Properties

Label 450.4.c.b.199.1
Level $450$
Weight $4$
Character 450.199
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 450.199
Dual form 450.4.c.b.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} +11.0000i q^{7} +8.00000i q^{8} +O(q^{10})\) \(q-2.00000i q^{2} -4.00000 q^{4} +11.0000i q^{7} +8.00000i q^{8} -36.0000 q^{11} -17.0000i q^{13} +22.0000 q^{14} +16.0000 q^{16} -12.0000i q^{17} +91.0000 q^{19} +72.0000i q^{22} -60.0000i q^{23} -34.0000 q^{26} -44.0000i q^{28} +276.000 q^{29} +191.000 q^{31} -32.0000i q^{32} -24.0000 q^{34} +254.000i q^{37} -182.000i q^{38} -60.0000 q^{41} +49.0000i q^{43} +144.000 q^{44} -120.000 q^{46} -600.000i q^{47} +222.000 q^{49} +68.0000i q^{52} -612.000i q^{53} -88.0000 q^{56} -552.000i q^{58} +744.000 q^{59} +167.000 q^{61} -382.000i q^{62} -64.0000 q^{64} -457.000i q^{67} +48.0000i q^{68} -588.000 q^{71} +970.000i q^{73} +508.000 q^{74} -364.000 q^{76} -396.000i q^{77} -164.000 q^{79} +120.000i q^{82} -696.000i q^{83} +98.0000 q^{86} -288.000i q^{88} +1248.00 q^{89} +187.000 q^{91} +240.000i q^{92} -1200.00 q^{94} -1099.00i q^{97} -444.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 72 q^{11} + 44 q^{14} + 32 q^{16} + 182 q^{19} - 68 q^{26} + 552 q^{29} + 382 q^{31} - 48 q^{34} - 120 q^{41} + 288 q^{44} - 240 q^{46} + 444 q^{49} - 176 q^{56} + 1488 q^{59} + 334 q^{61} - 128 q^{64} - 1176 q^{71} + 1016 q^{74} - 728 q^{76} - 328 q^{79} + 196 q^{86} + 2496 q^{89} + 374 q^{91} - 2400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 11.0000i 0.593944i 0.954886 + 0.296972i \(0.0959768\pi\)
−0.954886 + 0.296972i \(0.904023\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) −36.0000 −0.986764 −0.493382 0.869813i \(-0.664240\pi\)
−0.493382 + 0.869813i \(0.664240\pi\)
\(12\) 0 0
\(13\) − 17.0000i − 0.362689i −0.983420 0.181344i \(-0.941955\pi\)
0.983420 0.181344i \(-0.0580448\pi\)
\(14\) 22.0000 0.419982
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 12.0000i − 0.171202i −0.996330 0.0856008i \(-0.972719\pi\)
0.996330 0.0856008i \(-0.0272810\pi\)
\(18\) 0 0
\(19\) 91.0000 1.09878 0.549390 0.835566i \(-0.314860\pi\)
0.549390 + 0.835566i \(0.314860\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 72.0000i 0.697748i
\(23\) − 60.0000i − 0.543951i −0.962304 0.271975i \(-0.912323\pi\)
0.962304 0.271975i \(-0.0876769\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −34.0000 −0.256460
\(27\) 0 0
\(28\) − 44.0000i − 0.296972i
\(29\) 276.000 1.76731 0.883654 0.468141i \(-0.155076\pi\)
0.883654 + 0.468141i \(0.155076\pi\)
\(30\) 0 0
\(31\) 191.000 1.10660 0.553300 0.832982i \(-0.313368\pi\)
0.553300 + 0.832982i \(0.313368\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 0 0
\(34\) −24.0000 −0.121058
\(35\) 0 0
\(36\) 0 0
\(37\) 254.000i 1.12858i 0.825578 + 0.564288i \(0.190849\pi\)
−0.825578 + 0.564288i \(0.809151\pi\)
\(38\) − 182.000i − 0.776955i
\(39\) 0 0
\(40\) 0 0
\(41\) −60.0000 −0.228547 −0.114273 0.993449i \(-0.536454\pi\)
−0.114273 + 0.993449i \(0.536454\pi\)
\(42\) 0 0
\(43\) 49.0000i 0.173777i 0.996218 + 0.0868887i \(0.0276925\pi\)
−0.996218 + 0.0868887i \(0.972308\pi\)
\(44\) 144.000 0.493382
\(45\) 0 0
\(46\) −120.000 −0.384631
\(47\) − 600.000i − 1.86211i −0.364884 0.931053i \(-0.618891\pi\)
0.364884 0.931053i \(-0.381109\pi\)
\(48\) 0 0
\(49\) 222.000 0.647230
\(50\) 0 0
\(51\) 0 0
\(52\) 68.0000i 0.181344i
\(53\) − 612.000i − 1.58613i −0.609140 0.793063i \(-0.708485\pi\)
0.609140 0.793063i \(-0.291515\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −88.0000 −0.209991
\(57\) 0 0
\(58\) − 552.000i − 1.24968i
\(59\) 744.000 1.64170 0.820852 0.571141i \(-0.193499\pi\)
0.820852 + 0.571141i \(0.193499\pi\)
\(60\) 0 0
\(61\) 167.000 0.350527 0.175264 0.984522i \(-0.443922\pi\)
0.175264 + 0.984522i \(0.443922\pi\)
\(62\) − 382.000i − 0.782485i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 457.000i − 0.833305i −0.909066 0.416653i \(-0.863203\pi\)
0.909066 0.416653i \(-0.136797\pi\)
\(68\) 48.0000i 0.0856008i
\(69\) 0 0
\(70\) 0 0
\(71\) −588.000 −0.982856 −0.491428 0.870918i \(-0.663525\pi\)
−0.491428 + 0.870918i \(0.663525\pi\)
\(72\) 0 0
\(73\) 970.000i 1.55520i 0.628757 + 0.777602i \(0.283564\pi\)
−0.628757 + 0.777602i \(0.716436\pi\)
\(74\) 508.000 0.798024
\(75\) 0 0
\(76\) −364.000 −0.549390
\(77\) − 396.000i − 0.586083i
\(78\) 0 0
\(79\) −164.000 −0.233563 −0.116781 0.993158i \(-0.537258\pi\)
