Properties

Label 450.7.g.m.343.2
Level $450$
Weight $7$
Character 450.343
Analytic conductor $103.524$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,7,Mod(307,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.307");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 450.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(103.524337629\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{129})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 65x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.2
Root \(-6.17891i\) of defining polynomial
Character \(\chi\) \(=\) 450.343
Dual form 450.7.g.m.307.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 4.00000i) q^{2} -32.0000i q^{4} +(362.840 - 362.840i) q^{7} +(-128.000 - 128.000i) q^{8} +1321.26 q^{11} +(-254.789 - 254.789i) q^{13} -2902.72i q^{14} -1024.00 q^{16} +(4398.15 - 4398.15i) q^{17} +819.171i q^{19} +(5285.03 - 5285.03i) q^{22} +(11135.5 + 11135.5i) q^{23} -2038.31 q^{26} +(-11610.9 - 11610.9i) q^{28} -27495.1i q^{29} +15086.4 q^{31} +(-4096.00 + 4096.00i) q^{32} -35185.2i q^{34} +(-21550.0 + 21550.0i) q^{37} +(3276.68 + 3276.68i) q^{38} +45644.1 q^{41} +(78126.4 + 78126.4i) q^{43} -42280.3i q^{44} +89083.7 q^{46} +(-1995.12 + 1995.12i) q^{47} -145657. i q^{49} +(-8153.25 + 8153.25i) q^{52} +(106138. + 106138. i) q^{53} -92887.0 q^{56} +(-109980. - 109980. i) q^{58} +64466.6i q^{59} -320767. q^{61} +(60345.6 - 60345.6i) q^{62} +32768.0i q^{64} +(35044.1 - 35044.1i) q^{67} +(-140741. - 140741. i) q^{68} +251708. q^{71} +(-326907. - 326907. i) q^{73} +172400. i q^{74} +26213.5 q^{76} +(479405. - 479405. i) q^{77} +25722.3i q^{79} +(182577. - 182577. i) q^{82} +(-123104. - 123104. i) q^{83} +625011. q^{86} +(-169121. - 169121. i) q^{88} +198715. i q^{89} -184895. q^{91} +(356335. - 356335. i) q^{92} +15961.0i q^{94} +(738798. - 738798. i) q^{97} +(-582627. - 582627. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} + 202 q^{7} - 512 q^{8} + 2332 q^{11} - 792 q^{13} - 4096 q^{16} + 12368 q^{17} + 9328 q^{22} + 35342 q^{23} - 6336 q^{26} - 6464 q^{28} - 18932 q^{31} - 16384 q^{32} + 67812 q^{37} + 44000 q^{38}+ \cdots - 1321024 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 4.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 32.0000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 362.840 362.840i 1.05784 1.05784i 0.0596214 0.998221i \(-0.481011\pi\)
0.998221 0.0596214i \(-0.0189893\pi\)
\(8\) −128.000 128.000i −0.250000 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 1321.26 0.992681 0.496340 0.868128i \(-0.334677\pi\)
0.496340 + 0.868128i \(0.334677\pi\)
\(12\) 0 0
\(13\) −254.789 254.789i −0.115971 0.115971i 0.646740 0.762711i \(-0.276132\pi\)
−0.762711 + 0.646740i \(0.776132\pi\)
\(14\) 2902.72i 1.05784i
\(15\) 0 0
\(16\) −1024.00 −0.250000
\(17\) 4398.15 4398.15i 0.895206 0.895206i −0.0998010 0.995007i \(-0.531821\pi\)
0.995007 + 0.0998010i \(0.0318206\pi\)
\(18\) 0 0
\(19\) 819.171i 0.119430i 0.998215 + 0.0597151i \(0.0190192\pi\)
−0.998215 + 0.0597151i \(0.980981\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5285.03 5285.03i 0.496340 0.496340i
\(23\) 11135.5 + 11135.5i 0.915218 + 0.915218i 0.996677 0.0814587i \(-0.0259579\pi\)
−0.0814587 + 0.996677i \(0.525958\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2038.31 −0.115971
\(27\) 0 0
\(28\) −11610.9 11610.9i −0.528921 0.528921i
\(29\) 27495.1i 1.12736i −0.825995 0.563678i \(-0.809386\pi\)
0.825995 0.563678i \(-0.190614\pi\)
\(30\) 0 0
\(31\) 15086.4 0.506408 0.253204 0.967413i \(-0.418516\pi\)
0.253204 + 0.967413i \(0.418516\pi\)
\(32\) −4096.00 + 4096.00i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 35185.2i 0.895206i
\(35\) 0 0
\(36\) 0 0
\(37\) −21550.0 + 21550.0i −0.425444 + 0.425444i −0.887073 0.461629i \(-0.847265\pi\)
0.461629 + 0.887073i \(0.347265\pi\)
\(38\) 3276.68 + 3276.68i 0.0597151 + 0.0597151i
\(39\) 0 0
\(40\) 0 0
\(41\) 45644.1 0.662267 0.331134 0.943584i \(-0.392569\pi\)
0.331134 + 0.943584i \(0.392569\pi\)
\(42\) 0 0
\(43\) 78126.4 + 78126.4i 0.982635 + 0.982635i 0.999852 0.0172164i \(-0.00548043\pi\)
−0.0172164 + 0.999852i \(0.505480\pi\)
\(44\) 42280.3i 0.496340i
\(45\) 0 0
\(46\) 89083.7 0.915218
\(47\) −1995.12 + 1995.12i −0.0192166 + 0.0192166i −0.716650 0.697433i \(-0.754325\pi\)
0.697433 + 0.716650i \(0.254325\pi\)
\(48\) 0 0
\(49\) 145657.i 1.23806i
\(50\) 0 0
\(51\) 0 0
\(52\) −8153.25 + 8153.25i −0.0579857 + 0.0579857i
\(53\) 106138. + 106138.i 0.712921 + 0.712921i 0.967145 0.254224i \(-0.0818202\pi\)
−0.254224 + 0.967145i \(0.581820\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −92887.0 −0.528921
\(57\) 0 0
\(58\) −109980. 109980.i −0.563678 0.563678i
\(59\) 64466.6i 0.313891i 0.987607 + 0.156945i \(0.0501647\pi\)
−0.987607 + 0.156945i \(0.949835\pi\)
\(60\) 0 0
\(61\) −320767. −1.41319 −0.706594 0.707620i \(-0.749769\pi\)
−0.706594 + 0.707620i \(0.749769\pi\)
\(62\) 60345.6 60345.6i 0.253204 0.253204i
\(63\) 0 0
\(64\) 32768.0i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) 35044.1 35044.1i 0.116517 0.116517i −0.646444 0.762961i \(-0.723745\pi\)
0.762961 + 0.646444i \(0.223745\pi\)
\(68\) −140741. 140741.i −0.447603 0.447603i
\(69\) 0 0
\(70\) 0 0
\(71\) 251708. 0.703271 0.351636 0.936137i \(-0.385626\pi\)
0.351636 + 0.936137i \(0.385626\pi\)
\(72\) 0 0
