Properties

Label 45.10.b.a
Level 4545
Weight 1010
Character orbit 45.b
Analytic conductor 23.17723.177
Analytic rank 00
Dimension 22
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,10,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 10 10
Character orbit: [χ][\chi] == 45.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.176612627423.1766126274
Analytic rank: 00
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{-5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+5 x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=5\beta = \sqrt{-5}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+19βq21293q4625βq514839βq8+59375q10+747689q16+277822βq17+1036316q19+808125βq201180124βq231953125q25++766718533βq98+O(q100) q + 19 \beta q^{2} - 1293 q^{4} - 625 \beta q^{5} - 14839 \beta q^{8} + 59375 q^{10} + 747689 q^{16} + 277822 \beta q^{17} + 1036316 q^{19} + 808125 \beta q^{20} - 1180124 \beta q^{23} - 1953125 q^{25} + \cdots + 766718533 \beta q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2586q4+118750q10+1495378q16+2072632q193906250q25+16494736q3152786180q3492743750q40+224223560q46+80707214q49+395789764q61489985834q64+639258040q94+O(q100) 2 q - 2586 q^{4} + 118750 q^{10} + 1495378 q^{16} + 2072632 q^{19} - 3906250 q^{25} + 16494736 q^{31} - 52786180 q^{34} - 92743750 q^{40} + 224223560 q^{46} + 80707214 q^{49} + 395789764 q^{61} - 489985834 q^{64}+ \cdots - 639258040 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/45Z)×\left(\mathbb{Z}/45\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
2.23607i
2.23607i
42.4853i 0 −1293.00 1397.54i 0 0 33181.0i 0 59375.0
19.2 42.4853i 0 −1293.00 1397.54i 0 0 33181.0i 0 59375.0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
3.b odd 2 1 inner
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.10.b.a 2
3.b odd 2 1 inner 45.10.b.a 2
5.b even 2 1 inner 45.10.b.a 2
5.c odd 4 2 225.10.a.i 2
15.d odd 2 1 CM 45.10.b.a 2
15.e even 4 2 225.10.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.10.b.a 2 1.a even 1 1 trivial
45.10.b.a 2 3.b odd 2 1 inner
45.10.b.a 2 5.b even 2 1 inner
45.10.b.a 2 15.d odd 2 1 CM
225.10.a.i 2 5.c odd 4 2
225.10.a.i 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+1805 T_{2}^{2} + 1805 acting on S10new(45,[χ])S_{10}^{\mathrm{new}}(45, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1805 T^{2} + 1805 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+1953125 T^{2} + 1953125 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+385925318420 T^{2} + 385925318420 Copy content Toggle raw display
1919 (T1036316)2 (T - 1036316)^{2} Copy content Toggle raw display
2323 T2+6963463276880 T^{2} + 6963463276880 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T8247368)2 (T - 8247368)^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2+56599839571280 T^{2} + 56599839571280 Copy content Toggle raw display
5353 T2+14 ⁣ ⁣20 T^{2} + 14\!\cdots\!20 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T197894882)2 (T - 197894882)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T421557104)2 (T - 421557104)^{2} Copy content Toggle raw display
8383 T2+16 ⁣ ⁣20 T^{2} + 16\!\cdots\!20 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less