−0.116781 + 0.993158i \(0.537258\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 120.000i 0.161607i
\(83\) − 696.000i − 0.920433i −0.887807 0.460216i \(-0.847772\pi\)
0.887807 0.460216i \(-0.152228\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 98.0000 0.122879
\(87\) 0 0
\(88\) − 288.000i − 0.348874i
\(89\) 1248.00 1.48638 0.743190 0.669081i \(-0.233312\pi\)
0.743190 + 0.669081i \(0.233312\pi\)
\(90\) 0 0
\(91\) 187.000 0.215417
\(92\) 240.000i 0.271975i
\(93\) 0 0
\(94\) −1200.00 −1.31671
\(95\) 0 0
\(96\) 0 0
\(97\) − 1099.00i − 1.15038i −0.818021 0.575188i \(-0.804929\pi\)
0.818021 0.575188i \(-0.195071\pi\)
\(98\) − 444.000i − 0.457661i
\(99\) 0 0
\(100\) 0 0
\(101\) −444.000 −0.437422 −0.218711 0.975790i \(-0.570185\pi\)
−0.218711 + 0.975790i \(0.570185\pi\)
\(102\) 0 0
\(103\) 916.000i 0.876273i 0.898908 + 0.438137i \(0.144361\pi\)
−0.898908 + 0.438137i \(0.855639\pi\)
\(104\) 136.000 0.128230
\(105\) 0 0
\(106\) −1224.00 −1.12156
\(107\) 204.000i 0.184312i 0.995745 + 0.0921562i \(0.0293759\pi\)
−0.995745 + 0.0921562i \(0.970624\pi\)
\(108\) 0 0
\(109\) 967.000 0.849741 0.424871 0.905254i \(-0.360320\pi\)
0.424871 + 0.905254i \(0.360320\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 176.000i 0.148486i
\(113\) 672.000i 0.559438i 0.960082 + 0.279719i \(0.0902412\pi\)
−0.960082 + 0.279719i \(0.909759\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1104.00 −0.883654
\(117\) 0 0
\(118\) − 1488.00i − 1.16086i
\(119\) 132.000 0.101684
\(120\) 0 0
\(121\) −35.0000 −0.0262960
\(122\) − 334.000i − 0.247860i
\(123\) 0 0
\(124\) −764.000 −0.553300
\(125\) 0 0
\(126\) 0 0
\(127\) − 1924.00i − 1.34431i −0.740410 0.672155i \(-0.765369\pi\)
0.740410 0.672155i \(-0.234631\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 756.000 0.504214 0.252107 0.967699i \(-0.418877\pi\)
0.252107 + 0.967699i \(0.418877\pi\)
\(132\) 0 0
\(133\) 1001.00i 0.652614i
\(134\) −914.000 −0.589236
\(135\) 0 0
\(136\) 96.0000 0.0605289
\(137\) − 888.000i − 0.553773i −0.960903 0.276887i \(-0.910697\pi\)
0.960903 0.276887i \(-0.0893027\pi\)
\(138\) 0 0
\(139\) 160.000 0.0976333 0.0488166 0.998808i \(-0.484455\pi\)
0.0488166 + 0.998808i \(0.484455\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1176.00i 0.694984i
\(143\) 612.000i 0.357888i
\(144\) 0 0
\(145\) 0 0
\(146\) 1940.00 1.09970
\(147\) 0 0
\(148\) − 1016.00i − 0.564288i
\(149\) −3096.00 −1.70224 −0.851121 0.524969i \(-0.824077\pi\)
−0.851121 + 0.524969i \(0.824077\pi\)
\(150\) 0 0
\(151\) 1049.00 0.565340 0.282670 0.959217i \(-0.408780\pi\)
0.282670 + 0.959217i \(0.408780\pi\)
\(152\) 728.000i 0.388478i
\(153\) 0 0
\(154\) −792.000 −0.414423
\(155\) 0 0
\(156\) 0 0
\(157\) 2363.00i 1.20120i 0.799551 + 0.600599i \(0.205071\pi\)
−0.799551 + 0.600599i \(0.794929\pi\)
\(158\) 328.000i 0.165154i
\(159\) 0 0
\(160\) 0 0
\(161\) 660.000 0.323076
\(162\) 0 0
\(163\) 3235.00i 1.55451i 0.629187 + 0.777254i \(0.283388\pi\)
−0.629187 + 0.777254i \(0.716612\pi\)
\(164\) 240.000 0.114273
\(165\) 0 0
\(166\) −1392.00 −0.650844
\(167\) 2772.00i 1.28445i 0.766515 + 0.642227i \(0.221989\pi\)
−0.766515 + 0.642227i \(0.778011\pi\)
\(168\) 0 0
\(169\) 1908.00 0.868457
\(170\) 0 0
\(171\) 0 0
\(172\) − 196.000i − 0.0868887i
\(173\) − 84.0000i − 0.0369156i −0.999830 0.0184578i \(-0.994124\pi\)
0.999830 0.0184578i \(-0.00587564\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −576.000 −0.246691
\(177\) 0 0
\(178\) − 2496.00i − 1.05103i
\(179\) −2736.00 −1.14245 −0.571224 0.820794i \(-0.693531\pi\)
−0.571224 + 0.820794i \(0.693531\pi\)
\(180\) 0 0
\(181\) 4397.00 1.80567 0.902835 0.429986i \(-0.141482\pi\)
0.902835 + 0.429986i \(0.141482\pi\)
\(182\) − 374.000i − 0.152323i
\(183\) 0 0
\(184\) 480.000 0.192316
\(185\) 0 0
\(186\) 0 0
\(187\) 432.000i 0.168936i
\(188\) 2400.00i 0.931053i
\(189\) 0 0
\(190\) 0 0
\(191\) 3108.00 1.17742 0.588709 0.808345i \(-0.299636\pi\)
0.588709 + 0.808345i \(0.299636\pi\)
\(192\) 0 0
\(193\) − 2615.00i − 0.975294i −0.873041 0.487647i \(-0.837855\pi\)
0.873041 0.487647i \(-0.162145\pi\)
\(194\) −2198.00 −0.813439
\(195\) 0 0
\(196\) −888.000 −0.323615
\(197\) 3624.00i 1.31066i 0.755344 + 0.655328i \(0.227470\pi\)
−0.755344 + 0.655328i \(0.772530\pi\)
\(198\) 0 0
\(199\) 1819.00 0.647967 0.323984 0.946063i \(-0.394978\pi\)
0.323984 + 0.946063i \(0.394978\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 888.000i 0.309304i