\(73\) −326907. 326907.i −0.840342 0.840342i 0.148561 0.988903i \(-0.452536\pi\)
−0.988903 + 0.148561i \(0.952536\pi\)
\(74\) 172400.i 0.425444i
\(75\) 0 0
\(76\) 26213.5 0.0597151
\(77\) 479405. 479405.i 1.05010 1.05010i
\(78\) 0 0
\(79\) 25722.3i 0.0521710i 0.999660 + 0.0260855i \(0.00830421\pi\)
−0.999660 + 0.0260855i \(0.991696\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 182577. 182577.i 0.331134 0.331134i
\(83\) −123104. 123104.i −0.215298 0.215298i 0.591216 0.806513i \(-0.298648\pi\)
−0.806513 + 0.591216i \(0.798648\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 625011. 0.982635
\(87\) 0 0
\(88\) −169121. 169121.i −0.248170 0.248170i
\(89\) 198715.i 0.281878i 0.990018 + 0.140939i \(0.0450121\pi\)
−0.990018 + 0.140939i \(0.954988\pi\)
\(90\) 0 0
\(91\) −184895. −0.245359
\(92\) 356335. 356335.i 0.457609 0.457609i
\(93\) 0 0
\(94\) 15961.0i 0.0192166i
\(95\) 0 0
\(96\) 0 0
\(97\) 738798. 738798.i 0.809488 0.809488i −0.175068 0.984556i \(-0.556015\pi\)
0.984556 + 0.175068i \(0.0560145\pi\)
\(98\) −582627. 582627.i −0.619031 0.619031i
\(99\) 0 0
\(100\) 0 0
\(101\) 122972. 0.119355 0.0596775 0.998218i \(-0.480993\pi\)
0.0596775 + 0.998218i \(0.480993\pi\)
\(102\) 0 0
\(103\) −419455. 419455.i −0.383860 0.383860i 0.488631 0.872491i \(-0.337497\pi\)
−0.872491 + 0.488631i \(0.837497\pi\)
\(104\) 65226.0i 0.0579857i
\(105\) 0 0
\(106\) 849100. 0.712921
\(107\) 534643. 534643.i 0.436428 0.436428i −0.454380 0.890808i \(-0.650139\pi\)
0.890808 + 0.454380i \(0.150139\pi\)
\(108\) 0 0
\(109\) 1.99464e6i 1.54023i −0.637908 0.770113i \(-0.720200\pi\)
0.637908 0.770113i \(-0.279800\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −371548. + 371548.i −0.264461 + 0.264461i
\(113\) −599768. 599768.i −0.415669 0.415669i 0.468039 0.883708i \(-0.344961\pi\)
−0.883708 + 0.468039i \(0.844961\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −879842. −0.563678
\(117\) 0 0
\(118\) 257866. + 257866.i 0.156945 + 0.156945i
\(119\) 3.19165e6i 1.89397i
\(120\) 0 0
\(121\) −25838.1 −0.0145849
\(122\) −1.28307e6 + 1.28307e6i −0.706594 + 0.706594i
\(123\) 0 0
\(124\) 482764.i 0.253204i
\(125\) 0 0
\(126\) 0 0
\(127\) 1.53367e6 1.53367e6i 0.748724 0.748724i −0.225516 0.974240i \(-0.572407\pi\)
0.974240 + 0.225516i \(0.0724067\pi\)
\(128\) 131072. + 131072.i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) −2.73248e6 −1.21547 −0.607734 0.794141i \(-0.707921\pi\)
−0.607734 + 0.794141i \(0.707921\pi\)
\(132\) 0 0
\(133\) 297228. + 297228.i 0.126338 + 0.126338i
\(134\) 280353.i 0.116517i
\(135\) 0 0
\(136\) −1.12593e6 −0.447603
\(137\) 1.14362e6 1.14362e6i 0.444753 0.444753i −0.448853 0.893606i \(-0.648167\pi\)
0.893606 + 0.448853i \(0.148167\pi\)
\(138\) 0 0
\(139\) 1.81621e6i 0.676272i 0.941097 + 0.338136i \(0.109796\pi\)
−0.941097 + 0.338136i \(0.890204\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.00683e6 1.00683e6i 0.351636 0.351636i
\(143\) −336642. 336642.i −0.115123 0.115123i
\(144\) 0 0
\(145\) 0 0
\(146\) −2.61526e6 −0.840342
\(147\) 0 0
\(148\) 689600. + 689600.i 0.212722 + 0.212722i
\(149\) 4.57708e6i 1.38366i −0.722060 0.691830i \(-0.756805\pi\)
0.722060 0.691830i \(-0.243195\pi\)
\(150\) 0 0
\(151\) −6.59081e6 −1.91429 −0.957145 0.289608i \(-0.906475\pi\)
−0.957145 + 0.289608i \(0.906475\pi\)
\(152\) 104854. 104854.i 0.0298575 0.0298575i
\(153\) 0 0
\(154\) 3.83524e6i 1.05010i
\(155\) 0 0
\(156\) 0 0
\(157\) −2.59513e6 + 2.59513e6i −0.670594 + 0.670594i −0.957853 0.287259i \(-0.907256\pi\)
0.287259 + 0.957853i \(0.407256\pi\)
\(158\) 102889. + 102889.i 0.0260855 + 0.0260855i
\(159\) 0 0
\(160\) 0 0
\(161\) 8.08078e6 1.93631
\(162\) 0 0
\(163\) 206143. + 206143.i 0.0475999 + 0.0475999i 0.730506 0.682906i \(-0.239284\pi\)
−0.682906 + 0.730506i \(0.739284\pi\)
\(164\) 1.46061e6i 0.331134i
\(165\) 0 0
\(166\) −984835. −0.215298
\(167\) −2.54852e6 + 2.54852e6i −0.547191 + 0.547191i −0.925627 0.378436i \(-0.876462\pi\)
0.378436 + 0.925627i \(0.376462\pi\)
\(168\) 0 0
\(169\) 4.69697e6i 0.973101i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.50004e6 2.50004e6i 0.491318 0.491318i
\(173\) 4.48960e6 + 4.48960e6i 0.867100 + 0.867100i 0.992150 0.125050i \(-0.0399092\pi\)
−0.125050 + 0.992150i \(0.539909\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.35297e6 −0.248170
\(177\) 0 0
\(178\) 794860. + 794860.i 0.140939 + 0.140939i
\(179\) 9.36798e6i 1.63338i 0.577078 + 0.816689i \(0.304193\pi\)
−0.577078 + 0.816689i \(0.695807\pi\)
\(180\) 0 0
\(181\) 7.30958e6 1.23270 0.616349 0.787473i \(-0.288611\pi\)
0.616349 + 0.787473i \(0.288611\pi\)
\(182\) −739581. + 739581.i −0.122679 + 0.122679i
\(183\) 0 0
\(184\) 2.85068e6i 0.457609i
\(185\) 0 0
\(186\) 0 0
\(187\) 5.81109e6 5.81109e6i 0.888654 0.888654i
\(188\) 63844.0 + 63844.0i 0.00960830 + 0.00960830i
\(189\) 0 0
\(190\) 0 0
\(191\) −8.54252e6 −1.22599 −0.612994 0.790088i \(-0.710035\pi\)
−0.612994 + 0.790088i \(0.710035\pi\)
\(192\) 0 0
\(193\) −7.08708e6 7.08708e6i −0.985815 0.985815i 0.0140856 0.999901i \(-0.495516\pi\)
−0.999901 + 0.0140856i \(0.995516\pi\)
\(194\) 5.91038e6i 0.809488i
\(195\) 0 0
\(196\) −4.66101e6 −0.619031
\(197\) 5.09350e6 5.09350e6i 0.666220 0.666220i −0.290619 0.956839i \(-0.593861\pi\)
0.956839 + 0.290619i \(0.0938611\pi\)
\(198\) 0 0
\(199\) 2.50957e6i 0.318449i −0.987242 0.159224i \(-0.949101\pi\)
