Properties

Label 4608.2.k.bi.1153.1
Level $4608$
Weight $2$
Character 4608.1153
Analytic conductor $36.795$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4608,2,Mod(1153,4608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4608.1153");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 512)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1153.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 4608.1153
Dual form 4608.2.k.bi.3457.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.414214 + 0.414214i) q^{5} -3.69552i q^{7} +(2.93015 - 2.93015i) q^{11} +(2.41421 + 2.41421i) q^{13} +2.82843 q^{17} +(-4.46088 - 4.46088i) q^{19} +6.75699i q^{23} +4.65685i q^{25} +(5.24264 + 5.24264i) q^{29} +3.06147 q^{31} +(1.53073 + 1.53073i) q^{35} +(6.41421 - 6.41421i) q^{37} +4.00000i q^{41} +(0.765367 - 0.765367i) q^{43} +3.06147 q^{47} -6.65685 q^{49} +(3.24264 - 3.24264i) q^{53} +2.42742i q^{55} +(-0.765367 + 0.765367i) q^{59} +(0.757359 + 0.757359i) q^{61} -2.00000 q^{65} +(-1.39942 - 1.39942i) q^{67} -8.02509i q^{71} -6.48528i q^{73} +(-10.8284 - 10.8284i) q^{77} +14.7821 q^{79} +(-9.68714 - 9.68714i) q^{83} +(-1.17157 + 1.17157i) q^{85} +4.82843i q^{89} +(8.92177 - 8.92177i) q^{91} +3.69552 q^{95} +5.17157 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 8 q^{13} + 8 q^{29} + 40 q^{37} - 8 q^{49} - 8 q^{53} + 40 q^{61} - 16 q^{65} - 64 q^{77} - 32 q^{85} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.414214 + 0.414214i −0.185242 + 0.185242i −0.793635 0.608394i \(-0.791814\pi\)
0.608394 + 0.793635i \(0.291814\pi\)
\(6\) 0 0
\(7\) 3.69552i 1.39677i −0.715720 0.698387i \(-0.753901\pi\)
0.715720 0.698387i \(-0.246099\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.93015 2.93015i 0.883474 0.883474i −0.110412 0.993886i \(-0.535217\pi\)
0.993886 + 0.110412i \(0.0352171\pi\)
\(12\) 0 0
\(13\) 2.41421 + 2.41421i 0.669582 + 0.669582i 0.957619 0.288037i \(-0.0930026\pi\)
−0.288037 + 0.957619i \(0.593003\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.82843 0.685994 0.342997 0.939336i \(-0.388558\pi\)
0.342997 + 0.939336i \(0.388558\pi\)
\(18\) 0 0
\(19\) −4.46088 4.46088i −1.02340 1.02340i −0.999720 0.0236776i \(-0.992462\pi\)
−0.0236776 0.999720i \(-0.507538\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.75699i 1.40893i 0.709739 + 0.704464i \(0.248813\pi\)
−0.709739 + 0.704464i \(0.751187\pi\)
\(24\) 0 0
\(25\) 4.65685i 0.931371i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.24264 + 5.24264i 0.973534 + 0.973534i 0.999659 0.0261248i \(-0.00831671\pi\)
−0.0261248 + 0.999659i \(0.508317\pi\)
\(30\) 0 0
\(31\) 3.06147 0.549856 0.274928 0.961465i \(-0.411346\pi\)
0.274928 + 0.961465i \(0.411346\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.53073 + 1.53073i 0.258741 + 0.258741i
\(36\) 0 0
\(37\) 6.41421 6.41421i 1.05449 1.05449i 0.0560630 0.998427i \(-0.482145\pi\)
0.998427 0.0560630i \(-0.0178548\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) 0 0
\(43\) 0.765367 0.765367i 0.116717 0.116717i −0.646336 0.763053i \(-0.723699\pi\)
0.763053 + 0.646336i \(0.223699\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.06147 0.446561 0.223280 0.974754i \(-0.428323\pi\)
0.223280 + 0.974754i \(0.428323\pi\)
\(48\) 0 0
\(49\) −6.65685 −0.950979
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.24264 3.24264i 0.445411 0.445411i −0.448415 0.893826i \(-0.648011\pi\)
0.893826 + 0.448415i \(0.148011\pi\)
\(54\) 0 0
\(55\) 2.42742i 0.327313i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.765367 + 0.765367i −0.0996423 + 0.0996423i −0.755171 0.655528i \(-0.772446\pi\)
0.655528 + 0.755171i \(0.272446\pi\)
\(60\) 0 0
\(61\) 0.757359 + 0.757359i 0.0969699 + 0.0969699i 0.753928 0.656958i \(-0.228157\pi\)
−0.656958 + 0.753928i \(0.728157\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −1.39942 1.39942i −0.170966 0.170966i 0.616438 0.787404i \(-0.288575\pi\)
−0.787404 + 0.616438i \(0.788575\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.02509i 0.952403i −0.879336 0.476201i \(-0.842013\pi\)
0.879336 0.476201i \(-0.157987\pi\)
\(72\) 0 0
\(73\) 6.48528i 0.759045i −0.925183 0.379522i \(-0.876088\pi\)
0.925183 0.379522i \(-0.123912\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.8284 10.8284i −1.23401 1.23401i
\(78\) 0 0
\(79\) 14.7821 1.66311 0.831557 0.555440i \(-0.187450\pi\)
0.831557 + 0.555440i \(0.187450\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.68714 9.68714i −1.06330 1.06330i −0.997856 0.0654452i \(-0.979153\pi\)
−0.0654452 0.997856i \(-0.520847\pi\)