\(203\) 3036.00i 1.04968i
\(204\) 0 0
\(205\) 0 0
\(206\) 1832.00 0.619619
\(207\) 0 0
\(208\) − 272.000i − 0.0906721i
\(209\) −3276.00 −1.08424
\(210\) 0 0
\(211\) −1999.00 −0.652212 −0.326106 0.945333i \(-0.605737\pi\)
−0.326106 + 0.945333i \(0.605737\pi\)
\(212\) 2448.00i 0.793063i
\(213\) 0 0
\(214\) 408.000 0.130329
\(215\) 0 0
\(216\) 0 0
\(217\) 2101.00i 0.657259i
\(218\) − 1934.00i − 0.600858i
\(219\) 0 0
\(220\) 0 0
\(221\) −204.000 −0.0620929
\(222\) 0 0
\(223\) 493.000i 0.148044i 0.997257 + 0.0740218i \(0.0235834\pi\)
−0.997257 + 0.0740218i \(0.976417\pi\)
\(224\) 352.000 0.104995
\(225\) 0 0
\(226\) 1344.00 0.395582
\(227\) − 300.000i − 0.0877167i −0.999038 0.0438584i \(-0.986035\pi\)
0.999038 0.0438584i \(-0.0139650\pi\)
\(228\) 0 0
\(229\) 79.0000 0.0227968 0.0113984 0.999935i \(-0.496372\pi\)
0.0113984 + 0.999935i \(0.496372\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2208.00i 0.624838i
\(233\) 6108.00i 1.71738i 0.512500 + 0.858688i \(0.328720\pi\)
−0.512500 + 0.858688i \(0.671280\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2976.00 −0.820852
\(237\) 0 0
\(238\) − 264.000i − 0.0719016i
\(239\) −2868.00 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 2705.00 0.723006 0.361503 0.932371i \(-0.382264\pi\)
0.361503 + 0.932371i \(0.382264\pi\)
\(242\) 70.0000i 0.0185941i
\(243\) 0 0
\(244\) −668.000 −0.175264
\(245\) 0 0
\(246\) 0 0
\(247\) − 1547.00i − 0.398515i
\(248\) 1528.00i 0.391242i
\(249\) 0 0
\(250\) 0 0
\(251\) −4008.00 −1.00790 −0.503950 0.863733i \(-0.668120\pi\)
−0.503950 + 0.863733i \(0.668120\pi\)
\(252\) 0 0
\(253\) 2160.00i 0.536751i
\(254\) −3848.00 −0.950571
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1992.00i 0.483492i 0.970340 + 0.241746i \(0.0777201\pi\)
−0.970340 + 0.241746i \(0.922280\pi\)
\(258\) 0 0
\(259\) −2794.00 −0.670312
\(260\) 0 0
\(261\) 0 0
\(262\) − 1512.00i − 0.356533i
\(263\) − 972.000i − 0.227894i −0.993487 0.113947i \(-0.963651\pi\)
0.993487 0.113947i \(-0.0363494\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2002.00 0.461468
\(267\) 0 0
\(268\) 1828.00i 0.416653i
\(269\) 1812.00 0.410705 0.205352 0.978688i \(-0.434166\pi\)
0.205352 + 0.978688i \(0.434166\pi\)
\(270\) 0 0
\(271\) −5092.00 −1.14139 −0.570696 0.821162i \(-0.693326\pi\)
−0.570696 + 0.821162i \(0.693326\pi\)
\(272\) − 192.000i − 0.0428004i
\(273\) 0 0
\(274\) −1776.00 −0.391577
\(275\) 0 0
\(276\) 0 0
\(277\) 569.000i 0.123422i 0.998094 + 0.0617110i \(0.0196557\pi\)
−0.998094 + 0.0617110i \(0.980344\pi\)
\(278\) − 320.000i − 0.0690371i
\(279\) 0 0
\(280\) 0 0
\(281\) 6468.00 1.37313 0.686563 0.727070i \(-0.259118\pi\)
0.686563 + 0.727070i \(0.259118\pi\)
\(282\) 0 0
\(283\) − 3557.00i − 0.747144i −0.927601 0.373572i \(-0.878133\pi\)
0.927601 0.373572i \(-0.121867\pi\)
\(284\) 2352.00 0.491428
\(285\) 0 0
\(286\) 1224.00 0.253065
\(287\) − 660.000i − 0.135744i
\(288\) 0 0
\(289\) 4769.00 0.970690
\(290\) 0 0
\(291\) 0 0
\(292\) − 3880.00i − 0.777602i
\(293\) − 5376.00i − 1.07191i −0.844247 0.535954i \(-0.819952\pi\)
0.844247 0.535954i \(-0.180048\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2032.00 −0.399012
\(297\) 0 0
\(298\) 6192.00i 1.20367i
\(299\) −1020.00 −0.197285
\(300\) 0 0
\(301\) −539.000 −0.103214
\(302\) − 2098.00i − 0.399756i
\(303\) 0 0
\(304\) 1456.00 0.274695
\(305\) 0 0
\(306\) 0 0
\(307\) − 9343.00i − 1.73692i −0.495763 0.868458i \(-0.665111\pi\)
0.495763 0.868458i \(-0.334889\pi\)
\(308\) 1584.00i 0.293041i
\(309\) 0 0
\(310\) 0 0
\(311\) −1968.00 −0.358827 −0.179413 0.983774i \(-0.557420\pi\)
−0.179413 + 0.983774i \(0.557420\pi\)
\(312\) 0 0
\(313\) − 5675.00i − 1.02482i −0.858740 0.512412i \(-0.828752\pi\)
0.858740 0.512412i \(-0.171248\pi\)
\(314\) 4726.00 0.849375
\(315\) 0 0
\(316\) 656.000 0.116781
\(317\) − 2616.00i − 0.463499i −0.972775 0.231750i \(-0.925555\pi\)
0.972775 0.231750i \(-0.0744450\pi\)
\(318\) 0 0
\(319\) −9936.00 −1.74392
\(320\) 0 0
\(321\) 0 0
\(322\) − 1320.00i − 0.228449i
\(323\) − 1092.00i − 0.188113i
\(324\) 0 0
\(325\) 0 0
\(326\) 6470.00 1.09920
\(327\) 0 0
\(328\) − 480.000i − 0.0808036i
\(329\) 6600.00 1.10599
\(330\) 0 0
\(331\) −9664.00 −1.60478 −0.802389 0.596801i \(-0.796438\pi\)
−0.802389 + 0.596801i \(0.796438\pi\)
\(332\) 2784.00i 0.460216i
\(333\) 0 0
\(334\) 5544.00 0.908246
\(335\) 0 0
\(336\) 0 0
\(337\) 7637.00i 1.23446i 0.786782 + 0.617231i \(0.211746\pi\)