0.987242 0.159224i \(-0.0508993\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 491887. 491887.i 0.0596775 0.0596775i
\(203\) −9.97631e6 9.97631e6i −1.19256 1.19256i
\(204\) 0 0
\(205\) 0 0
\(206\) −3.35564e6 −0.383860
\(207\) 0 0
\(208\) 260904. + 260904.i 0.0289928 + 0.0289928i
\(209\) 1.08234e6i 0.118556i
\(210\) 0 0
\(211\) 1.54519e6 0.164488 0.0822442 0.996612i \(-0.473791\pi\)
0.0822442 + 0.996612i \(0.473791\pi\)
\(212\) 3.39640e6 3.39640e6i 0.356460 0.356460i
\(213\) 0 0
\(214\) 4.27714e6i 0.436428i
\(215\) 0 0
\(216\) 0 0
\(217\) 5.47395e6 5.47395e6i 0.535700 0.535700i
\(218\) −7.97855e6 7.97855e6i −0.770113 0.770113i
\(219\) 0 0
\(220\) 0 0
\(221\) −2.24120e6 −0.207637
\(222\) 0 0
\(223\) −3.42480e6 3.42480e6i −0.308831 0.308831i 0.535625 0.844456i \(-0.320076\pi\)
−0.844456 + 0.535625i \(0.820076\pi\)
\(224\) 2.97238e6i 0.264461i
\(225\) 0 0
\(226\) −4.79814e6 −0.415669
\(227\) 1.45900e6 1.45900e6i 0.124732 0.124732i −0.641985 0.766717i \(-0.721889\pi\)
0.766717 + 0.641985i \(0.221889\pi\)
\(228\) 0 0
\(229\) 1.46667e7i 1.22131i −0.791895 0.610657i \(-0.790905\pi\)
0.791895 0.610657i \(-0.209095\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.51937e6 + 3.51937e6i −0.281839 + 0.281839i
\(233\) 1.55030e7 + 1.55030e7i 1.22560 + 1.22560i 0.965613 + 0.259982i \(0.0837167\pi\)
0.259982 + 0.965613i \(0.416283\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.06293e6 0.156945
\(237\) 0 0
\(238\) −1.27666e7 1.27666e7i −0.946987 0.946987i
\(239\) 1.47874e7i 1.08318i 0.840644 + 0.541588i \(0.182177\pi\)
−0.840644 + 0.541588i \(0.817823\pi\)
\(240\) 0 0
\(241\) −2.05498e7 −1.46810 −0.734052 0.679094i \(-0.762373\pi\)
−0.734052 + 0.679094i \(0.762373\pi\)
\(242\) −103352. + 103352.i −0.00729246 + 0.00729246i
\(243\) 0 0
\(244\) 1.02645e7i 0.706594i
\(245\) 0 0
\(246\) 0 0
\(247\) 208716. 208716.i 0.0138505 0.0138505i
\(248\) −1.93106e6 1.93106e6i −0.126602 0.126602i
\(249\) 0 0
\(250\) 0 0
\(251\) −2.58613e6 −0.163542 −0.0817709 0.996651i \(-0.526058\pi\)
−0.0817709 + 0.996651i \(0.526058\pi\)
\(252\) 0 0
\(253\) 1.47128e7 + 1.47128e7i 0.908519 + 0.908519i
\(254\) 1.22694e7i 0.748724i
\(255\) 0 0
\(256\) 1.04858e6 0.0625000
\(257\) −8.90392e6 + 8.90392e6i −0.524544 + 0.524544i −0.918940 0.394397i \(-0.870954\pi\)
0.394397 + 0.918940i \(0.370954\pi\)
\(258\) 0 0
\(259\) 1.56384e7i 0.900105i
\(260\) 0 0
\(261\) 0 0
\(262\) −1.09299e7 + 1.09299e7i −0.607734 + 0.607734i
\(263\) 1.24065e7 + 1.24065e7i 0.681996 + 0.681996i 0.960450 0.278454i \(-0.0898219\pi\)
−0.278454 + 0.960450i \(0.589822\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.37782e6 0.126338
\(267\) 0 0
\(268\) −1.12141e6 1.12141e6i −0.0582587 0.0582587i
\(269\) 2.06412e7i 1.06042i −0.847866 0.530211i \(-0.822113\pi\)
0.847866 0.530211i \(-0.177887\pi\)
\(270\) 0 0
\(271\) −2.50344e7 −1.25785 −0.628926 0.777465i \(-0.716505\pi\)
−0.628926 + 0.777465i \(0.716505\pi\)
\(272\) −4.50370e6 + 4.50370e6i −0.223802 + 0.223802i
\(273\) 0 0
\(274\) 9.14894e6i 0.444753i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.30860e7 + 1.30860e7i −0.615699 + 0.615699i −0.944425 0.328726i \(-0.893381\pi\)
0.328726 + 0.944425i \(0.393381\pi\)
\(278\) 7.26483e6 + 7.26483e6i 0.338136 + 0.338136i
\(279\) 0 0
\(280\) 0 0
\(281\) −7.83239e6 −0.353001 −0.176500 0.984301i \(-0.556478\pi\)
−0.176500 + 0.984301i \(0.556478\pi\)
\(282\) 0 0
\(283\) 3.44660e6 + 3.44660e6i 0.152066 + 0.152066i 0.779040 0.626974i \(-0.215707\pi\)
−0.626974 + 0.779040i \(0.715707\pi\)
\(284\) 8.05467e6i 0.351636i
\(285\) 0 0
\(286\) −2.69314e6 −0.115123
\(287\) 1.65615e7 1.65615e7i 0.700575 0.700575i
\(288\) 0 0
\(289\) 1.45499e7i 0.602789i
\(290\) 0 0
\(291\) 0 0
\(292\) −1.04610e7 + 1.04610e7i −0.420171 + 0.420171i
\(293\) 2.34676e6 + 2.34676e6i 0.0932965 + 0.0932965i 0.752215 0.658918i \(-0.228986\pi\)
−0.658918 + 0.752215i \(0.728986\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.51680e6 0.212722
\(297\) 0 0
\(298\) −1.83083e7 1.83083e7i −0.691830 0.691830i
\(299\) 5.67439e6i 0.212278i
\(300\) 0 0
\(301\) 5.66948e7 2.07895
\(302\) −2.63632e7 + 2.63632e7i −0.957145 + 0.957145i
\(303\) 0 0
\(304\) 838831.i 0.0298575i
\(305\) 0 0
\(306\) 0 0
\(307\) 3.16294e7 3.16294e7i 1.09314 1.09314i 0.0979492 0.995191i \(-0.468772\pi\)
0.995191 0.0979492i \(-0.0312283\pi\)
\(308\) −1.53410e7 1.53410e7i −0.525050 0.525050i
\(309\) 0 0
\(310\) 0 0
\(311\) −2.07488e6 −0.0689781 −0.0344891 0.999405i \(-0.510980\pi\)
−0.0344891 + 0.999405i \(0.510980\pi\)
\(312\) 0 0
\(313\) 3.33290e7 + 3.33290e7i 1.08690 + 1.08690i 0.995846 + 0.0910547i \(0.0290238\pi\)
0.0910547 + 0.995846i \(0.470976\pi\)
\(314\) 2.07610e7i 0.670594i
\(315\) 0 0
\(316\) 823114. 0.0260855
\(317\) 4.17645e6 4.17645e6i 0.131108 0.131108i −0.638507 0.769616i \(-0.720448\pi\)
0.769616 + 0.638507i \(0.220448\pi\)
\(318\) 0 0
\(319\) 3.63281e7i 1.11910i
\(320\) 0 0
\(321\) 0 0
\(322\) 3.23231e7 3.23231e7i 0.968156 0.968156i
\(323\) 3.60284e6 + 3.60284e6i 0.106915 + 0.106915i
\(324\) 0 0
\(325\) 0 0
\(326\) 1.64914e6 0.0475999
\(327\) 0 0
\(328\) −5.84245e6 5.84245e6i −0.165567 0.165567i
\(329\) 1.44782e6i 0.0406563i
\(330\) 0 0
\(331\) −1.41314e7 −0.389673 −0.194837 0.980836i \(-0.562418\pi\)
−0.194837 + 0.980836i \(0.562418\pi\)
\(332\) −3.93934e6 + 3.93934e6i −0.107649 + 0.107649i
\(333\) 0 0
\(334\) 2.03882e7i 0.547191i
\(335\) 0 0