\(84\) 0 0
\(85\) −1.17157 + 1.17157i −0.127075 + 0.127075i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.82843i 0.511812i 0.966702 + 0.255906i \(0.0823738\pi\)
−0.966702 + 0.255906i \(0.917626\pi\)
\(90\) 0 0
\(91\) 8.92177 8.92177i 0.935256 0.935256i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.69552 0.379152
\(96\) 0 0
\(97\) 5.17157 0.525094 0.262547 0.964919i \(-0.415438\pi\)
0.262547 + 0.964919i \(0.415438\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.0711 + 12.0711i −1.20112 + 1.20112i −0.227289 + 0.973827i \(0.572986\pi\)
−0.973827 + 0.227289i \(0.927014\pi\)
\(102\) 0 0
\(103\) 14.1480i 1.39405i 0.717049 + 0.697023i \(0.245492\pi\)
−0.717049 + 0.697023i \(0.754508\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.39942 + 1.39942i −0.135287 + 0.135287i −0.771507 0.636220i \(-0.780497\pi\)
0.636220 + 0.771507i \(0.280497\pi\)
\(108\) 0 0
\(109\) −9.24264 9.24264i −0.885284 0.885284i 0.108781 0.994066i \(-0.465305\pi\)
−0.994066 + 0.108781i \(0.965305\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.65685 −0.720296 −0.360148 0.932895i \(-0.617274\pi\)
−0.360148 + 0.932895i \(0.617274\pi\)
\(114\) 0 0
\(115\) −2.79884 2.79884i −0.260993 0.260993i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.4525i 0.958179i
\(120\) 0 0
\(121\) 6.17157i 0.561052i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.00000 4.00000i −0.357771 0.357771i
\(126\) 0 0
\(127\) 11.7206 1.04004 0.520018 0.854155i \(-0.325925\pi\)
0.520018 + 0.854155i \(0.325925\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.3212 10.3212i −0.901766 0.901766i 0.0938226 0.995589i \(-0.470091\pi\)
−0.995589 + 0.0938226i \(0.970091\pi\)
\(132\) 0 0
\(133\) −16.4853 + 16.4853i −1.42946 + 1.42946i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.9706i 1.10815i −0.832467 0.554075i \(-0.813072\pi\)
0.832467 0.554075i \(-0.186928\pi\)
\(138\) 0 0
\(139\) 14.2793 14.2793i 1.21116 1.21116i 0.240511 0.970646i \(-0.422685\pi\)
0.970646 0.240511i \(-0.0773151\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.1480 1.18312
\(144\) 0 0
\(145\) −4.34315 −0.360679
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.24264 1.24264i 0.101801 0.101801i −0.654372 0.756173i \(-0.727067\pi\)
0.756173 + 0.654372i \(0.227067\pi\)
\(150\) 0 0
\(151\) 0.634051i 0.0515983i −0.999667 0.0257992i \(-0.991787\pi\)
0.999667 0.0257992i \(-0.00821304\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.26810 + 1.26810i −0.101856 + 0.101856i
\(156\) 0 0
\(157\) −1.58579 1.58579i −0.126560 0.126560i 0.640990 0.767549i \(-0.278524\pi\)
−0.767549 + 0.640990i \(0.778524\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 24.9706 1.96796
\(162\) 0 0
\(163\) −3.82683 3.82683i −0.299741 0.299741i 0.541171 0.840912i \(-0.317981\pi\)
−0.840912 + 0.541171i \(0.817981\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.69552i 0.285968i 0.989725 + 0.142984i \(0.0456697\pi\)
−0.989725 + 0.142984i \(0.954330\pi\)
\(168\) 0 0
\(169\) 1.34315i 0.103319i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.5858 + 13.5858i 1.03291 + 1.03291i 0.999440 + 0.0334684i \(0.0106553\pi\)
0.0334684 + 0.999440i \(0.489345\pi\)
\(174\) 0 0
\(175\) 17.2095 1.30092
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.15640 + 8.15640i 0.609638 + 0.609638i 0.942851 0.333213i \(-0.108133\pi\)
−0.333213 + 0.942851i \(0.608133\pi\)
\(180\) 0 0
\(181\) 10.0711 10.0711i 0.748577 0.748577i −0.225635 0.974212i \(-0.572446\pi\)
0.974212 + 0.225635i \(0.0724458\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.31371i 0.390672i
\(186\) 0 0
\(187\) 8.28772 8.28772i 0.606058 0.606058i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.7206 0.848073 0.424037 0.905645i \(-0.360613\pi\)
0.424037 + 0.905645i \(0.360613\pi\)
\(192\) 0 0
\(193\) 0.485281 0.0349313 0.0174657 0.999847i \(-0.494440\pi\)
0.0174657 + 0.999847i \(0.494440\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.58579 7.58579i 0.540465 0.540465i −0.383200 0.923665i \(-0.625178\pi\)
0.923665 + 0.383200i \(0.125178\pi\)
\(198\) 0 0
\(199\) 12.3547i 0.875798i −0.899024 0.437899i \(-0.855723\pi\)
0.899024 0.437899i \(-0.144277\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 19.3743 19.3743i 1.35981 1.35981i
\(204\) 0 0
\(205\) −1.65685 1.65685i −0.115720 0.115720i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −26.1421 −1.80829
\(210\) 0 0
\(211\) −9.42450 9.42450i −0.648810 0.648810i 0.303896 0.952705i \(-0.401713\pi\)
−0.952705 + 0.303896i \(0.901713\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.634051i 0.0432419i
