Properties

Label 4598.2.a.by.1.2
Level $4598$
Weight $2$
Character 4598.1
Self dual yes
Analytic conductor $36.715$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4598,2,Mod(1,4598)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4598, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4598.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4598 = 2 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4598.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.7152148494\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 16x^{6} - 4x^{5} + 75x^{4} + 32x^{3} - 90x^{2} - 28x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.115899\) of defining polynomial
Character \(\chi\) \(=\) 4598.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.11129 q^{3} +1.00000 q^{4} -2.75070 q^{5} +2.11129 q^{6} -3.66381 q^{7} -1.00000 q^{8} +1.45756 q^{9} +2.75070 q^{10} -2.11129 q^{12} +3.81790 q^{13} +3.66381 q^{14} +5.80753 q^{15} +1.00000 q^{16} +4.31816 q^{17} -1.45756 q^{18} +1.00000 q^{19} -2.75070 q^{20} +7.73537 q^{21} -0.695478 q^{23} +2.11129 q^{24} +2.56634 q^{25} -3.81790 q^{26} +3.25654 q^{27} -3.66381 q^{28} -7.77089 q^{29} -5.80753 q^{30} +0.340036 q^{31} -1.00000 q^{32} -4.31816 q^{34} +10.0780 q^{35} +1.45756 q^{36} -0.692199 q^{37} -1.00000 q^{38} -8.06072 q^{39} +2.75070 q^{40} -9.21705 q^{41} -7.73537 q^{42} -2.01495 q^{43} -4.00932 q^{45} +0.695478 q^{46} -9.80308 q^{47} -2.11129 q^{48} +6.42347 q^{49} -2.56634 q^{50} -9.11690 q^{51} +3.81790 q^{52} -5.54956 q^{53} -3.25654 q^{54} +3.66381 q^{56} -2.11129 q^{57} +7.77089 q^{58} -8.22759 q^{59} +5.80753 q^{60} +0.344547 q^{61} -0.340036 q^{62} -5.34023 q^{63} +1.00000 q^{64} -10.5019 q^{65} -5.04040 q^{67} +4.31816 q^{68} +1.46836 q^{69} -10.0780 q^{70} -3.22075 q^{71} -1.45756 q^{72} -14.6020 q^{73} +0.692199 q^{74} -5.41830 q^{75} +1.00000 q^{76} +8.06072 q^{78} +4.44082 q^{79} -2.75070 q^{80} -11.2482 q^{81} +9.21705 q^{82} -12.0464 q^{83} +7.73537 q^{84} -11.8779 q^{85} +2.01495 q^{86} +16.4066 q^{87} -0.966434 q^{89} +4.00932 q^{90} -13.9881 q^{91} -0.695478 q^{92} -0.717915 q^{93} +9.80308 q^{94} -2.75070 q^{95} +2.11129 q^{96} +16.3170 q^{97} -6.42347 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 8 q^{6} - 4 q^{7} - 8 q^{8} + 22 q^{9} + 8 q^{12} + 12 q^{13} + 4 q^{14} + 4 q^{15} + 8 q^{16} + 4 q^{17} - 22 q^{18} + 8 q^{19} + 20 q^{21} + 14 q^{23} - 8 q^{24} + 36 q^{25}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.11129 −1.21896 −0.609478 0.792803i \(-0.708621\pi\)
−0.609478 + 0.792803i \(0.708621\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.75070 −1.23015 −0.615075 0.788469i \(-0.710874\pi\)
−0.615075 + 0.788469i \(0.710874\pi\)
\(6\) 2.11129 0.861932
\(7\) −3.66381 −1.38479 −0.692394 0.721519i \(-0.743444\pi\)
−0.692394 + 0.721519i \(0.743444\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.45756 0.485855
\(10\) 2.75070 0.869847
\(11\) 0 0
\(12\) −2.11129 −0.609478
\(13\) 3.81790 1.05890 0.529448 0.848342i \(-0.322399\pi\)
0.529448 + 0.848342i \(0.322399\pi\)
\(14\) 3.66381 0.979193
\(15\) 5.80753 1.49950
\(16\) 1.00000 0.250000
\(17\) 4.31816 1.04731 0.523653 0.851931i \(-0.324569\pi\)
0.523653 + 0.851931i \(0.324569\pi\)
\(18\) −1.45756 −0.343551
\(19\) 1.00000 0.229416
\(20\) −2.75070 −0.615075
\(21\) 7.73537 1.68800
\(22\) 0 0
\(23\) −0.695478 −0.145017 −0.0725086 0.997368i \(-0.523100\pi\)
−0.0725086 + 0.997368i \(0.523100\pi\)
\(24\) 2.11129 0.430966
\(25\) 2.56634 0.513268
\(26\) −3.81790 −0.748753
\(27\) 3.25654 0.626721
\(28\) −3.66381 −0.692394
\(29\) −7.77089 −1.44302 −0.721509 0.692405i \(-0.756551\pi\)
−0.721509 + 0.692405i \(0.756551\pi\)
\(30\) −5.80753 −1.06031
\(31\) 0.340036 0.0610722 0.0305361 0.999534i \(-0.490279\pi\)
0.0305361 + 0.999534i \(0.490279\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.31816 −0.740558
\(35\) 10.0780 1.70350
\(36\) 1.45756 0.242927
\(37\) −0.692199 −0.113797 −0.0568984 0.998380i \(-0.518121\pi\)
−0.0568984 + 0.998380i \(0.518121\pi\)
\(38\) −1.00000 −0.162221
\(39\) −8.06072 −1.29075
\(40\) 2.75070 0.434924
\(41\) −9.21705 −1.43946 −0.719731 0.694253i \(-0.755735\pi\)
−0.719731 + 0.694253i \(0.755735\pi\)
\(42\) −7.73537 −1.19359
\(43\) −2.01495 −0.307277 −0.153638 0.988127i \(-0.549099\pi\)
−0.153638 + 0.988127i \(0.549099\pi\)
\(44\) 0 0
\(45\) −4.00932 −0.597674
\(46\) 0.695478 0.102543
\(47\) −9.80308 −1.42993 −0.714963 0.699162i \(-0.753557\pi\)
−0.714963 + 0.699162i \(0.753557\pi\)
\(48\) −2.11129 −0.304739
\(49\) 6.42347 0.917639
\(50\) −2.56634 −0.362935
\(51\) −9.11690 −1.27662
\(52\) 3.81790 0.529448
\(53\) −5.54956 −0.762290 −0.381145 0.924515i \(-0.624470\pi\)
−0.381145 + 0.924515i \(0.624470\pi\)
\(54\) −3.25654 −0.443158
\(55\) 0 0
\(56\) 3.66381 0.489597
\(57\) −2.11129 −0.279648
\(58\) 7.77089 1.02037
\(59\) −8.22759 −1.07114 −0.535570 0.844491i \(-0.679903\pi\)
−0.535570 + 0.844491i \(0.679903\pi\)
\(60\) 5.80753 0.749749
\(61\) 0.344547 0.0441148 0.0220574 0.999757i \(-0.492978\pi\)
