Properties

Label 4608.2.k.be
Level $4608$
Weight $2$
Character orbit 4608.k
Analytic conductor $36.795$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4608,2,Mod(1153,4608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4608.1153");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1536)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{7} - \beta_{3} - 1) q^{5} + ( - \beta_{7} + 2 \beta_{3} - \beta_{2}) q^{7} + (\beta_{6} + \beta_{5} + \beta_{2}) q^{11} + (2 \beta_{6} - \beta_{4} + \beta_{3} - 1) q^{13} + ( - \beta_{7} - 2 \beta_{6} + \cdots + \beta_1) q^{17}+ \cdots + (2 \beta_{7} + 4 \beta_{6} + 2 \beta_{5} + \cdots - 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{13} + 16 q^{19} - 8 q^{29} + 16 q^{31} + 32 q^{35} - 8 q^{37} + 16 q^{43} + 32 q^{47} - 8 q^{49} + 8 q^{53} + 32 q^{59} - 8 q^{61} + 16 q^{65} - 32 q^{67} - 48 q^{79} - 32 q^{83} - 48 q^{91}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{16}^{6} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \zeta_{16}^{7} + \zeta_{16}^{5} + \zeta_{16}^{3} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{16}^{7} - \zeta_{16}^{5} - \zeta_{16}^{3} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{16}^{7} + \zeta_{16}^{5} - \zeta_{16}^{3} - \zeta_{16} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{6} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( \beta_{7} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{7} - \beta_{6} - \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(\beta_{3}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1153.1
−0.382683 0.923880i
0.923880 0.382683i
−0.923880 + 0.382683i
0.382683 + 0.923880i
−0.382683 + 0.923880i
0.923880 + 0.382683i
−0.923880 0.382683i
0.382683 0.923880i
0 0 0 −2.84776 + 2.84776i 0 4.61313i 0 0 0
1153.2 0 0 0 −1.76537 + 1.76537i 0 0.917608i 0 0 0
1153.3 0 0 0 −0.234633 + 0.234633i 0 3.08239i 0 0 0
1153.4 0 0 0 0.847759 0.847759i 0 0.613126i 0 0 0
3457.1 0 0 0 −2.84776 2.84776i 0 4.61313i 0 0 0
3457.2 0 0 0 −1.76537 1.76537i 0 0.917608i 0 0 0
3457.3 0 0 0 −0.234633 0.234633i 0 3.08239i 0 0 0
3457.4 0 0 0 0.847759 + 0.847759i 0 0.613126i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1153.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.k.be 8
3.b odd 2 1 1536.2.j.j yes 8
4.b odd 2 1 4608.2.k.bc 8
8.b even 2 1 4608.2.k.bh 8
8.d odd 2 1 4608.2.k.bj 8
12.b even 2 1 1536.2.j.i yes 8
16.e even 4 1 inner 4608.2.k.be 8
16.e even 4 1 4608.2.k.bh 8
16.f odd 4 1 4608.2.k.bc 8
16.f odd 4 1 4608.2.k.bj 8
24.f even 2 1 1536.2.j.f yes 8
24.h odd 2 1 1536.2.j.e 8
32.g even 8 1 9216.2.a.bl 4
32.g even 8 1 9216.2.a.bm 4
32.h odd 8 1 9216.2.a.z 4
32.h odd 8 1 9216.2.a.ba 4
48.i odd 4 1 1536.2.j.e 8
48.i odd 4 1 1536.2.j.j yes 8
48.k even 4 1 1536.2.j.f yes 8
48.k even 4 1 1536.2.j.i yes 8
96.o even 8 1 3072.2.a.j 4
96.o even 8 1 3072.2.a.p 4
96.o even 8 2 3072.2.d.j 8
96.p odd 8 1 3072.2.a.m 4
96.p odd 8 1 3072.2.a.s 4
96.p odd 8 2 3072.2.d.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.2.j.e 8 24.h odd 2 1
1536.2.j.e 8 48.i odd 4 1
