1.57598 0.909892i −0.995412 0.0956788i \(-0.969498\pi\)
−0.580566 0.814213i \(-0.697169\pi\)
\(992\) 0 0
\(993\) 43882.6i 1.40239i
\(994\) 0 0
\(995\) 20034.2i 0.638317i
\(996\) 0 0
\(997\) −8650.18 4994.18i −0.274778 0.158643i 0.356279 0.934380i \(-0.384045\pi\)
−0.631057 + 0.775736i \(0.717379\pi\)
\(998\) 0 0
\(999\) 2704.83 + 4684.90i 0.0856627 + 0.148372i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.p.h.255.2 20
4.3 odd 2 inner 448.4.p.h.255.9 20
7.5 odd 6 inner 448.4.p.h.383.9 20
8.3 odd 2 28.4.f.a.3.3 20
8.5 even 2 28.4.f.a.3.5 yes 20
28.19 even 6 inner 448.4.p.h.383.2 20
56.3 even 6 196.4.d.b.195.17 20
56.5 odd 6 28.4.f.a.19.3 yes 20
56.11 odd 6 196.4.d.b.195.18 20
56.13 odd 2 196.4.f.d.31.5 20
56.19 even 6 28.4.f.a.19.5 yes 20
56.27 even 2 196.4.f.d.31.3 20
56.37 even 6 196.4.f.d.19.3 20
56.45 odd 6 196.4.d.b.195.20 20
56.51 odd 6 196.4.f.d.19.5 20
56.53 even 6 196.4.d.b.195.19 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.4.f.a.3.3 20 8.3 odd 2
28.4.f.a.3.5 yes 20 8.5 even 2
28.4.f.a.19.3 yes 20 56.5 odd 6
28.4.f.a.19.5 yes 20 56.19 even 6
196.4.d.b.195.17 20 56.3 even 6
196.4.d.b.195.18 20 56.11 odd 6
196.4.d.b.195.19 20 56.53 even 6
196.4.d.b.195.20 20 56.45 odd 6
196.4.f.d.19.3 20 56.37 even 6
196.4.f.d.19.5 20 56.51 odd 6
196.4.f.d.31.3 20 56.27 even 2
196.4.f.d.31.5 20 56.13 odd 2
448.4.p.h.255.2 20 1.1 even 1 trivial
448.4.p.h.255.9 20 4.3 odd 2 inner
448.4.p.h.383.2 20 28.19 even 6 inner
448.4.p.h.383.9 20 7.5 odd 6 inner