Properties

Label 450.4.c.k.199.1
Level $450$
Weight $4$
Character 450.199
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 450.199
Dual form 450.4.c.k.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} -32.0000i q^{7} +8.00000i q^{8} +60.0000 q^{11} -34.0000i q^{13} -64.0000 q^{14} +16.0000 q^{16} +42.0000i q^{17} +76.0000 q^{19} -120.000i q^{22} -68.0000 q^{26} +128.000i q^{28} +6.00000 q^{29} -232.000 q^{31} -32.0000i q^{32} +84.0000 q^{34} -134.000i q^{37} -152.000i q^{38} -234.000 q^{41} -412.000i q^{43} -240.000 q^{44} -360.000i q^{47} -681.000 q^{49} +136.000i q^{52} -222.000i q^{53} +256.000 q^{56} -12.0000i q^{58} +660.000 q^{59} -490.000 q^{61} +464.000i q^{62} -64.0000 q^{64} -812.000i q^{67} -168.000i q^{68} -120.000 q^{71} +746.000i q^{73} -268.000 q^{74} -304.000 q^{76} -1920.00i q^{77} -152.000 q^{79} +468.000i q^{82} +804.000i q^{83} -824.000 q^{86} +480.000i q^{88} -678.000 q^{89} -1088.00 q^{91} -720.000 q^{94} -194.000i q^{97} +1362.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 120 q^{11} - 128 q^{14} + 32 q^{16} + 152 q^{19} - 136 q^{26} + 12 q^{29} - 464 q^{31} + 168 q^{34} - 468 q^{41} - 480 q^{44} - 1362 q^{49} + 512 q^{56} + 1320 q^{59} - 980 q^{61} - 128 q^{64}+ \cdots - 1440 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 32.0000i − 1.72784i −0.503631 0.863919i \(-0.668003\pi\)
0.503631 0.863919i \(-0.331997\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 60.0000 1.64461 0.822304 0.569049i \(-0.192689\pi\)
0.822304 + 0.569049i \(0.192689\pi\)
\(12\) 0 0
\(13\) − 34.0000i − 0.725377i −0.931910 0.362689i \(-0.881859\pi\)
0.931910 0.362689i \(-0.118141\pi\)
\(14\) −64.0000 −1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 42.0000i 0.599206i 0.954064 + 0.299603i \(0.0968542\pi\)
−0.954064 + 0.299603i \(0.903146\pi\)
\(18\) 0 0
\(19\) 76.0000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 120.000i − 1.16291i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −68.0000 −0.512919
\(27\) 0 0
\(28\) 128.000i 0.863919i
\(29\) 6.00000 0.0384197 0.0192099 0.999815i \(-0.493885\pi\)
0.0192099 + 0.999815i \(0.493885\pi\)
\(30\) 0 0
\(31\) −232.000 −1.34414 −0.672071 0.740486i \(-0.734595\pi\)
−0.672071 + 0.740486i \(0.734595\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 0 0
\(34\) 84.0000 0.423702
\(35\) 0 0
\(36\) 0 0
\(37\) − 134.000i − 0.595391i −0.954661 0.297695i \(-0.903782\pi\)
0.954661 0.297695i \(-0.0962180\pi\)
\(38\) − 152.000i − 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) −234.000 −0.891333 −0.445667 0.895199i \(-0.647033\pi\)
−0.445667 + 0.895199i \(0.647033\pi\)
\(42\) 0 0
\(43\) − 412.000i − 1.46115i −0.682833 0.730575i \(-0.739252\pi\)
0.682833 0.730575i \(-0.260748\pi\)
\(44\) −240.000 −0.822304
\(45\) 0 0
\(46\) 0 0
\(47\) − 360.000i − 1.11726i −0.829416 0.558632i \(-0.811326\pi\)
0.829416 0.558632i \(-0.188674\pi\)
\(48\) 0 0
\(49\) −681.000 −1.98542
\(50\) 0 0
\(51\) 0 0
\(52\) 136.000i 0.362689i
\(53\) − 222.000i − 0.575359i −0.957727 0.287680i \(-0.907116\pi\)
0.957727 0.287680i \(-0.0928838\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 256.000 0.610883
\(57\) 0 0
\(58\) − 12.0000i − 0.0271668i
\(59\) 660.000 1.45635 0.728175 0.685391i \(-0.240369\pi\)
0.728175 + 0.685391i \(0.240369\pi\)
\(60\) 0 0
\(61\) −490.000 −1.02849 −0.514246 0.857642i \(-0.671928\pi\)
−0.514246 + 0.857642i \(0.671928\pi\)
\(62\) 464.000i 0.950453i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 812.000i − 1.48062i −0.672265 0.740310i \(-0.734679\pi\)
0.672265 0.740310i \(-0.265321\pi\)
\(68\) − 168.000i − 0.299603i
\(69\) 0 0
\(70\) 0 0
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) 746.000i 1.19606i 0.801472 + 0.598032i \(0.204051\pi\)
−0.801472 + 0.598032i \(0.795949\pi\)
\(74\) −268.000 −0.421005
\(75\) 0 0
\(76\) −304.000 −0.458831
\(77\) − 1920.00i − 2.84161i
\(78\) 0 0
\(79\) −152.000 −0.216473 −0.108236 0.994125i \(-0.534520\pi\)
−0.108236 + 0.994125i \(0.534520\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 468.000i 0.630268i
\(83\) 804.000i 1.06326i 0.846977 + 0.531629i \(0.178420\pi\)
−0.846977 + 0.531629i \(0.821580\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −824.000 −1.03319
\(87\) 0 0
\(88\) 480.000i 0.581456i
\(89\) −678.000 −0.807504 −0.403752 0.914868i \(-0.632294\pi\)
−0.403752 + 0.914868i \(0.632294\pi\)
\(90\) 0 0
\(91\) −1088.00 −1.25333