0.0220574 + 0.999757i \(0.492978\pi\)
\(62\) −0.340036 −0.0431846
\(63\) −5.34023 −0.672806
\(64\) 1.00000 0.125000
\(65\) −10.5019 −1.30260
\(66\) 0 0
\(67\) −5.04040 −0.615783 −0.307892 0.951421i \(-0.599623\pi\)
−0.307892 + 0.951421i \(0.599623\pi\)
\(68\) 4.31816 0.523653
\(69\) 1.46836 0.176770
\(70\) −10.0780 −1.20455
\(71\) −3.22075 −0.382233 −0.191117 0.981567i \(-0.561211\pi\)
−0.191117 + 0.981567i \(0.561211\pi\)
\(72\) −1.45756 −0.171776
\(73\) −14.6020 −1.70903 −0.854517 0.519423i \(-0.826147\pi\)
−0.854517 + 0.519423i \(0.826147\pi\)
\(74\) 0.692199 0.0804666
\(75\) −5.41830 −0.625651
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) 8.06072 0.912697
\(79\) 4.44082 0.499631 0.249816 0.968293i \(-0.419630\pi\)
0.249816 + 0.968293i \(0.419630\pi\)
\(80\) −2.75070 −0.307537
\(81\) −11.2482 −1.24980
\(82\) 9.21705 1.01785
\(83\) −12.0464 −1.32227 −0.661133 0.750269i \(-0.729924\pi\)
−0.661133 + 0.750269i \(0.729924\pi\)
\(84\) 7.73537 0.843998
\(85\) −11.8779 −1.28834
\(86\) 2.01495 0.217277
\(87\) 16.4066 1.75898
\(88\) 0 0
\(89\) −0.966434 −0.102442 −0.0512209 0.998687i \(-0.516311\pi\)
−0.0512209 + 0.998687i \(0.516311\pi\)
\(90\) 4.00932 0.422619
\(91\) −13.9881 −1.46635
\(92\) −0.695478 −0.0725086
\(93\) −0.717915 −0.0744443
\(94\) 9.80308 1.01111
\(95\) −2.75070 −0.282216
\(96\) 2.11129 0.215483
\(97\) 16.3170 1.65674 0.828369 0.560183i \(-0.189269\pi\)
0.828369 + 0.560183i \(0.189269\pi\)
\(98\) −6.42347 −0.648869
\(99\) 0 0
\(100\) 2.56634 0.256634
\(101\) 14.1398 1.40696 0.703479 0.710716i \(-0.251629\pi\)
0.703479 + 0.710716i \(0.251629\pi\)
\(102\) 9.11690 0.902708
\(103\) 0.880175 0.0867262 0.0433631 0.999059i \(-0.486193\pi\)
0.0433631 + 0.999059i \(0.486193\pi\)
\(104\) −3.81790 −0.374376
\(105\) −21.2777 −2.07649
\(106\) 5.54956 0.539020
\(107\) 1.76713 0.170835 0.0854174 0.996345i \(-0.472778\pi\)
0.0854174 + 0.996345i \(0.472778\pi\)
\(108\) 3.25654 0.313360
\(109\) −11.6553 −1.11638 −0.558190 0.829713i \(-0.688504\pi\)
−0.558190 + 0.829713i \(0.688504\pi\)
\(110\) 0 0
\(111\) 1.46144 0.138713
\(112\) −3.66381 −0.346197
\(113\) 19.9467 1.87643 0.938215 0.346054i \(-0.112478\pi\)
0.938215 + 0.346054i \(0.112478\pi\)
\(114\) 2.11129 0.197741
\(115\) 1.91305 0.178393
\(116\) −7.77089 −0.721509
\(117\) 5.56484 0.514470
\(118\) 8.22759 0.757411
\(119\) −15.8209 −1.45030
\(120\) −5.80753 −0.530153
\(121\) 0 0
\(122\) −0.344547 −0.0311938
\(123\) 19.4599 1.75464
\(124\) 0.340036 0.0305361
\(125\) 6.69426 0.598753
\(126\) 5.34023 0.475746
\(127\) 0.568592 0.0504544 0.0252272 0.999682i \(-0.491969\pi\)
0.0252272 + 0.999682i \(0.491969\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.25415 0.374557
\(130\) 10.5019 0.921078
\(131\) −11.8544 −1.03572 −0.517862 0.855464i \(-0.673272\pi\)
−0.517862 + 0.855464i \(0.673272\pi\)
\(132\) 0 0
\(133\) −3.66381 −0.317692
\(134\) 5.04040 0.435424
\(135\) −8.95775 −0.770960
\(136\) −4.31816 −0.370279
\(137\) 11.2562 0.961679 0.480840 0.876809i \(-0.340332\pi\)
0.480840 + 0.876809i \(0.340332\pi\)
\(138\) −1.46836 −0.124995
\(139\) −1.69259 −0.143564 −0.0717820 0.997420i \(-0.522869\pi\)
−0.0717820 + 0.997420i \(0.522869\pi\)
\(140\) 10.0780 0.851749
\(141\) 20.6972 1.74302
\(142\) 3.22075 0.270280
\(143\) 0 0
\(144\) 1.45756 0.121464
\(145\) 21.3754 1.77513
\(146\) 14.6020 1.20847
\(147\) −13.5618 −1.11856
\(148\) −0.692199 −0.0568984
\(149\) 21.5429 1.76487 0.882433 0.470438i \(-0.155904\pi\)
0.882433 + 0.470438i \(0.155904\pi\)
\(150\) 5.41830 0.442402
\(151\) −19.9995 −1.62754 −0.813768 0.581190i \(-0.802587\pi\)
−0.813768 + 0.581190i \(0.802587\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 6.29399 0.508839
\(154\) 0 0
\(155\) −0.935335 −0.0751279
\(156\) −8.06072 −0.645374
\(157\) 6.94839 0.554542 0.277271 0.960792i \(-0.410570\pi\)
0.277271 + 0.960792i \(0.410570\pi\)
\(158\) −4.44082 −0.353293
\(159\) 11.7167 0.929198
\(160\) 2.75070 0.217462
\(161\) 2.54810 0.200818
\(162\) 11.2482 0.883742
\(163\) 16.0104 1.25403 0.627014 0.779008i \(-0.284277\pi\)
0.627014 + 0.779008i \(0.284277\pi\)
\(164\) −9.21705 −0.719731
\(165\) 0 0
\(166\) 12.0464 0.934983
\(167\) −3.68048 −0.284804 −0.142402 0.989809i \(-0.545483\pi\)
−0.142402 + 0.989809i \(0.545483\pi\)
\(168\) −7.73537 −0.596797
\(169\) 1.57639 0.121261
\(170\) 11.8779 0.910997
\(171\) 1.45756 0.111463
\(172\) −2.01495 −0.153638
\(173\) 12.9528 0.984782 0.492391 0.870374i \(-0.336123\pi\)
0.492391 + 0.870374i \(0.336123\pi\)
\(174\) −16.4066 −1.24378
\(175\) −9.40257 −0.710768
\(176\) 0 0
\(177\) 17.3709 1.30567
\(178\) 0.966434 0.0724373
\(179\) −13.7864 −1.03044 −0.515222 0.857056i \(-0.672291\pi\)
−0.515222 + 0.857056i \(0.672291\pi\)
\(180\) −4.00932 −0.298837
\(181\) −15.2785 −1.13564 −0.567820 0.823153i \(-0.692213\pi\)
−0.567820 + 0.823153i \(0.692213\pi\)
\(182\) 13.9881 1.03686
\(183\) −0.727441 −0.0537740
\(184\) 0.695478 0.0512713
\(185\) 1.90403 0.139987
\(186\) 0.717915 0.0526401
\(187\) 0 0