−0.786782 + 0.617231i \(0.788254\pi\)
\(338\) − 3816.00i − 0.614092i
\(339\) 0 0
\(340\) 0 0
\(341\) −6876.00 −1.09195
\(342\) 0 0
\(343\) 6215.00i 0.978363i
\(344\) −392.000 −0.0614396
\(345\) 0 0
\(346\) −168.000 −0.0261033
\(347\) − 5640.00i − 0.872539i −0.899816 0.436270i \(-0.856299\pi\)
0.899816 0.436270i \(-0.143701\pi\)
\(348\) 0 0
\(349\) −7382.00 −1.13223 −0.566117 0.824325i \(-0.691555\pi\)
−0.566117 + 0.824325i \(0.691555\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1152.00i 0.174437i
\(353\) − 10740.0i − 1.61936i −0.586875 0.809678i \(-0.699642\pi\)
0.586875 0.809678i \(-0.300358\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4992.00 −0.743190
\(357\) 0 0
\(358\) 5472.00i 0.807833i
\(359\) 9276.00 1.36370 0.681850 0.731492i \(-0.261176\pi\)
0.681850 + 0.731492i \(0.261176\pi\)
\(360\) 0 0
\(361\) 1422.00 0.207319
\(362\) − 8794.00i − 1.27680i
\(363\) 0 0
\(364\) −748.000 −0.107708
\(365\) 0 0
\(366\) 0 0
\(367\) − 7387.00i − 1.05068i −0.850893 0.525338i \(-0.823939\pi\)
0.850893 0.525338i \(-0.176061\pi\)
\(368\) − 960.000i − 0.135988i
\(369\) 0 0
\(370\) 0 0
\(371\) 6732.00 0.942070
\(372\) 0 0
\(373\) − 10259.0i − 1.42410i −0.702127 0.712052i \(-0.747766\pi\)
0.702127 0.712052i \(-0.252234\pi\)
\(374\) 864.000 0.119456
\(375\) 0 0
\(376\) 4800.00 0.658354
\(377\) − 4692.00i − 0.640982i
\(378\) 0 0
\(379\) −7655.00 −1.03750 −0.518748 0.854927i \(-0.673602\pi\)
−0.518748 + 0.854927i \(0.673602\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 6216.00i − 0.832561i
\(383\) − 600.000i − 0.0800485i −0.999199 0.0400242i \(-0.987256\pi\)
0.999199 0.0400242i \(-0.0127435\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5230.00 −0.689637
\(387\) 0 0
\(388\) 4396.00i 0.575188i
\(389\) 4068.00 0.530221 0.265110 0.964218i \(-0.414592\pi\)
0.265110 + 0.964218i \(0.414592\pi\)
\(390\) 0 0
\(391\) −720.000 −0.0931252
\(392\) 1776.00i 0.228830i
\(393\) 0 0
\(394\) 7248.00 0.926774
\(395\) 0 0
\(396\) 0 0
\(397\) 12647.0i 1.59883i 0.600781 + 0.799414i \(0.294857\pi\)
−0.600781 + 0.799414i \(0.705143\pi\)
\(398\) − 3638.00i − 0.458182i
\(399\) 0 0
\(400\) 0 0
\(401\) −9924.00 −1.23586 −0.617931 0.786232i \(-0.712029\pi\)
−0.617931 + 0.786232i \(0.712029\pi\)
\(402\) 0 0
\(403\) − 3247.00i − 0.401351i
\(404\) 1776.00 0.218711
\(405\) 0 0
\(406\) 6072.00 0.742237
\(407\) − 9144.00i − 1.11364i
\(408\) 0 0
\(409\) 10903.0 1.31814 0.659069 0.752082i \(-0.270950\pi\)
0.659069 + 0.752082i \(0.270950\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 3664.00i − 0.438137i
\(413\) 8184.00i 0.975081i
\(414\) 0 0
\(415\) 0 0
\(416\) −544.000 −0.0641149
\(417\) 0 0
\(418\) 6552.00i 0.766672i
\(419\) 14796.0 1.72514 0.862568 0.505941i \(-0.168855\pi\)
0.862568 + 0.505941i \(0.168855\pi\)
\(420\) 0 0
\(421\) −4606.00 −0.533213 −0.266607 0.963805i \(-0.585902\pi\)
−0.266607 + 0.963805i \(0.585902\pi\)
\(422\) 3998.00i 0.461184i
\(423\) 0 0
\(424\) 4896.00 0.560780
\(425\) 0 0
\(426\) 0 0
\(427\) 1837.00i 0.208194i
\(428\) − 816.000i − 0.0921562i
\(429\) 0 0
\(430\) 0 0
\(431\) −13860.0 −1.54899 −0.774493 0.632583i \(-0.781995\pi\)
−0.774493 + 0.632583i \(0.781995\pi\)
\(432\) 0 0
\(433\) − 8051.00i − 0.893548i −0.894647 0.446774i \(-0.852573\pi\)
0.894647 0.446774i \(-0.147427\pi\)
\(434\) 4202.00 0.464752
\(435\) 0 0
\(436\) −3868.00 −0.424871
\(437\) − 5460.00i − 0.597682i
\(438\) 0 0
\(439\) −2087.00 −0.226895 −0.113448 0.993544i \(-0.536189\pi\)
−0.113448 + 0.993544i \(0.536189\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 408.000i 0.0439063i
\(443\) − 13368.0i − 1.43371i −0.697223 0.716854i \(-0.745581\pi\)
0.697223 0.716854i \(-0.254419\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 986.000 0.104683
\(447\) 0 0
\(448\) − 704.000i − 0.0742430i
\(449\) 5352.00 0.562531 0.281266 0.959630i \(-0.409246\pi\)
0.281266 + 0.959630i \(0.409246\pi\)
\(450\) 0 0
\(451\) 2160.00 0.225522
\(452\) − 2688.00i − 0.279719i
\(453\) 0 0
\(454\) −600.000 −0.0620251
\(455\) 0 0
\(456\) 0 0
\(457\) 13718.0i 1.40416i 0.712098 + 0.702080i \(0.247745\pi\)
−0.712098 + 0.702080i \(0.752255\pi\)
\(458\) − 158.000i − 0.0161198i
\(459\) 0 0
\(460\) 0 0
\(461\) 11868.0 1.19902 0.599510 0.800368i \(-0.295362\pi\)
0.599510 + 0.800368i \(0.295362\pi\)
\(462\) 0 0
\(463\) − 6572.00i − 0.659669i −0.944039 0.329834i \(-0.893007\pi\)
0.944039 0.329834i \(-0.106993\pi\)
\(464\) 4416.00 0.441827
\(465\) 0 0