\(92\) 0 0
\(93\) 0 0
\(94\) −720.000 −0.790025
\(95\) 0 0
\(96\) 0 0
\(97\) − 194.000i − 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 1362.00i 1.40391i
\(99\) 0 0
\(100\) 0 0
\(101\) −798.000 −0.786178 −0.393089 0.919500i \(-0.628594\pi\)
−0.393089 + 0.919500i \(0.628594\pi\)
\(102\) 0 0
\(103\) 1088.00i 1.04081i 0.853918 + 0.520407i \(0.174220\pi\)
−0.853918 + 0.520407i \(0.825780\pi\)
\(104\) 272.000 0.256460
\(105\) 0 0
\(106\) −444.000 −0.406840
\(107\) 1716.00i 1.55039i 0.631721 + 0.775196i \(0.282349\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(108\) 0 0
\(109\) 970.000 0.852378 0.426189 0.904634i \(-0.359856\pi\)
0.426189 + 0.904634i \(0.359856\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 512.000i − 0.431959i
\(113\) − 426.000i − 0.354643i −0.984153 0.177322i \(-0.943257\pi\)
0.984153 0.177322i \(-0.0567433\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −24.0000 −0.0192099
\(117\) 0 0
\(118\) − 1320.00i − 1.02980i
\(119\) 1344.00 1.03533
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 980.000i 0.727254i
\(123\) 0 0
\(124\) 928.000 0.672071
\(125\) 0 0
\(126\) 0 0
\(127\) − 200.000i − 0.139741i −0.997556 0.0698706i \(-0.977741\pi\)
0.997556 0.0698706i \(-0.0222586\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −60.0000 −0.0400170 −0.0200085 0.999800i \(-0.506369\pi\)
−0.0200085 + 0.999800i \(0.506369\pi\)
\(132\) 0 0
\(133\) − 2432.00i − 1.58557i
\(134\) −1624.00 −1.04696
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) 642.000i 0.400363i 0.979759 + 0.200182i \(0.0641532\pi\)
−0.979759 + 0.200182i \(0.935847\pi\)
\(138\) 0 0
\(139\) 2836.00 1.73055 0.865275 0.501298i \(-0.167144\pi\)
0.865275 + 0.501298i \(0.167144\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 240.000i 0.141833i
\(143\) − 2040.00i − 1.19296i
\(144\) 0 0
\(145\) 0 0
\(146\) 1492.00 0.845745
\(147\) 0 0
\(148\) 536.000i 0.297695i
\(149\) −1554.00 −0.854420 −0.427210 0.904152i \(-0.640504\pi\)
−0.427210 + 0.904152i \(0.640504\pi\)
\(150\) 0 0
\(151\) −2272.00 −1.22446 −0.612228 0.790682i \(-0.709726\pi\)
−0.612228 + 0.790682i \(0.709726\pi\)
\(152\) 608.000i 0.324443i
\(153\) 0 0
\(154\) −3840.00 −2.00932
\(155\) 0 0
\(156\) 0 0
\(157\) − 1694.00i − 0.861120i −0.902562 0.430560i \(-0.858316\pi\)
0.902562 0.430560i \(-0.141684\pi\)
\(158\) 304.000i 0.153069i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 52.0000i − 0.0249874i −0.999922 0.0124937i \(-0.996023\pi\)
0.999922 0.0124937i \(-0.00397698\pi\)
\(164\) 936.000 0.445667
\(165\) 0 0
\(166\) 1608.00 0.751837
\(167\) − 1200.00i − 0.556041i −0.960575 0.278020i \(-0.910322\pi\)
0.960575 0.278020i \(-0.0896783\pi\)
\(168\) 0 0
\(169\) 1041.00 0.473828
\(170\) 0 0
\(171\) 0 0
\(172\) 1648.00i 0.730575i
\(173\) − 54.0000i − 0.0237315i −0.999930 0.0118657i \(-0.996223\pi\)
0.999930 0.0118657i \(-0.00377707\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 960.000 0.411152
\(177\) 0 0
\(178\) 1356.00i 0.570992i
\(179\) 876.000 0.365784 0.182892 0.983133i \(-0.441454\pi\)
0.182892 + 0.983133i \(0.441454\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) 2176.00i 0.886241i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2520.00i 0.985458i
\(188\) 1440.00i 0.558632i
\(189\) 0 0
\(190\) 0 0
\(191\) 2784.00 1.05468 0.527338 0.849656i \(-0.323190\pi\)
0.527338 + 0.849656i \(0.323190\pi\)
\(192\) 0 0
\(193\) 914.000i 0.340887i 0.985367 + 0.170443i \(0.0545200\pi\)
−0.985367 + 0.170443i \(0.945480\pi\)
\(194\) −388.000 −0.143592
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) − 5202.00i − 1.88136i −0.339300 0.940678i \(-0.610190\pi\)
0.339300 0.940678i \(-0.389810\pi\)
\(198\) 0 0
\(199\) −3152.00 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1596.00i 0.555912i
\(203\) − 192.000i − 0.0663830i
\(204\) 0 0
\(205\) 0 0
\(206\) 2176.00 0.735967
\(207\) 0 0
\(208\) − 544.000i − 0.181344i
\(209\) 4560.00 1.50920
\(210\) 0 0
\(211\) 740.000 0.241439 0.120720 0.992687i \(-0.461480\pi\)
0.120720 + 0.992687i \(0.461480\pi\)
\(212\) 888.000i 0.287680i
\(213\) 0 0
\(214\) 3432.00 1.09629
\(215\) 0 0
\(216\) 0 0
\(217\) 7424.00i 2.32246i
\(218\) − 1940.00i − 0.602722i
\(219\) 0 0
\(220\) 0 0
\(221\) 1428.00 0.434650
\(222\) 0 0
\(223\) − 520.000i − 0.156151i −0.996947 0.0780757i \(-0.975122\pi\)
0.996947 0.0780757i \(-0.0248776\pi\)
\(224\) −1024.00 −0.305441
