Properties

Label 46.14.a.a.1.2
Level $46$
Weight $14$
Character 46.1
Self dual yes
Analytic conductor $49.326$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [46,14,Mod(1,46)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("46.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 46.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.3262273179\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 3257825x^{3} + 1372618617x^{2} + 279354108456x - 130815431589168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 59 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(344.754\) of defining polynomial
Character \(\chi\) \(=\) 46.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-64.0000 q^{2} -1136.86 q^{3} +4096.00 q^{4} +57154.9 q^{5} +72759.2 q^{6} -17496.6 q^{7} -262144. q^{8} -301866. q^{9} -3.65791e6 q^{10} -1.74001e6 q^{11} -4.65659e6 q^{12} -1.27270e7 q^{13} +1.11978e6 q^{14} -6.49773e7 q^{15} +1.67772e7 q^{16} -2.14428e7 q^{17} +1.93194e7 q^{18} +2.97391e8 q^{19} +2.34107e8 q^{20} +1.98912e7 q^{21} +1.11361e8 q^{22} -1.48036e8 q^{23} +2.98022e8 q^{24} +2.04598e9 q^{25} +8.14529e8 q^{26} +2.15571e9 q^{27} -7.16660e7 q^{28} -2.80489e9 q^{29} +4.15855e9 q^{30} -4.74049e9 q^{31} -1.07374e9 q^{32} +1.97815e9 q^{33} +1.37234e9 q^{34} -1.00002e9 q^{35} -1.23644e9 q^{36} -5.60057e9 q^{37} -1.90330e10 q^{38} +1.44689e10 q^{39} -1.49828e10 q^{40} +2.44261e10 q^{41} -1.27304e9 q^{42} -7.21699e9 q^{43} -7.12709e9 q^{44} -1.72531e10 q^{45} +9.47430e9 q^{46} +4.52310e10 q^{47} -1.90734e10 q^{48} -9.65829e10 q^{49} -1.30943e11 q^{50} +2.43776e10 q^{51} -5.21299e10 q^{52} +2.28723e11 q^{53} -1.37965e11 q^{54} -9.94502e10 q^{55} +4.58663e9 q^{56} -3.38093e11 q^{57} +1.79513e11 q^{58} -1.38353e11 q^{59} -2.66147e11 q^{60} -3.19994e11 q^{61} +3.03391e11 q^{62} +5.28163e9 q^{63} +6.87195e10 q^{64} -7.27412e11 q^{65} -1.26602e11 q^{66} -1.05428e12 q^{67} -8.78299e10 q^{68} +1.68296e11 q^{69} +6.40010e10 q^{70} -5.18621e11 q^{71} +7.91324e10 q^{72} -1.45135e12 q^{73} +3.58437e11 q^{74} -2.32600e12 q^{75} +1.21812e12 q^{76} +3.04443e10 q^{77} -9.26008e11 q^{78} +9.39381e11 q^{79} +9.58900e11 q^{80} -1.96947e12 q^{81} -1.56327e12 q^{82} +2.50413e11 q^{83} +8.14744e10 q^{84} -1.22556e12 q^{85} +4.61888e11 q^{86} +3.18878e12 q^{87} +4.56134e11 q^{88} -8.60893e12 q^{89} +1.10420e12 q^{90} +2.22679e11 q^{91} -6.06355e11 q^{92} +5.38928e12 q^{93} -2.89479e12 q^{94} +1.69974e13 q^{95} +1.22070e12 q^{96} +4.41773e12 q^{97} +6.18130e12 q^{98} +5.25251e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 320 q^{2} + 690 q^{3} + 20480 q^{4} - 71798 q^{5} - 44160 q^{6} + 31366 q^{7} - 1310720 q^{8} + 3522701 q^{9} + 4595072 q^{10} - 7592076 q^{11} + 2826240 q^{12} + 28315858 q^{13} - 2007424 q^{14}+ \cdots - 14853301668582 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −64.0000 −0.707107
\(3\) −1136.86 −0.900368 −0.450184 0.892936i \(-0.648642\pi\)
−0.450184 + 0.892936i \(0.648642\pi\)
\(4\) 4096.00 0.500000
\(5\) 57154.9 1.63587 0.817935 0.575311i \(-0.195119\pi\)
0.817935 + 0.575311i \(0.195119\pi\)
\(6\) 72759.2 0.636656
\(7\) −17496.6 −0.0562103 −0.0281052 0.999605i \(-0.508947\pi\)
−0.0281052 + 0.999605i \(0.508947\pi\)
\(8\) −262144. −0.353553
\(9\) −301866. −0.189338
\(10\) −3.65791e6 −1.15673
\(11\) −1.74001e6 −0.296142 −0.148071 0.988977i \(-0.547306\pi\)
−0.148071 + 0.988977i \(0.547306\pi\)
\(12\) −4.65659e6 −0.450184
\(13\) −1.27270e7 −0.731299 −0.365649 0.930753i \(-0.619153\pi\)
−0.365649 + 0.930753i \(0.619153\pi\)
\(14\) 1.11978e6 0.0397467
\(15\) −6.49773e7 −1.47288
\(16\) 1.67772e7 0.250000
\(17\) −2.14428e7 −0.215459 −0.107729 0.994180i \(-0.534358\pi\)
−0.107729 + 0.994180i \(0.534358\pi\)
\(18\) 1.93194e7 0.133882
\(19\) 2.97391e8 1.45021 0.725103 0.688640i \(-0.241792\pi\)
0.725103 + 0.688640i \(0.241792\pi\)
\(20\) 2.34107e8 0.817935
\(21\) 1.98912e7 0.0506100
\(22\) 1.11361e8 0.209404
\(23\) −1.48036e8 −0.208514
\(24\) 2.98022e8 0.318328
\(25\) 2.04598e9 1.67607
\(26\) 8.14529e8 0.517106
\(27\) 2.15571e9 1.07084
\(28\) −7.16660e7 −0.0281052
\(29\) −2.80489e9 −0.875648 −0.437824 0.899061i \(-0.644251\pi\)
−0.437824 + 0.899061i \(0.644251\pi\)
\(30\) 4.15855e9 1.04149
\(31\) −4.74049e9 −0.959338 −0.479669 0.877449i \(-0.659243\pi\)
−0.479669 + 0.877449i \(0.659243\pi\)
\(32\) −1.07374e9 −0.176777
\(33\) 1.97815e9 0.266637
\(34\) 1.37234e9 0.152352
\(35\) −1.00002e9 −0.0919527
\(36\) −1.23644e9 −0.0946690
\(37\) −5.60057e9 −0.358857 −0.179428 0.983771i \(-0.557425\pi\)
−0.179428 + 0.983771i \(0.557425\pi\)
\(38\) −1.90330e10 −1.02545
\(39\) 1.44689e10 0.658438
\(40\) −1.49828e10 −0.578367
\(41\) 2.44261e10 0.803080 0.401540 0.915842i \(-0.368475\pi\)
0.401540 + 0.915842i \(0.368475\pi\)
\(42\) −1.27304e9 −0.0357866
\(43\) −7.21699e9 −0.174105 −0.0870525 0.996204i \(-0.527745\pi\)
−0.0870525 + 0.996204i \(0.527745\pi\)
\(44\) −7.12709e9 −0.148071
\(45\) −1.72531e10 −0.309732
\(46\) 9.47430e9 0.147442
\(47\) 4.52310e10 0.612069 0.306035 0.952020i \(-0.400998\pi\)
0.306035 + 0.952020i \(0.400998\pi\)
\(48\) −1.90734e10 −0.225092
\(49\) −9.65829e10 −0.996840
\(50\) −1.30943e11 −1.18516
\(51\) 2.43776e10 0.193992
\(52\) −5.21299e10 −0.365649
\(53\) 2.28723e11 1.41748 0.708740 0.705470i \(-0.249264\pi\)
0.708740 + 0.705470i \(0.249264\pi\)
\(54\) −1.37965e11 −0.757199
\(55\) −9.94502e10 −0.484449
\(56\) 4.58663e9 0.0198734
\(57\) −3.38093e11 −1.30572
\(58\) 1.79513e11 0.619177
\(59\) −1.38353e11 −0.427021 −0.213511 0.976941i \(-0.568490\pi\)
−0.213511 + 0.976941i \(0.568490\pi\)
\(60\) −2.66147e11 −0.736442