1536.2.j.f yes 8 24.f even 2 1
1536.2.j.f yes 8 48.k even 4 1
1536.2.j.i yes 8 12.b even 2 1
1536.2.j.i yes 8 48.k even 4 1
1536.2.j.j yes 8 3.b odd 2 1
1536.2.j.j yes 8 48.i odd 4 1
3072.2.a.j 4 96.o even 8 1
3072.2.a.m 4 96.p odd 8 1
3072.2.a.p 4 96.o even 8 1
3072.2.a.s 4 96.p odd 8 1
3072.2.d.e 8 96.p odd 8 2
3072.2.d.j 8 96.o even 8 2
4608.2.k.bc 8 4.b odd 2 1
4608.2.k.bc 8 16.f odd 4 1
4608.2.k.be 8 1.a even 1 1 trivial
4608.2.k.be 8 16.e even 4 1 inner
4608.2.k.bh 8 8.b even 2 1
4608.2.k.bh 8 16.e even 4 1
4608.2.k.bj 8 8.d odd 2 1
4608.2.k.bj 8 16.f odd 4 1
9216.2.a.z 4 32.h odd 8 1
9216.2.a.ba 4 32.h odd 8 1
9216.2.a.bl 4 32.g even 8 1
9216.2.a.bm 4 32.g even 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4608, [\chi])\):

\( T_{5}^{8} + 8T_{5}^{7} + 32T_{5}^{6} + 48T_{5}^{5} + 24T_{5}^{4} - 32T_{5}^{3} + 128T_{5}^{2} + 64T_{5} + 16 \) Copy content Toggle raw display
\( T_{7}^{8} + 32T_{7}^{6} + 240T_{7}^{4} + 256T_{7}^{2} + 64 \) Copy content Toggle raw display
\( T_{11}^{8} + 192T_{11}^{4} + 1024 \) Copy content Toggle raw display
\( T_{13}^{8} + 8T_{13}^{7} + 32T_{13}^{6} + 48T_{13}^{5} + 1160T_{13}^{4} + 9120T_{13}^{3} + 36992T_{13}^{2} + 51136T_{13} + 35344 \) Copy content Toggle raw display
\( T_{19}^{8} - 16T_{19}^{7} + 128T_{19}^{6} - 512T_{19}^{5} + 1088T_{19}^{4} - 512T_{19}^{3} + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 8 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{8} + 32 T^{6} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{8} + 192T^{4} + 1024 \) Copy content Toggle raw display
$13$ \( T^{8} + 8 T^{7} + \cdots + 35344 \) Copy content Toggle raw display
$17$ \( (T^{4} - 32 T^{2} + \cdots - 32)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} - 16 T^{7} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$29$ \( T^{8} + 8 T^{7} + \cdots + 4624 \) Copy content Toggle raw display
$31$ \( (T^{4} - 8 T^{3} + \cdots + 248)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 8 T^{7} + \cdots + 150544 \) Copy content Toggle raw display
$41$ \( T^{8} + 192 T^{6} + \cdots + 984064 \) Copy content Toggle raw display
$43$ \( T^{8} - 16 T^{7} + \cdots + 984064 \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T - 16)^{4} \) Copy content Toggle raw display
$53$ \( T^{8} - 8 T^{7} + \cdots + 35344 \) Copy content Toggle raw display
$59$ \( T^{8} - 32 T^{7} + \cdots + 18939904 \) Copy content Toggle raw display
$61$ \( T^{8} + 8 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$67$ \( T^{8} + 32 T^{7} + \cdots + 62980096 \) Copy content Toggle raw display
$71$ \( T^{8} + 256 T^{6} + \cdots + 4734976 \) Copy content Toggle raw display
$73$ \( T^{8} + 304 T^{6} + \cdots + 2408704 \) Copy content Toggle raw display
$79$ \( (T^{4} + 24 T^{3} + \cdots - 7688)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 32 T^{7} + \cdots + 295936 \) Copy content Toggle raw display
$89$ \( T^{8} + 400 T^{6} + \cdots + 73984 \) Copy content Toggle raw display
$97$ \( (T^{4} + 16 T^{3} + \cdots - 256)^{2} \) Copy content Toggle raw display
show more
show less