\(466\) 12216.0 1.21437
\(467\) 18636.0i 1.84662i 0.384056 + 0.923310i \(0.374527\pi\)
−0.384056 + 0.923310i \(0.625473\pi\)
\(468\) 0 0
\(469\) 5027.00 0.494937
\(470\) 0 0
\(471\) 0 0
\(472\) 5952.00i 0.580430i
\(473\) − 1764.00i − 0.171477i
\(474\) 0 0
\(475\) 0 0
\(476\) −528.000 −0.0508421
\(477\) 0 0
\(478\) 5736.00i 0.548867i
\(479\) −5256.00 −0.501363 −0.250681 0.968070i \(-0.580655\pi\)
−0.250681 + 0.968070i \(0.580655\pi\)
\(480\) 0 0
\(481\) 4318.00 0.409322
\(482\) − 5410.00i − 0.511242i
\(483\) 0 0
\(484\) 140.000 0.0131480
\(485\) 0 0
\(486\) 0 0
\(487\) − 9991.00i − 0.929642i −0.885405 0.464821i \(-0.846119\pi\)
0.885405 0.464821i \(-0.153881\pi\)
\(488\) 1336.00i 0.123930i
\(489\) 0 0
\(490\) 0 0
\(491\) 1056.00 0.0970603 0.0485302 0.998822i \(-0.484546\pi\)
0.0485302 + 0.998822i \(0.484546\pi\)
\(492\) 0 0
\(493\) − 3312.00i − 0.302566i
\(494\) −3094.00 −0.281793
\(495\) 0 0
\(496\) 3056.00 0.276650
\(497\) − 6468.00i − 0.583761i
\(498\) 0 0
\(499\) −12329.0 −1.10606 −0.553028 0.833163i \(-0.686528\pi\)
−0.553028 + 0.833163i \(0.686528\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 8016.00i 0.712692i
\(503\) − 2460.00i − 0.218064i −0.994038 0.109032i \(-0.965225\pi\)
0.994038 0.109032i \(-0.0347750\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4320.00 0.379540
\(507\) 0 0
\(508\) 7696.00i 0.672155i
\(509\) −1848.00 −0.160926 −0.0804628 0.996758i \(-0.525640\pi\)
−0.0804628 + 0.996758i \(0.525640\pi\)
\(510\) 0 0
\(511\) −10670.0 −0.923705
\(512\) − 512.000i − 0.0441942i
\(513\) 0 0
\(514\) 3984.00 0.341881
\(515\) 0 0
\(516\) 0 0
\(517\) 21600.0i 1.83746i
\(518\) 5588.00i 0.473982i
\(519\) 0 0
\(520\) 0 0
\(521\) −12732.0 −1.07063 −0.535316 0.844652i \(-0.679807\pi\)
−0.535316 + 0.844652i \(0.679807\pi\)
\(522\) 0 0
\(523\) − 9977.00i − 0.834156i −0.908871 0.417078i \(-0.863054\pi\)
0.908871 0.417078i \(-0.136946\pi\)
\(524\) −3024.00 −0.252107
\(525\) 0 0
\(526\) −1944.00 −0.161145
\(527\) − 2292.00i − 0.189452i
\(528\) 0 0
\(529\) 8567.00 0.704118
\(530\) 0 0
\(531\) 0 0
\(532\) − 4004.00i − 0.326307i
\(533\) 1020.00i 0.0828914i
\(534\) 0 0
\(535\) 0 0
\(536\) 3656.00 0.294618
\(537\) 0 0
\(538\) − 3624.00i − 0.290412i
\(539\) −7992.00 −0.638664
\(540\) 0 0
\(541\) 16733.0 1.32977 0.664887 0.746944i \(-0.268480\pi\)
0.664887 + 0.746944i \(0.268480\pi\)
\(542\) 10184.0i 0.807085i
\(543\) 0 0
\(544\) −384.000 −0.0302645
\(545\) 0 0
\(546\) 0 0
\(547\) − 16360.0i − 1.27880i −0.768875 0.639400i \(-0.779183\pi\)
0.768875 0.639400i \(-0.220817\pi\)
\(548\) 3552.00i 0.276887i
\(549\) 0 0
\(550\) 0 0
\(551\) 25116.0 1.94188
\(552\) 0 0
\(553\) − 1804.00i − 0.138723i
\(554\) 1138.00 0.0872725
\(555\) 0 0
\(556\) −640.000 −0.0488166
\(557\) 3984.00i 0.303066i 0.988452 + 0.151533i \(0.0484209\pi\)
−0.988452 + 0.151533i \(0.951579\pi\)
\(558\) 0 0
\(559\) 833.000 0.0630271
\(560\) 0 0
\(561\) 0 0
\(562\) − 12936.0i − 0.970947i
\(563\) 16332.0i 1.22258i 0.791407 + 0.611289i \(0.209349\pi\)
−0.791407 + 0.611289i \(0.790651\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7114.00 −0.528310
\(567\) 0 0
\(568\) − 4704.00i − 0.347492i
\(569\) −25716.0 −1.89468 −0.947338 0.320235i \(-0.896238\pi\)
−0.947338 + 0.320235i \(0.896238\pi\)
\(570\) 0 0
\(571\) −15091.0 −1.10602 −0.553011 0.833174i \(-0.686521\pi\)
−0.553011 + 0.833174i \(0.686521\pi\)
\(572\) − 2448.00i − 0.178944i
\(573\) 0 0
\(574\) −1320.00 −0.0959856
\(575\) 0 0
\(576\) 0 0
\(577\) 2579.00i 0.186075i 0.995663 + 0.0930374i \(0.0296576\pi\)
−0.995663 + 0.0930374i \(0.970342\pi\)
\(578\) − 9538.00i − 0.686381i
\(579\) 0 0
\(580\) 0 0
\(581\) 7656.00 0.546686
\(582\) 0 0
\(583\) 22032.0i 1.56513i
\(584\) −7760.00 −0.549848
\(585\) 0 0
\(586\) −10752.0 −0.757954
\(587\) − 11892.0i − 0.836176i −0.908407 0.418088i \(-0.862700\pi\)
0.908407 0.418088i \(-0.137300\pi\)
\(588\) 0 0
\(589\) 17381.0 1.21591
\(590\) 0 0
\(591\) 0 0
\(592\) 4064.00i 0.282144i
\(593\) 6564.00i 0.454555i 0.973830 + 0.227278i \(0.0729825\pi\)
−0.973830 + 0.227278i \(0.927018\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12384.0 0.851121
\(597\) 0 0
\(598\) 2040.00i 0.139501i
\(599\) −9096.00 −0.620455 −0.310227 0.950662i \(-0.600405\pi\)
−0.310227 + 0.950662i \(0.600405\pi\)
\(600\) 0 0
\(601\) 6575.00 0.446256 0.223128 0.974789i \(-0.428373\pi\)
0.223128 + 0.974789i \(0.428373\pi\)
\(602\) 1078.00i 0.0729834i
\(603\) 0 0
\(604\) −4196.00 −0.282670