\(225\) 0 0
\(226\) −852.000 −0.250771
\(227\) 396.000i 0.115786i 0.998323 + 0.0578930i \(0.0184382\pi\)
−0.998323 + 0.0578930i \(0.981562\pi\)
\(228\) 0 0
\(229\) 1330.00 0.383794 0.191897 0.981415i \(-0.438536\pi\)
0.191897 + 0.981415i \(0.438536\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 48.0000i 0.0135834i
\(233\) − 4866.00i − 1.36816i −0.729405 0.684082i \(-0.760203\pi\)
0.729405 0.684082i \(-0.239797\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2640.00 −0.728175
\(237\) 0 0
\(238\) − 2688.00i − 0.732089i
\(239\) −1824.00 −0.493660 −0.246830 0.969059i \(-0.579389\pi\)
−0.246830 + 0.969059i \(0.579389\pi\)
\(240\) 0 0
\(241\) 6482.00 1.73254 0.866270 0.499575i \(-0.166511\pi\)
0.866270 + 0.499575i \(0.166511\pi\)
\(242\) − 4538.00i − 1.20543i
\(243\) 0 0
\(244\) 1960.00 0.514246
\(245\) 0 0
\(246\) 0 0
\(247\) − 2584.00i − 0.665652i
\(248\) − 1856.00i − 0.475226i
\(249\) 0 0
\(250\) 0 0
\(251\) −1476.00 −0.371172 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −400.000 −0.0988119
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4314.00i 1.04708i 0.852001 + 0.523541i \(0.175389\pi\)
−0.852001 + 0.523541i \(0.824611\pi\)
\(258\) 0 0
\(259\) −4288.00 −1.02874
\(260\) 0 0
\(261\) 0 0
\(262\) 120.000i 0.0282963i
\(263\) 5280.00i 1.23794i 0.785414 + 0.618971i \(0.212450\pi\)
−0.785414 + 0.618971i \(0.787550\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4864.00 −1.12117
\(267\) 0 0
\(268\) 3248.00i 0.740310i
\(269\) 5526.00 1.25251 0.626257 0.779617i \(-0.284586\pi\)
0.626257 + 0.779617i \(0.284586\pi\)
\(270\) 0 0
\(271\) 2024.00 0.453687 0.226844 0.973931i \(-0.427159\pi\)
0.226844 + 0.973931i \(0.427159\pi\)
\(272\) 672.000i 0.149801i
\(273\) 0 0
\(274\) 1284.00 0.283100
\(275\) 0 0
\(276\) 0 0
\(277\) − 2054.00i − 0.445534i −0.974872 0.222767i \(-0.928491\pi\)
0.974872 0.222767i \(-0.0715089\pi\)
\(278\) − 5672.00i − 1.22368i
\(279\) 0 0
\(280\) 0 0
\(281\) 7302.00 1.55018 0.775090 0.631850i \(-0.217704\pi\)
0.775090 + 0.631850i \(0.217704\pi\)
\(282\) 0 0
\(283\) − 3724.00i − 0.782222i −0.920344 0.391111i \(-0.872091\pi\)
0.920344 0.391111i \(-0.127909\pi\)
\(284\) 480.000 0.100291
\(285\) 0 0
\(286\) −4080.00 −0.843551
\(287\) 7488.00i 1.54008i
\(288\) 0 0
\(289\) 3149.00 0.640953
\(290\) 0 0
\(291\) 0 0
\(292\) − 2984.00i − 0.598032i
\(293\) 7218.00i 1.43918i 0.694399 + 0.719591i \(0.255670\pi\)
−0.694399 + 0.719591i \(0.744330\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1072.00 0.210502
\(297\) 0 0
\(298\) 3108.00i 0.604166i
\(299\) 0 0
\(300\) 0 0
\(301\) −13184.0 −2.52463
\(302\) 4544.00i 0.865821i
\(303\) 0 0
\(304\) 1216.00 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) − 2540.00i − 0.472200i −0.971729 0.236100i \(-0.924131\pi\)
0.971729 0.236100i \(-0.0758693\pi\)
\(308\) 7680.00i 1.42081i
\(309\) 0 0
\(310\) 0 0
\(311\) −1560.00 −0.284436 −0.142218 0.989835i \(-0.545423\pi\)
−0.142218 + 0.989835i \(0.545423\pi\)
\(312\) 0 0
\(313\) − 934.000i − 0.168667i −0.996438 0.0843335i \(-0.973124\pi\)
0.996438 0.0843335i \(-0.0268761\pi\)
\(314\) −3388.00 −0.608904
\(315\) 0 0
\(316\) 608.000 0.108236
\(317\) − 1674.00i − 0.296597i −0.988943 0.148298i \(-0.952620\pi\)
0.988943 0.148298i \(-0.0473796\pi\)
\(318\) 0 0
\(319\) 360.000 0.0631854
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3192.00i 0.549869i
\(324\) 0 0
\(325\) 0 0
\(326\) −104.000 −0.0176688
\(327\) 0 0
\(328\) − 1872.00i − 0.315134i
\(329\) −11520.0 −1.93045
\(330\) 0 0
\(331\) −3988.00 −0.662237 −0.331118 0.943589i \(-0.607426\pi\)
−0.331118 + 0.943589i \(0.607426\pi\)
\(332\) − 3216.00i − 0.531629i
\(333\) 0 0
\(334\) −2400.00 −0.393180
\(335\) 0 0
\(336\) 0 0
\(337\) − 2.00000i 0 0.000323285i −1.00000 0.000161642i \(-0.999949\pi\)
1.00000 0.000161642i \(-5.14524e-5\pi\)
\(338\) − 2082.00i − 0.335047i
\(339\) 0 0
\(340\) 0 0
\(341\) −13920.0 −2.21059
\(342\) 0 0
\(343\) 10816.0i 1.70265i
\(344\) 3296.00 0.516594
\(345\) 0 0
\(346\) −108.000 −0.0167807
\(347\) 1764.00i 0.272901i 0.990647 + 0.136450i \(0.0435694\pi\)
−0.990647 + 0.136450i \(0.956431\pi\)
\(348\) 0 0
\(349\) −4310.00 −0.661057 −0.330529 0.943796i \(-0.607227\pi\)
−0.330529 + 0.943796i \(0.607227\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 1920.00i − 0.290728i
\(353\) − 138.000i − 0.0208074i −0.999946 0.0104037i \(-0.996688\pi\)