\(188\) −9.80308 −0.714963
\(189\) −11.9313 −0.867876
\(190\) 2.75070 0.199557
\(191\) 23.9456 1.73265 0.866323 0.499485i \(-0.166477\pi\)
0.866323 + 0.499485i \(0.166477\pi\)
\(192\) −2.11129 −0.152370
\(193\) −27.1307 −1.95291 −0.976456 0.215715i \(-0.930792\pi\)
−0.976456 + 0.215715i \(0.930792\pi\)
\(194\) −16.3170 −1.17149
\(195\) 22.1726 1.58781
\(196\) 6.42347 0.458820
\(197\) −21.1960 −1.51015 −0.755076 0.655637i \(-0.772400\pi\)
−0.755076 + 0.655637i \(0.772400\pi\)
\(198\) 0 0
\(199\) −3.03824 −0.215375 −0.107688 0.994185i \(-0.534345\pi\)
−0.107688 + 0.994185i \(0.534345\pi\)
\(200\) −2.56634 −0.181468
\(201\) 10.6418 0.750613
\(202\) −14.1398 −0.994870
\(203\) 28.4710 1.99827
\(204\) −9.11690 −0.638311
\(205\) 25.3533 1.77075
\(206\) −0.880175 −0.0613247
\(207\) −1.01370 −0.0704572
\(208\) 3.81790 0.264724
\(209\) 0 0
\(210\) 21.2777 1.46830
\(211\) −27.4130 −1.88719 −0.943593 0.331108i \(-0.892578\pi\)
−0.943593 + 0.331108i \(0.892578\pi\)
\(212\) −5.54956 −0.381145
\(213\) 6.79996 0.465925
\(214\) −1.76713 −0.120799
\(215\) 5.54251 0.377996
\(216\) −3.25654 −0.221579
\(217\) −1.24582 −0.0845721
\(218\) 11.6553 0.789399
\(219\) 30.8291 2.08324
\(220\) 0 0
\(221\) 16.4863 1.10899
\(222\) −1.46144 −0.0980852
\(223\) 18.7060 1.25265 0.626323 0.779564i \(-0.284559\pi\)
0.626323 + 0.779564i \(0.284559\pi\)
\(224\) 3.66381 0.244798
\(225\) 3.74060 0.249374
\(226\) −19.9467 −1.32684
\(227\) −12.6689 −0.840862 −0.420431 0.907324i \(-0.638121\pi\)
−0.420431 + 0.907324i \(0.638121\pi\)
\(228\) −2.11129 −0.139824
\(229\) 22.6558 1.49714 0.748568 0.663058i \(-0.230742\pi\)
0.748568 + 0.663058i \(0.230742\pi\)
\(230\) −1.91305 −0.126143
\(231\) 0 0
\(232\) 7.77089 0.510184
\(233\) −20.0819 −1.31561 −0.657805 0.753189i \(-0.728515\pi\)
−0.657805 + 0.753189i \(0.728515\pi\)
\(234\) −5.56484 −0.363785
\(235\) 26.9653 1.75902
\(236\) −8.22759 −0.535570
\(237\) −9.37587 −0.609028
\(238\) 15.8209 1.02552
\(239\) −19.7417 −1.27699 −0.638493 0.769627i \(-0.720442\pi\)
−0.638493 + 0.769627i \(0.720442\pi\)
\(240\) 5.80753 0.374875
\(241\) 20.0092 1.28890 0.644452 0.764645i \(-0.277085\pi\)
0.644452 + 0.764645i \(0.277085\pi\)
\(242\) 0 0
\(243\) 13.9787 0.896731
\(244\) 0.344547 0.0220574
\(245\) −17.6690 −1.12883
\(246\) −19.4599 −1.24072
\(247\) 3.81790 0.242927
\(248\) −0.340036 −0.0215923
\(249\) 25.4335 1.61178
\(250\) −6.69426 −0.423382
\(251\) −28.0383 −1.76976 −0.884880 0.465818i \(-0.845760\pi\)
−0.884880 + 0.465818i \(0.845760\pi\)
\(252\) −5.34023 −0.336403
\(253\) 0 0
\(254\) −0.568592 −0.0356766
\(255\) 25.0778 1.57044
\(256\) 1.00000 0.0625000
\(257\) −13.5564 −0.845628 −0.422814 0.906217i \(-0.638958\pi\)
−0.422814 + 0.906217i \(0.638958\pi\)
\(258\) −4.25415 −0.264852
\(259\) 2.53608 0.157585
\(260\) −10.5019 −0.651300
\(261\) −11.3266 −0.701097
\(262\) 11.8544 0.732367
\(263\) 4.42685 0.272971 0.136486 0.990642i \(-0.456419\pi\)
0.136486 + 0.990642i \(0.456419\pi\)
\(264\) 0 0
\(265\) 15.2652 0.937731
\(266\) 3.66381 0.224642
\(267\) 2.04043 0.124872
\(268\) −5.04040 −0.307892
\(269\) −7.98617 −0.486926 −0.243463 0.969910i \(-0.578283\pi\)
−0.243463 + 0.969910i \(0.578283\pi\)
\(270\) 8.95775 0.545151
\(271\) −17.9453 −1.09010 −0.545048 0.838405i \(-0.683489\pi\)
−0.545048 + 0.838405i \(0.683489\pi\)
\(272\) 4.31816 0.261827
\(273\) 29.5329 1.78741
\(274\) −11.2562 −0.680010
\(275\) 0 0
\(276\) 1.46836 0.0883848
\(277\) 21.4997 1.29179 0.645896 0.763425i \(-0.276484\pi\)
0.645896 + 0.763425i \(0.276484\pi\)
\(278\) 1.69259 0.101515
\(279\) 0.495624 0.0296722
\(280\) −10.0780 −0.602277
\(281\) −19.5998 −1.16923 −0.584614 0.811311i \(-0.698754\pi\)
−0.584614 + 0.811311i \(0.698754\pi\)
\(282\) −20.6972 −1.23250
\(283\) −13.0294 −0.774518 −0.387259 0.921971i \(-0.626578\pi\)
−0.387259 + 0.921971i \(0.626578\pi\)
\(284\) −3.22075 −0.191117
\(285\) 5.80753 0.344009
\(286\) 0 0
\(287\) 33.7695 1.99335
\(288\) −1.45756 −0.0858878
\(289\) 1.64648 0.0968515
\(290\) −21.3754 −1.25520
\(291\) −34.4499 −2.01949
\(292\) −14.6020 −0.854517
\(293\) 12.4424 0.726895 0.363448 0.931615i \(-0.381600\pi\)
0.363448 + 0.931615i \(0.381600\pi\)
\(294\) 13.5618 0.790943
\(295\) 22.6316 1.31766
\(296\) 0.692199 0.0402333
\(297\) 0 0
\(298\) −21.5429 −1.24795
\(299\) −2.65527 −0.153558
\(300\) −5.41830 −0.312826
\(301\) 7.38237 0.425513
\(302\) 19.9995 1.15084
\(303\) −29.8532 −1.71502
\(304\) 1.00000 0.0573539
\(305\) −0.947746 −0.0542678
\(306\) −6.29399 −0.359803
\(307\) 18.8124 1.07368 0.536840 0.843684i \(-0.319618\pi\)
0.536840 + 0.843684i \(0.319618\pi\)
\(308\) 0 0
\(309\) −1.85831 −0.105715
\(310\) 0.935335 0.0531235
\(311\) −13.2168 −0.749455 −0.374727 0.927135i \(-0.622264\pi\)
−0.374727 + 0.927135i \(0.622264\pi\)
\(312\) 8.06072 0.456348
\(313\) −3.51233 −0.198529 −0.0992644 0.995061i \(-0.531649\pi\)
−0.0992644 + 0.995061i \(0.531649\pi\)
\(314\) −6.94839 −0.392120
\(315\) 14.6894 0.827652
\(316\) 4.44082 0.249816
\(317\) 8.53754 0.479516 0.239758 0.970833i \(-0.422932\pi\)