\(216\) 0 0
\(217\) 11.3137i 0.768025i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.82843 + 6.82843i 0.459330 + 0.459330i
\(222\) 0 0
\(223\) 3.06147 0.205011 0.102506 0.994732i \(-0.467314\pi\)
0.102506 + 0.994732i \(0.467314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.765367 + 0.765367i 0.0507992 + 0.0507992i 0.732050 0.681251i \(-0.238564\pi\)
−0.681251 + 0.732050i \(0.738564\pi\)
\(228\) 0 0
\(229\) 2.75736 2.75736i 0.182211 0.182211i −0.610107 0.792319i \(-0.708874\pi\)
0.792319 + 0.610107i \(0.208874\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.8284i 1.36452i −0.731112 0.682258i \(-0.760998\pi\)
0.731112 0.682258i \(-0.239002\pi\)
\(234\) 0 0
\(235\) −1.26810 + 1.26810i −0.0827218 + 0.0827218i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.2459 −0.792119 −0.396060 0.918225i \(-0.629623\pi\)
−0.396060 + 0.918225i \(0.629623\pi\)
\(240\) 0 0
\(241\) 13.1716 0.848456 0.424228 0.905556i \(-0.360546\pi\)
0.424228 + 0.905556i \(0.360546\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.75736 2.75736i 0.176161 0.176161i
\(246\) 0 0
\(247\) 21.5391i 1.37050i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.7486 12.7486i 0.804685 0.804685i −0.179139 0.983824i \(-0.557331\pi\)
0.983824 + 0.179139i \(0.0573312\pi\)
\(252\) 0 0
\(253\) 19.7990 + 19.7990i 1.24475 + 1.24475i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.9706 0.933838 0.466919 0.884300i \(-0.345364\pi\)
0.466919 + 0.884300i \(0.345364\pi\)
\(258\) 0 0
\(259\) −23.7038 23.7038i −1.47289 1.47289i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.8799i 0.794210i 0.917773 + 0.397105i \(0.129985\pi\)
−0.917773 + 0.397105i \(0.870015\pi\)
\(264\) 0 0
\(265\) 2.68629i 0.165018i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.0711 18.0711i −1.10181 1.10181i −0.994192 0.107620i \(-0.965677\pi\)
−0.107620 0.994192i \(-0.534323\pi\)
\(270\) 0 0
\(271\) 5.59767 0.340034 0.170017 0.985441i \(-0.445618\pi\)
0.170017 + 0.985441i \(0.445618\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.6453 + 13.6453i 0.822842 + 0.822842i
\(276\) 0 0
\(277\) 2.41421 2.41421i 0.145056 0.145056i −0.630849 0.775905i \(-0.717293\pi\)
0.775905 + 0.630849i \(0.217293\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.7990i 1.06180i 0.847435 + 0.530899i \(0.178146\pi\)
−0.847435 + 0.530899i \(0.821854\pi\)
\(282\) 0 0
\(283\) −10.3212 + 10.3212i −0.613531 + 0.613531i −0.943864 0.330333i \(-0.892839\pi\)
0.330333 + 0.943864i \(0.392839\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.7821 0.872558
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.414214 + 0.414214i −0.0241986 + 0.0241986i −0.719103 0.694904i \(-0.755447\pi\)
0.694904 + 0.719103i \(0.255447\pi\)
\(294\) 0 0
\(295\) 0.634051i 0.0369159i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.3128 + 16.3128i −0.943394 + 0.943394i
\(300\) 0 0
\(301\) −2.82843 2.82843i −0.163028 0.163028i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.627417 −0.0359258
\(306\) 0 0
\(307\) −3.19278 3.19278i −0.182222 0.182222i 0.610101 0.792323i \(-0.291129\pi\)
−0.792323 + 0.610101i \(0.791129\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.6005i 1.39497i 0.716600 + 0.697484i \(0.245697\pi\)
−0.716600 + 0.697484i \(0.754303\pi\)
\(312\) 0 0
\(313\) 31.3137i 1.76996i 0.465633 + 0.884978i \(0.345827\pi\)
−0.465633 + 0.884978i \(0.654173\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.8995 + 10.8995i 0.612177 + 0.612177i 0.943513 0.331336i \(-0.107499\pi\)
−0.331336 + 0.943513i \(0.607499\pi\)
\(318\) 0 0
\(319\) 30.7235 1.72018
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.6173 12.6173i −0.702045 0.702045i
\(324\) 0 0
\(325\) −11.2426 + 11.2426i −0.623629 + 0.623629i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.3137i 0.623745i
\(330\) 0 0
\(331\) −5.99162 + 5.99162i −0.329329 + 0.329329i −0.852331 0.523002i \(-0.824812\pi\)
0.523002 + 0.852331i \(0.324812\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.15932 0.0633402
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.97056 8.97056i 0.485783 0.485783i
\(342\) 0 0
\(343\) 1.26810i 0.0684710i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.9552 10.9552i 0.588108 0.588108i −0.349011 0.937119i \(-0.613482\pi\)
0.937119 + 0.349011i \(0.113482\pi\)
\(348\) 0 0
\(349\) −1.92893 1.92893i −0.103253 0.103253i 0.653593 0.756846i \(-0.273261\pi\)
−0.756846 + 0.653593i \(0.773261\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −22.9706 −1.22260 −0.611300 0.791399i \(-0.709353\pi\)