0.999946 0.0104037i \(-0.00331165\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2712.00 0.403752
\(357\) 0 0
\(358\) − 1752.00i − 0.258648i
\(359\) −11976.0 −1.76064 −0.880319 0.474382i \(-0.842672\pi\)
−0.880319 + 0.474382i \(0.842672\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) − 7708.00i − 1.11913i
\(363\) 0 0
\(364\) 4352.00 0.626667
\(365\) 0 0
\(366\) 0 0
\(367\) − 9704.00i − 1.38023i −0.723699 0.690115i \(-0.757560\pi\)
0.723699 0.690115i \(-0.242440\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7104.00 −0.994128
\(372\) 0 0
\(373\) − 8122.00i − 1.12746i −0.825960 0.563728i \(-0.809367\pi\)
0.825960 0.563728i \(-0.190633\pi\)
\(374\) 5040.00 0.696824
\(375\) 0 0
\(376\) 2880.00 0.395012
\(377\) − 204.000i − 0.0278688i
\(378\) 0 0
\(379\) −3404.00 −0.461350 −0.230675 0.973031i \(-0.574093\pi\)
−0.230675 + 0.973031i \(0.574093\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 5568.00i − 0.745769i
\(383\) 2520.00i 0.336204i 0.985770 + 0.168102i \(0.0537637\pi\)
−0.985770 + 0.168102i \(0.946236\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1828.00 0.241043
\(387\) 0 0
\(388\) 776.000i 0.101535i
\(389\) 1566.00 0.204111 0.102056 0.994779i \(-0.467458\pi\)
0.102056 + 0.994779i \(0.467458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 5448.00i − 0.701953i
\(393\) 0 0
\(394\) −10404.0 −1.33032
\(395\) 0 0
\(396\) 0 0
\(397\) 4354.00i 0.550431i 0.961383 + 0.275215i \(0.0887492\pi\)
−0.961383 + 0.275215i \(0.911251\pi\)
\(398\) 6304.00i 0.793947i
\(399\) 0 0
\(400\) 0 0
\(401\) 8046.00 1.00199 0.500995 0.865450i \(-0.332967\pi\)
0.500995 + 0.865450i \(0.332967\pi\)
\(402\) 0 0
\(403\) 7888.00i 0.975011i
\(404\) 3192.00 0.393089
\(405\) 0 0
\(406\) −384.000 −0.0469399
\(407\) − 8040.00i − 0.979184i
\(408\) 0 0
\(409\) 2806.00 0.339237 0.169618 0.985510i \(-0.445747\pi\)
0.169618 + 0.985510i \(0.445747\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 4352.00i − 0.520407i
\(413\) − 21120.0i − 2.51634i
\(414\) 0 0
\(415\) 0 0
\(416\) −1088.00 −0.128230
\(417\) 0 0
\(418\) − 9120.00i − 1.06716i
\(419\) 11580.0 1.35017 0.675084 0.737741i \(-0.264108\pi\)
0.675084 + 0.737741i \(0.264108\pi\)
\(420\) 0 0
\(421\) −370.000 −0.0428330 −0.0214165 0.999771i \(-0.506818\pi\)
−0.0214165 + 0.999771i \(0.506818\pi\)
\(422\) − 1480.00i − 0.170723i
\(423\) 0 0
\(424\) 1776.00 0.203420
\(425\) 0 0
\(426\) 0 0
\(427\) 15680.0i 1.77707i
\(428\) − 6864.00i − 0.775196i
\(429\) 0 0
\(430\) 0 0
\(431\) −5040.00 −0.563267 −0.281634 0.959522i \(-0.590876\pi\)
−0.281634 + 0.959522i \(0.590876\pi\)
\(432\) 0 0
\(433\) − 3742.00i − 0.415310i −0.978202 0.207655i \(-0.933417\pi\)
0.978202 0.207655i \(-0.0665831\pi\)
\(434\) 14848.0 1.64223
\(435\) 0 0
\(436\) −3880.00 −0.426189
\(437\) 0 0
\(438\) 0 0
\(439\) 6208.00 0.674924 0.337462 0.941339i \(-0.390432\pi\)
0.337462 + 0.941339i \(0.390432\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 2856.00i − 0.307344i
\(443\) 15564.0i 1.66923i 0.550835 + 0.834614i \(0.314309\pi\)
−0.550835 + 0.834614i \(0.685691\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1040.00 −0.110416
\(447\) 0 0
\(448\) 2048.00i 0.215980i
\(449\) −15774.0 −1.65795 −0.828977 0.559283i \(-0.811076\pi\)
−0.828977 + 0.559283i \(0.811076\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) 1704.00i 0.177322i
\(453\) 0 0
\(454\) 792.000 0.0818731
\(455\) 0 0
\(456\) 0 0
\(457\) − 9722.00i − 0.995133i −0.867426 0.497567i \(-0.834227\pi\)
0.867426 0.497567i \(-0.165773\pi\)
\(458\) − 2660.00i − 0.271383i
\(459\) 0 0
\(460\) 0 0
\(461\) 10890.0 1.10021 0.550106 0.835095i \(-0.314587\pi\)
0.550106 + 0.835095i \(0.314587\pi\)
\(462\) 0 0
\(463\) 15128.0i 1.51848i 0.650809 + 0.759242i \(0.274430\pi\)
−0.650809 + 0.759242i \(0.725570\pi\)
\(464\) 96.0000 0.00960493
\(465\) 0 0
\(466\) −9732.00 −0.967438
\(467\) 10668.0i 1.05708i 0.848909 + 0.528540i \(0.177260\pi\)
−0.848909 + 0.528540i \(0.822740\pi\)
\(468\) 0 0
\(469\) −25984.0 −2.55827
\(470\) 0 0
\(471\) 0 0
\(472\) 5280.00i 0.514898i
\(473\) − 24720.0i − 2.40302i
\(474\) 0 0
\(475\) 0 0
\(476\) −5376.00 −0.517665
\(477\) 0 0
\(478\) 3648.00i 0.349070i
\(479\) 15264.0 1.45601 0.728006 0.685571i \(-0.240447\pi\)
0.728006 + 0.685571i \(0.240447\pi\)
\(480\) 0 0
\(481\) −4556.00 −0.431883
\(482\) − 12964.0i − 1.22509i
\(483\) 0 0
\(484\) −9076.00 −0.852367
\(485\) 0 0
\(486\) 0 0