0.239758 + 0.970833i \(0.422932\pi\)
\(318\) −11.7167 −0.657042
\(319\) 0 0
\(320\) −2.75070 −0.153769
\(321\) −3.73093 −0.208240
\(322\) −2.54810 −0.142000
\(323\) 4.31816 0.240269
\(324\) −11.2482 −0.624900
\(325\) 9.79804 0.543497
\(326\) −16.0104 −0.886732
\(327\) 24.6079 1.36082
\(328\) 9.21705 0.508927
\(329\) 35.9166 1.98015
\(330\) 0 0
\(331\) −3.43770 −0.188953 −0.0944766 0.995527i \(-0.530118\pi\)
−0.0944766 + 0.995527i \(0.530118\pi\)
\(332\) −12.0464 −0.661133
\(333\) −1.00893 −0.0552888
\(334\) 3.68048 0.201387
\(335\) 13.8646 0.757505
\(336\) 7.73537 0.421999
\(337\) −23.8752 −1.30057 −0.650283 0.759692i \(-0.725350\pi\)
−0.650283 + 0.759692i \(0.725350\pi\)
\(338\) −1.57639 −0.0857444
\(339\) −42.1134 −2.28729
\(340\) −11.8779 −0.644172
\(341\) 0 0
\(342\) −1.45756 −0.0788160
\(343\) 2.11228 0.114052
\(344\) 2.01495 0.108639
\(345\) −4.03901 −0.217453
\(346\) −12.9528 −0.696346
\(347\) −7.32500 −0.393227 −0.196613 0.980481i \(-0.562994\pi\)
−0.196613 + 0.980481i \(0.562994\pi\)
\(348\) 16.4066 0.879488
\(349\) −8.11645 −0.434464 −0.217232 0.976120i \(-0.569703\pi\)
−0.217232 + 0.976120i \(0.569703\pi\)
\(350\) 9.40257 0.502589
\(351\) 12.4331 0.663632
\(352\) 0 0
\(353\) −5.08395 −0.270591 −0.135296 0.990805i \(-0.543198\pi\)
−0.135296 + 0.990805i \(0.543198\pi\)
\(354\) −17.3709 −0.923251
\(355\) 8.85932 0.470204
\(356\) −0.966434 −0.0512209
\(357\) 33.4026 1.76785
\(358\) 13.7864 0.728635
\(359\) −15.2156 −0.803050 −0.401525 0.915848i \(-0.631520\pi\)
−0.401525 + 0.915848i \(0.631520\pi\)
\(360\) 4.00932 0.211310
\(361\) 1.00000 0.0526316
\(362\) 15.2785 0.803019
\(363\) 0 0
\(364\) −13.9881 −0.733174
\(365\) 40.1657 2.10237
\(366\) 0.727441 0.0380239
\(367\) 29.9084 1.56120 0.780602 0.625028i \(-0.214913\pi\)
0.780602 + 0.625028i \(0.214913\pi\)
\(368\) −0.695478 −0.0362543
\(369\) −13.4344 −0.699369
\(370\) −1.90403 −0.0989859
\(371\) 20.3325 1.05561
\(372\) −0.717915 −0.0372222
\(373\) 32.7204 1.69420 0.847100 0.531434i \(-0.178347\pi\)
0.847100 + 0.531434i \(0.178347\pi\)
\(374\) 0 0
\(375\) −14.1336 −0.729854
\(376\) 9.80308 0.505555
\(377\) −29.6685 −1.52801
\(378\) 11.9313 0.613681
\(379\) 21.4522 1.10193 0.550963 0.834530i \(-0.314261\pi\)
0.550963 + 0.834530i \(0.314261\pi\)
\(380\) −2.75070 −0.141108
\(381\) −1.20046 −0.0615017
\(382\) −23.9456 −1.22517
\(383\) −17.1641 −0.877044 −0.438522 0.898720i \(-0.644498\pi\)
−0.438522 + 0.898720i \(0.644498\pi\)
\(384\) 2.11129 0.107742
\(385\) 0 0
\(386\) 27.1307 1.38092
\(387\) −2.93691 −0.149292
\(388\) 16.3170 0.828369
\(389\) 28.8568 1.46310 0.731550 0.681788i \(-0.238797\pi\)
0.731550 + 0.681788i \(0.238797\pi\)
\(390\) −22.1726 −1.12275
\(391\) −3.00318 −0.151877
\(392\) −6.42347 −0.324434
\(393\) 25.0281 1.26250
\(394\) 21.1960 1.06784
\(395\) −12.2153 −0.614621
\(396\) 0 0
\(397\) −5.83003 −0.292601 −0.146300 0.989240i \(-0.546737\pi\)
−0.146300 + 0.989240i \(0.546737\pi\)
\(398\) 3.03824 0.152293
\(399\) 7.73537 0.387253
\(400\) 2.56634 0.128317
\(401\) 13.2388 0.661113 0.330556 0.943786i \(-0.392764\pi\)
0.330556 + 0.943786i \(0.392764\pi\)
\(402\) −10.6418 −0.530763
\(403\) 1.29822 0.0646691
\(404\) 14.1398 0.703479
\(405\) 30.9404 1.53744
\(406\) −28.4710 −1.41299
\(407\) 0 0
\(408\) 9.11690 0.451354
\(409\) 17.6372 0.872102 0.436051 0.899922i \(-0.356377\pi\)
0.436051 + 0.899922i \(0.356377\pi\)
\(410\) −25.3533 −1.25211
\(411\) −23.7651 −1.17224
\(412\) 0.880175 0.0433631
\(413\) 30.1443 1.48330
\(414\) 1.01370 0.0498208
\(415\) 33.1360 1.62658
\(416\) −3.81790 −0.187188
\(417\) 3.57357 0.174998
\(418\) 0 0
\(419\) −28.5638 −1.39543 −0.697715 0.716375i \(-0.745800\pi\)
−0.697715 + 0.716375i \(0.745800\pi\)
\(420\) −21.2777 −1.03824
\(421\) 10.1449 0.494432 0.247216 0.968960i \(-0.420484\pi\)
0.247216 + 0.968960i \(0.420484\pi\)
\(422\) 27.4130 1.33444
\(423\) −14.2886 −0.694737
\(424\) 5.54956 0.269510
\(425\) 11.0819 0.537549
\(426\) −6.79996 −0.329459
\(427\) −1.26235 −0.0610896
\(428\) 1.76713 0.0854174
\(429\) 0 0
\(430\) −5.54251 −0.267284
\(431\) −22.6879 −1.09284 −0.546418 0.837512i \(-0.684009\pi\)
−0.546418 + 0.837512i \(0.684009\pi\)
\(432\) 3.25654 0.156680
\(433\) 31.0778 1.49350 0.746751 0.665104i \(-0.231613\pi\)
0.746751 + 0.665104i \(0.231613\pi\)
\(434\) 1.24582 0.0598015
\(435\) −45.1297 −2.16380
\(436\) −11.6553 −0.558190
\(437\) −0.695478 −0.0332692
\(438\) −30.8291 −1.47307
\(439\) 30.3380 1.44795 0.723977 0.689824i \(-0.242312\pi\)
0.723977 + 0.689824i \(0.242312\pi\)
\(440\) 0 0
\(441\) 9.36263 0.445839
\(442\) −16.4863 −0.784174
\(443\) 5.08267 0.241485 0.120742 0.992684i \(-0.461472\pi\)
0.120742 + 0.992684i \(0.461472\pi\)
\(444\) 1.46144 0.0693567
\(445\) 2.65837 0.126019
\(446\) −18.7060 −0.885754
\(447\) −45.4835 −2.15129
\(448\) −3.66381 −0.173099
\(449\) −34.4255 −1.62464 −0.812321 0.583211i \(-0.801796\pi\)
−0.812321 + 0.583211i \(0.801796\pi\)
\(450\) −3.74060 −0.176334
\(451\) 0 0
\(452\) 19.9467 0.938215