\(61\) −3.19994e11 −0.795238 −0.397619 0.917551i \(-0.630163\pi\)
−0.397619 + 0.917551i \(0.630163\pi\)
\(62\) 3.03391e11 0.678355
\(63\) 5.28163e9 0.0106428
\(64\) 6.87195e10 0.125000
\(65\) −7.27412e11 −1.19631
\(66\) −1.26602e11 −0.188541
\(67\) −1.05428e12 −1.42386 −0.711932 0.702249i \(-0.752180\pi\)
−0.711932 + 0.702249i \(0.752180\pi\)
\(68\) −8.78299e10 −0.107729
\(69\) 1.68296e11 0.187740
\(70\) 6.40010e10 0.0650204
\(71\) −5.18621e11 −0.480475 −0.240238 0.970714i \(-0.577225\pi\)
−0.240238 + 0.970714i \(0.577225\pi\)
\(72\) 7.91324e10 0.0669411
\(73\) −1.45135e12 −1.12247 −0.561235 0.827656i \(-0.689674\pi\)
−0.561235 + 0.827656i \(0.689674\pi\)
\(74\) 3.58437e11 0.253750
\(75\) −2.32600e12 −1.50908
\(76\) 1.21812e12 0.725103
\(77\) 3.04443e10 0.0166462
\(78\) −9.26008e11 −0.465586
\(79\) 9.39381e11 0.434776 0.217388 0.976085i \(-0.430246\pi\)
0.217388 + 0.976085i \(0.430246\pi\)
\(80\) 9.58900e11 0.408967
\(81\) −1.96947e12 −0.774813
\(82\) −1.56327e12 −0.567863
\(83\) 2.50413e11 0.0840715 0.0420357 0.999116i \(-0.486616\pi\)
0.0420357 + 0.999116i \(0.486616\pi\)
\(84\) 8.14744e10 0.0253050
\(85\) −1.22556e12 −0.352463
\(86\) 4.61888e11 0.123111
\(87\) 3.18878e12 0.788405
\(88\) 4.56134e11 0.104702
\(89\) −8.60893e12 −1.83617 −0.918087 0.396378i \(-0.870267\pi\)
−0.918087 + 0.396378i \(0.870267\pi\)
\(90\) 1.10420e12 0.219014
\(91\) 2.22679e11 0.0411065
\(92\) −6.06355e11 −0.104257
\(93\) 5.38928e12 0.863757
\(94\) −2.89479e12 −0.432798
\(95\) 1.69974e13 2.37235
\(96\) 1.22070e12 0.159164
\(97\) 4.41773e12 0.538497 0.269248 0.963071i \(-0.413225\pi\)
0.269248 + 0.963071i \(0.413225\pi\)
\(98\) 6.18130e12 0.704873
\(99\) 5.25251e11 0.0560709
\(100\) 8.38034e12 0.838034
\(101\) −1.40297e13 −1.31510 −0.657551 0.753410i \(-0.728408\pi\)
−0.657551 + 0.753410i \(0.728408\pi\)
\(102\) −1.56016e12 −0.137173
\(103\) 9.82884e12 0.811074 0.405537 0.914079i \(-0.367085\pi\)
0.405537 + 0.914079i \(0.367085\pi\)
\(104\) 3.33631e12 0.258553
\(105\) 1.13688e12 0.0827913
\(106\) −1.46383e13 −1.00231
\(107\) −7.74315e12 −0.498796 −0.249398 0.968401i \(-0.580233\pi\)
−0.249398 + 0.968401i \(0.580233\pi\)
\(108\) 8.82977e12 0.535421
\(109\) −2.67925e13 −1.53017 −0.765086 0.643928i \(-0.777304\pi\)
−0.765086 + 0.643928i \(0.777304\pi\)
\(110\) 6.36482e12 0.342557
\(111\) 6.36708e12 0.323103
\(112\) −2.93544e11 −0.0140526
\(113\) −1.02428e12 −0.0462817 −0.0231409 0.999732i \(-0.507367\pi\)
−0.0231409 + 0.999732i \(0.507367\pi\)
\(114\) 2.16380e13 0.923283
\(115\) −8.46098e12 −0.341102
\(116\) −1.14888e13 −0.437824
\(117\) 3.84185e12 0.138463
\(118\) 8.85457e12 0.301950
\(119\) 3.75177e11 0.0121110
\(120\) 1.70334e13 0.520743
\(121\) −3.14951e13 −0.912300
\(122\) 2.04796e13 0.562318
\(123\) −2.77691e13 −0.723067
\(124\) −1.94170e13 −0.479669
\(125\) 4.71687e13 1.10596
\(126\) −3.38024e11 −0.00752556
\(127\) −2.21377e13 −0.468175 −0.234087 0.972216i \(-0.575210\pi\)
−0.234087 + 0.972216i \(0.575210\pi\)
\(128\) −4.39805e12 −0.0883883
\(129\) 8.20473e12 0.156759
\(130\) 4.65543e13 0.845918
\(131\) 5.14353e13 0.889197 0.444599 0.895730i \(-0.353346\pi\)
0.444599 + 0.895730i \(0.353346\pi\)
\(132\) 8.10252e12 0.133318
\(133\) −5.20333e12 −0.0815166
\(134\) 6.74737e13 1.00682
\(135\) 1.23209e14 1.75176
\(136\) 5.62111e12 0.0761762
\(137\) −5.07666e12 −0.0655985 −0.0327993 0.999462i \(-0.510442\pi\)
−0.0327993 + 0.999462i \(0.510442\pi\)
\(138\) −1.07710e13 −0.132752
\(139\) 9.37600e13 1.10261 0.551304 0.834304i \(-0.314130\pi\)
0.551304 + 0.834304i \(0.314130\pi\)
\(140\) −4.09607e12 −0.0459764
\(141\) −5.14215e13 −0.551087
\(142\) 3.31917e13 0.339747
\(143\) 2.21452e13 0.216568
\(144\) −5.06447e12 −0.0473345
\(145\) −1.60313e14 −1.43245
\(146\) 9.28867e13 0.793707
\(147\) 1.09801e14 0.897523
\(148\) −2.29399e13 −0.179428
\(149\) −2.12749e14 −1.59278 −0.796391 0.604782i \(-0.793260\pi\)
−0.796391 + 0.604782i \(0.793260\pi\)
\(150\) 1.48864e14 1.06708
\(151\) 1.25527e14 0.861764 0.430882 0.902408i \(-0.358202\pi\)
0.430882 + 0.902408i \(0.358202\pi\)
\(152\) −7.79594e13 −0.512726
\(153\) 6.47287e12 0.0407946
\(154\) −1.94843e12 −0.0117707
\(155\) −2.70942e14 −1.56935
\(156\) 5.92645e13 0.329219
\(157\) −2.11221e14 −1.12562 −0.562808 0.826588i \(-0.690279\pi\)
−0.562808 + 0.826588i \(0.690279\pi\)
\(158\) −6.01204e13 −0.307433
\(159\) −2.60027e14 −1.27625
\(160\) −6.13696e13 −0.289184
\(161\) 2.59012e12 0.0117207
\(162\) 1.26046e14 0.547876
\(163\) −4.59744e14 −1.91998 −0.959990 0.280035i \(-0.909654\pi\)
−0.959990 + 0.280035i \(0.909654\pi\)
\(164\) 1.00049e14 0.401540
\(165\) 1.13061e14 0.436183
\(166\) −1.60264e13 −0.0594475
\(167\) −1.75187e14 −0.624949 −0.312475 0.949926i \(-0.601158\pi\)
−0.312475 + 0.949926i \(0.601158\pi\)
\(168\) −5.21436e12 −0.0178933
\(169\) −1.40898e14 −0.465202
\(170\) 7.84361e13 0.249229
\(171\) −8.97724e13 −0.274579
\(172\) −2.95608e13 −0.0870525
\(173\) −1.33159e14 −0.377634 −0.188817 0.982012i \(-0.560465\pi\)
−0.188817 + 0.982012i \(0.560465\pi\)
\(174\) −2.04082e14 −0.557487
\(175\) −3.57977e13 −0.0942123
\(176\) −2.91926e13 −0.0740355
\(177\) 1.57288e14 0.384476
\(178\) 5.50971e14 1.29837
\(179\) −3.38015e14 −0.768054 −0.384027 0.923322i \(-0.625463\pi\)
−0.384027 + 0.923322i \(0.625463\pi\)
\(180\) −7.06688e13 −0.154866
\(181\) 1.87870e14 0.397142 0.198571 0.980086i \(-0.436370\pi\)
0.198571 + 0.980086i \(0.436370\pi\)
\(182\) −1.42515e13 −0.0290667
\(183\) 3.63789e14 0.716007
\(184\) 3.88067e13 0.0737210
\(185\) −3.20100e14 −0.587043
\(186\) −3.44914e14 −0.610769
\(187\) 3.73108e13 0.0638064