−0.611300 + 0.791399i \(0.709353\pi\)
\(354\) 0 0
\(355\) 3.32410 + 3.32410i 0.176425 + 0.176425i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.634051i 0.0334639i 0.999860 + 0.0167320i \(0.00532620\pi\)
−0.999860 + 0.0167320i \(0.994674\pi\)
\(360\) 0 0
\(361\) 20.7990i 1.09468i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.68629 + 2.68629i 0.140607 + 0.140607i
\(366\) 0 0
\(367\) 9.18440 0.479422 0.239711 0.970844i \(-0.422947\pi\)
0.239711 + 0.970844i \(0.422947\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.9832 11.9832i −0.622139 0.622139i
\(372\) 0 0
\(373\) 4.75736 4.75736i 0.246327 0.246327i −0.573135 0.819461i \(-0.694273\pi\)
0.819461 + 0.573135i \(0.194273\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.3137i 1.30372i
\(378\) 0 0
\(379\) 18.6089 18.6089i 0.955875 0.955875i −0.0431915 0.999067i \(-0.513753\pi\)
0.999067 + 0.0431915i \(0.0137526\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.9050 1.06820 0.534098 0.845423i \(-0.320651\pi\)
0.534098 + 0.845423i \(0.320651\pi\)
\(384\) 0 0
\(385\) 8.97056 0.457182
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.4142 + 14.4142i −0.730830 + 0.730830i −0.970784 0.239954i \(-0.922867\pi\)
0.239954 + 0.970784i \(0.422867\pi\)
\(390\) 0 0
\(391\) 19.1116i 0.966517i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.12293 + 6.12293i −0.308078 + 0.308078i
\(396\) 0 0
\(397\) −3.58579 3.58579i −0.179965 0.179965i 0.611375 0.791341i \(-0.290617\pi\)
−0.791341 + 0.611375i \(0.790617\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.51472 0.375267 0.187634 0.982239i \(-0.439918\pi\)
0.187634 + 0.982239i \(0.439918\pi\)
\(402\) 0 0
\(403\) 7.39104 + 7.39104i 0.368174 + 0.368174i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 37.5892i 1.86323i
\(408\) 0 0
\(409\) 31.3137i 1.54836i 0.632964 + 0.774182i \(0.281838\pi\)
−0.632964 + 0.774182i \(0.718162\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.82843 + 2.82843i 0.139178 + 0.139178i
\(414\) 0 0
\(415\) 8.02509 0.393936
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.79045 + 8.79045i 0.429442 + 0.429442i 0.888438 0.458996i \(-0.151791\pi\)
−0.458996 + 0.888438i \(0.651791\pi\)
\(420\) 0 0
\(421\) 6.07107 6.07107i 0.295886 0.295886i −0.543514 0.839400i \(-0.682907\pi\)
0.839400 + 0.543514i \(0.182907\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.1716i 0.638915i
\(426\) 0 0
\(427\) 2.79884 2.79884i 0.135445 0.135445i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −25.4558 −1.22333 −0.611665 0.791117i \(-0.709500\pi\)
−0.611665 + 0.791117i \(0.709500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.1421 30.1421i 1.44189 1.44189i
\(438\) 0 0
\(439\) 38.1145i 1.81911i 0.415588 + 0.909553i \(0.363576\pi\)
−0.415588 + 0.909553i \(0.636424\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.39942 + 1.39942i −0.0664883 + 0.0664883i −0.739569 0.673081i \(-0.764971\pi\)
0.673081 + 0.739569i \(0.264971\pi\)
\(444\) 0 0
\(445\) −2.00000 2.00000i −0.0948091 0.0948091i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.14214 0.289865 0.144933 0.989442i \(-0.453703\pi\)
0.144933 + 0.989442i \(0.453703\pi\)
\(450\) 0 0
\(451\) 11.7206 + 11.7206i 0.551902 + 0.551902i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.39104i 0.346497i
\(456\) 0 0
\(457\) 26.6274i 1.24558i −0.782390 0.622789i \(-0.785999\pi\)
0.782390 0.622789i \(-0.214001\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.0416 27.0416i −1.25945 1.25945i −0.951354 0.308100i \(-0.900307\pi\)
−0.308100 0.951354i \(-0.599693\pi\)
\(462\) 0 0
\(463\) −35.6871 −1.65852 −0.829260 0.558864i \(-0.811238\pi\)
−0.829260 + 0.558864i \(0.811238\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.8966 26.8966i −1.24463 1.24463i −0.958060 0.286567i \(-0.907486\pi\)
−0.286567 0.958060i \(-0.592514\pi\)
\(468\) 0 0
\(469\) −5.17157 + 5.17157i −0.238801 + 0.238801i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.48528i 0.206233i
\(474\) 0 0
\(475\) 20.7737 20.7737i 0.953162 0.953162i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −35.1618 −1.60658 −0.803292 0.595585i \(-0.796920\pi\)
−0.803292 + 0.595585i \(0.796920\pi\)
\(480\) 0 0
\(481\) 30.9706 1.41214
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.14214 + 2.14214i −0.0972694 + 0.0972694i
\(486\) 0 0
\(487\) 6.23172i 0.282386i −0.989982 0.141193i \(-0.954906\pi\)
0.989982 0.141193i \(-0.0450938\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.56420 3.56420i 0.160850 0.160850i −0.622093 0.782943i \(-0.713717\pi\)