\(336\) 0 0
\(337\) −2.19464e7 + 2.19464e7i −0.573420 + 0.573420i −0.933083 0.359662i \(-0.882892\pi\)
0.359662 + 0.933083i \(0.382892\pi\)
\(338\) −1.87879e7 1.87879e7i −0.486551 0.486551i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.99330e7 0.502701
\(342\) 0 0
\(343\) −1.01623e7 1.01623e7i −0.251831 0.251831i
\(344\) 2.00004e7i 0.491318i
\(345\) 0 0
\(346\) 3.59168e7 0.867100
\(347\) 3.70959e7 3.70959e7i 0.887846 0.887846i −0.106470 0.994316i \(-0.533955\pi\)
0.994316 + 0.106470i \(0.0339549\pi\)
\(348\) 0 0
\(349\) 5.75499e7i 1.35384i 0.736056 + 0.676921i \(0.236686\pi\)
−0.736056 + 0.676921i \(0.763314\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.41187e6 + 5.41187e6i −0.124085 + 0.124085i
\(353\) −5.20285e7 5.20285e7i −1.18282 1.18282i −0.979011 0.203805i \(-0.934669\pi\)
−0.203805 0.979011i \(-0.565331\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.35888e6 0.140939
\(357\) 0 0
\(358\) 3.74719e7 + 3.74719e7i 0.816689 + 0.816689i
\(359\) 3.95295e7i 0.854354i 0.904168 + 0.427177i \(0.140492\pi\)
−0.904168 + 0.427177i \(0.859508\pi\)
\(360\) 0 0
\(361\) 4.63748e7 0.985736
\(362\) 2.92383e7 2.92383e7i 0.616349 0.616349i
\(363\) 0 0
\(364\) 5.91665e6i 0.122679i
\(365\) 0 0
\(366\) 0 0
\(367\) 6.40678e7 6.40678e7i 1.29611 1.29611i 0.365168 0.930941i \(-0.381011\pi\)
0.930941 0.365168i \(-0.118989\pi\)
\(368\) −1.14027e7 1.14027e7i −0.228805 0.228805i
\(369\) 0 0
\(370\) 0 0
\(371\) 7.70219e7 1.50832
\(372\) 0 0
\(373\) −1.23271e7 1.23271e7i −0.237539 0.237539i 0.578291 0.815830i \(-0.303720\pi\)
−0.815830 + 0.578291i \(0.803720\pi\)
\(374\) 4.64887e7i 0.888654i
\(375\) 0 0
\(376\) 510752. 0.00960830
\(377\) −7.00544e6 + 7.00544e6i −0.130741 + 0.130741i
\(378\) 0 0
\(379\) 1.03307e8i 1.89764i 0.315817 + 0.948820i \(0.397721\pi\)
−0.315817 + 0.948820i \(0.602279\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.41701e7 + 3.41701e7i −0.612994 + 0.612994i
\(383\) 4.46875e7 + 4.46875e7i 0.795408 + 0.795408i 0.982368 0.186959i \(-0.0598632\pi\)
−0.186959 + 0.982368i \(0.559863\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.66967e7 −0.985815
\(387\) 0 0
\(388\) −2.36415e7 2.36415e7i −0.404744 0.404744i
\(389\) 6.33567e7i 1.07633i 0.842841 + 0.538163i \(0.180882\pi\)
−0.842841 + 0.538163i \(0.819118\pi\)
\(390\) 0 0
\(391\) 9.79508e7 1.63862
\(392\) −1.86441e7 + 1.86441e7i −0.309515 + 0.309515i
\(393\) 0 0
\(394\) 4.07480e7i 0.666220i
\(395\) 0 0
\(396\) 0 0
\(397\) −5.75784e7 + 5.75784e7i −0.920213 + 0.920213i −0.997044 0.0768313i \(-0.975520\pi\)
0.0768313 + 0.997044i \(0.475520\pi\)
\(398\) −1.00383e7 1.00383e7i −0.159224 0.159224i
\(399\) 0 0
\(400\) 0 0
\(401\) 3.99773e7 0.619984 0.309992 0.950739i \(-0.399674\pi\)
0.309992 + 0.950739i \(0.399674\pi\)
\(402\) 0 0
\(403\) −3.84385e6 3.84385e6i −0.0587288 0.0587288i
\(404\) 3.93509e6i 0.0596775i
\(405\) 0 0
\(406\) −7.98105e7 −1.19256
\(407\) −2.84731e7 + 2.84731e7i −0.422330 + 0.422330i
\(408\) 0 0
\(409\) 1.10793e8i 1.61936i 0.586870 + 0.809681i \(0.300360\pi\)
−0.586870 + 0.809681i \(0.699640\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.34225e7 + 1.34225e7i −0.191930 + 0.191930i
\(413\) 2.33910e7 + 2.33910e7i 0.332047 + 0.332047i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.08723e6 0.0289928
\(417\) 0 0
\(418\) 4.32935e6 + 4.32935e6i 0.0592780 + 0.0592780i
\(419\) 1.22089e8i 1.65972i 0.557973 + 0.829859i \(0.311579\pi\)
−0.557973 + 0.829859i \(0.688421\pi\)
\(420\) 0 0
\(421\) −4.21420e7 −0.564766 −0.282383 0.959302i \(-0.591125\pi\)
−0.282383 + 0.959302i \(0.591125\pi\)
\(422\) 6.18077e6 6.18077e6i 0.0822442 0.0822442i
\(423\) 0 0
\(424\) 2.71712e7i 0.356460i
\(425\) 0 0
\(426\) 0 0
\(427\) −1.16387e8 + 1.16387e8i −1.49493 + 1.49493i
\(428\) −1.71086e7 1.71086e7i −0.218214 0.218214i
\(429\) 0 0
\(430\) 0 0
\(431\) 3.91762e7 0.489317 0.244658 0.969609i \(-0.421324\pi\)
0.244658 + 0.969609i \(0.421324\pi\)
\(432\) 0 0
\(433\) 9.67310e7 + 9.67310e7i 1.19152 + 1.19152i 0.976640 + 0.214882i \(0.0689367\pi\)
0.214882 + 0.976640i \(0.431063\pi\)
\(434\) 4.37916e7i 0.535700i
\(435\) 0 0
\(436\) −6.38284e7 −0.770113
\(437\) −9.12185e6 + 9.12185e6i −0.109305 + 0.109305i
\(438\) 0 0
\(439\) 7.95720e6i 0.0940517i 0.998894 + 0.0470258i \(0.0149743\pi\)
−0.998894 + 0.0470258i \(0.985026\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −8.96480e6 + 8.96480e6i −0.103818 + 0.103818i
\(443\) 8.63738e7 + 8.63738e7i 0.993507 + 0.993507i 0.999979 0.00647172i \(-0.00206003\pi\)
−0.00647172 + 0.999979i \(0.502060\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2.73984e7 −0.308831
\(447\) 0 0
\(448\) 1.18895e7 + 1.18895e7i 0.132230 + 0.132230i
\(449\) 8.43204e7i 0.931523i −0.884910 0.465762i \(-0.845780\pi\)
0.884910 0.465762i \(-0.154220\pi\)
\(450\) 0 0
\(451\) 6.03077e7 0.657420
\(452\) −1.91926e7 + 1.91926e7i −0.207835 + 0.207835i
\(453\) 0 0
\(454\) 1.16720e7i 0.124732i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.32039e7 1.32039e7i 0.138341 0.138341i −0.634545 0.772886i \(-0.718812\pi\)
0.772886 + 0.634545i \(0.218812\pi\)
\(458\) −5.86670e7 5.86670e7i −0.610657 0.610657i
\(459\) 0 0
\(460\) 0 0
\(461\) −9.28082e7 −0.947291 −0.473645 0.880716i \(-0.657062\pi\)
−0.473645 + 0.880716i \(0.657062\pi\)
\(462\) 0 0
\(463\) −4.15624e7 4.15624e7i −0.418753 0.418753i 0.466021 0.884774i \(-0.345687\pi\)