\(188\) 1.85266e14 0.306035
\(189\) −3.77175e13 −0.0601924
\(190\) −1.08783e15 −1.67750
\(191\) −9.91840e14 −1.47817 −0.739085 0.673612i \(-0.764742\pi\)
−0.739085 + 0.673612i \(0.764742\pi\)
\(192\) −7.81246e13 −0.112546
\(193\) −2.96328e14 −0.412715 −0.206358 0.978477i \(-0.566161\pi\)
−0.206358 + 0.978477i \(0.566161\pi\)
\(194\) −2.82735e14 −0.380775
\(195\) 8.26967e14 1.07712
\(196\) −3.95603e14 −0.498420
\(197\) −7.90112e13 −0.0963071 −0.0481535 0.998840i \(-0.515334\pi\)
−0.0481535 + 0.998840i \(0.515334\pi\)
\(198\) −3.36160e13 −0.0396481
\(199\) 1.06708e15 1.21801 0.609005 0.793166i \(-0.291569\pi\)
0.609005 + 0.793166i \(0.291569\pi\)
\(200\) −5.36342e14 −0.592579
\(201\) 1.19857e15 1.28200
\(202\) 8.97901e14 0.929918
\(203\) 4.90761e13 0.0492205
\(204\) 9.98505e13 0.0969961
\(205\) 1.39607e15 1.31373
\(206\) −6.29046e14 −0.573516
\(207\) 4.46870e13 0.0394797
\(208\) −2.13524e14 −0.182825
\(209\) −5.17465e14 −0.429467
\(210\) −7.27604e13 −0.0585423
\(211\) 1.99691e15 1.55784 0.778921 0.627122i \(-0.215767\pi\)
0.778921 + 0.627122i \(0.215767\pi\)
\(212\) 9.36849e14 0.708740
\(213\) 5.89601e14 0.432604
\(214\) 4.95561e14 0.352702
\(215\) −4.12487e14 −0.284813
\(216\) −5.65106e14 −0.378600
\(217\) 8.29423e13 0.0539247
\(218\) 1.71472e15 1.08200
\(219\) 1.64999e15 1.01064
\(220\) −4.07348e14 −0.242225
\(221\) 2.72903e14 0.157565
\(222\) −4.07493e14 −0.228468
\(223\) 2.10122e15 1.14417 0.572085 0.820194i \(-0.306135\pi\)
0.572085 + 0.820194i \(0.306135\pi\)
\(224\) 1.87868e13 0.00993668
\(225\) −6.17612e14 −0.317343
\(226\) 6.55541e13 0.0327261
\(227\) −3.40833e14 −0.165338 −0.0826692 0.996577i \(-0.526344\pi\)
−0.0826692 + 0.996577i \(0.526344\pi\)
\(228\) −1.38483e15 −0.652860
\(229\) 2.24733e15 1.02976 0.514881 0.857261i \(-0.327836\pi\)
0.514881 + 0.857261i \(0.327836\pi\)
\(230\) 5.41503e14 0.241196
\(231\) −3.46110e13 −0.0149877
\(232\) 7.35286e14 0.309588
\(233\) −1.93897e15 −0.793887 −0.396943 0.917843i \(-0.629929\pi\)
−0.396943 + 0.917843i \(0.629929\pi\)
\(234\) −2.45879e14 −0.0979079
\(235\) 2.58518e15 1.00127
\(236\) −5.66693e14 −0.213511
\(237\) −1.06795e15 −0.391458
\(238\) −2.40113e13 −0.00856378
\(239\) −2.30487e15 −0.799945 −0.399972 0.916527i \(-0.630980\pi\)
−0.399972 + 0.916527i \(0.630980\pi\)
\(240\) −1.09014e15 −0.368221
\(241\) −8.88360e14 −0.292064 −0.146032 0.989280i \(-0.546650\pi\)
−0.146032 + 0.989280i \(0.546650\pi\)
\(242\) 2.01568e15 0.645094
\(243\) −1.19787e15 −0.373225
\(244\) −1.31069e15 −0.397619
\(245\) −5.52019e15 −1.63070
\(246\) 1.77722e15 0.511285
\(247\) −3.78491e15 −1.06053
\(248\) 1.24269e15 0.339177
\(249\) −2.84685e14 −0.0756952
\(250\) −3.01880e15 −0.782031
\(251\) 2.48749e15 0.627887 0.313944 0.949442i \(-0.398350\pi\)
0.313944 + 0.949442i \(0.398350\pi\)
\(252\) 2.16335e13 0.00532138
\(253\) 2.57584e14 0.0617498
\(254\) 1.41681e15 0.331050
\(255\) 1.39330e15 0.317346
\(256\) 2.81475e14 0.0625000
\(257\) 7.12685e15 1.54288 0.771440 0.636302i \(-0.219537\pi\)
0.771440 + 0.636302i \(0.219537\pi\)
\(258\) −5.25103e14 −0.110845
\(259\) 9.79909e13 0.0201715
\(260\) −2.97948e15 −0.598155
\(261\) 8.46702e14 0.165793
\(262\) −3.29186e15 −0.628757
\(263\) 8.32021e15 1.55032 0.775161 0.631764i \(-0.217669\pi\)
0.775161 + 0.631764i \(0.217669\pi\)
\(264\) −5.18561e14 −0.0942703
\(265\) 1.30726e16 2.31881
\(266\) 3.33013e14 0.0576409
\(267\) 9.78717e15 1.65323
\(268\) −4.31832e15 −0.711932
\(269\) −9.84809e15 −1.58475 −0.792377 0.610031i \(-0.791157\pi\)
−0.792377 + 0.610031i \(0.791157\pi\)
\(270\) −7.88539e15 −1.23868
\(271\) −6.38864e15 −0.979734 −0.489867 0.871797i \(-0.662955\pi\)
−0.489867 + 0.871797i \(0.662955\pi\)
\(272\) −3.59751e14 −0.0538647
\(273\) −2.53156e14 −0.0370110
\(274\) 3.24906e14 0.0463852
\(275\) −3.56003e15 −0.496354
\(276\) 6.89342e14 0.0938698
\(277\) 6.54312e15 0.870295 0.435147 0.900359i \(-0.356696\pi\)
0.435147 + 0.900359i \(0.356696\pi\)
\(278\) −6.00064e15 −0.779662
\(279\) 1.43099e15 0.181639
\(280\) 2.62148e14 0.0325102
\(281\) 4.45548e15 0.539887 0.269944 0.962876i \(-0.412995\pi\)
0.269944 + 0.962876i \(0.412995\pi\)
\(282\) 3.29098e15 0.389678
\(283\) −1.12396e16 −1.30058 −0.650290 0.759686i \(-0.725353\pi\)
−0.650290 + 0.759686i \(0.725353\pi\)
\(284\) −2.12427e15 −0.240238
\(285\) −1.93237e16 −2.13599
\(286\) −1.41729e15 −0.153137
\(287\) −4.27373e14 −0.0451414
\(288\) 3.24126e14 0.0334706
\(289\) −9.44478e15 −0.953577
\(290\) 1.02601e16 1.01289
\(291\) −5.02235e15 −0.484845
\(292\) −5.94475e15 −0.561235
\(293\) −4.81587e15 −0.444667 −0.222334 0.974971i \(-0.571367\pi\)
−0.222334 + 0.974971i \(0.571367\pi\)
\(294\) −7.02729e15 −0.634644
\(295\) −7.90754e15 −0.698551
\(296\) 1.46816e15 0.126875
\(297\) −3.75096e15 −0.317121
\(298\) 1.36159e16 1.12627
\(299\) 1.88406e15 0.152486
\(300\) −9.52730e15 −0.754539
\(301\) 1.26273e14 0.00978650
\(302\) −8.03376e15 −0.609360
\(303\) 1.59498e16 1.18408
\(304\) 4.98940e15 0.362552
\(305\) −1.82892e16 −1.30091
\(306\) −4.14263e14 −0.0288461
\(307\) 5.31598e15 0.362397 0.181198 0.983447i \(-0.442002\pi\)
0.181198 + 0.983447i \(0.442002\pi\)
\(308\) 1.24700e14 0.00832312
\(309\) −1.11740e16 −0.730265
\(310\) 1.73403e16 1.10970
\(311\) 1.45040e15 0.0908960 0.0454480 0.998967i \(-0.485528\pi\)
0.0454480 + 0.998967i \(0.485528\pi\)
\(312\) −3.79293e15 −0.232793
\(313\) 1.18950e16 0.715031 0.357516 0.933907i \(-0.383624\pi\)
0.357516 + 0.933907i \(0.383624\pi\)
\(314\) 1.35182e16 0.795930
\(315\) 3.01871e14 0.0174102
\(316\) 3.84771e15 0.217388
\(317\) 1.13995e16 0.630959 0.315480 0.948932i \(-0.397835\pi\)