\(605\) 0 0
\(606\) 0 0
\(607\) − 12436.0i − 0.831568i −0.909463 0.415784i \(-0.863507\pi\)
0.909463 0.415784i \(-0.136493\pi\)
\(608\) − 2912.00i − 0.194239i
\(609\) 0 0
\(610\) 0 0
\(611\) −10200.0 −0.675365
\(612\) 0 0
\(613\) 4354.00i 0.286878i 0.989659 + 0.143439i \(0.0458161\pi\)
−0.989659 + 0.143439i \(0.954184\pi\)
\(614\) −18686.0 −1.22818
\(615\) 0 0
\(616\) 3168.00 0.207212
\(617\) 30060.0i 1.96138i 0.195575 + 0.980689i \(0.437343\pi\)
−0.195575 + 0.980689i \(0.562657\pi\)
\(618\) 0 0
\(619\) −24845.0 −1.61326 −0.806628 0.591060i \(-0.798710\pi\)
−0.806628 + 0.591060i \(0.798710\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3936.00i 0.253729i
\(623\) 13728.0i 0.882826i
\(624\) 0 0
\(625\) 0 0
\(626\) −11350.0 −0.724660
\(627\) 0 0
\(628\) − 9452.00i − 0.600599i
\(629\) 3048.00 0.193214
\(630\) 0 0
\(631\) −10885.0 −0.686727 −0.343364 0.939203i \(-0.611566\pi\)
−0.343364 + 0.939203i \(0.611566\pi\)
\(632\) − 1312.00i − 0.0825768i
\(633\) 0 0
\(634\) −5232.00 −0.327743
\(635\) 0 0
\(636\) 0 0
\(637\) − 3774.00i − 0.234743i
\(638\) 19872.0i 1.23313i
\(639\) 0 0
\(640\) 0 0
\(641\) 20136.0 1.24076 0.620378 0.784303i \(-0.286979\pi\)
0.620378 + 0.784303i \(0.286979\pi\)
\(642\) 0 0
\(643\) 10888.0i 0.667777i 0.942613 + 0.333889i \(0.108361\pi\)
−0.942613 + 0.333889i \(0.891639\pi\)
\(644\) −2640.00 −0.161538
\(645\) 0 0
\(646\) −2184.00 −0.133016
\(647\) 30384.0i 1.84624i 0.384510 + 0.923121i \(0.374370\pi\)
−0.384510 + 0.923121i \(0.625630\pi\)
\(648\) 0 0
\(649\) −26784.0 −1.61998
\(650\) 0 0
\(651\) 0 0
\(652\) − 12940.0i − 0.777254i
\(653\) 7104.00i 0.425729i 0.977082 + 0.212864i \(0.0682793\pi\)
−0.977082 + 0.212864i \(0.931721\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −960.000 −0.0571367
\(657\) 0 0
\(658\) − 13200.0i − 0.782051i
\(659\) −24180.0 −1.42932 −0.714658 0.699474i \(-0.753418\pi\)
−0.714658 + 0.699474i \(0.753418\pi\)
\(660\) 0 0
\(661\) 15662.0 0.921605 0.460803 0.887503i \(-0.347562\pi\)
0.460803 + 0.887503i \(0.347562\pi\)
\(662\) 19328.0i 1.13475i
\(663\) 0 0
\(664\) 5568.00 0.325422
\(665\) 0 0
\(666\) 0 0
\(667\) − 16560.0i − 0.961328i
\(668\) − 11088.0i − 0.642227i
\(669\) 0 0
\(670\) 0 0
\(671\) −6012.00 −0.345888
\(672\) 0 0
\(673\) 6622.00i 0.379286i 0.981853 + 0.189643i \(0.0607330\pi\)
−0.981853 + 0.189643i \(0.939267\pi\)
\(674\) 15274.0 0.872897
\(675\) 0 0
\(676\) −7632.00 −0.434228
\(677\) − 3468.00i − 0.196877i −0.995143 0.0984387i \(-0.968615\pi\)
0.995143 0.0984387i \(-0.0313849\pi\)
\(678\) 0 0
\(679\) 12089.0 0.683260
\(680\) 0 0
\(681\) 0 0
\(682\) 13752.0i 0.772128i
\(683\) 19344.0i 1.08372i 0.840470 + 0.541858i \(0.182279\pi\)
−0.840470 + 0.541858i \(0.817721\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 12430.0 0.691807
\(687\) 0 0
\(688\) 784.000i 0.0434444i
\(689\) −10404.0 −0.575270
\(690\) 0 0
\(691\) −9736.00 −0.535998 −0.267999 0.963419i \(-0.586362\pi\)
−0.267999 + 0.963419i \(0.586362\pi\)
\(692\) 336.000i 0.0184578i
\(693\) 0 0
\(694\) −11280.0 −0.616978
\(695\) 0 0
\(696\) 0 0
\(697\) 720.000i 0.0391276i
\(698\) 14764.0i 0.800610i
\(699\) 0 0
\(700\) 0 0
\(701\) −3012.00 −0.162285 −0.0811424 0.996703i \(-0.525857\pi\)
−0.0811424 + 0.996703i \(0.525857\pi\)
\(702\) 0 0
\(703\) 23114.0i 1.24006i
\(704\) 2304.00 0.123346
\(705\) 0 0
\(706\) −21480.0 −1.14506
\(707\) − 4884.00i − 0.259804i
\(708\) 0 0
\(709\) 23851.0 1.26339 0.631695 0.775217i \(-0.282360\pi\)
0.631695 + 0.775217i \(0.282360\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9984.00i 0.525514i
\(713\) − 11460.0i − 0.601936i
\(714\) 0 0
\(715\) 0 0
\(716\) 10944.0 0.571224
\(717\) 0 0
\(718\) − 18552.0i − 0.964282i
\(719\) −5916.00 −0.306856 −0.153428 0.988160i \(-0.549031\pi\)
−0.153428 + 0.988160i \(0.549031\pi\)
\(720\) 0 0
\(721\) −10076.0 −0.520457
\(722\) − 2844.00i − 0.146597i
\(723\) 0 0
\(724\) −17588.0 −0.902835
\(725\) 0 0
\(726\) 0 0
\(727\) − 27685.0i − 1.41235i −0.708036 0.706176i \(-0.750419\pi\)
0.708036 0.706176i \(-0.249581\pi\)
\(728\) 1496.00i 0.0761613i
\(729\) 0 0
\(730\) 0 0
\(731\) 588.000 0.0297510
\(732\) 0 0
\(733\) − 10154.0i − 0.511660i −0.966722 0.255830i \(-0.917651\pi\)
0.966722 0.255830i \(-0.0823487\pi\)
\(734\) −14774.0 −0.742940
\(735\) 0 0
\(736\) −1920.00 −0.0961578
\(737\) 16452.0i 0.822276i
\(738\) 0 0
\(739\) 13840.0 0.688921 0.344461 0.938801i \(-0.388062\pi\)