−0.884774 + 0.466021i \(0.845687\pi\)
\(464\) 2.81549e7i 0.281839i
\(465\) 0 0
\(466\) 1.24024e8 1.22560
\(467\) −5.74249e7 + 5.74249e7i −0.563832 + 0.563832i −0.930394 0.366562i \(-0.880535\pi\)
0.366562 + 0.930394i \(0.380535\pi\)
\(468\) 0 0
\(469\) 2.54308e7i 0.246514i
\(470\) 0 0
\(471\) 0 0
\(472\) 8.25172e6 8.25172e6i 0.0784727 0.0784727i
\(473\) 1.03225e8 + 1.03225e8i 0.975443 + 0.975443i
\(474\) 0 0
\(475\) 0 0
\(476\) −1.02133e8 −0.946987
\(477\) 0 0
\(478\) 5.91498e7 + 5.91498e7i 0.541588 + 0.541588i
\(479\) 1.99190e7i 0.181243i 0.995885 + 0.0906215i \(0.0288854\pi\)
−0.995885 + 0.0906215i \(0.971115\pi\)
\(480\) 0 0
\(481\) 1.09814e7 0.0986786
\(482\) −8.21992e7 + 8.21992e7i −0.734052 + 0.734052i
\(483\) 0 0
\(484\) 826818.i 0.00729246i
\(485\) 0 0
\(486\) 0 0
\(487\) 4.50108e7 4.50108e7i 0.389700 0.389700i −0.484881 0.874580i \(-0.661137\pi\)
0.874580 + 0.484881i \(0.161137\pi\)
\(488\) 4.10581e7 + 4.10581e7i 0.353297 + 0.353297i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.28208e8 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) −1.20927e8 1.20927e8i −1.00922 1.00922i
\(494\) 1.66973e6i 0.0138505i
\(495\) 0 0
\(496\) −1.54485e7 −0.126602
\(497\) 9.13299e7 9.13299e7i 0.743950 0.743950i
\(498\) 0 0
\(499\) 5.72011e7i 0.460366i −0.973147 0.230183i \(-0.926068\pi\)
0.973147 0.230183i \(-0.0739324\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.03445e7 + 1.03445e7i −0.0817709 + 0.0817709i
\(503\) −6.91106e6 6.91106e6i −0.0543051 0.0543051i 0.679433 0.733738i \(-0.262226\pi\)
−0.733738 + 0.679433i \(0.762226\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.17703e8 0.908519
\(507\) 0 0
\(508\) −4.90775e7 4.90775e7i −0.374362 0.374362i
\(509\) 1.61164e8i 1.22213i 0.791582 + 0.611063i \(0.209258\pi\)
−0.791582 + 0.611063i \(0.790742\pi\)
\(510\) 0 0
\(511\) −2.37230e8 −1.77790
\(512\) 4.19430e6 4.19430e6i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 7.12313e7i 0.524544i
\(515\) 0 0
\(516\) 0 0
\(517\) −2.63607e6 + 2.63607e6i −0.0190759 + 0.0190759i
\(518\) 6.25536e7 + 6.25536e7i 0.450052 + 0.450052i
\(519\) 0 0
\(520\) 0 0
\(521\) −9.62590e7 −0.680656 −0.340328 0.940307i \(-0.610538\pi\)
−0.340328 + 0.940307i \(0.610538\pi\)
\(522\) 0 0
\(523\) 1.16479e8 + 1.16479e8i 0.814221 + 0.814221i 0.985264 0.171042i \(-0.0547135\pi\)
−0.171042 + 0.985264i \(0.554714\pi\)
\(524\) 8.74394e7i 0.607734i
\(525\) 0 0
\(526\) 9.92520e7 0.681996
\(527\) 6.63522e7 6.63522e7i 0.453339 0.453339i
\(528\) 0 0
\(529\) 9.99610e7i 0.675248i
\(530\) 0 0
\(531\) 0 0
\(532\) 9.51130e6 9.51130e6i 0.0631691 0.0631691i
\(533\) −1.16296e7 1.16296e7i −0.0768040 0.0768040i
\(534\) 0 0
\(535\) 0 0
\(536\) −8.97130e6 −0.0582587
\(537\) 0 0
\(538\) −8.25650e7 8.25650e7i −0.530211 0.530211i
\(539\) 1.92450e8i 1.22900i
\(540\) 0 0
\(541\) 8.42748e7 0.532238 0.266119 0.963940i \(-0.414259\pi\)
0.266119 + 0.963940i \(0.414259\pi\)
\(542\) −1.00138e8 + 1.00138e8i −0.628926 + 0.628926i
\(543\) 0 0
\(544\) 3.60296e7i 0.223802i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.60144e8 + 1.60144e8i −0.978475 + 0.978475i −0.999773 0.0212983i \(-0.993220\pi\)
0.0212983 + 0.999773i \(0.493220\pi\)
\(548\) −3.65958e7 3.65958e7i −0.222377 0.222377i
\(549\) 0 0
\(550\) 0 0
\(551\) 2.25232e7 0.134640
\(552\) 0 0
\(553\) 9.33308e6 + 9.33308e6i 0.0551887 + 0.0551887i
\(554\) 1.04688e8i 0.615699i
\(555\) 0 0
\(556\) 5.81187e7 0.338136
\(557\) −1.89112e8 + 1.89112e8i −1.09434 + 1.09434i −0.0992858 + 0.995059i \(0.531656\pi\)
−0.995059 + 0.0992858i \(0.968344\pi\)
\(558\) 0 0
\(559\) 3.98115e7i 0.227915i
\(560\) 0 0
\(561\) 0 0
\(562\) −3.13296e7 + 3.13296e7i −0.176500 + 0.176500i
\(563\) −3.67704e7 3.67704e7i −0.206050 0.206050i 0.596536 0.802586i \(-0.296543\pi\)
−0.802586 + 0.596536i \(0.796543\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.75728e7 0.152066
\(567\) 0 0
\(568\) −3.22187e7 3.22187e7i −0.175818 0.175818i
\(569\) 1.52471e8i 0.827658i −0.910355 0.413829i \(-0.864191\pi\)
0.910355 0.413829i \(-0.135809\pi\)
\(570\) 0 0
\(571\) −1.91478e8 −1.02851 −0.514257 0.857636i \(-0.671932\pi\)
−0.514257 + 0.857636i \(0.671932\pi\)
\(572\) −1.07725e7 + 1.07725e7i −0.0575613 + 0.0575613i
\(573\) 0 0
\(574\) 1.32492e8i 0.700575i
\(575\) 0 0
\(576\) 0 0
\(577\) 1.09464e8 1.09464e8i 0.569828 0.569828i −0.362252 0.932080i \(-0.617992\pi\)
0.932080 + 0.362252i \(0.117992\pi\)
\(578\) −5.81994e7 5.81994e7i −0.301394 0.301394i
\(579\) 0 0
\(580\) 0 0
\(581\) −8.93343e7 −0.455502
\(582\) 0 0
\(583\) 1.40235e8 + 1.40235e8i 0.707703 + 0.707703i
\(584\) 8.36883e7i 0.420171i
\(585\) 0 0
\(586\) 1.87741e7 0.0932965
\(587\) 1.33081e8 1.33081e8i 0.657961 0.657961i −0.296936 0.954897i \(-0.595965\pi\)
0.954897 + 0.296936i \(0.0959649\pi\)
\(588\) 0 0
\(589\) 1.23583e7i 0.0604803i
\(590\) 0 0
\(591\) 0 0
\(592\) 2.20672e7 2.20672e7i 0.106361 0.106361i
\(593\) −1.32615e8 1.32615e8i −0.635956 0.635956i 0.313599 0.949555i \(-0.398465\pi\)
−0.949555 + 0.313599i \(0.898465\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.46466e8 −0.691830
\(597\) 0 0
\(598\) −2.26975e7 2.26975e7i −0.106139 0.106139i
\(599\) 9.86190e7i 0.458860i 0.973325 + 0.229430i \(0.0736862\pi\)
−0.973325 + 0.229430i \(0.926314\pi\)
\(600\) 0 0
\(601\) 1.55654e6 0.00717031 0.00358515 0.999994i \(-0.498859\pi\)
0.00358515 + 0.999994i \(0.498859\pi\)