0.782943 + 0.622093i \(0.213717\pi\)
\(492\) 0 0
\(493\) 14.8284 + 14.8284i 0.667839 + 0.667839i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −29.6569 −1.33029
\(498\) 0 0
\(499\) −12.4860 12.4860i −0.558949 0.558949i 0.370059 0.929008i \(-0.379337\pi\)
−0.929008 + 0.370059i \(0.879337\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.8072i 1.01692i −0.861085 0.508460i \(-0.830215\pi\)
0.861085 0.508460i \(-0.169785\pi\)
\(504\) 0 0
\(505\) 10.0000i 0.444994i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18.5563 + 18.5563i 0.822496 + 0.822496i 0.986465 0.163970i \(-0.0524299\pi\)
−0.163970 + 0.986465i \(0.552430\pi\)
\(510\) 0 0
\(511\) −23.9665 −1.06021
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.86030 5.86030i −0.258236 0.258236i
\(516\) 0 0
\(517\) 8.97056 8.97056i 0.394525 0.394525i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.34315i 0.277898i −0.990300 0.138949i \(-0.955628\pi\)
0.990300 0.138949i \(-0.0443725\pi\)
\(522\) 0 0
\(523\) 10.0586 10.0586i 0.439830 0.439830i −0.452125 0.891955i \(-0.649334\pi\)
0.891955 + 0.452125i \(0.149334\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.65914 0.377198
\(528\) 0 0
\(529\) −22.6569 −0.985081
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.65685 + 9.65685i −0.418285 + 0.418285i
\(534\) 0 0
\(535\) 1.15932i 0.0501216i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −19.5056 + 19.5056i −0.840165 + 0.840165i
\(540\) 0 0
\(541\) −7.24264 7.24264i −0.311385 0.311385i 0.534061 0.845446i \(-0.320665\pi\)
−0.845446 + 0.534061i \(0.820665\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.65685 0.327984
\(546\) 0 0
\(547\) 13.3827 + 13.3827i 0.572201 + 0.572201i 0.932743 0.360542i \(-0.117408\pi\)
−0.360542 + 0.932743i \(0.617408\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 46.7736i 1.99262i
\(552\) 0 0
\(553\) 54.6274i 2.32299i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.07107 8.07107i −0.341982 0.341982i 0.515130 0.857112i \(-0.327744\pi\)
−0.857112 + 0.515130i \(0.827744\pi\)
\(558\) 0 0
\(559\) 3.69552 0.156304
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.5838 + 10.5838i 0.446055 + 0.446055i 0.894041 0.447986i \(-0.147859\pi\)
−0.447986 + 0.894041i \(0.647859\pi\)
\(564\) 0 0
\(565\) 3.17157 3.17157i 0.133429 0.133429i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 25.6569i 1.07559i −0.843075 0.537796i \(-0.819257\pi\)
0.843075 0.537796i \(-0.180743\pi\)
\(570\) 0 0
\(571\) −19.5056 + 19.5056i −0.816284 + 0.816284i −0.985567 0.169284i \(-0.945855\pi\)
0.169284 + 0.985567i \(0.445855\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −31.4663 −1.31224
\(576\) 0 0
\(577\) 17.3137 0.720779 0.360390 0.932802i \(-0.382644\pi\)
0.360390 + 0.932802i \(0.382644\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −35.7990 + 35.7990i −1.48519 + 1.48519i
\(582\) 0 0
\(583\) 19.0029i 0.787018i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1200 + 13.1200i −0.541521 + 0.541521i −0.923975 0.382453i \(-0.875079\pi\)
0.382453 + 0.923975i \(0.375079\pi\)
\(588\) 0 0
\(589\) −13.6569 13.6569i −0.562721 0.562721i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.31371 0.382468 0.191234 0.981544i \(-0.438751\pi\)
0.191234 + 0.981544i \(0.438751\pi\)
\(594\) 0 0
\(595\) 4.32957 + 4.32957i 0.177495 + 0.177495i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 45.5055i 1.85931i 0.368437 + 0.929653i \(0.379893\pi\)
−0.368437 + 0.929653i \(0.620107\pi\)
\(600\) 0 0
\(601\) 20.8284i 0.849609i −0.905285 0.424805i \(-0.860343\pi\)
0.905285 0.424805i \(-0.139657\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.55635 + 2.55635i 0.103930 + 0.103930i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.39104 + 7.39104i 0.299009 + 0.299009i
\(612\) 0 0
\(613\) −27.8701 + 27.8701i −1.12566 + 1.12566i −0.134786 + 0.990875i \(0.543035\pi\)
−0.990875 + 0.134786i \(0.956965\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.4853i 1.54936i −0.632354 0.774680i \(-0.717911\pi\)
0.632354 0.774680i \(-0.282089\pi\)
\(618\) 0 0
\(619\) −2.93015 + 2.93015i −0.117773 + 0.117773i −0.763537 0.645764i \(-0.776539\pi\)
0.645764 + 0.763537i \(0.276539\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 17.8435 0.714886
\(624\) 0 0
\(625\) −19.9706 −0.798823
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.1421 18.1421i 0.723374 0.723374i
\(630\) 0 0
\(631\) 14.1480i 0.563224i 0.959528 + 0.281612i \(0.0908691\pi\)
−0.959528 + 0.281612i \(0.909131\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.85483 + 4.85483i −0.192658 + 0.192658i