0.344461 + 0.938801i \(0.388062\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 13464.0i − 0.666144i
\(743\) − 14160.0i − 0.699166i −0.936905 0.349583i \(-0.886323\pi\)
0.936905 0.349583i \(-0.113677\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −20518.0 −1.00699
\(747\) 0 0
\(748\) − 1728.00i − 0.0844678i
\(749\) −2244.00 −0.109471
\(750\) 0 0
\(751\) 36740.0 1.78517 0.892584 0.450881i \(-0.148890\pi\)
0.892584 + 0.450881i \(0.148890\pi\)
\(752\) − 9600.00i − 0.465527i
\(753\) 0 0
\(754\) −9384.00 −0.453243
\(755\) 0 0
\(756\) 0 0
\(757\) 8285.00i 0.397785i 0.980021 + 0.198893i \(0.0637345\pi\)
−0.980021 + 0.198893i \(0.936265\pi\)
\(758\) 15310.0i 0.733620i
\(759\) 0 0
\(760\) 0 0
\(761\) −4656.00 −0.221787 −0.110893 0.993832i \(-0.535371\pi\)
−0.110893 + 0.993832i \(0.535371\pi\)
\(762\) 0 0
\(763\) 10637.0i 0.504699i
\(764\) −12432.0 −0.588709
\(765\) 0 0
\(766\) −1200.00 −0.0566028
\(767\) − 12648.0i − 0.595427i
\(768\) 0 0
\(769\) 21169.0 0.992684 0.496342 0.868127i \(-0.334676\pi\)
0.496342 + 0.868127i \(0.334676\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10460.0i 0.487647i
\(773\) 31572.0i 1.46904i 0.678588 + 0.734519i \(0.262592\pi\)
−0.678588 + 0.734519i \(0.737408\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8792.00 0.406720
\(777\) 0 0
\(778\) − 8136.00i − 0.374923i
\(779\) −5460.00 −0.251123
\(780\) 0 0
\(781\) 21168.0 0.969847
\(782\) 1440.00i 0.0658495i
\(783\) 0 0
\(784\) 3552.00 0.161808
\(785\) 0 0
\(786\) 0 0
\(787\) 16781.0i 0.760074i 0.924971 + 0.380037i \(0.124089\pi\)
−0.924971 + 0.380037i \(0.875911\pi\)
\(788\) − 14496.0i − 0.655328i
\(789\) 0 0
\(790\) 0 0
\(791\) −7392.00 −0.332275
\(792\) 0 0
\(793\) − 2839.00i − 0.127132i
\(794\) 25294.0 1.13054
\(795\) 0 0
\(796\) −7276.00 −0.323984
\(797\) 216.000i 0.00959989i 0.999988 + 0.00479995i \(0.00152788\pi\)
−0.999988 + 0.00479995i \(0.998472\pi\)
\(798\) 0 0
\(799\) −7200.00 −0.318796
\(800\) 0 0
\(801\) 0 0
\(802\) 19848.0i 0.873887i
\(803\) − 34920.0i − 1.53462i
\(804\) 0 0
\(805\) 0 0
\(806\) −6494.00 −0.283798
\(807\) 0 0
\(808\) − 3552.00i − 0.154652i
\(809\) 17484.0 0.759833 0.379916 0.925021i \(-0.375953\pi\)
0.379916 + 0.925021i \(0.375953\pi\)
\(810\) 0 0
\(811\) −28447.0 −1.23170 −0.615850 0.787863i \(-0.711187\pi\)
−0.615850 + 0.787863i \(0.711187\pi\)
\(812\) − 12144.0i − 0.524841i
\(813\) 0 0
\(814\) −18288.0 −0.787462
\(815\) 0 0
\(816\) 0 0
\(817\) 4459.00i 0.190943i
\(818\) − 21806.0i − 0.932065i
\(819\) 0 0
\(820\) 0 0
\(821\) 15120.0 0.642743 0.321371 0.946953i \(-0.395856\pi\)
0.321371 + 0.946953i \(0.395856\pi\)
\(822\) 0 0
\(823\) 43957.0i 1.86178i 0.365300 + 0.930890i \(0.380966\pi\)
−0.365300 + 0.930890i \(0.619034\pi\)
\(824\) −7328.00 −0.309809
\(825\) 0 0
\(826\) 16368.0 0.689486
\(827\) − 23892.0i − 1.00460i −0.864693 0.502301i \(-0.832487\pi\)
0.864693 0.502301i \(-0.167513\pi\)
\(828\) 0 0
\(829\) 12166.0 0.509702 0.254851 0.966980i \(-0.417974\pi\)
0.254851 + 0.966980i \(0.417974\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1088.00i 0.0453361i
\(833\) − 2664.00i − 0.110807i
\(834\) 0 0
\(835\) 0 0
\(836\) 13104.0 0.542119
\(837\) 0 0
\(838\) − 29592.0i − 1.21986i
\(839\) 25812.0 1.06213 0.531066 0.847330i \(-0.321792\pi\)
0.531066 + 0.847330i \(0.321792\pi\)
\(840\) 0 0
\(841\) 51787.0 2.12338
\(842\) 9212.00i 0.377039i
\(843\) 0 0
\(844\) 7996.00 0.326106
\(845\) 0 0
\(846\) 0 0
\(847\) − 385.000i − 0.0156184i
\(848\) − 9792.00i − 0.396531i
\(849\) 0 0
\(850\) 0 0
\(851\) 15240.0 0.613890
\(852\) 0 0
\(853\) 2689.00i 0.107936i 0.998543 + 0.0539681i \(0.0171869\pi\)
−0.998543 + 0.0539681i \(0.982813\pi\)
\(854\) 3674.00 0.147215
\(855\) 0 0
\(856\) −1632.00 −0.0651643
\(857\) − 48456.0i − 1.93142i −0.259626 0.965709i \(-0.583599\pi\)
0.259626 0.965709i \(-0.416401\pi\)
\(858\) 0 0
\(859\) 12760.0 0.506828 0.253414 0.967358i \(-0.418446\pi\)
0.253414 + 0.967358i \(0.418446\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 27720.0i 1.09530i
\(863\) 10008.0i 0.394758i 0.980327 + 0.197379i \(0.0632430\pi\)
−0.980327 + 0.197379i \(0.936757\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16102.0 −0.631834
\(867\) 0 0
\(868\) − 8404.00i − 0.328629i
\(869\) 5904.00 0.230471
\(870\) 0 0
\(871\) −7769.00 −0.302230
\(872\) 7736.00i 0.300429i
\(873\) 0 0
\(874\) −10920.0 −0.422625
\(875\) 0 0
\(876\) 0 0
\(877\) 12251.0i 0.471707i 0.971789 + 0.235853i \(0.0757885\pi\)
−0.971789 + 0.235853i \(0.924211\pi\)
