Properties

Label 46.8.a.c
Level $46$
Weight $8$
Character orbit 46.a
Self dual yes
Analytic conductor $14.370$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [46,8,Mod(1,46)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("46.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 46.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.3697111723\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.285765.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 121x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - \beta_{2} + 2 \beta_1 - 5) q^{3} + 64 q^{4} + (15 \beta_{2} - 9 \beta_1 - 182) q^{5} + ( - 8 \beta_{2} + 16 \beta_1 - 40) q^{6} + ( - 49 \beta_{2} - 63 \beta_1 - 456) q^{7} + 512 q^{8}+ \cdots + ( - 382074 \beta_{2} + 4860 \beta_1 + 4504032) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 24 q^{2} - 12 q^{3} + 192 q^{4} - 570 q^{5} - 96 q^{6} - 1382 q^{7} + 1536 q^{8} - 3759 q^{9} - 4560 q^{10} - 11792 q^{11} - 768 q^{12} - 12 q^{13} - 11056 q^{14} - 12990 q^{15} + 12288 q^{16} - 25584 q^{17}+ \cdots + 13899030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 121x + 46 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 5\nu - 81 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 5\nu - 81 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{2} + 5\beta _1 + 162 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.7048
0.379427
11.3254
8.00000 −30.3959 64.0000 115.226 −243.167 −1058.60 512.000 −1263.09 921.805
1.2 8.00000 −20.0329 64.0000 −288.133 −160.263 1349.86 512.000 −1785.68 −2305.07
1.3 8.00000 38.4288 64.0000 −397.092 307.430 −1673.26 512.000 −710.227 −3176.74
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 46.8.a.c 3
3.b odd 2 1 414.8.a.d 3
4.b odd 2 1 368.8.a.b 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.8.a.c 3 1.a even 1 1 trivial
368.8.a.b 3 4.b odd 2 1
414.8.a.d 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 12T_{3}^{2} - 1329T_{3} - 23400 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(46))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 12 T^{2} + \cdots - 23400 \) Copy content Toggle raw display
$5$ \( T^{3} + 570 T^{2} + \cdots - 13183600 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 2391036528 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 77567772648 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 164166584566 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 14898856912840 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 556058270392 \) Copy content Toggle raw display
$23$ \( (T + 12167)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 33\!\cdots\!02 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 829548394660080 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 18\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 19\!\cdots\!74 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 14\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 11\!\cdots\!72 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 19\!\cdots\!72 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 23\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 84\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 54\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 16\!\cdots\!82 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 43\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 77\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 49\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 59\!\cdots\!72 \) Copy content Toggle raw display
show more
show less