0.315480 + 0.948932i \(0.397835\pi\)
\(318\) 1.66417e16 0.902447
\(319\) 4.88055e15 0.259316
\(320\) 3.92766e15 0.204484
\(321\) 8.80289e15 0.449100
\(322\) −1.65768e14 −0.00828776
\(323\) −6.37692e15 −0.312460
\(324\) −8.06695e15 −0.387407
\(325\) −2.60392e16 −1.22571
\(326\) 2.94236e16 1.35763
\(327\) 3.04594e16 1.37772
\(328\) −6.40315e15 −0.283931
\(329\) −7.91389e14 −0.0344046
\(330\) −7.23592e15 −0.308428
\(331\) −2.32445e16 −0.971490 −0.485745 0.874101i \(-0.661452\pi\)
−0.485745 + 0.874101i \(0.661452\pi\)
\(332\) 1.02569e15 0.0420357
\(333\) 1.69062e15 0.0679452
\(334\) 1.12120e16 0.441906
\(335\) −6.02571e16 −2.32925
\(336\) 3.33719e14 0.0126525
\(337\) 4.11640e16 1.53082 0.765409 0.643544i \(-0.222537\pi\)
0.765409 + 0.643544i \(0.222537\pi\)
\(338\) 9.01748e15 0.328947
\(339\) 1.16447e15 0.0416706
\(340\) −5.01991e15 −0.176231
\(341\) 8.24850e15 0.284100
\(342\) 5.74543e15 0.194157
\(343\) 3.38510e15 0.112243
\(344\) 1.89189e15 0.0615554
\(345\) 9.61897e15 0.307117
\(346\) 8.52217e15 0.267027
\(347\) −4.18381e16 −1.28656 −0.643281 0.765630i \(-0.722427\pi\)
−0.643281 + 0.765630i \(0.722427\pi\)
\(348\) 1.30612e16 0.394203
\(349\) 2.15279e16 0.637730 0.318865 0.947800i \(-0.396698\pi\)
0.318865 + 0.947800i \(0.396698\pi\)
\(350\) 2.29105e15 0.0666182
\(351\) −2.74357e16 −0.783105
\(352\) 1.86832e15 0.0523510
\(353\) −1.68814e15 −0.0464380 −0.0232190 0.999730i \(-0.507391\pi\)
−0.0232190 + 0.999730i \(0.507391\pi\)
\(354\) −1.00664e16 −0.271866
\(355\) −2.96417e16 −0.785994
\(356\) −3.52622e16 −0.918087
\(357\) −4.26524e14 −0.0109044
\(358\) 2.16330e16 0.543096
\(359\) 5.30222e16 1.30720 0.653602 0.756838i \(-0.273257\pi\)
0.653602 + 0.756838i \(0.273257\pi\)
\(360\) 4.52280e15 0.109507
\(361\) 4.63886e16 1.10310
\(362\) −1.20237e16 −0.280822
\(363\) 3.58056e16 0.821405
\(364\) 9.12095e14 0.0205533
\(365\) −8.29521e16 −1.83621
\(366\) −2.32825e16 −0.506293
\(367\) −3.63750e15 −0.0777093 −0.0388547 0.999245i \(-0.512371\pi\)
−0.0388547 + 0.999245i \(0.512371\pi\)
\(368\) −2.48363e15 −0.0521286
\(369\) −7.37340e15 −0.152054
\(370\) 2.04864e16 0.415102
\(371\) −4.00187e15 −0.0796770
\(372\) 2.20745e16 0.431879
\(373\) 9.95279e16 1.91354 0.956770 0.290846i \(-0.0939368\pi\)
0.956770 + 0.290846i \(0.0939368\pi\)
\(374\) −2.38789e15 −0.0451179
\(375\) −5.36243e16 −0.995769
\(376\) −1.18570e16 −0.216399
\(377\) 3.56979e16 0.640360
\(378\) 2.41392e15 0.0425624
\(379\) 3.26538e16 0.565951 0.282975 0.959127i \(-0.408679\pi\)
0.282975 + 0.959127i \(0.408679\pi\)
\(380\) 6.96213e16 1.18617
\(381\) 2.51675e16 0.421529
\(382\) 6.34777e16 1.04522
\(383\) 5.27891e16 0.854579 0.427290 0.904115i \(-0.359468\pi\)
0.427290 + 0.904115i \(0.359468\pi\)
\(384\) 4.99998e15 0.0795820
\(385\) 1.74004e15 0.0272311
\(386\) 1.89650e16 0.291834
\(387\) 2.17856e15 0.0329647
\(388\) 1.80950e16 0.269248
\(389\) −6.87965e16 −1.00669 −0.503343 0.864087i \(-0.667897\pi\)
−0.503343 + 0.864087i \(0.667897\pi\)
\(390\) −5.29259e16 −0.761638
\(391\) 3.17431e15 0.0449263
\(392\) 2.53186e16 0.352436
\(393\) −5.84749e16 −0.800604
\(394\) 5.05672e15 0.0680994
\(395\) 5.36903e16 0.711237
\(396\) 2.15143e15 0.0280355
\(397\) −5.36671e16 −0.687970 −0.343985 0.938975i \(-0.611777\pi\)
−0.343985 + 0.938975i \(0.611777\pi\)
\(398\) −6.82929e16 −0.861263
\(399\) 5.91548e15 0.0733949
\(400\) 3.43259e16 0.419017
\(401\) 6.47016e16 0.777100 0.388550 0.921428i \(-0.372976\pi\)
0.388550 + 0.921428i \(0.372976\pi\)
\(402\) −7.67084e16 −0.906511
\(403\) 6.03323e16 0.701563
\(404\) −5.74657e16 −0.657551
\(405\) −1.12565e17 −1.26749
\(406\) −3.14087e15 −0.0348041
\(407\) 9.74506e15 0.106272
\(408\) −6.39043e15 −0.0685866
\(409\) −6.32594e16 −0.668226 −0.334113 0.942533i \(-0.608437\pi\)
−0.334113 + 0.942533i \(0.608437\pi\)
\(410\) −8.93485e16 −0.928950
\(411\) 5.77146e15 0.0590628
\(412\) 4.02589e16 0.405537
\(413\) 2.42070e15 0.0240030
\(414\) −2.85997e15 −0.0279164
\(415\) 1.43123e16 0.137530
\(416\) 1.36655e16 0.129277
\(417\) −1.06592e17 −0.992753
\(418\) 3.31177e16 0.303679
\(419\) 4.26979e16 0.385492 0.192746 0.981249i \(-0.438261\pi\)
0.192746 + 0.981249i \(0.438261\pi\)
\(420\) 4.65666e15 0.0413956
\(421\) −3.55599e16 −0.311262 −0.155631 0.987815i \(-0.549741\pi\)
−0.155631 + 0.987815i \(0.549741\pi\)
\(422\) −1.27802e17 −1.10156
\(423\) −1.36537e16 −0.115888
\(424\) −5.99584e16 −0.501155
\(425\) −4.38717e16 −0.361124
\(426\) −3.77345e16 −0.305897
\(427\) 5.59879e15 0.0447006
\(428\) −3.17159e16 −0.249398
\(429\) −2.51760e16 −0.194991
\(430\) 2.63991e16 0.201393
\(431\) −2.25887e17 −1.69742 −0.848709 0.528861i \(-0.822619\pi\)
−0.848709 + 0.528861i \(0.822619\pi\)
\(432\) 3.61668e16 0.267710
\(433\) 1.91523e17 1.39653 0.698264 0.715840i \(-0.253956\pi\)
0.698264 + 0.715840i \(0.253956\pi\)
\(434\) −5.30831e15 −0.0381305
\(435\) 1.82254e17 1.28973
\(436\) −1.09742e17 −0.765086
\(437\) −4.40246e16 −0.302389
\(438\) −1.05599e17 −0.714628
\(439\) 2.69279e17 1.79549 0.897744 0.440518i \(-0.145205\pi\)
0.897744 + 0.440518i \(0.145205\pi\)
\(440\) 2.60703e16 0.171279
\(441\) 2.91551e16 0.188740
\(442\) −1.74658e16 −0.111415
\(443\) −5.44255e16 −0.342120 −0.171060 0.985261i \(-0.554719\pi\)
−0.171060 + 0.985261i \(0.554719\pi\)
\(444\) 2.60796e16 0.161551
\(445\) −4.92043e17 −3.00374
\(446\) −1.34478e17 −0.809050
\(447\) 2.41866e17 1.43409
\(448\) −1.20236e15 −0.00702629
\(449\) −2.14513e17 −1.23553 −0.617763 0.786364i \(-0.711961\pi\)
−0.617763 + 0.786364i \(0.711961\pi\)
\(450\) 3.95272e16 0.224396
\(451\) −4.25017e16 −0.237825
\(452\) −4.19546e15 −0.0231409