\(487\) 5776.00i 0.537445i 0.963218 + 0.268722i \(0.0866014\pi\)
−0.963218 + 0.268722i \(0.913399\pi\)
\(488\) − 3920.00i − 0.363627i
\(489\) 0 0
\(490\) 0 0
\(491\) −14244.0 −1.30921 −0.654606 0.755971i \(-0.727165\pi\)
−0.654606 + 0.755971i \(0.727165\pi\)
\(492\) 0 0
\(493\) 252.000i 0.0230213i
\(494\) −5168.00 −0.470687
\(495\) 0 0
\(496\) −3712.00 −0.336036
\(497\) 3840.00i 0.346575i
\(498\) 0 0
\(499\) 17116.0 1.53551 0.767753 0.640746i \(-0.221375\pi\)
0.767753 + 0.640746i \(0.221375\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2952.00i 0.262459i
\(503\) 16848.0i 1.49347i 0.665122 + 0.746735i \(0.268380\pi\)
−0.665122 + 0.746735i \(0.731620\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 800.000i 0.0698706i
\(509\) −3834.00 −0.333868 −0.166934 0.985968i \(-0.553387\pi\)
−0.166934 + 0.985968i \(0.553387\pi\)
\(510\) 0 0
\(511\) 23872.0 2.06660
\(512\) − 512.000i − 0.0441942i
\(513\) 0 0
\(514\) 8628.00 0.740398
\(515\) 0 0
\(516\) 0 0
\(517\) − 21600.0i − 1.83746i
\(518\) 8576.00i 0.727428i
\(519\) 0 0
\(520\) 0 0
\(521\) 18822.0 1.58274 0.791369 0.611338i \(-0.209369\pi\)
0.791369 + 0.611338i \(0.209369\pi\)
\(522\) 0 0
\(523\) − 15340.0i − 1.28255i −0.767313 0.641273i \(-0.778407\pi\)
0.767313 0.641273i \(-0.221593\pi\)
\(524\) 240.000 0.0200085
\(525\) 0 0
\(526\) 10560.0 0.875357
\(527\) − 9744.00i − 0.805418i
\(528\) 0 0
\(529\) 12167.0 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 9728.00i 0.792786i
\(533\) 7956.00i 0.646553i
\(534\) 0 0
\(535\) 0 0
\(536\) 6496.00 0.523478
\(537\) 0 0
\(538\) − 11052.0i − 0.885661i
\(539\) −40860.0 −3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) − 4048.00i − 0.320805i
\(543\) 0 0
\(544\) 1344.00 0.105926
\(545\) 0 0
\(546\) 0 0
\(547\) 10036.0i 0.784476i 0.919864 + 0.392238i \(0.128299\pi\)
−0.919864 + 0.392238i \(0.871701\pi\)
\(548\) − 2568.00i − 0.200182i
\(549\) 0 0
\(550\) 0 0
\(551\) 456.000 0.0352564
\(552\) 0 0
\(553\) 4864.00i 0.374030i
\(554\) −4108.00 −0.315040
\(555\) 0 0
\(556\) −11344.0 −0.865275
\(557\) 10326.0i 0.785506i 0.919644 + 0.392753i \(0.128477\pi\)
−0.919644 + 0.392753i \(0.871523\pi\)
\(558\) 0 0
\(559\) −14008.0 −1.05988
\(560\) 0 0
\(561\) 0 0
\(562\) − 14604.0i − 1.09614i
\(563\) − 4524.00i − 0.338657i −0.985560 0.169328i \(-0.945840\pi\)
0.985560 0.169328i \(-0.0541599\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7448.00 −0.553114
\(567\) 0 0
\(568\) − 960.000i − 0.0709167i
\(569\) 16362.0 1.20550 0.602751 0.797929i \(-0.294071\pi\)
0.602751 + 0.797929i \(0.294071\pi\)
\(570\) 0 0
\(571\) 6620.00 0.485181 0.242591 0.970129i \(-0.422003\pi\)
0.242591 + 0.970129i \(0.422003\pi\)
\(572\) 8160.00i 0.596480i
\(573\) 0 0
\(574\) 14976.0 1.08900
\(575\) 0 0
\(576\) 0 0
\(577\) − 8834.00i − 0.637373i −0.947860 0.318687i \(-0.896758\pi\)
0.947860 0.318687i \(-0.103242\pi\)
\(578\) − 6298.00i − 0.453222i
\(579\) 0 0
\(580\) 0 0
\(581\) 25728.0 1.83714
\(582\) 0 0
\(583\) − 13320.0i − 0.946240i
\(584\) −5968.00 −0.422873
\(585\) 0 0
\(586\) 14436.0 1.01765
\(587\) 3636.00i 0.255662i 0.991796 + 0.127831i \(0.0408016\pi\)
−0.991796 + 0.127831i \(0.959198\pi\)
\(588\) 0 0
\(589\) −17632.0 −1.23347
\(590\) 0 0
\(591\) 0 0
\(592\) − 2144.00i − 0.148848i
\(593\) − 6570.00i − 0.454971i −0.973782 0.227485i \(-0.926950\pi\)
0.973782 0.227485i \(-0.0730504\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6216.00 0.427210
\(597\) 0 0
\(598\) 0 0
\(599\) 16584.0 1.13123 0.565613 0.824671i \(-0.308640\pi\)
0.565613 + 0.824671i \(0.308640\pi\)
\(600\) 0 0
\(601\) −502.000 −0.0340716 −0.0170358 0.999855i \(-0.505423\pi\)
−0.0170358 + 0.999855i \(0.505423\pi\)
\(602\) 26368.0i 1.78518i
\(603\) 0 0
\(604\) 9088.00 0.612228
\(605\) 0 0
\(606\) 0 0
\(607\) 18568.0i 1.24160i 0.783969 + 0.620801i \(0.213192\pi\)
−0.783969 + 0.620801i \(0.786808\pi\)
\(608\) − 2432.00i − 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) −12240.0 −0.810438
\(612\) 0 0
\(613\) − 13114.0i − 0.864061i −0.901859 0.432031i \(-0.857797\pi\)
0.901859 0.432031i \(-0.142203\pi\)
\(614\) −5080.00 −0.333896
\(615\) 0 0
\(616\) 15360.0 1.00466
\(617\) 5250.00i 0.342556i 0.985223 + 0.171278i \(0.0547896\pi\)
−0.985223 + 0.171278i \(0.945210\pi\)
\(618\) 0 0
\(619\) 10804.0 0.701534 0.350767 0.936463i \(-0.385921\pi\)
0.350767 + 0.936463i \(0.385921\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3120.00i 0.201126i