\(878\) 4174.00i 0.160439i
\(879\) 0 0
\(880\) 0 0
\(881\) −16344.0 −0.625021 −0.312510 0.949914i \(-0.601170\pi\)
−0.312510 + 0.949914i \(0.601170\pi\)
\(882\) 0 0
\(883\) − 42227.0i − 1.60935i −0.593719 0.804673i \(-0.702341\pi\)
0.593719 0.804673i \(-0.297659\pi\)
\(884\) 816.000 0.0310464
\(885\) 0 0
\(886\) −26736.0 −1.01378
\(887\) 13896.0i 0.526023i 0.964793 + 0.263011i \(0.0847156\pi\)
−0.964793 + 0.263011i \(0.915284\pi\)
\(888\) 0 0
\(889\) 21164.0 0.798445
\(890\) 0 0
\(891\) 0 0
\(892\) − 1972.00i − 0.0740218i
\(893\) − 54600.0i − 2.04605i
\(894\) 0 0
\(895\) 0 0
\(896\) −1408.00 −0.0524977
\(897\) 0 0
\(898\) − 10704.0i − 0.397770i
\(899\) 52716.0 1.95570
\(900\) 0 0
\(901\) −7344.00 −0.271547
\(902\) − 4320.00i − 0.159468i
\(903\) 0 0
\(904\) −5376.00 −0.197791
\(905\) 0 0
\(906\) 0 0
\(907\) − 1240.00i − 0.0453953i −0.999742 0.0226976i \(-0.992774\pi\)
0.999742 0.0226976i \(-0.00722550\pi\)
\(908\) 1200.00i 0.0438584i
\(909\) 0 0
\(910\) 0 0
\(911\) 6360.00 0.231302 0.115651 0.993290i \(-0.463105\pi\)
0.115651 + 0.993290i \(0.463105\pi\)
\(912\) 0 0
\(913\) 25056.0i 0.908250i
\(914\) 27436.0 0.992891
\(915\) 0 0
\(916\) −316.000 −0.0113984
\(917\) 8316.00i 0.299475i
\(918\) 0 0
\(919\) 2143.00 0.0769217 0.0384609 0.999260i \(-0.487755\pi\)
0.0384609 + 0.999260i \(0.487755\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 23736.0i − 0.847835i
\(923\) 9996.00i 0.356471i
\(924\) 0 0
\(925\) 0 0
\(926\) −13144.0 −0.466456
\(927\) 0 0
\(928\) − 8832.00i − 0.312419i
\(929\) 29124.0 1.02855 0.514277 0.857624i \(-0.328060\pi\)
0.514277 + 0.857624i \(0.328060\pi\)
\(930\) 0 0
\(931\) 20202.0 0.711164
\(932\) − 24432.0i − 0.858688i
\(933\) 0 0
\(934\) 37272.0 1.30576
\(935\) 0 0
\(936\) 0 0
\(937\) 24059.0i 0.838819i 0.907797 + 0.419409i \(0.137763\pi\)
−0.907797 + 0.419409i \(0.862237\pi\)
\(938\) − 10054.0i − 0.349973i
\(939\) 0 0
\(940\) 0 0
\(941\) −47088.0 −1.63127 −0.815635 0.578567i \(-0.803612\pi\)
−0.815635 + 0.578567i \(0.803612\pi\)
\(942\) 0 0
\(943\) 3600.00i 0.124318i
\(944\) 11904.0 0.410426
\(945\) 0 0
\(946\) −3528.00 −0.121253
\(947\) 23148.0i 0.794307i 0.917752 + 0.397154i \(0.130002\pi\)
−0.917752 + 0.397154i \(0.869998\pi\)
\(948\) 0 0
\(949\) 16490.0 0.564055
\(950\) 0 0
\(951\) 0 0
\(952\) 1056.00i 0.0359508i
\(953\) − 27600.0i − 0.938144i −0.883160 0.469072i \(-0.844588\pi\)
0.883160 0.469072i \(-0.155412\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 11472.0 0.388108
\(957\) 0 0
\(958\) 10512.0i 0.354517i
\(959\) 9768.00 0.328911
\(960\) 0 0
\(961\) 6690.00 0.224564
\(962\) − 8636.00i − 0.289434i
\(963\) 0 0
\(964\) −10820.0 −0.361503
\(965\) 0 0
\(966\) 0 0
\(967\) 7436.00i 0.247286i 0.992327 + 0.123643i \(0.0394578\pi\)
−0.992327 + 0.123643i \(0.960542\pi\)
\(968\) − 280.000i − 0.00929705i
\(969\) 0 0
\(970\) 0 0
\(971\) −27264.0 −0.901075 −0.450537 0.892758i \(-0.648768\pi\)
−0.450537 + 0.892758i \(0.648768\pi\)
\(972\) 0 0
\(973\) 1760.00i 0.0579887i
\(974\) −19982.0 −0.657356
\(975\) 0 0
\(976\) 2672.00 0.0876318
\(977\) − 46632.0i − 1.52701i −0.645801 0.763506i \(-0.723477\pi\)
0.645801 0.763506i \(-0.276523\pi\)
\(978\) 0 0
\(979\) −44928.0 −1.46671
\(980\) 0 0
\(981\) 0 0
\(982\) − 2112.00i − 0.0686320i
\(983\) − 15216.0i − 0.493708i −0.969053 0.246854i \(-0.920603\pi\)
0.969053 0.246854i \(-0.0793968\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6624.00 −0.213946
\(987\) 0 0
\(988\) 6188.00i 0.199258i
\(989\) 2940.00 0.0945264
\(990\) 0 0
\(991\) 39047.0 1.25163 0.625817 0.779970i \(-0.284766\pi\)
0.625817 + 0.779970i \(0.284766\pi\)
\(992\) − 6112.00i − 0.195621i
\(993\) 0 0
\(994\) −12936.0 −0.412782
\(995\) 0 0
\(996\) 0 0
\(997\) − 46258.0i − 1.46941i −0.678385 0.734707i \(-0.737320\pi\)
0.678385 0.734707i \(-0.262680\pi\)
\(998\) 24658.0i 0.782100i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.c.b.199.1 2
3.2 odd 2 450.4.c.i.199.2 2
5.2 odd 4 450.4.a.n.1.1 yes 1
5.3 odd 4 450.4.a.g.1.1 yes 1
5.4 even 2 inner 450.4.c.b.199.2 2
15.2 even 4 450.4.a.d.1.1 1
15.8 even 4 450.4.a.s.1.1 yes 1
15.14 odd 2 450.4.c.i.199.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.4.a.d.1.1 1 15.2 even 4
450.4.a.g.1.1 yes 1 5.3 odd 4
450.4.a.n.1.1 yes 1 5.2 odd 4
450.4.a.s.1.1 yes 1 15.8 even 4
450.4.c.b.199.1 2 1.1 even 1 trivial
450.4.c.b.199.2 2 5.4 even 2 inner
450.4.c.i.199.1 2 15.14 odd 2
450.4.c.i.199.2 2 3.2 odd 2