\(602\) 2.26779e8 2.26779e8i 1.03947 1.03947i
\(603\) 0 0
\(604\) 2.10906e8i 0.957145i
\(605\) 0 0
\(606\) 0 0
\(607\) 1.81568e8 1.81568e8i 0.811847 0.811847i −0.173063 0.984911i \(-0.555367\pi\)
0.984911 + 0.173063i \(0.0553665\pi\)
\(608\) −3.35533e6 3.35533e6i −0.0149288 0.0149288i
\(609\) 0 0
\(610\) 0 0
\(611\) 1.01667e6 0.00445715
\(612\) 0 0
\(613\) 8.56979e7 + 8.56979e7i 0.372039 + 0.372039i 0.868220 0.496180i \(-0.165264\pi\)
−0.496180 + 0.868220i \(0.665264\pi\)
\(614\) 2.53035e8i 1.09314i
\(615\) 0 0
\(616\) −1.22728e8 −0.525050
\(617\) 1.85185e8 1.85185e8i 0.788405 0.788405i −0.192827 0.981233i \(-0.561766\pi\)
0.981233 + 0.192827i \(0.0617658\pi\)
\(618\) 0 0
\(619\) 2.30579e8i 0.972185i −0.873907 0.486092i \(-0.838422\pi\)
0.873907 0.486092i \(-0.161578\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −8.29951e6 + 8.29951e6i −0.0344891 + 0.0344891i
\(623\) 7.21018e7 + 7.21018e7i 0.298182 + 0.298182i
\(624\) 0 0
\(625\) 0 0
\(626\) 2.66632e8 1.08690
\(627\) 0 0
\(628\) 8.30441e7 + 8.30441e7i 0.335297 + 0.335297i
\(629\) 1.89560e8i 0.761720i
\(630\) 0 0
\(631\) 4.64011e8 1.84689 0.923444 0.383734i \(-0.125362\pi\)
0.923444 + 0.383734i \(0.125362\pi\)
\(632\) 3.29246e6 3.29246e6i 0.0130427 0.0130427i
\(633\) 0 0
\(634\) 3.34116e7i 0.131108i
\(635\) 0 0
\(636\) 0 0
\(637\) −3.71117e7 + 3.71117e7i −0.143580 + 0.143580i
\(638\) −1.45312e8 1.45312e8i −0.559552 0.559552i
\(639\) 0 0
\(640\) 0 0
\(641\) −1.58114e8 −0.600337 −0.300168 0.953886i \(-0.597043\pi\)
−0.300168 + 0.953886i \(0.597043\pi\)
\(642\) 0 0
\(643\) −7.86358e7 7.86358e7i −0.295793 0.295793i 0.543571 0.839363i \(-0.317072\pi\)
−0.839363 + 0.543571i \(0.817072\pi\)
\(644\) 2.58585e8i 0.968156i
\(645\) 0 0
\(646\) 2.88227e7 0.106915
\(647\) −3.62583e8 + 3.62583e8i −1.33873 + 1.33873i −0.441445 + 0.897288i \(0.645534\pi\)
−0.897288 + 0.441445i \(0.854466\pi\)
\(648\) 0 0
\(649\) 8.51770e7i 0.311593i
\(650\) 0 0
\(651\) 0 0
\(652\) 6.59658e6 6.59658e6i 0.0237999 0.0237999i
\(653\) −2.28612e7 2.28612e7i −0.0821031 0.0821031i 0.664863 0.746966i \(-0.268490\pi\)
−0.746966 + 0.664863i \(0.768490\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.67396e7 −0.165567
\(657\) 0 0
\(658\) 5.79129e6 + 5.79129e6i 0.0203281 + 0.0203281i
\(659\) 1.62416e8i 0.567510i −0.958897 0.283755i \(-0.908420\pi\)
0.958897 0.283755i \(-0.0915803\pi\)
\(660\) 0 0
\(661\) −5.53972e8 −1.91815 −0.959076 0.283148i \(-0.908621\pi\)
−0.959076 + 0.283148i \(0.908621\pi\)
\(662\) −5.65255e7 + 5.65255e7i −0.194837 + 0.194837i
\(663\) 0 0
\(664\) 3.15147e7i 0.107649i
\(665\) 0 0
\(666\) 0 0
\(667\) 3.06170e8 3.06170e8i 1.03178 1.03178i
\(668\) 8.15528e7 + 8.15528e7i 0.273596 + 0.273596i
\(669\) 0 0
\(670\) 0 0
\(671\) −4.23816e8 −1.40284
\(672\) 0 0
\(673\) −2.60781e8 2.60781e8i −0.855521 0.855521i 0.135286 0.990807i \(-0.456805\pi\)
−0.990807 + 0.135286i \(0.956805\pi\)
\(674\) 1.75571e8i 0.573420i
\(675\) 0 0
\(676\) −1.50303e8 −0.486551
\(677\) 8.65269e7 8.65269e7i 0.278859 0.278859i −0.553794 0.832654i \(-0.686821\pi\)
0.832654 + 0.553794i \(0.186821\pi\)
\(678\) 0 0
\(679\) 5.36131e8i 1.71262i
\(680\) 0 0
\(681\) 0 0
\(682\) 7.97321e7 7.97321e7i 0.251351 0.251351i
\(683\) −3.62755e8 3.62755e8i −1.13855 1.13855i −0.988710 0.149839i \(-0.952125\pi\)
−0.149839 0.988710i \(-0.547875\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.12984e7 −0.251831
\(687\) 0 0
\(688\) −8.00014e7 8.00014e7i −0.245659 0.245659i
\(689\) 5.40854e7i 0.165357i
\(690\) 0 0
\(691\) 5.53386e8 1.67724 0.838618 0.544720i \(-0.183364\pi\)
0.838618 + 0.544720i \(0.183364\pi\)
\(692\) 1.43667e8 1.43667e8i 0.433550 0.433550i
\(693\) 0 0
\(694\) 2.96767e8i 0.887846i
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00750e8 2.00750e8i 0.592866 0.592866i
\(698\) 2.30199e8 + 2.30199e8i 0.676921 + 0.676921i
\(699\) 0 0
\(700\) 0 0
\(701\) 2.46611e8 0.715910 0.357955 0.933739i \(-0.383474\pi\)
0.357955 + 0.933739i \(0.383474\pi\)
\(702\) 0 0
\(703\) −1.76531e7 1.76531e7i −0.0508108 0.0508108i
\(704\) 4.32950e7i 0.124085i
\(705\) 0 0
\(706\) −4.16228e8 −1.18282
\(707\) 4.46190e7 4.46190e7i 0.126259 0.126259i
\(708\) 0 0
\(709\) 2.37496e7i 0.0666374i −0.999445 0.0333187i \(-0.989392\pi\)
0.999445 0.0333187i \(-0.0106076\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2.54355e7 2.54355e7i 0.0704694 0.0704694i
\(713\) 1.67994e8 + 1.67994e8i 0.463473 + 0.463473i
\(714\) 0 0
\(715\) 0 0
\(716\) 2.99775e8 0.816689
\(717\) 0 0
\(718\) 1.58118e8 + 1.58118e8i 0.427177 + 0.427177i
\(719\) 5.91472e8i 1.59128i −0.605767 0.795642i \(-0.707134\pi\)
0.605767 0.795642i \(-0.292866\pi\)
\(720\) 0 0
\(721\) −3.04390e8 −0.812127
\(722\) 1.85499e8 1.85499e8i 0.492868 0.492868i
\(723\) 0 0
\(724\) 2.33906e8i 0.616349i
\(725\) 0 0
\(726\) 0 0
\(727\) −1.16120e8 + 1.16120e8i −0.302207 + 0.302207i −0.841877 0.539670i \(-0.818549\pi\)
0.539670 + 0.841877i \(0.318549\pi\)
\(728\) 2.36666e7 + 2.36666e7i 0.0613397 + 0.0613397i
\(729\) 0 0
\(730\) 0 0
\(731\) 6.87223e8 1.75932
\(732\) 0 0
\(733\) −9.94477e7 9.94477e7i −0.252512 0.252512i 0.569488 0.822000i \(-0.307142\pi\)
−0.822000 + 0.569488i \(0.807142\pi\)
\(734\) 5.12543e8i 1.29611i
\(735\) 0 0
\(736\) −9.12217e7 −0.228805
\(737\) 4.63024e7 4.63024e7i 0.115665 0.115665i
\(738\) 0 0
\(739\) 3.16873e8i 0.785150i −0.919720 0.392575i \(-0.871584\pi\)