\(453\) 42.2248 1.98390
\(454\) 12.6689 0.594579
\(455\) 38.4769 1.80383
\(456\) 2.11129 0.0988704
\(457\) 5.43151 0.254075 0.127038 0.991898i \(-0.459453\pi\)
0.127038 + 0.991898i \(0.459453\pi\)
\(458\) −22.6558 −1.05864
\(459\) 14.0622 0.656369
\(460\) 1.91305 0.0891964
\(461\) −0.796700 −0.0371060 −0.0185530 0.999828i \(-0.505906\pi\)
−0.0185530 + 0.999828i \(0.505906\pi\)
\(462\) 0 0
\(463\) 24.1337 1.12159 0.560795 0.827955i \(-0.310496\pi\)
0.560795 + 0.827955i \(0.310496\pi\)
\(464\) −7.77089 −0.360754
\(465\) 1.97477 0.0915777
\(466\) 20.0819 0.930276
\(467\) 8.96049 0.414642 0.207321 0.978273i \(-0.433526\pi\)
0.207321 + 0.978273i \(0.433526\pi\)
\(468\) 5.56484 0.257235
\(469\) 18.4671 0.852729
\(470\) −26.9653 −1.24382
\(471\) −14.6701 −0.675962
\(472\) 8.22759 0.378705
\(473\) 0 0
\(474\) 9.37587 0.430648
\(475\) 2.56634 0.117752
\(476\) −15.8209 −0.725149
\(477\) −8.08883 −0.370362
\(478\) 19.7417 0.902966
\(479\) 13.5637 0.619743 0.309871 0.950778i \(-0.399714\pi\)
0.309871 + 0.950778i \(0.399714\pi\)
\(480\) −5.80753 −0.265076
\(481\) −2.64275 −0.120499
\(482\) −20.0092 −0.911393
\(483\) −5.37978 −0.244788
\(484\) 0 0
\(485\) −44.8831 −2.03804
\(486\) −13.9787 −0.634084
\(487\) 1.14086 0.0516975 0.0258488 0.999666i \(-0.491771\pi\)
0.0258488 + 0.999666i \(0.491771\pi\)
\(488\) −0.344547 −0.0155969
\(489\) −33.8026 −1.52861
\(490\) 17.6690 0.798206
\(491\) 16.4537 0.742545 0.371272 0.928524i \(-0.378922\pi\)
0.371272 + 0.928524i \(0.378922\pi\)
\(492\) 19.4599 0.877320
\(493\) −33.5559 −1.51128
\(494\) −3.81790 −0.171776
\(495\) 0 0
\(496\) 0.340036 0.0152680
\(497\) 11.8002 0.529312
\(498\) −25.4335 −1.13970
\(499\) 27.3412 1.22396 0.611980 0.790873i \(-0.290373\pi\)
0.611980 + 0.790873i \(0.290373\pi\)
\(500\) 6.69426 0.299377
\(501\) 7.77057 0.347163
\(502\) 28.0383 1.25141
\(503\) −20.2121 −0.901213 −0.450607 0.892723i \(-0.648792\pi\)
−0.450607 + 0.892723i \(0.648792\pi\)
\(504\) 5.34023 0.237873
\(505\) −38.8942 −1.73077
\(506\) 0 0
\(507\) −3.32823 −0.147812
\(508\) 0.568592 0.0252272
\(509\) −0.629459 −0.0279003 −0.0139502 0.999903i \(-0.504441\pi\)
−0.0139502 + 0.999903i \(0.504441\pi\)
\(510\) −25.0778 −1.11047
\(511\) 53.4989 2.36665
\(512\) −1.00000 −0.0441942
\(513\) 3.25654 0.143780
\(514\) 13.5564 0.597949
\(515\) −2.42109 −0.106686
\(516\) 4.25415 0.187278
\(517\) 0 0
\(518\) −2.53608 −0.111429
\(519\) −27.3471 −1.20041
\(520\) 10.5019 0.460539
\(521\) −25.0746 −1.09854 −0.549270 0.835645i \(-0.685094\pi\)
−0.549270 + 0.835645i \(0.685094\pi\)
\(522\) 11.3266 0.495750
\(523\) 13.1638 0.575611 0.287806 0.957689i \(-0.407074\pi\)
0.287806 + 0.957689i \(0.407074\pi\)
\(524\) −11.8544 −0.517862
\(525\) 19.8516 0.866395
\(526\) −4.42685 −0.193020
\(527\) 1.46833 0.0639613
\(528\) 0 0
\(529\) −22.5163 −0.978970
\(530\) −15.2652 −0.663076
\(531\) −11.9922 −0.520419
\(532\) −3.66381 −0.158846
\(533\) −35.1898 −1.52424
\(534\) −2.04043 −0.0882979
\(535\) −4.86084 −0.210152
\(536\) 5.04040 0.217712
\(537\) 29.1072 1.25607
\(538\) 7.98617 0.344308
\(539\) 0 0
\(540\) −8.95775 −0.385480
\(541\) −29.6788 −1.27599 −0.637995 0.770041i \(-0.720236\pi\)
−0.637995 + 0.770041i \(0.720236\pi\)
\(542\) 17.9453 0.770815
\(543\) 32.2574 1.38430
\(544\) −4.31816 −0.185139
\(545\) 32.0603 1.37331
\(546\) −29.5329 −1.26389
\(547\) 38.2994 1.63756 0.818781 0.574106i \(-0.194650\pi\)
0.818781 + 0.574106i \(0.194650\pi\)
\(548\) 11.2562 0.480840
\(549\) 0.502200 0.0214334
\(550\) 0 0
\(551\) −7.77089 −0.331051
\(552\) −1.46836 −0.0624975
\(553\) −16.2703 −0.691883
\(554\) −21.4997 −0.913435
\(555\) −4.01997 −0.170638
\(556\) −1.69259 −0.0717820
\(557\) 7.05263 0.298829 0.149415 0.988775i \(-0.452261\pi\)
0.149415 + 0.988775i \(0.452261\pi\)
\(558\) −0.495624 −0.0209814
\(559\) −7.69287 −0.325374
\(560\) 10.0780 0.425874
\(561\) 0 0
\(562\) 19.5998 0.826769
\(563\) 17.3112 0.729581 0.364790 0.931090i \(-0.381141\pi\)
0.364790 + 0.931090i \(0.381141\pi\)
\(564\) 20.6972 0.871509
\(565\) −54.8674 −2.30829
\(566\) 13.0294 0.547667
\(567\) 41.2112 1.73071
\(568\) 3.22075 0.135140
\(569\) 15.7749 0.661318 0.330659 0.943750i \(-0.392729\pi\)
0.330659 + 0.943750i \(0.392729\pi\)
\(570\) −5.80753 −0.243251
\(571\) −24.8790 −1.04116 −0.520578 0.853814i \(-0.674283\pi\)
−0.520578 + 0.853814i \(0.674283\pi\)
\(572\) 0 0
\(573\) −50.5563 −2.11202
\(574\) −33.7695 −1.40951
\(575\) −1.78483 −0.0744326
\(576\) 1.45756 0.0607318
\(577\) 12.6925 0.528395 0.264197 0.964469i \(-0.414893\pi\)
0.264197 + 0.964469i \(0.414893\pi\)
\(578\) −1.64648 −0.0684844
\(579\) 57.2810 2.38052
\(580\) 21.3754 0.887564
\(581\) 44.1357 1.83106
\(582\) 34.4499 1.42800
\(583\) 0 0
\(584\) 14.6020 0.604235
\(585\) −15.3072 −0.632875
\(586\) −12.4424 −0.513993
\(587\) −37.8091 −1.56055 −0.780275 0.625437i \(-0.784921\pi\)
−0.780275 + 0.625437i \(0.784921\pi\)
\(588\) −13.5618 −0.559281
\(589\) 0.340036 0.0140109
\(590\) −22.6316 −0.931729
\(591\) 44.7510 1.84081