\(636\) 0 0
\(637\) −16.0711 16.0711i −0.636759 0.636759i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.1421 1.50652 0.753262 0.657721i \(-0.228479\pi\)
0.753262 + 0.657721i \(0.228479\pi\)
\(642\) 0 0
\(643\) 13.3827 + 13.3827i 0.527760 + 0.527760i 0.919904 0.392144i \(-0.128266\pi\)
−0.392144 + 0.919904i \(0.628266\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.5391i 0.846788i 0.905946 + 0.423394i \(0.139161\pi\)
−0.905946 + 0.423394i \(0.860839\pi\)
\(648\) 0 0
\(649\) 4.48528i 0.176063i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.55635 + 4.55635i 0.178304 + 0.178304i 0.790616 0.612312i \(-0.209760\pi\)
−0.612312 + 0.790616i \(0.709760\pi\)
\(654\) 0 0
\(655\) 8.55035 0.334090
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.02800 1.02800i −0.0400452 0.0400452i 0.686801 0.726846i \(-0.259015\pi\)
−0.726846 + 0.686801i \(0.759015\pi\)
\(660\) 0 0
\(661\) −20.5563 + 20.5563i −0.799549 + 0.799549i −0.983024 0.183475i \(-0.941265\pi\)
0.183475 + 0.983024i \(0.441265\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.6569i 0.529590i
\(666\) 0 0
\(667\) −35.4244 + 35.4244i −1.37164 + 1.37164i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.43835 0.171341
\(672\) 0 0
\(673\) −26.8284 −1.03416 −0.517080 0.855937i \(-0.672981\pi\)
−0.517080 + 0.855937i \(0.672981\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.58579 9.58579i 0.368412 0.368412i −0.498486 0.866898i \(-0.666110\pi\)
0.866898 + 0.498486i \(0.166110\pi\)
\(678\) 0 0
\(679\) 19.1116i 0.733437i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.2011 23.2011i 0.887766 0.887766i −0.106542 0.994308i \(-0.533978\pi\)
0.994308 + 0.106542i \(0.0339780\pi\)
\(684\) 0 0
\(685\) 5.37258 + 5.37258i 0.205276 + 0.205276i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.6569 0.596479
\(690\) 0 0
\(691\) 28.7988 + 28.7988i 1.09556 + 1.09556i 0.994924 + 0.100634i \(0.0320870\pi\)
0.100634 + 0.994924i \(0.467913\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.8294i 0.448714i
\(696\) 0 0
\(697\) 11.3137i 0.428537i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.5858 + 17.5858i 0.664206 + 0.664206i 0.956369 0.292163i \(-0.0943749\pi\)
−0.292163 + 0.956369i \(0.594375\pi\)
\(702\) 0 0
\(703\) −57.2261 −2.15832
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 44.6088 + 44.6088i 1.67769 + 1.67769i
\(708\) 0 0
\(709\) 16.7574 16.7574i 0.629336 0.629336i −0.318565 0.947901i \(-0.603201\pi\)
0.947901 + 0.318565i \(0.103201\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20.6863i 0.774708i
\(714\) 0 0
\(715\) −5.86030 + 5.86030i −0.219163 + 0.219163i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −29.5641 −1.10256 −0.551278 0.834321i \(-0.685860\pi\)
−0.551278 + 0.834321i \(0.685860\pi\)
\(720\) 0 0
\(721\) 52.2843 1.94717
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −24.4142 + 24.4142i −0.906721 + 0.906721i
\(726\) 0 0
\(727\) 22.0643i 0.818320i −0.912463 0.409160i \(-0.865822\pi\)
0.912463 0.409160i \(-0.134178\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.16478 2.16478i 0.0800674 0.0800674i
\(732\) 0 0
\(733\) 13.1005 + 13.1005i 0.483878 + 0.483878i 0.906368 0.422490i \(-0.138844\pi\)
−0.422490 + 0.906368i \(0.638844\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.20101 −0.302088
\(738\) 0 0
\(739\) −35.1843 35.1843i −1.29428 1.29428i −0.932115 0.362162i \(-0.882039\pi\)
−0.362162 0.932115i \(-0.617961\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.1367i 0.995550i 0.867306 + 0.497775i \(0.165849\pi\)
−0.867306 + 0.497775i \(0.834151\pi\)
\(744\) 0 0
\(745\) 1.02944i 0.0377157i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.17157 + 5.17157i 0.188965 + 0.188965i
\(750\) 0 0
\(751\) −14.7821 −0.539405 −0.269703 0.962944i \(-0.586925\pi\)
−0.269703 + 0.962944i \(0.586925\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.262632 + 0.262632i 0.00955817 + 0.00955817i
\(756\) 0 0
\(757\) 13.3848 13.3848i 0.486478 0.486478i −0.420715 0.907193i \(-0.638221\pi\)
0.907193 + 0.420715i \(0.138221\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.6274i 1.25524i 0.778519 + 0.627621i \(0.215971\pi\)
−0.778519 + 0.627621i \(0.784029\pi\)
\(762\) 0 0
\(763\) −34.1563 + 34.1563i −1.23654 + 1.23654i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.69552 −0.133437
\(768\) 0 0
\(769\) 5.17157 0.186492 0.0932458 0.995643i \(-0.470276\pi\)
0.0932458 + 0.995643i \(0.470276\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −28.0711 + 28.0711i −1.00965 + 1.00965i −0.00969311 + 0.999953i \(0.503085\pi\)