0.919720 0.392575i \(-0.128416\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.08088e8 3.08088e8i 0.754158 0.754158i
\(743\) −2.89147e8 2.89147e8i −0.704939 0.704939i 0.260527 0.965467i \(-0.416104\pi\)
−0.965467 + 0.260527i \(0.916104\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −9.86170e7 −0.237539
\(747\) 0 0
\(748\) −1.85955e8 1.85955e8i −0.444327 0.444327i
\(749\) 3.87980e8i 0.923344i
\(750\) 0 0
\(751\) −3.85591e8 −0.910346 −0.455173 0.890403i \(-0.650423\pi\)
−0.455173 + 0.890403i \(0.650423\pi\)
\(752\) 2.04301e6 2.04301e6i 0.00480415 0.00480415i
\(753\) 0 0
\(754\) 5.60435e7i 0.130741i
\(755\) 0 0
\(756\) 0 0
\(757\) −2.20526e8 + 2.20526e8i −0.508361 + 0.508361i −0.914023 0.405662i \(-0.867041\pi\)
0.405662 + 0.914023i \(0.367041\pi\)
\(758\) 4.13230e8 + 4.13230e8i 0.948820 + 0.948820i
\(759\) 0 0
\(760\) 0 0
\(761\) −2.54649e8 −0.577815 −0.288907 0.957357i \(-0.593292\pi\)
−0.288907 + 0.957357i \(0.593292\pi\)
\(762\) 0 0
\(763\) −7.23734e8 7.23734e8i −1.62932 1.62932i
\(764\) 2.73361e8i 0.612994i
\(765\) 0 0
\(766\) 3.57500e8 0.795408
\(767\) 1.64254e7 1.64254e7i 0.0364023 0.0364023i
\(768\) 0 0
\(769\) 4.95784e8i 1.09022i −0.838365 0.545109i \(-0.816488\pi\)
0.838365 0.545109i \(-0.183512\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.26787e8 + 2.26787e8i −0.492908 + 0.492908i
\(773\) 1.32543e8 + 1.32543e8i 0.286957 + 0.286957i 0.835876 0.548918i \(-0.184960\pi\)
−0.548918 + 0.835876i \(0.684960\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.89132e8 −0.404744
\(777\) 0 0
\(778\) 2.53427e8 + 2.53427e8i 0.538163 + 0.538163i
\(779\) 3.73904e7i 0.0790947i
\(780\) 0 0
\(781\) 3.32572e8 0.698124
\(782\) 3.91803e8 3.91803e8i 0.819309 0.819309i
\(783\) 0 0
\(784\) 1.49152e8i 0.309515i
\(785\) 0 0
\(786\) 0 0
\(787\) −1.81673e8 + 1.81673e8i −0.372705 + 0.372705i −0.868462 0.495757i \(-0.834891\pi\)
0.495757 + 0.868462i \(0.334891\pi\)
\(788\) −1.62992e8 1.62992e8i −0.333110 0.333110i
\(789\) 0 0
\(790\) 0 0
\(791\) −4.35239e8 −0.879425
\(792\) 0 0
\(793\) 8.17278e7 + 8.17278e7i 0.163889 + 0.163889i
\(794\) 4.60627e8i 0.920213i
\(795\) 0 0
\(796\) −8.03061e7 −0.159224
\(797\) −1.28320e7 + 1.28320e7i −0.0253466 + 0.0253466i −0.719666 0.694320i \(-0.755705\pi\)
0.694320 + 0.719666i \(0.255705\pi\)
\(798\) 0 0
\(799\) 1.75497e7i 0.0344056i
\(800\) 0 0
\(801\) 0 0
\(802\) 1.59909e8 1.59909e8i 0.309992 0.309992i
\(803\) −4.31929e8 4.31929e8i −0.834191 0.834191i
\(804\) 0 0
\(805\) 0 0
\(806\) −3.07508e7 −0.0587288
\(807\) 0 0
\(808\) −1.57404e7 1.57404e7i −0.0298388 0.0298388i
\(809\) 2.71170e8i 0.512150i 0.966657 + 0.256075i \(0.0824293\pi\)
−0.966657 + 0.256075i \(0.917571\pi\)
\(810\) 0 0
\(811\) −5.93403e8 −1.11247 −0.556234 0.831026i \(-0.687754\pi\)
−0.556234 + 0.831026i \(0.687754\pi\)
\(812\) −3.19242e8 + 3.19242e8i −0.596282 + 0.596282i
\(813\) 0 0
\(814\) 2.27785e8i 0.422330i
\(815\) 0 0
\(816\) 0 0
\(817\) −6.39989e7 + 6.39989e7i −0.117356 + 0.117356i
\(818\) 4.43174e8 + 4.43174e8i 0.809681 + 0.809681i
\(819\) 0 0
\(820\) 0 0
\(821\) 2.50203e7 0.0452130 0.0226065 0.999744i \(-0.492804\pi\)
0.0226065 + 0.999744i \(0.492804\pi\)
\(822\) 0 0
\(823\) 5.91490e6 + 5.91490e6i 0.0106108 + 0.0106108i 0.712392 0.701781i \(-0.247612\pi\)
−0.701781 + 0.712392i \(0.747612\pi\)
\(824\) 1.07380e8i 0.191930i
\(825\) 0 0
\(826\) 1.87128e8 0.332047
\(827\) 3.92300e8 3.92300e8i 0.693588 0.693588i −0.269432 0.963019i \(-0.586836\pi\)
0.963019 + 0.269432i \(0.0868359\pi\)
\(828\) 0 0
\(829\) 6.16308e8i 1.08177i 0.841097 + 0.540884i \(0.181910\pi\)
−0.841097 + 0.540884i \(0.818090\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.34893e6 8.34893e6i 0.0144964 0.0144964i
\(833\) −6.40620e8 6.40620e8i −1.10832 1.10832i
\(834\) 0 0
\(835\) 0 0
\(836\) 3.46348e7 0.0592780
\(837\) 0 0
\(838\) 4.88356e8 + 4.88356e8i 0.829859 + 0.829859i
\(839\) 5.89741e8i 0.998564i 0.866440 + 0.499282i \(0.166403\pi\)
−0.866440 + 0.499282i \(0.833597\pi\)
\(840\) 0 0
\(841\) −1.61155e8 −0.270930
\(842\) −1.68568e8 + 1.68568e8i −0.282383 + 0.282383i
\(843\) 0 0
\(844\) 4.94461e7i 0.0822442i
\(845\) 0 0
\(846\) 0 0
\(847\) −9.37509e6 + 9.37509e6i −0.0154285 + 0.0154285i
\(848\) −1.08685e8 1.08685e8i −0.178230 0.178230i
\(849\) 0 0
\(850\) 0 0
\(851\) −4.79938e8 −0.778747
\(852\) 0 0
\(853\) 5.34794e8 + 5.34794e8i 0.861666 + 0.861666i 0.991532 0.129865i \(-0.0414545\pi\)
−0.129865 + 0.991532i \(0.541454\pi\)
\(854\) 9.31096e8i 1.49493i
\(855\) 0 0
\(856\) −1.36869e8 −0.218214
\(857\) −3.90046e7 + 3.90046e7i −0.0619689 + 0.0619689i −0.737412 0.675443i \(-0.763952\pi\)
0.675443 + 0.737412i \(0.263952\pi\)
\(858\) 0 0
\(859\) 8.15365e8i 1.28639i 0.765702 + 0.643195i \(0.222392\pi\)
−0.765702 + 0.643195i \(0.777608\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.56705e8 1.56705e8i 0.244658 0.244658i
\(863\) 5.03491e8 + 5.03491e8i 0.783357 + 0.783357i 0.980396 0.197039i \(-0.0631325\pi\)
−0.197039 + 0.980396i \(0.563132\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 7.73848e8 1.19152
\(867\) 0 0
\(868\) −1.75166e8 1.75166e8i −0.267850 0.267850i
\(869\) 3.39858e7i 0.0517891i
\(870\) 0 0
\(871\) −1.78577e7 −0.0270254
\(872\) −2.55314e8 + 2.55314e8i −0.385056 + 0.385056i
\(873\) 0 0
\(874\) 7.29748e7i 0.109305i
\(875\) 0 0
\(876\) 0 0
\(877\) 4.25203e8 4.25203e8i 0.630373 0.630373i −0.317788 0.948162i \(-0.602940\pi\)