\(592\) −0.692199 −0.0284492
\(593\) 11.7942 0.484331 0.242166 0.970235i \(-0.422142\pi\)
0.242166 + 0.970235i \(0.422142\pi\)
\(594\) 0 0
\(595\) 43.5185 1.78408
\(596\) 21.5429 0.882433
\(597\) 6.41462 0.262533
\(598\) 2.65527 0.108582
\(599\) −2.24280 −0.0916382 −0.0458191 0.998950i \(-0.514590\pi\)
−0.0458191 + 0.998950i \(0.514590\pi\)
\(600\) 5.41830 0.221201
\(601\) 34.5443 1.40909 0.704545 0.709659i \(-0.251151\pi\)
0.704545 + 0.709659i \(0.251151\pi\)
\(602\) −7.38237 −0.300883
\(603\) −7.34671 −0.299181
\(604\) −19.9995 −0.813768
\(605\) 0 0
\(606\) 29.8532 1.21270
\(607\) 0.623652 0.0253133 0.0126566 0.999920i \(-0.495971\pi\)
0.0126566 + 0.999920i \(0.495971\pi\)
\(608\) −1.00000 −0.0405554
\(609\) −60.1107 −2.43581
\(610\) 0.947746 0.0383731
\(611\) −37.4272 −1.51414
\(612\) 6.29399 0.254419
\(613\) 19.0977 0.771347 0.385673 0.922635i \(-0.373969\pi\)
0.385673 + 0.922635i \(0.373969\pi\)
\(614\) −18.8124 −0.759206
\(615\) −53.5283 −2.15847
\(616\) 0 0
\(617\) −12.8189 −0.516070 −0.258035 0.966136i \(-0.583075\pi\)
−0.258035 + 0.966136i \(0.583075\pi\)
\(618\) 1.85831 0.0747521
\(619\) 18.3684 0.738288 0.369144 0.929372i \(-0.379651\pi\)
0.369144 + 0.929372i \(0.379651\pi\)
\(620\) −0.935335 −0.0375640
\(621\) −2.26485 −0.0908852
\(622\) 13.2168 0.529944
\(623\) 3.54083 0.141860
\(624\) −8.06072 −0.322687
\(625\) −31.2456 −1.24982
\(626\) 3.51233 0.140381
\(627\) 0 0
\(628\) 6.94839 0.277271
\(629\) −2.98903 −0.119180
\(630\) −14.6894 −0.585238
\(631\) 5.04337 0.200774 0.100387 0.994948i \(-0.467992\pi\)
0.100387 + 0.994948i \(0.467992\pi\)
\(632\) −4.44082 −0.176646
\(633\) 57.8768 2.30040
\(634\) −8.53754 −0.339069
\(635\) −1.56402 −0.0620664
\(636\) 11.7167 0.464599
\(637\) 24.5242 0.971685
\(638\) 0 0
\(639\) −4.69445 −0.185710
\(640\) 2.75070 0.108731
\(641\) 46.3321 1.83001 0.915003 0.403446i \(-0.132188\pi\)
0.915003 + 0.403446i \(0.132188\pi\)
\(642\) 3.73093 0.147248
\(643\) −25.3374 −0.999210 −0.499605 0.866253i \(-0.666522\pi\)
−0.499605 + 0.866253i \(0.666522\pi\)
\(644\) 2.54810 0.100409
\(645\) −11.7019 −0.460761
\(646\) −4.31816 −0.169896
\(647\) −21.2531 −0.835545 −0.417773 0.908552i \(-0.637189\pi\)
−0.417773 + 0.908552i \(0.637189\pi\)
\(648\) 11.2482 0.441871
\(649\) 0 0
\(650\) −9.79804 −0.384311
\(651\) 2.63030 0.103090
\(652\) 16.0104 0.627014
\(653\) 6.92969 0.271180 0.135590 0.990765i \(-0.456707\pi\)
0.135590 + 0.990765i \(0.456707\pi\)
\(654\) −24.6079 −0.962243
\(655\) 32.6079 1.27409
\(656\) −9.21705 −0.359865
\(657\) −21.2834 −0.830343
\(658\) −35.9166 −1.40017
\(659\) 34.0324 1.32571 0.662857 0.748746i \(-0.269344\pi\)
0.662857 + 0.748746i \(0.269344\pi\)
\(660\) 0 0
\(661\) 12.8692 0.500552 0.250276 0.968175i \(-0.419479\pi\)
0.250276 + 0.968175i \(0.419479\pi\)
\(662\) 3.43770 0.133610
\(663\) −34.8074 −1.35181
\(664\) 12.0464 0.467491
\(665\) 10.0780 0.390809
\(666\) 1.00893 0.0390951
\(667\) 5.40448 0.209262
\(668\) −3.68048 −0.142402
\(669\) −39.4938 −1.52692
\(670\) −13.8646 −0.535637
\(671\) 0 0
\(672\) −7.73537 −0.298398
\(673\) 32.0632 1.23595 0.617973 0.786199i \(-0.287954\pi\)
0.617973 + 0.786199i \(0.287954\pi\)
\(674\) 23.8752 0.919638
\(675\) 8.35738 0.321676
\(676\) 1.57639 0.0606304
\(677\) 34.6314 1.33099 0.665496 0.746402i \(-0.268220\pi\)
0.665496 + 0.746402i \(0.268220\pi\)
\(678\) 42.1134 1.61736
\(679\) −59.7823 −2.29423
\(680\) 11.8779 0.455498
\(681\) 26.7477 1.02497
\(682\) 0 0
\(683\) −11.1244 −0.425663 −0.212831 0.977089i \(-0.568269\pi\)
−0.212831 + 0.977089i \(0.568269\pi\)
\(684\) 1.45756 0.0557314
\(685\) −30.9623 −1.18301
\(686\) −2.11228 −0.0806471
\(687\) −47.8330 −1.82494
\(688\) −2.01495 −0.0768191
\(689\) −21.1877 −0.807186
\(690\) 4.03901 0.153762
\(691\) 30.1726 1.14782 0.573910 0.818919i \(-0.305426\pi\)
0.573910 + 0.818919i \(0.305426\pi\)
\(692\) 12.9528 0.492391
\(693\) 0 0
\(694\) 7.32500 0.278053
\(695\) 4.65582 0.176605
\(696\) −16.4066 −0.621892
\(697\) −39.8007 −1.50756
\(698\) 8.11645 0.307212
\(699\) 42.3988 1.60367
\(700\) −9.40257 −0.355384
\(701\) 20.1483 0.760991 0.380495 0.924783i \(-0.375753\pi\)
0.380495 + 0.924783i \(0.375753\pi\)
\(702\) −12.4331 −0.469259
\(703\) −0.692199 −0.0261068
\(704\) 0 0
\(705\) −56.9317 −2.14417
\(706\) 5.08395 0.191337
\(707\) −51.8053 −1.94834
\(708\) 17.3709 0.652837
\(709\) −1.20513 −0.0452597 −0.0226298 0.999744i \(-0.507204\pi\)
−0.0226298 + 0.999744i \(0.507204\pi\)
\(710\) −8.85932 −0.332484
\(711\) 6.47278 0.242748
\(712\) 0.966434 0.0362186
\(713\) −0.236487 −0.00885651
\(714\) −33.4026 −1.25006
\(715\) 0 0
\(716\) −13.7864 −0.515222
\(717\) 41.6806 1.55659
\(718\) 15.2156 0.567842
\(719\) −49.8350 −1.85853 −0.929267 0.369409i \(-0.879560\pi\)
−0.929267 + 0.369409i \(0.879560\pi\)
\(720\) −4.00932 −0.149418
\(721\) −3.22479 −0.120097
\(722\) −1.00000 −0.0372161
\(723\) −42.2453 −1.57112
\(724\) −15.2785 −0.567820
\(725\) −19.9427 −0.740655
\(726\) 0 0
\(727\) 6.51901 0.241777 0.120888 0.992666i \(-0.461426\pi\)