−0.999953 + 0.00969311i \(0.996915\pi\)
\(774\) 0 0
\(775\) 14.2568i 0.512120i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.8435 17.8435i 0.639311 0.639311i
\(780\) 0 0
\(781\) −23.5147 23.5147i −0.841423 0.841423i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.31371 0.0468883
\(786\) 0 0
\(787\) −5.62020 5.62020i −0.200339 0.200339i 0.599807 0.800145i \(-0.295244\pi\)
−0.800145 + 0.599807i \(0.795244\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 28.2960i 1.00609i
\(792\) 0 0
\(793\) 3.65685i 0.129859i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.0711 28.0711i −0.994328 0.994328i 0.00565577 0.999984i \(-0.498200\pi\)
−0.999984 + 0.00565577i \(0.998200\pi\)
\(798\) 0 0
\(799\) 8.65914 0.306338
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.0029 19.0029i −0.670596 0.670596i
\(804\) 0 0
\(805\) −10.3431 + 10.3431i −0.364548 + 0.364548i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.6863i 0.867924i 0.900931 + 0.433962i \(0.142885\pi\)
−0.900931 + 0.433962i \(0.857115\pi\)
\(810\) 0 0
\(811\) −1.66205 + 1.66205i −0.0583625 + 0.0583625i −0.735686 0.677323i \(-0.763140\pi\)
0.677323 + 0.735686i \(0.263140\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.17025 0.111049
\(816\) 0 0
\(817\) −6.82843 −0.238896
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 27.2426 27.2426i 0.950775 0.950775i −0.0480693 0.998844i \(-0.515307\pi\)
0.998844 + 0.0480693i \(0.0153068\pi\)
\(822\) 0 0
\(823\) 22.0643i 0.769114i −0.923101 0.384557i \(-0.874354\pi\)
0.923101 0.384557i \(-0.125646\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.1200 + 13.1200i −0.456228 + 0.456228i −0.897415 0.441187i \(-0.854557\pi\)
0.441187 + 0.897415i \(0.354557\pi\)
\(828\) 0 0
\(829\) 8.75736 + 8.75736i 0.304156 + 0.304156i 0.842637 0.538482i \(-0.181002\pi\)
−0.538482 + 0.842637i \(0.681002\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.8284 −0.652366
\(834\) 0 0
\(835\) −1.53073 1.53073i −0.0529732 0.0529732i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.4554i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(840\) 0 0
\(841\) 25.9706i 0.895537i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.556349 + 0.556349i 0.0191390 + 0.0191390i
\(846\) 0 0
\(847\) −22.8072 −0.783663
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 43.3407 + 43.3407i 1.48570 + 1.48570i
\(852\) 0 0
\(853\) 22.6985 22.6985i 0.777181 0.777181i −0.202169 0.979351i \(-0.564799\pi\)
0.979351 + 0.202169i \(0.0647991\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.2843i 0.829535i 0.909927 + 0.414767i \(0.136137\pi\)
−0.909927 + 0.414767i \(0.863863\pi\)
\(858\) 0 0
\(859\) −8.41904 + 8.41904i −0.287254 + 0.287254i −0.835993 0.548740i \(-0.815108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.525265 −0.0178802 −0.00894011 0.999960i \(-0.502846\pi\)
−0.00894011 + 0.999960i \(0.502846\pi\)
\(864\) 0 0
\(865\) −11.2548 −0.382676
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 43.3137 43.3137i 1.46932 1.46932i
\(870\) 0 0
\(871\) 6.75699i 0.228952i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.7821 + 14.7821i −0.499725 + 0.499725i
\(876\) 0 0
\(877\) 35.0416 + 35.0416i 1.18327 + 1.18327i 0.978892 + 0.204380i \(0.0655179\pi\)
0.204380 + 0.978892i \(0.434482\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −39.9411 −1.34565 −0.672825 0.739801i \(-0.734919\pi\)
−0.672825 + 0.739801i \(0.734919\pi\)
\(882\) 0 0
\(883\) 20.7737 + 20.7737i 0.699090 + 0.699090i 0.964214 0.265124i \(-0.0854129\pi\)
−0.265124 + 0.964214i \(0.585413\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.2095i 0.577838i −0.957354 0.288919i \(-0.906704\pi\)
0.957354 0.288919i \(-0.0932958\pi\)
\(888\) 0 0
\(889\) 43.3137i 1.45270i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.6569 13.6569i −0.457009 0.457009i
\(894\) 0 0
\(895\) −6.75699 −0.225861
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0502 + 16.0502i 0.535303 + 0.535303i
\(900\) 0 0
\(901\) 9.17157 9.17157i 0.305549 0.305549i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.34315i 0.277336i
\(906\) 0 0
\(907\) −31.8602 + 31.8602i −1.05790 + 1.05790i −0.0596848 + 0.998217i \(0.519010\pi\)
−0.998217 + 0.0596848i \(0.980990\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.9665 0.794045 0.397022 0.917809i \(-0.370044\pi\)
0.397022 + 0.917809i \(0.370044\pi\)
\(912\) 0 0
\(913\) −56.7696 −1.87880
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38.1421 + 38.1421i −1.25956 + 1.25956i
\(918\) 0 0