0.948162 + 0.317788i \(0.102940\pi\)
\(878\) 3.18288e7 + 3.18288e7i 0.0470258 + 0.0470258i
\(879\) 0 0
\(880\) 0 0
\(881\) −4.01941e8 −0.587806 −0.293903 0.955835i \(-0.594954\pi\)
−0.293903 + 0.955835i \(0.594954\pi\)
\(882\) 0 0
\(883\) −4.01338e8 4.01338e8i −0.582946 0.582946i 0.352766 0.935712i \(-0.385241\pi\)
−0.935712 + 0.352766i \(0.885241\pi\)
\(884\) 7.17184e7i 0.103818i
\(885\) 0 0
\(886\) 6.90991e8 0.993507
\(887\) 5.18983e6 5.18983e6i 0.00743674 0.00743674i −0.703379 0.710815i \(-0.748326\pi\)
0.710815 + 0.703379i \(0.248326\pi\)
\(888\) 0 0
\(889\) 1.11296e9i 1.58406i
\(890\) 0 0
\(891\) 0 0
\(892\) −1.09594e8 + 1.09594e8i −0.154415 + 0.154415i
\(893\) −1.63435e6 1.63435e6i −0.00229504 0.00229504i
\(894\) 0 0
\(895\) 0 0
\(896\) 9.51163e7 0.132230
\(897\) 0 0
\(898\) −3.37282e8 3.37282e8i −0.465762 0.465762i
\(899\) 4.14801e8i 0.570901i
\(900\) 0 0
\(901\) 9.33617e8 1.27642
\(902\) 2.41231e8 2.41231e8i 0.328710 0.328710i
\(903\) 0 0
\(904\) 1.53541e8i 0.207835i
\(905\) 0 0
\(906\) 0 0
\(907\) −3.76104e8 + 3.76104e8i −0.504065 + 0.504065i −0.912698 0.408634i \(-0.866005\pi\)
0.408634 + 0.912698i \(0.366005\pi\)
\(908\) −4.66879e7 4.66879e7i −0.0623659 0.0623659i
\(909\) 0 0
\(910\) 0 0
\(911\) 9.07902e8 1.20084 0.600418 0.799686i \(-0.295001\pi\)
0.600418 + 0.799686i \(0.295001\pi\)
\(912\) 0 0
\(913\) −1.62653e8 1.62653e8i −0.213722 0.213722i
\(914\) 1.05631e8i 0.138341i
\(915\) 0 0
\(916\) −4.69336e8 −0.610657
\(917\) −9.91453e8 + 9.91453e8i −1.28577 + 1.28577i
\(918\) 0 0
\(919\) 2.04129e8i 0.263002i −0.991316 0.131501i \(-0.958020\pi\)
0.991316 0.131501i \(-0.0419796\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3.71233e8 + 3.71233e8i −0.473645 + 0.473645i
\(923\) −6.41326e7 6.41326e7i −0.0815593 0.0815593i
\(924\) 0 0
\(925\) 0 0
\(926\) −3.32499e8 −0.418753
\(927\) 0 0
\(928\) 1.12620e8 + 1.12620e8i 0.140919 + 0.140919i
\(929\) 1.33077e9i 1.65980i −0.557914 0.829898i \(-0.688398\pi\)
0.557914 0.829898i \(-0.311602\pi\)
\(930\) 0 0
\(931\) 1.19318e8 0.147862
\(932\) 4.96095e8 4.96095e8i 0.612798 0.612798i
\(933\) 0 0
\(934\) 4.59399e8i 0.563832i
\(935\) 0 0
\(936\) 0 0
\(937\) 9.92661e7 9.92661e7i 0.120665 0.120665i −0.644196 0.764861i \(-0.722808\pi\)
0.764861 + 0.644196i \(0.222808\pi\)
\(938\) −1.01723e8 1.01723e8i −0.123257 0.123257i
\(939\) 0 0
\(940\) 0 0
\(941\) 3.77955e7 0.0453598 0.0226799 0.999743i \(-0.492780\pi\)
0.0226799 + 0.999743i \(0.492780\pi\)
\(942\) 0 0
\(943\) 5.08268e8 + 5.08268e8i 0.606119 + 0.606119i
\(944\) 6.60138e7i 0.0784727i
\(945\) 0 0
\(946\) 8.25801e8 0.975443
\(947\) −1.09711e7 + 1.09711e7i −0.0129181 + 0.0129181i −0.713536 0.700618i \(-0.752908\pi\)
0.700618 + 0.713536i \(0.252908\pi\)
\(948\) 0 0
\(949\) 1.66585e8i 0.194911i
\(950\) 0 0
\(951\) 0 0
\(952\) −4.08531e8 + 4.08531e8i −0.473494 + 0.473494i
\(953\) 1.06083e9 + 1.06083e9i 1.22565 + 1.22565i 0.965593 + 0.260059i \(0.0837420\pi\)
0.260059 + 0.965593i \(0.416258\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 4.73198e8 0.541588
\(957\) 0 0
\(958\) 7.96761e7 + 7.96761e7i 0.0906215 + 0.0906215i
\(959\) 8.29900e8i 0.940958i
\(960\) 0 0
\(961\) −6.59905e8 −0.743551
\(962\) 4.39256e7 4.39256e7i 0.0493393 0.0493393i
\(963\) 0 0
\(964\) 6.57594e8i 0.734052i
\(965\) 0 0
\(966\) 0 0
\(967\) −3.42662e8 + 3.42662e8i −0.378954 + 0.378954i −0.870725 0.491771i \(-0.836350\pi\)
0.491771 + 0.870725i \(0.336350\pi\)
\(968\) 3.30727e6 + 3.30727e6i 0.00364623 + 0.00364623i
\(969\) 0 0
\(970\) 0 0
\(971\) −3.06097e8 −0.334350 −0.167175 0.985927i \(-0.553464\pi\)
−0.167175 + 0.985927i \(0.553464\pi\)
\(972\) 0 0
\(973\) 6.58993e8 + 6.58993e8i 0.715389 + 0.715389i
\(974\) 3.60087e8i 0.389700i
\(975\) 0 0
\(976\) 3.28465e8 0.353297
\(977\) −1.01093e9 + 1.01093e9i −1.08402 + 1.08402i −0.0878855 + 0.996131i \(0.528011\pi\)
−0.996131 + 0.0878855i \(0.971989\pi\)
\(978\) 0 0
\(979\) 2.62554e8i 0.279815i
\(980\) 0 0
\(981\) 0 0
\(982\) 5.12831e8 5.12831e8i 0.541552 0.541552i
\(983\) 3.66759e8 + 3.66759e8i 0.386118 + 0.386118i 0.873300 0.487182i \(-0.161975\pi\)
−0.487182 + 0.873300i \(0.661975\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −9.67419e8 −1.00922
\(987\) 0 0
\(988\) −6.67891e6 6.67891e6i −0.00692524 0.00692524i
\(989\) 1.73995e9i 1.79865i
\(990\) 0 0
\(991\) −7.65601e8 −0.786649 −0.393325 0.919400i \(-0.628675\pi\)
−0.393325 + 0.919400i \(0.628675\pi\)
\(992\) −6.17939e7 + 6.17939e7i −0.0633010 + 0.0633010i
\(993\) 0 0
\(994\) 7.30639e8i 0.743950i
\(995\) 0 0
\(996\) 0 0
\(997\) −3.07440e8 + 3.07440e8i −0.310223 + 0.310223i −0.844996 0.534773i \(-0.820397\pi\)
0.534773 + 0.844996i \(0.320397\pi\)
\(998\) −2.28805e8 2.28805e8i −0.230183 0.230183i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.7.g.m.343.2 4
3.2 odd 2 50.7.c.d.43.1 4
5.2 odd 4 inner 450.7.g.m.307.2 4
5.3 odd 4 90.7.g.b.37.2 4
5.4 even 2 90.7.g.b.73.2 4
15.2 even 4 50.7.c.d.7.1 4
15.8 even 4 10.7.c.b.7.2 yes 4
15.14 odd 2 10.7.c.b.3.2 4
60.23 odd 4 80.7.p.c.17.1 4
60.59 even 2 80.7.p.c.33.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.7.c.b.3.2 4 15.14 odd 2
10.7.c.b.7.2 yes 4 15.8 even 4
50.7.c.d.7.1 4 15.2 even 4
50.7.c.d.43.1 4 3.2 odd 2
80.7.p.c.17.1 4 60.23 odd 4
80.7.p.c.33.1 4 60.59 even 2
90.7.g.b.37.2 4 5.3 odd 4
90.7.g.b.73.2 4 5.4 even 2
450.7.g.m.307.2 4 5.2 odd 4 inner
450.7.g.m.343.2 4 1.1 even 1 trivial