\(453\) −1.42707e17 −0.775905
\(454\) 2.18133e16 0.116912
\(455\) 1.27272e16 0.0672449
\(456\) 8.86291e16 0.461641
\(457\) −2.97882e17 −1.52964 −0.764819 0.644245i \(-0.777172\pi\)
−0.764819 + 0.644245i \(0.777172\pi\)
\(458\) −1.43829e17 −0.728152
\(459\) −4.62245e16 −0.230722
\(460\) −3.46562e16 −0.170551
\(461\) −1.76100e17 −0.854485 −0.427243 0.904137i \(-0.640515\pi\)
−0.427243 + 0.904137i \(0.640515\pi\)
\(462\) 2.21510e15 0.0105979
\(463\) 1.93292e17 0.911880 0.455940 0.890010i \(-0.349303\pi\)
0.455940 + 0.890010i \(0.349303\pi\)
\(464\) −4.70583e16 −0.218912
\(465\) 3.08024e17 1.41299
\(466\) 1.24094e17 0.561363
\(467\) 2.31596e17 1.03317 0.516585 0.856236i \(-0.327203\pi\)
0.516585 + 0.856236i \(0.327203\pi\)
\(468\) 1.57362e16 0.0692314
\(469\) 1.84462e16 0.0800358
\(470\) −1.65451e17 −0.708001
\(471\) 2.40130e17 1.01347
\(472\) 3.62683e16 0.150975
\(473\) 1.25577e16 0.0515598
\(474\) 6.83486e16 0.276803
\(475\) 6.08457e17 2.43065
\(476\) 1.53672e15 0.00605551
\(477\) −6.90437e16 −0.268383
\(478\) 1.47512e17 0.565646
\(479\) −3.50943e17 −1.32757 −0.663783 0.747925i \(-0.731050\pi\)
−0.663783 + 0.747925i \(0.731050\pi\)
\(480\) 6.97688e16 0.260372
\(481\) 7.12786e16 0.262432
\(482\) 5.68550e16 0.206520
\(483\) −2.94461e15 −0.0105529
\(484\) −1.29004e17 −0.456150
\(485\) 2.52495e17 0.880910
\(486\) 7.66640e16 0.263910
\(487\) −1.51993e17 −0.516280 −0.258140 0.966107i \(-0.583110\pi\)
−0.258140 + 0.966107i \(0.583110\pi\)
\(488\) 8.38844e16 0.281159
\(489\) 5.22666e17 1.72869
\(490\) 3.53292e17 1.15308
\(491\) 4.84168e17 1.55943 0.779716 0.626134i \(-0.215364\pi\)
0.779716 + 0.626134i \(0.215364\pi\)
\(492\) −1.13742e17 −0.361533
\(493\) 6.01449e16 0.188666
\(494\) 2.42234e17 0.749911
\(495\) 3.00207e16 0.0917247
\(496\) −7.95322e16 −0.239835
\(497\) 9.07410e15 0.0270077
\(498\) 1.82198e16 0.0535246
\(499\) −2.55875e17 −0.741951 −0.370975 0.928643i \(-0.620977\pi\)
−0.370975 + 0.928643i \(0.620977\pi\)
\(500\) 1.93203e17 0.552979
\(501\) 1.99164e17 0.562684
\(502\) −1.59199e17 −0.443983
\(503\) 5.66711e17 1.56016 0.780081 0.625679i \(-0.215178\pi\)
0.780081 + 0.625679i \(0.215178\pi\)
\(504\) −1.38455e15 −0.00376278
\(505\) −8.01866e17 −2.15134
\(506\) −1.64854e16 −0.0436637
\(507\) 1.60182e17 0.418853
\(508\) −9.06760e16 −0.234087
\(509\) −7.57570e17 −1.93089 −0.965444 0.260611i \(-0.916076\pi\)
−0.965444 + 0.260611i \(0.916076\pi\)
\(510\) −8.91711e16 −0.224397
\(511\) 2.53938e16 0.0630944
\(512\) −1.80144e16 −0.0441942
\(513\) 6.41089e17 1.55294
\(514\) −4.56118e17 −1.09098
\(515\) 5.61767e17 1.32681
\(516\) 3.36066e16 0.0783793
\(517\) −7.87026e16 −0.181259
\(518\) −6.27142e15 −0.0142634
\(519\) 1.51383e17 0.340009
\(520\) 1.90687e17 0.422959
\(521\) 3.75972e17 0.823590 0.411795 0.911277i \(-0.364902\pi\)
0.411795 + 0.911277i \(0.364902\pi\)
\(522\) −5.41889e16 −0.117234
\(523\) 3.34023e16 0.0713700 0.0356850 0.999363i \(-0.488639\pi\)
0.0356850 + 0.999363i \(0.488639\pi\)
\(524\) 2.10679e17 0.444599
\(525\) 4.06971e16 0.0848257
\(526\) −5.32493e17 −1.09624
\(527\) 1.01650e17 0.206698
\(528\) 3.31879e16 0.0666591
\(529\) 2.19146e16 0.0434783
\(530\) −8.36649e17 −1.63965
\(531\) 4.17640e16 0.0808514
\(532\) −2.13129e16 −0.0407583
\(533\) −3.10871e17 −0.587291
\(534\) −6.26379e17 −1.16901
\(535\) −4.42559e17 −0.815965
\(536\) 2.76372e17 0.503412
\(537\) 3.84277e17 0.691531
\(538\) 6.30278e17 1.12059
\(539\) 1.68055e17 0.295206
\(540\) 5.04665e17 0.875878
\(541\) −8.94028e17 −1.53309 −0.766547 0.642188i \(-0.778027\pi\)
−0.766547 + 0.642188i \(0.778027\pi\)
\(542\) 4.08873e17 0.692776
\(543\) −2.13582e17 −0.357574
\(544\) 2.30241e16 0.0380881
\(545\) −1.53132e18 −2.50316
\(546\) 1.62020e16 0.0261707
\(547\) −4.75904e17 −0.759630 −0.379815 0.925062i \(-0.624012\pi\)
−0.379815 + 0.925062i \(0.624012\pi\)
\(548\) −2.07940e16 −0.0327993
\(549\) 9.65952e16 0.150569
\(550\) 2.27842e17 0.350975
\(551\) −8.34151e17 −1.26987
\(552\) −4.41179e16 −0.0663760
\(553\) −1.64360e16 −0.0244389
\(554\) −4.18760e17 −0.615391
\(555\) 3.63910e17 0.528554
\(556\) 3.84041e17 0.551304
\(557\) −3.86695e17 −0.548669 −0.274334 0.961634i \(-0.588458\pi\)
−0.274334 + 0.961634i \(0.588458\pi\)
\(558\) −9.15835e16 −0.128438
\(559\) 9.18508e16 0.127323
\(560\) −1.67775e16 −0.0229882
\(561\) −4.24173e16 −0.0574492
\(562\) −2.85150e17 −0.381758
\(563\) 3.97025e17 0.525428 0.262714 0.964874i \(-0.415382\pi\)
0.262714 + 0.964874i \(0.415382\pi\)
\(564\) −2.10622e17 −0.275544
\(565\) −5.85428e16 −0.0757109
\(566\) 7.19331e17 0.919649
\(567\) 3.44590e16 0.0435525
\(568\) 1.35953e17 0.169874
\(569\) −5.77929e17 −0.713912 −0.356956 0.934121i \(-0.616185\pi\)
−0.356956 + 0.934121i \(0.616185\pi\)
\(570\) 1.23672e18 1.51037
\(571\) −1.26045e18 −1.52192 −0.760960 0.648799i \(-0.775272\pi\)
−0.760960 + 0.648799i \(0.775272\pi\)
\(572\) 9.07066e16 0.108284
\(573\) 1.12759e18 1.33090
\(574\) 2.73519e16 0.0319198
\(575\) −3.02879e17 −0.349484
\(576\) −2.07441e16 −0.0236673
\(577\) 1.53617e18 1.73299 0.866497 0.499182i \(-0.166366\pi\)
0.866497 + 0.499182i \(0.166366\pi\)
\(578\) 6.04466e17 0.674281
\(579\) 3.36884e17 0.371595
\(580\) −6.56644e17 −0.716223
\(581\) −4.38137e15 −0.00472568
\(582\) 3.21431e17 0.342837
\(583\) −3.97981e17 −0.419775
\(584\) 3.80464e17 0.396853
\(585\) 2.19581e17 0.226507
\(586\) 3.08216e17 0.314427
\(587\) −1.20239e18 −1.21310 −0.606551 0.795044i \(-0.707448\pi\)
−0.606551 + 0.795044i \(0.707448\pi\)
\(588\) 4.49747e17 0.448761
\(589\) −1.40978e18 −1.39124
\(590\) 5.06082e17 0.493950
\(591\) 8.98249e16 0.0867118