0.120888 + 0.992666i \(0.461426\pi\)
\(728\) 13.9881 0.518432
\(729\) 4.23155 0.156724
\(730\) −40.1657 −1.48660
\(731\) −8.70086 −0.321813
\(732\) −0.727441 −0.0268870
\(733\) 1.19268 0.0440526 0.0220263 0.999757i \(-0.492988\pi\)
0.0220263 + 0.999757i \(0.492988\pi\)
\(734\) −29.9084 −1.10394
\(735\) 37.3045 1.37600
\(736\) 0.695478 0.0256356
\(737\) 0 0
\(738\) 13.4344 0.494529
\(739\) −21.4841 −0.790305 −0.395152 0.918616i \(-0.629308\pi\)
−0.395152 + 0.918616i \(0.629308\pi\)
\(740\) 1.90403 0.0699936
\(741\) −8.06072 −0.296118
\(742\) −20.3325 −0.746429
\(743\) 33.2777 1.22084 0.610421 0.792077i \(-0.291000\pi\)
0.610421 + 0.792077i \(0.291000\pi\)
\(744\) 0.717915 0.0263201
\(745\) −59.2581 −2.17105
\(746\) −32.7204 −1.19798
\(747\) −17.5584 −0.642429
\(748\) 0 0
\(749\) −6.47442 −0.236570
\(750\) 14.1336 0.516085
\(751\) 23.0796 0.842185 0.421092 0.907018i \(-0.361647\pi\)
0.421092 + 0.907018i \(0.361647\pi\)
\(752\) −9.80308 −0.357482
\(753\) 59.1971 2.15726
\(754\) 29.6685 1.08046
\(755\) 55.0126 2.00211
\(756\) −11.9313 −0.433938
\(757\) 25.7018 0.934149 0.467074 0.884218i \(-0.345308\pi\)
0.467074 + 0.884218i \(0.345308\pi\)
\(758\) −21.4522 −0.779179
\(759\) 0 0
\(760\) 2.75070 0.0997783
\(761\) −45.5538 −1.65132 −0.825661 0.564166i \(-0.809198\pi\)
−0.825661 + 0.564166i \(0.809198\pi\)
\(762\) 1.20046 0.0434882
\(763\) 42.7029 1.54595
\(764\) 23.9456 0.866323
\(765\) −17.3129 −0.625948
\(766\) 17.1641 0.620164
\(767\) −31.4121 −1.13423
\(768\) −2.11129 −0.0761848
\(769\) −50.7820 −1.83125 −0.915623 0.402038i \(-0.868302\pi\)
−0.915623 + 0.402038i \(0.868302\pi\)
\(770\) 0 0
\(771\) 28.6216 1.03078
\(772\) −27.1307 −0.976456
\(773\) 33.7448 1.21372 0.606858 0.794810i \(-0.292430\pi\)
0.606858 + 0.794810i \(0.292430\pi\)
\(774\) 2.93691 0.105565
\(775\) 0.872647 0.0313464
\(776\) −16.3170 −0.585745
\(777\) −5.35442 −0.192089
\(778\) −28.8568 −1.03457
\(779\) −9.21705 −0.330235
\(780\) 22.1726 0.793907
\(781\) 0 0
\(782\) 3.00318 0.107394
\(783\) −25.3062 −0.904369
\(784\) 6.42347 0.229410
\(785\) −19.1129 −0.682169
\(786\) −25.0281 −0.892723
\(787\) −21.9550 −0.782611 −0.391306 0.920261i \(-0.627976\pi\)
−0.391306 + 0.920261i \(0.627976\pi\)
\(788\) −21.1960 −0.755076
\(789\) −9.34639 −0.332740
\(790\) 12.2153 0.434603
\(791\) −73.0809 −2.59846
\(792\) 0 0
\(793\) 1.31545 0.0467129
\(794\) 5.83003 0.206900
\(795\) −32.2292 −1.14305
\(796\) −3.03824 −0.107688
\(797\) 32.3449 1.14571 0.572857 0.819655i \(-0.305835\pi\)
0.572857 + 0.819655i \(0.305835\pi\)
\(798\) −7.73537 −0.273829
\(799\) −42.3313 −1.49757
\(800\) −2.56634 −0.0907338
\(801\) −1.40864 −0.0497718
\(802\) −13.2388 −0.467477
\(803\) 0 0
\(804\) 10.6418 0.375306
\(805\) −7.00904 −0.247036
\(806\) −1.29822 −0.0457280
\(807\) 16.8612 0.593541
\(808\) −14.1398 −0.497435
\(809\) 9.49040 0.333665 0.166832 0.985985i \(-0.446646\pi\)
0.166832 + 0.985985i \(0.446646\pi\)
\(810\) −30.9404 −1.08713
\(811\) −35.3671 −1.24191 −0.620953 0.783847i \(-0.713254\pi\)
−0.620953 + 0.783847i \(0.713254\pi\)
\(812\) 28.4710 0.999137
\(813\) 37.8877 1.32878
\(814\) 0 0
\(815\) −44.0397 −1.54264
\(816\) −9.11690 −0.319155
\(817\) −2.01495 −0.0704941
\(818\) −17.6372 −0.616669
\(819\) −20.3885 −0.712432
\(820\) 25.3533 0.885377
\(821\) 14.6841 0.512478 0.256239 0.966613i \(-0.417517\pi\)
0.256239 + 0.966613i \(0.417517\pi\)
\(822\) 23.7651 0.828902
\(823\) 28.4915 0.993152 0.496576 0.867993i \(-0.334590\pi\)
0.496576 + 0.867993i \(0.334590\pi\)
\(824\) −0.880175 −0.0306623
\(825\) 0 0
\(826\) −30.1443 −1.04885
\(827\) 20.6508 0.718098 0.359049 0.933319i \(-0.383101\pi\)
0.359049 + 0.933319i \(0.383101\pi\)
\(828\) −1.01370 −0.0352286
\(829\) 10.7947 0.374916 0.187458 0.982273i \(-0.439975\pi\)
0.187458 + 0.982273i \(0.439975\pi\)
\(830\) −33.1360 −1.15017
\(831\) −45.3922 −1.57464
\(832\) 3.81790 0.132362
\(833\) 27.7376 0.961050
\(834\) −3.57357 −0.123742
\(835\) 10.1239 0.350351
\(836\) 0 0
\(837\) 1.10734 0.0382752
\(838\) 28.5638 0.986719
\(839\) −26.2123 −0.904950 −0.452475 0.891777i \(-0.649459\pi\)
−0.452475 + 0.891777i \(0.649459\pi\)
\(840\) 21.2777 0.734150
\(841\) 31.3867 1.08230
\(842\) −10.1449 −0.349616
\(843\) 41.3810 1.42524
\(844\) −27.4130 −0.943593
\(845\) −4.33618 −0.149169
\(846\) 14.2886 0.491253
\(847\) 0 0
\(848\) −5.54956 −0.190573
\(849\) 27.5089 0.944104
\(850\) −11.0819 −0.380105
\(851\) 0.481409 0.0165025
\(852\) 6.79996 0.232963
\(853\) 7.01542 0.240203 0.120102 0.992762i \(-0.461678\pi\)
0.120102 + 0.992762i \(0.461678\pi\)
\(854\) 1.26235 0.0431969
\(855\) −4.00932 −0.137116
\(856\) −1.76713 −0.0603993
\(857\) −22.6511 −0.773746 −0.386873 0.922133i \(-0.626445\pi\)
−0.386873 + 0.922133i \(0.626445\pi\)
\(858\) 0 0
\(859\) 36.4532 1.24377 0.621883 0.783110i \(-0.286368\pi\)
0.621883 + 0.783110i \(0.286368\pi\)
\(860\) 5.54251 0.188998
\(861\) −71.2973 −2.42981
\(862\) 22.6879 0.772752
\(863\) 31.8436 1.08397 0.541984 0.840389i \(-0.317673\pi\)
0.541984 + 0.840389i \(0.317673\pi\)