\(623\) 21696.0i 1.39524i
\(624\) 0 0
\(625\) 0 0
\(626\) −1868.00 −0.119266
\(627\) 0 0
\(628\) 6776.00i 0.430560i
\(629\) 5628.00 0.356762
\(630\) 0 0
\(631\) −27088.0 −1.70896 −0.854482 0.519481i \(-0.826125\pi\)
−0.854482 + 0.519481i \(0.826125\pi\)
\(632\) − 1216.00i − 0.0765346i
\(633\) 0 0
\(634\) −3348.00 −0.209726
\(635\) 0 0
\(636\) 0 0
\(637\) 23154.0i 1.44018i
\(638\) − 720.000i − 0.0446788i
\(639\) 0 0
\(640\) 0 0
\(641\) −18930.0 −1.16644 −0.583222 0.812313i \(-0.698208\pi\)
−0.583222 + 0.812313i \(0.698208\pi\)
\(642\) 0 0
\(643\) 20108.0i 1.23325i 0.787256 + 0.616627i \(0.211501\pi\)
−0.787256 + 0.616627i \(0.788499\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6384.00 0.388816
\(647\) − 7152.00i − 0.434581i −0.976107 0.217291i \(-0.930278\pi\)
0.976107 0.217291i \(-0.0697219\pi\)
\(648\) 0 0
\(649\) 39600.0 2.39512
\(650\) 0 0
\(651\) 0 0
\(652\) 208.000i 0.0124937i
\(653\) 31626.0i 1.89528i 0.319333 + 0.947642i \(0.396541\pi\)
−0.319333 + 0.947642i \(0.603459\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3744.00 −0.222833
\(657\) 0 0
\(658\) 23040.0i 1.36503i
\(659\) 28092.0 1.66056 0.830280 0.557347i \(-0.188181\pi\)
0.830280 + 0.557347i \(0.188181\pi\)
\(660\) 0 0
\(661\) −13186.0 −0.775909 −0.387955 0.921678i \(-0.626818\pi\)
−0.387955 + 0.921678i \(0.626818\pi\)
\(662\) 7976.00i 0.468272i
\(663\) 0 0
\(664\) −6432.00 −0.375919
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 4800.00i 0.278020i
\(669\) 0 0
\(670\) 0 0
\(671\) −29400.0 −1.69147
\(672\) 0 0
\(673\) 5138.00i 0.294287i 0.989115 + 0.147144i \(0.0470080\pi\)
−0.989115 + 0.147144i \(0.952992\pi\)
\(674\) −4.00000 −0.000228597 0
\(675\) 0 0
\(676\) −4164.00 −0.236914
\(677\) 6078.00i 0.345047i 0.985005 + 0.172523i \(0.0551920\pi\)
−0.985005 + 0.172523i \(0.944808\pi\)
\(678\) 0 0
\(679\) −6208.00 −0.350871
\(680\) 0 0
\(681\) 0 0
\(682\) 27840.0i 1.56312i
\(683\) − 32244.0i − 1.80642i −0.429203 0.903208i \(-0.641205\pi\)
0.429203 0.903208i \(-0.358795\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 21632.0 1.20396
\(687\) 0 0
\(688\) − 6592.00i − 0.365287i
\(689\) −7548.00 −0.417353
\(690\) 0 0
\(691\) 4484.00 0.246859 0.123429 0.992353i \(-0.460611\pi\)
0.123429 + 0.992353i \(0.460611\pi\)
\(692\) 216.000i 0.0118657i
\(693\) 0 0
\(694\) 3528.00 0.192970
\(695\) 0 0
\(696\) 0 0
\(697\) − 9828.00i − 0.534092i
\(698\) 8620.00i 0.467438i
\(699\) 0 0
\(700\) 0 0
\(701\) 30426.0 1.63934 0.819668 0.572839i \(-0.194158\pi\)
0.819668 + 0.572839i \(0.194158\pi\)
\(702\) 0 0
\(703\) − 10184.0i − 0.546368i
\(704\) −3840.00 −0.205576
\(705\) 0 0
\(706\) −276.000 −0.0147130
\(707\) 25536.0i 1.35839i
\(708\) 0 0
\(709\) −13262.0 −0.702489 −0.351245 0.936284i \(-0.614241\pi\)
−0.351245 + 0.936284i \(0.614241\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 5424.00i − 0.285496i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −3504.00 −0.182892
\(717\) 0 0
\(718\) 23952.0i 1.24496i
\(719\) 13920.0 0.722014 0.361007 0.932563i \(-0.382433\pi\)
0.361007 + 0.932563i \(0.382433\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) 2166.00i 0.111648i
\(723\) 0 0
\(724\) −15416.0 −0.791341
\(725\) 0 0
\(726\) 0 0
\(727\) 9376.00i 0.478317i 0.970981 + 0.239159i \(0.0768716\pi\)
−0.970981 + 0.239159i \(0.923128\pi\)
\(728\) − 8704.00i − 0.443120i
\(729\) 0 0
\(730\) 0 0
\(731\) 17304.0 0.875529
\(732\) 0 0
\(733\) 6014.00i 0.303045i 0.988454 + 0.151523i \(0.0484176\pi\)
−0.988454 + 0.151523i \(0.951582\pi\)
\(734\) −19408.0 −0.975971
\(735\) 0 0
\(736\) 0 0
\(737\) − 48720.0i − 2.43504i
\(738\) 0 0
\(739\) 7468.00 0.371739 0.185869 0.982574i \(-0.440490\pi\)
0.185869 + 0.982574i \(0.440490\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 14208.0i 0.702954i
\(743\) − 31248.0i − 1.54290i −0.636287 0.771452i \(-0.719531\pi\)
0.636287 0.771452i \(-0.280469\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −16244.0 −0.797232
\(747\) 0 0
\(748\) − 10080.0i − 0.492729i
\(749\) 54912.0 2.67883
\(750\) 0 0
\(751\) 32840.0 1.59567 0.797835 0.602875i \(-0.205978\pi\)
0.797835 + 0.602875i \(0.205978\pi\)
\(752\) − 5760.00i − 0.279316i
\(753\) 0 0
\(754\) −408.000 −0.0197062
\(755\) 0 0
\(756\) 0 0
\(757\) 19066.0i 0.915410i 0.889104 + 0.457705i \(0.151328\pi\)
−0.889104 + 0.457705i \(0.848672\pi\)
\(758\) 6808.00i 0.326224i
\(759\) 0 0
\(760\) 0 0