\(592\) −9.39620e16 −0.0897142
\(593\) −1.26501e18 −1.19464 −0.597320 0.802003i \(-0.703768\pi\)
−0.597320 + 0.802003i \(0.703768\pi\)
\(594\) 2.40061e17 0.224238
\(595\) 2.14432e16 0.0198120
\(596\) −8.71419e17 −0.796391
\(597\) −1.21312e18 −1.09666
\(598\) −1.20580e17 −0.107824
\(599\) −2.13762e18 −1.89085 −0.945425 0.325840i \(-0.894353\pi\)
−0.945425 + 0.325840i \(0.894353\pi\)
\(600\) 6.09747e17 0.533539
\(601\) 8.42319e17 0.729109 0.364554 0.931182i \(-0.381221\pi\)
0.364554 + 0.931182i \(0.381221\pi\)
\(602\) −8.08146e15 −0.00692010
\(603\) 3.18250e17 0.269592
\(604\) 5.14160e17 0.430882
\(605\) −1.80010e18 −1.49240
\(606\) −1.02079e18 −0.837268
\(607\) 4.78264e17 0.388098 0.194049 0.980992i \(-0.437838\pi\)
0.194049 + 0.980992i \(0.437838\pi\)
\(608\) −3.19322e17 −0.256363
\(609\) −5.57928e16 −0.0443165
\(610\) 1.17051e18 0.919879
\(611\) −5.75656e17 −0.447606
\(612\) 2.65129e16 0.0203973
\(613\) 2.50182e18 1.90442 0.952209 0.305446i \(-0.0988055\pi\)
0.952209 + 0.305446i \(0.0988055\pi\)
\(614\) −3.40223e17 −0.256253
\(615\) −1.58714e18 −1.18284
\(616\) −7.98078e15 −0.00588533
\(617\) 1.28686e18 0.939026 0.469513 0.882926i \(-0.344430\pi\)
0.469513 + 0.882926i \(0.344430\pi\)
\(618\) 7.15139e17 0.516375
\(619\) 1.84952e18 1.32151 0.660756 0.750601i \(-0.270236\pi\)
0.660756 + 0.750601i \(0.270236\pi\)
\(620\) −1.10978e18 −0.784676
\(621\) −3.19122e17 −0.223286
\(622\) −9.28255e16 −0.0642731
\(623\) 1.50627e17 0.103212
\(624\) 2.42747e17 0.164609
\(625\) 1.98388e17 0.133136
\(626\) −7.61278e17 −0.505603
\(627\) 5.88286e17 0.386678
\(628\) −8.65162e17 −0.562808
\(629\) 1.20092e17 0.0773189
\(630\) −1.93197e16 −0.0123108
\(631\) 1.93407e18 1.21978 0.609889 0.792487i \(-0.291214\pi\)
0.609889 + 0.792487i \(0.291214\pi\)
\(632\) −2.46253e17 −0.153717
\(633\) −2.27022e18 −1.40263
\(634\) −7.29569e17 −0.446156
\(635\) −1.26528e18 −0.765873
\(636\) −1.06507e18 −0.638126
\(637\) 1.22921e18 0.728988
\(638\) −3.12355e17 −0.183364
\(639\) 1.56554e17 0.0909722
\(640\) −2.51370e17 −0.144592
\(641\) −2.37208e18 −1.35068 −0.675338 0.737508i \(-0.736002\pi\)
−0.675338 + 0.737508i \(0.736002\pi\)
\(642\) −5.63385e17 −0.317561
\(643\) 2.84643e18 1.58829 0.794143 0.607731i \(-0.207920\pi\)
0.794143 + 0.607731i \(0.207920\pi\)
\(644\) 1.06091e16 0.00586033
\(645\) 4.68941e17 0.256436
\(646\) 4.08123e17 0.220943
\(647\) 2.59575e18 1.39118 0.695591 0.718438i \(-0.255142\pi\)
0.695591 + 0.718438i \(0.255142\pi\)
\(648\) 5.16285e17 0.273938
\(649\) 2.40735e17 0.126459
\(650\) 1.66651e18 0.866705
\(651\) −9.42940e16 −0.0485521
\(652\) −1.88311e18 −0.959990
\(653\) −2.46807e18 −1.24573 −0.622863 0.782331i \(-0.714031\pi\)
−0.622863 + 0.782331i \(0.714031\pi\)
\(654\) −1.94940e18 −0.974194
\(655\) 2.93978e18 1.45461
\(656\) 4.09801e17 0.200770
\(657\) 4.38115e17 0.212526
\(658\) 5.06489e16 0.0243277
\(659\) 3.14017e18 1.49348 0.746739 0.665118i \(-0.231619\pi\)
0.746739 + 0.665118i \(0.231619\pi\)
\(660\) 4.63099e17 0.218091
\(661\) 2.32109e18 1.08239 0.541193 0.840898i \(-0.317973\pi\)
0.541193 + 0.840898i \(0.317973\pi\)
\(662\) 1.48765e18 0.686947
\(663\) −3.10254e17 −0.141866
\(664\) −6.56442e16 −0.0297237
\(665\) −2.97396e17 −0.133350
\(666\) −1.08200e17 −0.0480445
\(667\) 4.15225e17 0.182585
\(668\) −7.17566e17 −0.312475
\(669\) −2.38880e18 −1.03017
\(670\) 3.85645e18 1.64703
\(671\) 5.56793e17 0.235503
\(672\) −2.13580e16 −0.00894666
\(673\) −9.03436e17 −0.374800 −0.187400 0.982284i \(-0.560006\pi\)
−0.187400 + 0.982284i \(0.560006\pi\)
\(674\) −2.63450e18 −1.08245
\(675\) 4.41054e18 1.79480
\(676\) −5.77119e17 −0.232601
\(677\) 2.09829e18 0.837605 0.418802 0.908077i \(-0.362450\pi\)
0.418802 + 0.908077i \(0.362450\pi\)
\(678\) −7.45260e16 −0.0294656
\(679\) −7.72952e16 −0.0302691
\(680\) 3.21274e17 0.124614
\(681\) 3.87480e17 0.148865
\(682\) −5.27904e17 −0.200889
\(683\) −3.26593e18 −1.23104 −0.615520 0.788121i \(-0.711054\pi\)
−0.615520 + 0.788121i \(0.711054\pi\)
\(684\) −3.67708e17 −0.137290
\(685\) −2.90156e17 −0.107311
\(686\) −2.16646e17 −0.0793678
\(687\) −2.55491e18 −0.927165
\(688\) −1.21081e17 −0.0435263
\(689\) −2.91096e18 −1.03660
\(690\) −6.15614e17 −0.217165
\(691\) 8.00812e17 0.279849 0.139924 0.990162i \(-0.455314\pi\)
0.139924 + 0.990162i \(0.455314\pi\)
\(692\) −5.45419e17 −0.188817
\(693\) −9.19009e15 −0.00315177
\(694\) 2.67764e18 0.909737
\(695\) 5.35884e18 1.80372
\(696\) −8.35919e17 −0.278743
\(697\) −5.23764e17 −0.173031
\(698\) −1.37779e18 −0.450943
\(699\) 2.20435e18 0.714790
\(700\) −1.46627e17 −0.0471062
\(701\) 3.02588e18 0.963129 0.481565 0.876411i \(-0.340069\pi\)
0.481565 + 0.876411i \(0.340069\pi\)
\(702\) 1.75589e18 0.553739
\(703\) −1.66556e18 −0.520416
\(704\) −1.19573e17 −0.0370177
\(705\) −2.93899e18 −0.901507
\(706\) 1.08041e17 0.0328366
\(707\) 2.45472e17 0.0739223
\(708\) 6.44252e17 0.192238
\(709\) 8.12420e17 0.240204 0.120102 0.992762i \(-0.461678\pi\)
0.120102 + 0.992762i \(0.461678\pi\)
\(710\) 1.89707e18 0.555782
\(711\) −2.83567e17 −0.0823197
\(712\) 2.25678e18 0.649186
\(713\) 7.01762e17 0.200036
\(714\) 2.72976e16 0.00771055
\(715\) 1.26571e18 0.354277
\(716\) −1.38451e18 −0.384027
\(717\) 2.62032e18 0.720244
\(718\) −3.39342e18 −0.924333
\(719\) −5.84702e18 −1.57833 −0.789163 0.614184i \(-0.789485\pi\)
−0.789163 + 0.614184i \(0.789485\pi\)
\(720\) −2.89459e17 −0.0774331
\(721\) −1.71971e17 −0.0455907
\(722\) −2.96887e18 −0.780009
\(723\) 1.00994e18 0.262965
\(724\) 7.69514e17 0.198571
\(725\) −5.73876e18 −1.46765
\(726\) −2.29156e18 −0.580821
\(727\) 3.07765e17 0.0773118 0.0386559 0.999253i \(-0.487692\pi\)
