Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [462,2,Mod(25,462)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(462, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([0, 20, 24]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("462.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 462.y (of order \(15\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.68908857338\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | 0.913545 | + | 0.406737i | 0.978148 | + | 0.207912i | 0.669131 | + | 0.743145i | −0.305851 | + | 2.90998i | 0.809017 | + | 0.587785i | −2.53596 | − | 0.754243i | 0.309017 | + | 0.951057i | 0.913545 | + | 0.406737i | −1.46300 | + | 2.53399i |
25.2 | 0.913545 | + | 0.406737i | 0.978148 | + | 0.207912i | 0.669131 | + | 0.743145i | −0.0415637 | + | 0.395452i | 0.809017 | + | 0.587785i | −0.168521 | + | 2.64038i | 0.309017 | + | 0.951057i | 0.913545 | + | 0.406737i | −0.198815 | + | 0.344358i |
25.3 | 0.913545 | + | 0.406737i | 0.978148 | + | 0.207912i | 0.669131 | + | 0.743145i | 0.0926977 | − | 0.881959i | 0.809017 | + | 0.587785i | 1.77880 | − | 1.95854i | 0.309017 | + | 0.951057i | 0.913545 | + | 0.406737i | 0.443409 | − | 0.768006i |
25.4 | 0.913545 | + | 0.406737i | 0.978148 | + | 0.207912i | 0.669131 | + | 0.743145i | 0.111151 | − | 1.05753i | 0.809017 | + | 0.587785i | 2.10806 | + | 1.59878i | 0.309017 | + | 0.951057i | 0.913545 | + | 0.406737i | 0.531680 | − | 0.920896i |
25.5 | 0.913545 | + | 0.406737i | 0.978148 | + | 0.207912i | 0.669131 | + | 0.743145i | 0.457151 | − | 4.34950i | 0.809017 | + | 0.587785i | −2.04249 | − | 1.68174i | 0.309017 | + | 0.951057i | 0.913545 | + | 0.406737i | 2.18673 | − | 3.78753i |
37.1 | 0.913545 | − | 0.406737i | 0.978148 | − | 0.207912i | 0.669131 | − | 0.743145i | −0.305851 | − | 2.90998i | 0.809017 | − | 0.587785i | −2.53596 | + | 0.754243i | 0.309017 | − | 0.951057i | 0.913545 | − | 0.406737i | −1.46300 | − | 2.53399i |
37.2 | 0.913545 | − | 0.406737i | 0.978148 | − | 0.207912i | 0.669131 | − | 0.743145i | −0.0415637 | − | 0.395452i | 0.809017 | − | 0.587785i | −0.168521 | − | 2.64038i | 0.309017 | − | 0.951057i | 0.913545 | − | 0.406737i | −0.198815 | − | 0.344358i |
37.3 | 0.913545 | − | 0.406737i | 0.978148 | − | 0.207912i | 0.669131 | − | 0.743145i | 0.0926977 | + | 0.881959i | 0.809017 | − | 0.587785i | 1.77880 | + | 1.95854i | 0.309017 | − | 0.951057i | 0.913545 | − | 0.406737i | 0.443409 | + | 0.768006i |
37.4 | 0.913545 | − | 0.406737i | 0.978148 | − | 0.207912i | 0.669131 | − | 0.743145i | 0.111151 | + | 1.05753i | 0.809017 | − | 0.587785i | 2.10806 | − | 1.59878i | 0.309017 | − | 0.951057i | 0.913545 | − | 0.406737i | 0.531680 | + | 0.920896i |
37.5 | 0.913545 | − | 0.406737i | 0.978148 | − | 0.207912i | 0.669131 | − | 0.743145i | 0.457151 | + | 4.34950i | 0.809017 | − | 0.587785i | −2.04249 | + | 1.68174i | 0.309017 | − | 0.951057i | 0.913545 | − | 0.406737i | 2.18673 | + | 3.78753i |
163.1 | 0.669131 | + | 0.743145i | −0.913545 | − | 0.406737i | −0.104528 | + | 0.994522i | −2.21083 | − | 0.469926i | −0.309017 | − | 0.951057i | 2.39247 | + | 1.12965i | −0.809017 | + | 0.587785i | 0.669131 | + | 0.743145i | −1.13011 | − | 1.95741i |