\(761\) −6858.00 −0.326678 −0.163339 0.986570i \(-0.552227\pi\)
−0.163339 + 0.986570i \(0.552227\pi\)
\(762\) 0 0
\(763\) − 31040.0i − 1.47277i
\(764\) −11136.0 −0.527338
\(765\) 0 0
\(766\) 5040.00 0.237732
\(767\) − 22440.0i − 1.05640i
\(768\) 0 0
\(769\) −22178.0 −1.04000 −0.519999 0.854167i \(-0.674068\pi\)
−0.519999 + 0.854167i \(0.674068\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 3656.00i − 0.170443i
\(773\) − 14286.0i − 0.664724i −0.943152 0.332362i \(-0.892154\pi\)
0.943152 0.332362i \(-0.107846\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1552.00 0.0717958
\(777\) 0 0
\(778\) − 3132.00i − 0.144329i
\(779\) −17784.0 −0.817943
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) 0 0
\(784\) −10896.0 −0.496356
\(785\) 0 0
\(786\) 0 0
\(787\) 18868.0i 0.854602i 0.904109 + 0.427301i \(0.140535\pi\)
−0.904109 + 0.427301i \(0.859465\pi\)
\(788\) 20808.0i 0.940678i
\(789\) 0 0
\(790\) 0 0
\(791\) −13632.0 −0.612766
\(792\) 0 0
\(793\) 16660.0i 0.746045i
\(794\) 8708.00 0.389213
\(795\) 0 0
\(796\) 12608.0 0.561405
\(797\) − 21690.0i − 0.963989i −0.876174 0.481994i \(-0.839913\pi\)
0.876174 0.481994i \(-0.160087\pi\)
\(798\) 0 0
\(799\) 15120.0 0.669471
\(800\) 0 0
\(801\) 0 0
\(802\) − 16092.0i − 0.708514i
\(803\) 44760.0i 1.96706i
\(804\) 0 0
\(805\) 0 0
\(806\) 15776.0 0.689437
\(807\) 0 0
\(808\) − 6384.00i − 0.277956i
\(809\) −24726.0 −1.07456 −0.537281 0.843404i \(-0.680548\pi\)
−0.537281 + 0.843404i \(0.680548\pi\)
\(810\) 0 0
\(811\) −2644.00 −0.114480 −0.0572401 0.998360i \(-0.518230\pi\)
−0.0572401 + 0.998360i \(0.518230\pi\)
\(812\) 768.000i 0.0331915i
\(813\) 0 0
\(814\) −16080.0 −0.692388
\(815\) 0 0
\(816\) 0 0
\(817\) − 31312.0i − 1.34084i
\(818\) − 5612.00i − 0.239877i
\(819\) 0 0
\(820\) 0 0
\(821\) 37842.0 1.60864 0.804321 0.594195i \(-0.202529\pi\)
0.804321 + 0.594195i \(0.202529\pi\)
\(822\) 0 0
\(823\) − 880.000i − 0.0372720i −0.999826 0.0186360i \(-0.994068\pi\)
0.999826 0.0186360i \(-0.00593237\pi\)
\(824\) −8704.00 −0.367983
\(825\) 0 0
\(826\) −42240.0 −1.77932
\(827\) − 12876.0i − 0.541406i −0.962663 0.270703i \(-0.912744\pi\)
0.962663 0.270703i \(-0.0872561\pi\)
\(828\) 0 0
\(829\) 25498.0 1.06825 0.534127 0.845404i \(-0.320641\pi\)
0.534127 + 0.845404i \(0.320641\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2176.00i 0.0906721i
\(833\) − 28602.0i − 1.18968i
\(834\) 0 0
\(835\) 0 0
\(836\) −18240.0 −0.754598
\(837\) 0 0
\(838\) − 23160.0i − 0.954712i
\(839\) −40584.0 −1.66998 −0.834991 0.550263i \(-0.814527\pi\)
−0.834991 + 0.550263i \(0.814527\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 740.000i 0.0302875i
\(843\) 0 0
\(844\) −2960.00 −0.120720
\(845\) 0 0
\(846\) 0 0
\(847\) − 72608.0i − 2.94550i
\(848\) − 3552.00i − 0.143840i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 25738.0i − 1.03312i −0.856251 0.516561i \(-0.827212\pi\)
0.856251 0.516561i \(-0.172788\pi\)
\(854\) 31360.0 1.25658
\(855\) 0 0
\(856\) −13728.0 −0.548146
\(857\) 13314.0i 0.530686i 0.964154 + 0.265343i \(0.0854851\pi\)
−0.964154 + 0.265343i \(0.914515\pi\)
\(858\) 0 0
\(859\) −24524.0 −0.974096 −0.487048 0.873375i \(-0.661926\pi\)
−0.487048 + 0.873375i \(0.661926\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10080.0i 0.398290i
\(863\) − 5592.00i − 0.220572i −0.993900 0.110286i \(-0.964823\pi\)
0.993900 0.110286i \(-0.0351767\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −7484.00 −0.293668
\(867\) 0 0
\(868\) − 29696.0i − 1.16123i
\(869\) −9120.00 −0.356012
\(870\) 0 0
\(871\) −27608.0 −1.07401
\(872\) 7760.00i 0.301361i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14386.0i 0.553912i 0.960883 + 0.276956i \(0.0893256\pi\)
−0.960883 + 0.276956i \(0.910674\pi\)
\(878\) − 12416.0i − 0.477243i
\(879\) 0 0
\(880\) 0 0
\(881\) −47106.0 −1.80141 −0.900705 0.434432i \(-0.856949\pi\)
−0.900705 + 0.434432i \(0.856949\pi\)
\(882\) 0 0
\(883\) 51548.0i 1.96458i 0.187354 + 0.982292i \(0.440009\pi\)
−0.187354 + 0.982292i \(0.559991\pi\)
\(884\) −5712.00 −0.217325
\(885\) 0 0
\(886\) 31128.0 1.18032
\(887\) 34080.0i 1.29007i 0.764152 + 0.645036i \(0.223158\pi\)
−0.764152 + 0.645036i \(0.776842\pi\)
\(888\) 0 0
\(889\) −6400.00 −0.241450
\(890\) 0 0
\(891\) 0 0
\(892\) 2080.00i 0.0780757i
\(893\) − 27360.0i − 1.02527i
\(894\) 0 0
\(895\) 0 0
\(896\) 4096.00 0.152721
\(897\) 0 0
\(898\) 31548.0i 1.17235i
\(899\) −1392.00 −0.0516416