0.0386559 + 0.999253i \(0.487692\pi\)
\(728\) −5.83741e16 −0.0145334
\(729\) 4.50179e18 1.11085
\(730\) 5.30893e18 1.29840
\(731\) 1.54753e17 0.0375125
\(732\) 1.49008e18 0.358003
\(733\) 4.60541e18 1.09671 0.548356 0.836245i \(-0.315254\pi\)
0.548356 + 0.836245i \(0.315254\pi\)
\(734\) 2.32800e17 0.0549488
\(735\) 6.27569e18 1.46823
\(736\) 1.58952e17 0.0368605
\(737\) 1.83445e18 0.421666
\(738\) 4.71898e17 0.107518
\(739\) −6.58034e17 −0.148614 −0.0743069 0.997235i \(-0.523674\pi\)
−0.0743069 + 0.997235i \(0.523674\pi\)
\(740\) −1.31113e18 −0.293521
\(741\) 4.30292e18 0.954871
\(742\) 2.56120e17 0.0563401
\(743\) −2.55703e18 −0.557581 −0.278791 0.960352i \(-0.589934\pi\)
−0.278791 + 0.960352i \(0.589934\pi\)
\(744\) −1.41277e18 −0.305384
\(745\) −1.21596e19 −2.60558
\(746\) −6.36979e18 −1.35308
\(747\) −7.55911e16 −0.0159179
\(748\) 1.52825e17 0.0319032
\(749\) 1.35479e17 0.0280375
\(750\) 3.43196e18 0.704115
\(751\) −1.69390e18 −0.344531 −0.172266 0.985051i \(-0.555109\pi\)
−0.172266 + 0.985051i \(0.555109\pi\)
\(752\) 7.58851e17 0.153017
\(753\) −2.82793e18 −0.565330
\(754\) −2.28467e18 −0.452803
\(755\) 7.17451e18 1.40973
\(756\) −1.54491e17 −0.0300962
\(757\) 2.09315e18 0.404276 0.202138 0.979357i \(-0.435211\pi\)
0.202138 + 0.979357i \(0.435211\pi\)
\(758\) −2.08984e18 −0.400188
\(759\) −2.92838e17 −0.0555976
\(760\) −4.45576e18 −0.838752
\(761\) −4.67350e18 −0.872253 −0.436126 0.899885i \(-0.643650\pi\)
−0.436126 + 0.899885i \(0.643650\pi\)
\(762\) −1.61072e18 −0.298066
\(763\) 4.68777e17 0.0860115
\(764\) −4.06258e18 −0.739085
\(765\) 3.69956e17 0.0667346
\(766\) −3.37850e18 −0.604279
\(767\) 1.76082e18 0.312280
\(768\) −3.19998e17 −0.0562730
\(769\) −4.89213e18 −0.853055 −0.426527 0.904475i \(-0.640263\pi\)
−0.426527 + 0.904475i \(0.640263\pi\)
\(770\) −1.11363e17 −0.0192553
\(771\) −8.10225e18 −1.38916
\(772\) −1.21376e18 −0.206358
\(773\) 6.87828e18 1.15961 0.579807 0.814754i \(-0.303128\pi\)
0.579807 + 0.814754i \(0.303128\pi\)
\(774\) −1.39428e17 −0.0233096
\(775\) −9.69895e18 −1.60792
\(776\) −1.15808e18 −0.190387
\(777\) −1.11402e17 −0.0181617
\(778\) 4.40298e18 0.711834
\(779\) 7.26410e18 1.16463
\(780\) 3.38726e18 0.538559
\(781\) 9.02407e17 0.142289
\(782\) −2.03156e17 −0.0317677
\(783\) −6.04653e18 −0.937680
\(784\) −1.62039e18 −0.249210
\(785\) −1.20723e19 −1.84136
\(786\) 3.74239e18 0.566113
\(787\) 6.31489e18 0.947392 0.473696 0.880688i \(-0.342920\pi\)
0.473696 + 0.880688i \(0.342920\pi\)
\(788\) −3.23630e17 −0.0481535
\(789\) −9.45893e18 −1.39586
\(790\) −3.43618e18 −0.502920
\(791\) 1.79214e16 0.00260151
\(792\) −1.37691e17 −0.0198241
\(793\) 4.07256e18 0.581557
\(794\) 3.43469e18 0.486468
\(795\) −1.48618e19 −2.08778
\(796\) 4.37075e18 0.609005
\(797\) 4.72048e16 0.00652390 0.00326195 0.999995i \(-0.498962\pi\)
0.00326195 + 0.999995i \(0.498962\pi\)
\(798\) −3.78591e17 −0.0518980
\(799\) −9.69882e17 −0.131876
\(800\) −2.19686e18 −0.296290
\(801\) 2.59874e18 0.347658
\(802\) −4.14090e18 −0.549492
\(803\) 2.52537e18 0.332411
\(804\) 4.90933e18 0.641000
\(805\) 1.48038e17 0.0191735
\(806\) −3.86126e18 −0.496080
\(807\) 1.11959e19 1.42686
\(808\) 3.67780e18 0.464959
\(809\) 7.73158e18 0.969623 0.484812 0.874619i \(-0.338888\pi\)
0.484812 + 0.874619i \(0.338888\pi\)
\(810\) 7.20416e18 0.896253
\(811\) 1.10174e19 1.35970 0.679849 0.733352i \(-0.262045\pi\)
0.679849 + 0.733352i \(0.262045\pi\)
\(812\) 2.01016e17 0.0246102
\(813\) 7.26301e18 0.882121
\(814\) −6.23684e17 −0.0751460
\(815\) −2.62766e19 −3.14084
\(816\) 4.08988e17 0.0484981
\(817\) −2.14627e18 −0.252488
\(818\) 4.04860e18 0.472507
\(819\) −6.72194e16 −0.00778303
\(820\) 5.71830e18 0.656867
\(821\) 4.99991e17 0.0569812 0.0284906 0.999594i \(-0.490930\pi\)
0.0284906 + 0.999594i \(0.490930\pi\)
\(822\) −3.69374e17 −0.0417637
\(823\) −9.19701e18 −1.03169 −0.515843 0.856683i \(-0.672521\pi\)
−0.515843 + 0.856683i \(0.672521\pi\)
\(824\) −2.57657e18 −0.286758
\(825\) 4.04727e18 0.446901
\(826\) −1.54925e17 −0.0169727
\(827\) 1.31170e19 1.42577 0.712884 0.701282i \(-0.247388\pi\)
0.712884 + 0.701282i \(0.247388\pi\)
\(828\) 1.83038e17 0.0197399
\(829\) 1.85140e19 1.98106 0.990528 0.137311i \(-0.0438460\pi\)
0.990528 + 0.137311i \(0.0438460\pi\)
\(830\) −9.15988e17 −0.0972483
\(831\) −7.43863e18 −0.783585
\(832\) −8.74594e17 −0.0914124
\(833\) 2.07101e18 0.214778
\(834\) 6.82190e18 0.701982
\(835\) −1.00128e19 −1.02234
\(836\) −2.11953e18 −0.214733
\(837\) −1.02191e19 −1.02730
\(838\) −2.73266e18 −0.272584
\(839\) −7.02480e18 −0.695315 −0.347657 0.937622i \(-0.613023\pi\)
−0.347657 + 0.937622i \(0.613023\pi\)
\(840\) −2.98027e17 −0.0292711
\(841\) −2.39320e18 −0.233241
\(842\) 2.27583e18 0.220096
\(843\) −5.06526e18 −0.486097
\(844\) 8.17936e18 0.778921
\(845\) −8.05302e18 −0.761010
\(846\) 8.73838e17 0.0819452
\(847\) 5.51056e17 0.0512807
\(848\) 3.83733e18 0.354370
\(849\) 1.27778e19 1.17100
\(850\) 2.80779e18 0.255353
\(851\) 8.29085e17 0.0748268
\(852\) 2.41501e18 0.216302
\(853\) −1.09706e17 −0.00975128 −0.00487564 0.999988i \(-0.501552\pi\)
−0.00487564 + 0.999988i \(0.501552\pi\)
\(854\) −3.58323e17 −0.0316081
\(855\) −5.13093e18 −0.449176
\(856\) 2.02982e18 0.176351
\(857\) 8.54144e18 0.736471 0.368236 0.929733i \(-0.379962\pi\)
0.368236 + 0.929733i \(0.379962\pi\)
\(858\) 1.61127e18 0.137879
\(859\) −8.52295e18 −0.723827 −0.361913 0.932212i \(-0.617876\pi\)
−0.361913 + 0.932212i \(0.617876\pi\)
\(860\) −1.68955e18 −0.142407
\(861\) 4.85864e17 0.0406438
\(862\) 1.44568e19 1.20026
\(863\) 7.83483e18 0.645594 0.322797 0.946468i \(-0.395377\pi\)