\(919\) 19.0029i 0.626846i −0.949614 0.313423i \(-0.898524\pi\)
0.949614 0.313423i \(-0.101476\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 19.3743 19.3743i 0.637712 0.637712i
\(924\) 0 0
\(925\) 29.8701 + 29.8701i 0.982121 + 0.982121i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 42.8284 1.40516 0.702578 0.711607i \(-0.252032\pi\)
0.702578 + 0.711607i \(0.252032\pi\)
\(930\) 0 0
\(931\) 29.6955 + 29.6955i 0.973229 + 0.973229i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.86577i 0.224535i
\(936\) 0 0
\(937\) 43.4558i 1.41964i 0.704383 + 0.709820i \(0.251224\pi\)
−0.704383 + 0.709820i \(0.748776\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.07107 2.07107i −0.0675149 0.0675149i 0.672543 0.740058i \(-0.265202\pi\)
−0.740058 + 0.672543i \(0.765202\pi\)
\(942\) 0 0
\(943\) −27.0279 −0.880151
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.1760 15.1760i −0.493154 0.493154i 0.416144 0.909299i \(-0.363381\pi\)
−0.909299 + 0.416144i \(0.863381\pi\)
\(948\) 0 0
\(949\) 15.6569 15.6569i 0.508243 0.508243i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.0294i 0.357279i 0.983915 + 0.178639i \(0.0571695\pi\)
−0.983915 + 0.178639i \(0.942830\pi\)
\(954\) 0 0
\(955\) −4.85483 + 4.85483i −0.157099 + 0.157099i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −47.9329 −1.54784
\(960\) 0 0
\(961\) −21.6274 −0.697659
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.201010 + 0.201010i −0.00647074 + 0.00647074i
\(966\) 0 0
\(967\) 11.0866i 0.356520i 0.983983 + 0.178260i \(0.0570467\pi\)
−0.983983 + 0.178260i \(0.942953\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −40.7820 + 40.7820i −1.30876 + 1.30876i −0.386445 + 0.922313i \(0.626297\pi\)
−0.922313 + 0.386445i \(0.873703\pi\)
\(972\) 0 0
\(973\) −52.7696 52.7696i −1.69171 1.69171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −47.1127 −1.50727 −0.753634 0.657294i \(-0.771701\pi\)
−0.753634 + 0.657294i \(0.771701\pi\)
\(978\) 0 0
\(979\) 14.1480 + 14.1480i 0.452173 + 0.452173i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 46.7736i 1.49185i −0.666031 0.745924i \(-0.732008\pi\)
0.666031 0.745924i \(-0.267992\pi\)
\(984\) 0 0
\(985\) 6.28427i 0.200234i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.17157 + 5.17157i 0.164446 + 0.164446i
\(990\) 0 0
\(991\) −27.0279 −0.858571 −0.429285 0.903169i \(-0.641235\pi\)
−0.429285 + 0.903169i \(0.641235\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.11747 + 5.11747i 0.162235 + 0.162235i
\(996\) 0 0
\(997\) 20.0711 20.0711i 0.635657 0.635657i −0.313824 0.949481i \(-0.601610\pi\)
0.949481 + 0.313824i \(0.101610\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4608.2.k.bi.1153.1 8
3.2 odd 2 512.2.e.i.129.2 8
4.3 odd 2 inner 4608.2.k.bi.1153.2 8
8.3 odd 2 4608.2.k.bd.1153.4 8
8.5 even 2 4608.2.k.bd.1153.3 8
12.11 even 2 512.2.e.i.129.3 yes 8
16.3 odd 4 4608.2.k.bd.3457.3 8
16.5 even 4 inner 4608.2.k.bi.3457.2 8
16.11 odd 4 inner 4608.2.k.bi.3457.1 8
16.13 even 4 4608.2.k.bd.3457.4 8
24.5 odd 2 512.2.e.j.129.3 yes 8
24.11 even 2 512.2.e.j.129.2 yes 8
32.5 even 8 9216.2.a.w.1.4 4
32.11 odd 8 9216.2.a.bp.1.1 4
32.21 even 8 9216.2.a.bp.1.2 4
32.27 odd 8 9216.2.a.w.1.3 4
48.5 odd 4 512.2.e.i.385.2 yes 8
48.11 even 4 512.2.e.i.385.3 yes 8
48.29 odd 4 512.2.e.j.385.3 yes 8
48.35 even 4 512.2.e.j.385.2 yes 8
96.5 odd 8 1024.2.a.i.1.3 4
96.11 even 8 1024.2.a.h.1.3 4
96.29 odd 8 1024.2.b.g.513.4 8
96.35 even 8 1024.2.b.g.513.6 8
96.53 odd 8 1024.2.a.h.1.2 4
96.59 even 8 1024.2.a.i.1.2 4
96.77 odd 8 1024.2.b.g.513.5 8
96.83 even 8 1024.2.b.g.513.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
512.2.e.i.129.2 8 3.2 odd 2
512.2.e.i.129.3 yes 8 12.11 even 2
512.2.e.i.385.2 yes 8 48.5 odd 4
512.2.e.i.385.3 yes 8 48.11 even 4
512.2.e.j.129.2 yes 8 24.11 even 2
512.2.e.j.129.3 yes 8 24.5 odd 2
512.2.e.j.385.2 yes 8 48.35 even 4
512.2.e.j.385.3 yes 8 48.29 odd 4
1024.2.a.h.1.2 4 96.53 odd 8
1024.2.a.h.1.3 4 96.11 even 8
1024.2.a.i.1.2 4 96.59 even 8
1024.2.a.i.1.3 4 96.5 odd 8
1024.2.b.g.513.3 8 96.83 even 8
1024.2.b.g.513.4 8 96.29 odd 8
1024.2.b.g.513.5 8 96.77 odd 8
1024.2.b.g.513.6 8 96.35 even 8
4608.2.k.bd.1153.3 8 8.5 even 2
4608.2.k.bd.1153.4 8 8.3 odd 2
4608.2.k.bd.3457.3 8 16.3 odd 4
4608.2.k.bd.3457.4 8 16.13 even 4
4608.2.k.bi.1153.1 8 1.1 even 1 trivial
4608.2.k.bi.1153.2 8 4.3 odd 2 inner
4608.2.k.bi.3457.1 8 16.11 odd 4 inner
4608.2.k.bi.3457.2 8 16.5 even 4 inner
9216.2.a.w.1.3 4 32.27 odd 8
9216.2.a.w.1.4 4 32.5 even 8
9216.2.a.bp.1.1 4 32.11 odd 8
9216.2.a.bp.1.2 4 32.21 even 8