\(900\) 0 0
\(901\) 9324.00 0.344759
\(902\) 28080.0i 1.03654i
\(903\) 0 0
\(904\) 3408.00 0.125385
\(905\) 0 0
\(906\) 0 0
\(907\) − 25748.0i − 0.942611i −0.881970 0.471306i \(-0.843783\pi\)
0.881970 0.471306i \(-0.156217\pi\)
\(908\) − 1584.00i − 0.0578930i
\(909\) 0 0
\(910\) 0 0
\(911\) 24768.0 0.900769 0.450384 0.892835i \(-0.351287\pi\)
0.450384 + 0.892835i \(0.351287\pi\)
\(912\) 0 0
\(913\) 48240.0i 1.74864i
\(914\) −19444.0 −0.703666
\(915\) 0 0
\(916\) −5320.00 −0.191897
\(917\) 1920.00i 0.0691428i
\(918\) 0 0
\(919\) 31264.0 1.12220 0.561101 0.827747i \(-0.310378\pi\)
0.561101 + 0.827747i \(0.310378\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 21780.0i − 0.777968i
\(923\) 4080.00i 0.145498i
\(924\) 0 0
\(925\) 0 0
\(926\) 30256.0 1.07373
\(927\) 0 0
\(928\) − 192.000i − 0.00679171i
\(929\) −6174.00 −0.218043 −0.109022 0.994039i \(-0.534772\pi\)
−0.109022 + 0.994039i \(0.534772\pi\)
\(930\) 0 0
\(931\) −51756.0 −1.82195
\(932\) 19464.0i 0.684082i
\(933\) 0 0
\(934\) 21336.0 0.747468
\(935\) 0 0
\(936\) 0 0
\(937\) − 28922.0i − 1.00837i −0.863596 0.504184i \(-0.831793\pi\)
0.863596 0.504184i \(-0.168207\pi\)
\(938\) 51968.0i 1.80897i
\(939\) 0 0
\(940\) 0 0
\(941\) −29238.0 −1.01289 −0.506446 0.862272i \(-0.669041\pi\)
−0.506446 + 0.862272i \(0.669041\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 10560.0 0.364088
\(945\) 0 0
\(946\) −49440.0 −1.69919
\(947\) − 2868.00i − 0.0984134i −0.998789 0.0492067i \(-0.984331\pi\)
0.998789 0.0492067i \(-0.0156693\pi\)
\(948\) 0 0
\(949\) 25364.0 0.867598
\(950\) 0 0
\(951\) 0 0
\(952\) 10752.0i 0.366044i
\(953\) − 24018.0i − 0.816390i −0.912895 0.408195i \(-0.866158\pi\)
0.912895 0.408195i \(-0.133842\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7296.00 0.246830
\(957\) 0 0
\(958\) − 30528.0i − 1.02956i
\(959\) 20544.0 0.691763
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) 9112.00i 0.305387i
\(963\) 0 0
\(964\) −25928.0 −0.866270
\(965\) 0 0
\(966\) 0 0
\(967\) − 25712.0i − 0.855059i −0.904001 0.427530i \(-0.859384\pi\)
0.904001 0.427530i \(-0.140616\pi\)
\(968\) 18152.0i 0.602714i
\(969\) 0 0
\(970\) 0 0
\(971\) 12396.0 0.409688 0.204844 0.978795i \(-0.434331\pi\)
0.204844 + 0.978795i \(0.434331\pi\)
\(972\) 0 0
\(973\) − 90752.0i − 2.99011i
\(974\) 11552.0 0.380031
\(975\) 0 0
\(976\) −7840.00 −0.257123
\(977\) − 46614.0i − 1.52642i −0.646150 0.763211i \(-0.723622\pi\)
0.646150 0.763211i \(-0.276378\pi\)
\(978\) 0 0
\(979\) −40680.0 −1.32803
\(980\) 0 0
\(981\) 0 0
\(982\) 28488.0i 0.925752i
\(983\) 672.000i 0.0218041i 0.999941 + 0.0109021i \(0.00347031\pi\)
−0.999941 + 0.0109021i \(0.996530\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 504.000 0.0162785
\(987\) 0 0
\(988\) 10336.0i 0.332826i
\(989\) 0 0
\(990\) 0 0
\(991\) −38776.0 −1.24295 −0.621473 0.783435i \(-0.713466\pi\)
−0.621473 + 0.783435i \(0.713466\pi\)
\(992\) 7424.00i 0.237613i
\(993\) 0 0
\(994\) 7680.00 0.245065
\(995\) 0 0
\(996\) 0 0
\(997\) − 30422.0i − 0.966374i −0.875517 0.483187i \(-0.839479\pi\)
0.875517 0.483187i \(-0.160521\pi\)
\(998\) − 34232.0i − 1.08577i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.c.k.199.1 2
3.2 odd 2 150.4.c.a.49.2 2
5.2 odd 4 90.4.a.d.1.1 1
5.3 odd 4 450.4.a.b.1.1 1
5.4 even 2 inner 450.4.c.k.199.2 2
12.11 even 2 1200.4.f.u.49.1 2
15.2 even 4 30.4.a.a.1.1 1
15.8 even 4 150.4.a.e.1.1 1
15.14 odd 2 150.4.c.a.49.1 2
20.7 even 4 720.4.a.b.1.1 1
45.2 even 12 810.4.e.m.271.1 2
45.7 odd 12 810.4.e.e.271.1 2
45.22 odd 12 810.4.e.e.541.1 2
45.32 even 12 810.4.e.m.541.1 2
60.23 odd 4 1200.4.a.bk.1.1 1
60.47 odd 4 240.4.a.c.1.1 1
60.59 even 2 1200.4.f.u.49.2 2
105.62 odd 4 1470.4.a.a.1.1 1
120.77 even 4 960.4.a.j.1.1 1
120.107 odd 4 960.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.a.1.1 1 15.2 even 4
90.4.a.d.1.1 1 5.2 odd 4
150.4.a.e.1.1 1 15.8 even 4
150.4.c.a.49.1 2 15.14 odd 2
150.4.c.a.49.2 2 3.2 odd 2
240.4.a.c.1.1 1 60.47 odd 4
450.4.a.b.1.1 1 5.3 odd 4
450.4.c.k.199.1 2 1.1 even 1 trivial
450.4.c.k.199.2 2 5.4 even 2 inner
720.4.a.b.1.1 1 20.7 even 4
810.4.e.e.271.1 2 45.7 odd 12
810.4.e.e.541.1 2 45.22 odd 12
810.4.e.m.271.1 2 45.2 even 12
810.4.e.m.541.1 2 45.32 even 12
960.4.a.j.1.1 1 120.77 even 4
960.4.a.s.1.1 1 120.107 odd 4
1200.4.a.bk.1.1 1 60.23 odd 4
1200.4.f.u.49.1 2 12.11 even 2
1200.4.f.u.49.2 2 60.59 even 2
1470.4.a.a.1.1 1 105.62 odd 4