0.322797 + 0.946468i \(0.395377\pi\)
\(864\) −2.31467e18 −0.189300
\(865\) −7.61069e18 −0.617759
\(866\) −1.22575e19 −0.987495
\(867\) 1.07374e19 0.858570
\(868\) 3.39732e17 0.0269624
\(869\) −1.63453e18 −0.128755
\(870\) −1.16643e19 −0.911975
\(871\) 1.34178e19 1.04127
\(872\) 7.02348e18 0.540998
\(873\) −1.33356e18 −0.101958
\(874\) 2.81757e18 0.213821
\(875\) −8.25291e17 −0.0621663
\(876\) 6.75836e18 0.505318
\(877\) 1.84618e19 1.37018 0.685090 0.728459i \(-0.259763\pi\)
0.685090 + 0.728459i \(0.259763\pi\)
\(878\) −1.72338e19 −1.26960
\(879\) 5.47498e18 0.400364
\(880\) −1.66850e18 −0.121112
\(881\) 1.02853e19 0.741091 0.370546 0.928814i \(-0.379171\pi\)
0.370546 + 0.928814i \(0.379171\pi\)
\(882\) −1.86593e18 −0.133459
\(883\) −2.63873e19 −1.87348 −0.936742 0.350022i \(-0.886174\pi\)
−0.936742 + 0.350022i \(0.886174\pi\)
\(884\) 1.11781e18 0.0787824
\(885\) 8.98978e18 0.628953
\(886\) 3.48323e18 0.241915
\(887\) 3.43400e18 0.236754 0.118377 0.992969i \(-0.462231\pi\)
0.118377 + 0.992969i \(0.462231\pi\)
\(888\) −1.66909e18 −0.114234
\(889\) 3.87334e17 0.0263163
\(890\) 3.14907e19 2.12397
\(891\) 3.42690e18 0.229455
\(892\) 8.60661e18 0.572085
\(893\) 1.34513e19 0.887627
\(894\) −1.54794e19 −1.01405
\(895\) −1.93192e19 −1.25644
\(896\) 7.69508e16 0.00496834
\(897\) −2.14191e18 −0.137294
\(898\) 1.37288e19 0.873649
\(899\) 1.32966e19 0.840043
\(900\) −2.52974e18 −0.158672
\(901\) −4.90447e18 −0.305408
\(902\) 2.72011e18 0.168168
\(903\) −1.43555e17 −0.00881145
\(904\) 2.68509e17 0.0163631
\(905\) 1.07377e19 0.649673
\(906\) 9.13328e18 0.548648
\(907\) 5.65800e18 0.337455 0.168727 0.985663i \(-0.446034\pi\)
0.168727 + 0.985663i \(0.446034\pi\)
\(908\) −1.39605e18 −0.0826692
\(909\) 4.23509e18 0.248999
\(910\) −8.14542e17 −0.0475493
\(911\) −1.06394e19 −0.616665 −0.308333 0.951279i \(-0.599771\pi\)
−0.308333 + 0.951279i \(0.599771\pi\)
\(912\) −5.67226e18 −0.326430
\(913\) −4.35721e17 −0.0248971
\(914\) 1.90644e19 1.08162
\(915\) 2.07923e19 1.17129
\(916\) 9.20508e18 0.514881
\(917\) −8.99943e17 −0.0499821
\(918\) 2.95837e18 0.163145
\(919\) 2.20655e19 1.20827 0.604134 0.796883i \(-0.293519\pi\)
0.604134 + 0.796883i \(0.293519\pi\)
\(920\) 2.21799e18 0.120598
\(921\) −6.04354e18 −0.326290
\(922\) 1.12704e19 0.604212
\(923\) 6.60050e18 0.351371
\(924\) −1.41767e17 −0.00749386
\(925\) −1.14587e19 −0.601468
\(926\) −1.23707e19 −0.644797
\(927\) −2.96699e18 −0.153567
\(928\) 3.01173e18 0.154794
\(929\) −2.05129e18 −0.104695 −0.0523474 0.998629i \(-0.516670\pi\)
−0.0523474 + 0.998629i \(0.516670\pi\)
\(930\) −1.97135e19 −0.999138
\(931\) −2.87229e19 −1.44562
\(932\) −7.94204e18 −0.396943
\(933\) −1.64890e18 −0.0818398
\(934\) −1.48222e19 −0.730562
\(935\) 2.13250e18 0.104379
\(936\) −1.00712e18 −0.0489540
\(937\) 1.60702e18 0.0775736 0.0387868 0.999248i \(-0.487651\pi\)
0.0387868 + 0.999248i \(0.487651\pi\)
\(938\) −1.18056e18 −0.0565939
\(939\) −1.35229e19 −0.643791
\(940\) 1.05889e19 0.500633
\(941\) −3.09526e19 −1.45333 −0.726665 0.686992i \(-0.758931\pi\)
−0.726665 + 0.686992i \(0.758931\pi\)
\(942\) −1.53683e19 −0.716630
\(943\) −3.61594e18 −0.167454
\(944\) −2.32117e18 −0.106755
\(945\) −2.15574e18 −0.0984668
\(946\) −8.03690e17 −0.0364583
\(947\) −3.93763e19 −1.77403 −0.887014 0.461743i \(-0.847224\pi\)
−0.887014 + 0.461743i \(0.847224\pi\)
\(948\) −4.37431e18 −0.195729
\(949\) 1.84714e19 0.820861
\(950\) −3.89413e19 −1.71873
\(951\) −1.29597e19 −0.568095
\(952\) −9.83503e16 −0.00428189
\(953\) −2.24776e19 −0.971953 −0.485976 0.873972i \(-0.661536\pi\)
−0.485976 + 0.873972i \(0.661536\pi\)
\(954\) 4.41880e18 0.189775
\(955\) −5.66885e19 −2.41809
\(956\) −9.44075e18 −0.399972
\(957\) −5.54852e18 −0.233480
\(958\) 2.24604e19 0.938731
\(959\) 8.88242e16 0.00368732
\(960\) −4.46521e18 −0.184110
\(961\) −1.94534e18 −0.0796697
\(962\) −4.56183e18 −0.185567
\(963\) 2.33739e18 0.0944411
\(964\) −3.63872e18 −0.146032
\(965\) −1.69366e19 −0.675148
\(966\) 1.88455e17 0.00746203
\(967\) −1.92950e19 −0.758880 −0.379440 0.925216i \(-0.623883\pi\)
−0.379440 + 0.925216i \(0.623883\pi\)
\(968\) 8.25624e18 0.322547
\(969\) 7.24968e18 0.281329
\(970\) −1.61597e19 −0.622898
\(971\) 2.08769e19 0.799357 0.399678 0.916655i \(-0.369122\pi\)
0.399678 + 0.916655i \(0.369122\pi\)
\(972\) −4.90650e18 −0.186612
\(973\) −1.64048e18 −0.0619780
\(974\) 9.72756e18 0.365065
\(975\) 2.96030e19 1.10359
\(976\) −5.36860e18 −0.198810
\(977\) 2.71300e19 0.998011 0.499005 0.866599i \(-0.333699\pi\)
0.499005 + 0.866599i \(0.333699\pi\)
\(978\) −3.34506e19 −1.22237
\(979\) 1.49796e19 0.543768
\(980\) −2.26107e19 −0.815350
\(981\) 8.08773e18 0.289720
\(982\) −3.09867e19 −1.10268
\(983\) −1.55300e19 −0.549000 −0.274500 0.961587i \(-0.588512\pi\)
−0.274500 + 0.961587i \(0.588512\pi\)
\(984\) 7.27950e18 0.255643
\(985\) −4.51588e18 −0.157546
\(986\) −3.84927e18 −0.133407
\(987\) 8.99701e17 0.0309768
\(988\) −1.55030e19 −0.530267
\(989\) 1.06837e18 0.0363034
\(990\) −1.92132e18 −0.0648592
\(991\) −3.50778e19 −1.17640 −0.588198 0.808717i \(-0.700162\pi\)
−0.588198 + 0.808717i \(0.700162\pi\)
\(992\) 5.09006e18 0.169589
\(993\) 2.64258e19 0.874698
\(994\) −5.80742e17 −0.0190973
\(995\) 6.09887e19 1.99250
\(996\) −1.16607e18 −0.0378476
\(997\) 4.58430e19 1.47827 0.739136 0.673556i \(-0.235234\pi\)
0.739136 + 0.673556i \(0.235234\pi\)
\(998\) 1.63760e19 0.524638
\(999\) −1.20732e19 −0.384279
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 46.14.a.a.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.14.a.a.1.2 5 1.1 even 1 trivial