\(864\) −3.25654 −0.110790
\(865\) −35.6292 −1.21143
\(866\) −31.0778 −1.05607
\(867\) −3.47620 −0.118058
\(868\) −1.24582 −0.0422860
\(869\) 0 0
\(870\) 45.1297 1.53004
\(871\) −19.2438 −0.652050
\(872\) 11.6553 0.394700
\(873\) 23.7830 0.804934
\(874\) 0.695478 0.0235249
\(875\) −24.5265 −0.829147
\(876\) 30.8291 1.04162
\(877\) 32.0478 1.08218 0.541089 0.840966i \(-0.318012\pi\)
0.541089 + 0.840966i \(0.318012\pi\)
\(878\) −30.3380 −1.02386
\(879\) −26.2697 −0.886054
\(880\) 0 0
\(881\) −34.2368 −1.15347 −0.576733 0.816932i \(-0.695673\pi\)
−0.576733 + 0.816932i \(0.695673\pi\)
\(882\) −9.36263 −0.315256
\(883\) 38.2142 1.28601 0.643005 0.765862i \(-0.277687\pi\)
0.643005 + 0.765862i \(0.277687\pi\)
\(884\) 16.4863 0.554495
\(885\) −47.7820 −1.60617
\(886\) −5.08267 −0.170756
\(887\) −38.7150 −1.29992 −0.649961 0.759968i \(-0.725215\pi\)
−0.649961 + 0.759968i \(0.725215\pi\)
\(888\) −1.46144 −0.0490426
\(889\) −2.08321 −0.0698686
\(890\) −2.65837 −0.0891087
\(891\) 0 0
\(892\) 18.7060 0.626323
\(893\) −9.80308 −0.328048
\(894\) 45.4835 1.52120
\(895\) 37.9223 1.26760
\(896\) 3.66381 0.122399
\(897\) 5.60605 0.187181
\(898\) 34.4255 1.14880
\(899\) −2.64238 −0.0881282
\(900\) 3.74060 0.124687
\(901\) −23.9638 −0.798352
\(902\) 0 0
\(903\) −15.5864 −0.518682
\(904\) −19.9467 −0.663418
\(905\) 42.0265 1.39701
\(906\) −42.2248 −1.40283
\(907\) −30.2793 −1.00541 −0.502704 0.864458i \(-0.667662\pi\)
−0.502704 + 0.864458i \(0.667662\pi\)
\(908\) −12.6689 −0.420431
\(909\) 20.6096 0.683577
\(910\) −38.4769 −1.27550
\(911\) −38.8426 −1.28691 −0.643456 0.765483i \(-0.722500\pi\)
−0.643456 + 0.765483i \(0.722500\pi\)
\(912\) −2.11129 −0.0699119
\(913\) 0 0
\(914\) −5.43151 −0.179658
\(915\) 2.00097 0.0661500
\(916\) 22.6558 0.748568
\(917\) 43.4322 1.43426
\(918\) −14.0622 −0.464123
\(919\) 40.6344 1.34041 0.670203 0.742178i \(-0.266207\pi\)
0.670203 + 0.742178i \(0.266207\pi\)
\(920\) −1.91305 −0.0630714
\(921\) −39.7185 −1.30877
\(922\) 0.796700 0.0262379
\(923\) −12.2965 −0.404745
\(924\) 0 0
\(925\) −1.77642 −0.0584083
\(926\) −24.1337 −0.793083
\(927\) 1.28291 0.0421363
\(928\) 7.77089 0.255092
\(929\) −24.9807 −0.819591 −0.409796 0.912177i \(-0.634400\pi\)
−0.409796 + 0.912177i \(0.634400\pi\)
\(930\) −1.97477 −0.0647552
\(931\) 6.42347 0.210521
\(932\) −20.0819 −0.657805
\(933\) 27.9045 0.913552
\(934\) −8.96049 −0.293196
\(935\) 0 0
\(936\) −5.56484 −0.181892
\(937\) −9.69911 −0.316856 −0.158428 0.987371i \(-0.550643\pi\)
−0.158428 + 0.987371i \(0.550643\pi\)
\(938\) −18.4671 −0.602971
\(939\) 7.41557 0.241998
\(940\) 26.9653 0.879512
\(941\) 20.4974 0.668195 0.334098 0.942539i \(-0.391569\pi\)
0.334098 + 0.942539i \(0.391569\pi\)
\(942\) 14.6701 0.477978
\(943\) 6.41025 0.208747
\(944\) −8.22759 −0.267785
\(945\) 32.8195 1.06762
\(946\) 0 0
\(947\) 52.0636 1.69184 0.845920 0.533309i \(-0.179052\pi\)
0.845920 + 0.533309i \(0.179052\pi\)
\(948\) −9.37587 −0.304514
\(949\) −55.7490 −1.80969
\(950\) −2.56634 −0.0832631
\(951\) −18.0253 −0.584509
\(952\) 15.8209 0.512758
\(953\) 2.51516 0.0814739 0.0407370 0.999170i \(-0.487029\pi\)
0.0407370 + 0.999170i \(0.487029\pi\)
\(954\) 8.08883 0.261886
\(955\) −65.8672 −2.13141
\(956\) −19.7417 −0.638493
\(957\) 0 0
\(958\) −13.5637 −0.438224
\(959\) −41.2404 −1.33172
\(960\) 5.80753 0.187437
\(961\) −30.8844 −0.996270
\(962\) 2.64275 0.0852057
\(963\) 2.57570 0.0830009
\(964\) 20.0092 0.644452
\(965\) 74.6284 2.40237
\(966\) 5.37978 0.173092
\(967\) −16.5427 −0.531979 −0.265989 0.963976i \(-0.585699\pi\)
−0.265989 + 0.963976i \(0.585699\pi\)
\(968\) 0 0
\(969\) −9.11690 −0.292877
\(970\) 44.8831 1.44111
\(971\) 40.7237 1.30688 0.653442 0.756976i \(-0.273324\pi\)
0.653442 + 0.756976i \(0.273324\pi\)
\(972\) 13.9787 0.448365
\(973\) 6.20134 0.198806
\(974\) −1.14086 −0.0365557
\(975\) −20.6865 −0.662500
\(976\) 0.344547 0.0110287
\(977\) 0.602998 0.0192916 0.00964580 0.999953i \(-0.496930\pi\)
0.00964580 + 0.999953i \(0.496930\pi\)
\(978\) 33.8026 1.08089
\(979\) 0 0
\(980\) −17.6690 −0.564417
\(981\) −16.9884 −0.542398
\(982\) −16.4537 −0.525058
\(983\) 23.4122 0.746734 0.373367 0.927684i \(-0.378203\pi\)
0.373367 + 0.927684i \(0.378203\pi\)
\(984\) −19.4599 −0.620359
\(985\) 58.3038 1.85771
\(986\) 33.5559 1.06864
\(987\) −75.8305 −2.41371
\(988\) 3.81790 0.121464
\(989\) 1.40135 0.0445603
\(990\) 0 0
\(991\) −34.2320 −1.08742 −0.543708 0.839275i \(-0.682980\pi\)
−0.543708 + 0.839275i \(0.682980\pi\)
\(992\) −0.340036 −0.0107961
\(993\) 7.25800 0.230326
\(994\) −11.8002 −0.374280
\(995\) 8.35728 0.264944
\(996\) 25.4335 0.805892
\(997\) −21.6379 −0.685280 −0.342640 0.939467i \(-0.611321\pi\)
−0.342640 + 0.939467i \(0.611321\pi\)
\(998\) −27.3412 −0.865471
\(999\) −2.25417 −0.0713189
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4598.2.a.by.1.2 8
11.10 odd 2 4598.2.a.cb.1.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4598.2.a.by.1.2 8 1.1 even 1 trivial
4598.2.a.cb.1.2 yes 8 11.10 odd 2