163.2 | 0.669131 | + | 0.743145i | −0.913545 | − | 0.406737i | −0.104528 | + | 0.994522i | −1.55422 | − | 0.330360i | −0.309017 | − | 0.951057i | −1.63560 | − | 2.07962i | −0.809017 | + | 0.587785i | 0.669131 | + | 0.743145i | −0.794473 | − | 1.37607i |
163.3 | 0.669131 | + | 0.743145i | −0.913545 | − | 0.406737i | −0.104528 | + | 0.994522i | −0.408781 | − | 0.0868890i | −0.309017 | − | 0.951057i | −2.24058 | − | 1.40705i | −0.809017 | + | 0.587785i | 0.669131 | + | 0.743145i | −0.208957 | − | 0.361923i |
163.4 | 0.669131 | + | 0.743145i | −0.913545 | − | 0.406737i | −0.104528 | + | 0.994522i | 3.44957 | + | 0.733230i | −0.309017 | − | 0.951057i | −2.03992 | + | 1.68486i | −0.809017 | + | 0.587785i | 0.669131 | + | 0.743145i | 1.76332 | + | 3.05416i |
163.5 | 0.669131 | + | 0.743145i | −0.913545 | − | 0.406737i | −0.104528 | + | 0.994522i | 3.65870 | + | 0.777681i | −0.309017 | − | 0.951057i | 2.31914 | − | 1.27341i | −0.809017 | + | 0.587785i | 0.669131 | + | 0.743145i | 1.87022 | + | 3.23932i |
235.1 | −0.104528 | + | 0.994522i | −0.669131 | − | 0.743145i | −0.978148 | − | 0.207912i | −3.99535 | − | 1.77885i | 0.809017 | − | 0.587785i | 2.64091 | + | 0.160013i | 0.309017 | − | 0.951057i | −0.104528 | + | 0.994522i | 2.18673 | − | 3.78753i |
235.2 | −0.104528 | + | 0.994522i | −0.669131 | − | 0.743145i | −0.978148 | − | 0.207912i | −0.971427 | − | 0.432507i | 0.809017 | − | 0.587785i | −2.64519 | − | 0.0543560i | 0.309017 | − | 0.951057i | −0.104528 | + | 0.994522i | 0.531680 | − | 0.920896i |
235.3 | −0.104528 | + | 0.994522i | −0.669131 | − | 0.743145i | −0.978148 | − | 0.207912i | −0.810148 | − | 0.360701i | 0.809017 | − | 0.587785i | −0.287883 | + | 2.63004i | 0.309017 | − | 0.951057i | −0.104528 | + | 0.994522i | 0.443409 | − | 0.768006i |
235.4 | −0.104528 | + | 0.994522i | −0.669131 | − | 0.743145i | −0.978148 | − | 0.207912i | 0.363254 | + | 0.161731i | 0.809017 | − | 0.587785i | −1.41564 | − | 2.23517i | 0.309017 | − | 0.951057i | −0.104528 | + | 0.994522i | −0.198815 | + | 0.344358i |
235.5 | −0.104528 | + | 0.994522i | −0.669131 | − | 0.743145i | −0.978148 | − | 0.207912i | 2.67304 | + | 1.19011i | 0.809017 | − | 0.587785i | 2.49497 | − | 0.880407i | 0.309017 | − | 0.951057i | −0.104528 | + | 0.994522i | −1.46300 | + | 2.53399i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
11.c | even | 5 | 1 | inner |
77.m | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 462.2.y.d | ✓ | 40 |
7.c | even | 3 | 1 | inner | 462.2.y.d | ✓ | 40 |
11.c | even | 5 | 1 | inner | 462.2.y.d | ✓ | 40 |
77.m | even | 15 | 1 | inner | 462.2.y.d | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
462.2.y.d | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
462.2.y.d | ✓ | 40 | 7.c | even | 3 | 1 | inner |
462.2.y.d | ✓ | 40 | 11.c | even | 5 | 1 | inner |
462.2.y.d | ✓ | 40 | 77.m | even | 15 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{40} + 3 T_{5}^{39} - 14 T_{5}^{38} - 113 T_{5}^{37} - 214 T_{5}^{36} - 96 T_{5}^{35} + \cdots + 81450625 \)
acting on \(S_{2}^{\mathrm{new}}(462, [\chi])\).