Properties

Label 450.4.a.o
Level 450450
Weight 44
Character orbit 450.a
Self dual yes
Analytic conductor 26.55126.551
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.550859502626.5508595026
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 150)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+4q4q7+8q842q1167q132q14+16q1654q17115q1984q22+162q23134q264q28+210q29193q31+32q32108q34+684q98+O(q100) q + 2 q^{2} + 4 q^{4} - q^{7} + 8 q^{8} - 42 q^{11} - 67 q^{13} - 2 q^{14} + 16 q^{16} - 54 q^{17} - 115 q^{19} - 84 q^{22} + 162 q^{23} - 134 q^{26} - 4 q^{28} + 210 q^{29} - 193 q^{31} + 32 q^{32} - 108 q^{34}+ \cdots - 684 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 0 4.00000 0 0 −1.00000 8.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.a.o 1
3.b odd 2 1 150.4.a.a 1
5.b even 2 1 450.4.a.f 1
5.c odd 4 2 450.4.c.a 2
12.b even 2 1 1200.4.a.bb 1
15.d odd 2 1 150.4.a.h yes 1
15.e even 4 2 150.4.c.e 2
60.h even 2 1 1200.4.a.i 1
60.l odd 4 2 1200.4.f.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.4.a.a 1 3.b odd 2 1
150.4.a.h yes 1 15.d odd 2 1
150.4.c.e 2 15.e even 4 2
450.4.a.f 1 5.b even 2 1
450.4.a.o 1 1.a even 1 1 trivial
450.4.c.a 2 5.c odd 4 2
1200.4.a.i 1 60.h even 2 1
1200.4.a.bb 1 12.b even 2 1
1200.4.f.c 2 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(450))S_{4}^{\mathrm{new}}(\Gamma_0(450)):

T7+1 T_{7} + 1 Copy content Toggle raw display
T11+42 T_{11} + 42 Copy content Toggle raw display
T17+54 T_{17} + 54 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+1 T + 1 Copy content Toggle raw display
1111 T+42 T + 42 Copy content Toggle raw display
1313 T+67 T + 67 Copy content Toggle raw display
1717 T+54 T + 54 Copy content Toggle raw display
1919 T+115 T + 115 Copy content Toggle raw display
2323 T162 T - 162 Copy content Toggle raw display
2929 T210 T - 210 Copy content Toggle raw display
3131 T+193 T + 193 Copy content Toggle raw display
3737 T+286 T + 286 Copy content Toggle raw display
4141 T+12 T + 12 Copy content Toggle raw display
4343 T263 T - 263 Copy content Toggle raw display
4747 T+414 T + 414 Copy content Toggle raw display
5353 T192 T - 192 Copy content Toggle raw display
5959 T+690 T + 690 Copy content Toggle raw display
6161 T+733 T + 733 Copy content Toggle raw display
6767 T299 T - 299 Copy content Toggle raw display
7171 T228 T - 228 Copy content Toggle raw display
7373 T938 T - 938 Copy content Toggle raw display
7979 T+160 T + 160 Copy content Toggle raw display
8383 T462 T - 462 Copy content Toggle raw display
8989 T240 T - 240 Copy content Toggle raw display
9797 T+511 T + 511 Copy content Toggle raw display
show more
show less