Properties

Label 464.2.k.c.191.7
Level $464$
Weight $2$
Character 464.191
Analytic conductor $3.705$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(191,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 191.7
Root \(0.105218 + 1.41029i\) of defining polynomial
Character \(\chi\) \(=\) 464.191
Dual form 464.2.k.c.447.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30508 + 1.30508i) q^{3} -3.62458i q^{5} -1.31987i q^{7} +0.406445i q^{9} +(-0.158748 - 0.158748i) q^{11} -4.10656i q^{13} +(4.73035 - 4.73035i) q^{15} +(-1.97758 + 1.97758i) q^{17} +(0.759841 + 0.759841i) q^{19} +(1.72253 - 1.72253i) q^{21} -3.15705i q^{23} -8.13758 q^{25} +(3.38479 - 3.38479i) q^{27} +(-0.639083 + 5.34711i) q^{29} +(6.58066 + 6.58066i) q^{31} -0.414358i q^{33} -4.78397 q^{35} +(0.338500 + 0.338500i) q^{37} +(5.35937 - 5.35937i) q^{39} +(0.459886 + 0.459886i) q^{41} +(7.46477 + 7.46477i) q^{43} +1.47319 q^{45} +(-4.11446 + 4.11446i) q^{47} +5.25795 q^{49} -5.16179 q^{51} +7.59645 q^{53} +(-0.575397 + 0.575397i) q^{55} +1.98330i q^{57} +10.0339i q^{59} +(3.51872 - 3.51872i) q^{61} +0.536453 q^{63} -14.8845 q^{65} +2.87626 q^{67} +(4.12019 - 4.12019i) q^{69} -14.3931 q^{71} +(-8.40055 - 8.40055i) q^{73} +(-10.6202 - 10.6202i) q^{75} +(-0.209527 + 0.209527i) q^{77} +(-8.03404 - 8.03404i) q^{79} +10.0541 q^{81} -15.0176i q^{83} +(7.16791 + 7.16791i) q^{85} +(-7.81243 + 6.14433i) q^{87} +(-7.68091 + 7.68091i) q^{89} -5.42012 q^{91} +17.1765i q^{93} +(2.75411 - 2.75411i) q^{95} +(3.16000 + 3.16000i) q^{97} +(0.0645225 - 0.0645225i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{17} - 16 q^{21} - 28 q^{25} - 4 q^{29} - 20 q^{37} - 4 q^{41} - 40 q^{45} + 28 q^{49} + 48 q^{53} + 4 q^{61} + 40 q^{65} - 24 q^{69} - 20 q^{73} - 16 q^{77} + 108 q^{81} + 16 q^{85} + 36 q^{89}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30508 + 1.30508i 0.753486 + 0.753486i 0.975128 0.221642i \(-0.0711417\pi\)
−0.221642 + 0.975128i \(0.571142\pi\)
\(4\) 0 0
\(5\) 3.62458i 1.62096i −0.585765 0.810481i \(-0.699206\pi\)
0.585765 0.810481i \(-0.300794\pi\)
\(6\) 0 0
\(7\) 1.31987i 0.498864i −0.968392 0.249432i \(-0.919756\pi\)
0.968392 0.249432i \(-0.0802438\pi\)
\(8\) 0 0
\(9\) 0.406445i 0.135482i
\(10\) 0 0
\(11\) −0.158748 0.158748i −0.0478645 0.0478645i 0.682769 0.730634i \(-0.260775\pi\)
−0.730634 + 0.682769i \(0.760775\pi\)
\(12\) 0 0
\(13\) 4.10656i 1.13895i −0.822007 0.569477i \(-0.807146\pi\)
0.822007 0.569477i \(-0.192854\pi\)
\(14\) 0 0
\(15\) 4.73035 4.73035i 1.22137 1.22137i
\(16\) 0 0
\(17\) −1.97758 + 1.97758i −0.479635 + 0.479635i −0.905015 0.425380i \(-0.860140\pi\)
0.425380 + 0.905015i \(0.360140\pi\)
\(18\) 0 0
\(19\) 0.759841 + 0.759841i 0.174320 + 0.174320i 0.788874 0.614555i \(-0.210664\pi\)
−0.614555 + 0.788874i \(0.710664\pi\)
\(20\) 0 0
\(21\) 1.72253 1.72253i 0.375887 0.375887i
\(22\) 0 0
\(23\) 3.15705i 0.658290i −0.944279 0.329145i \(-0.893239\pi\)
0.944279 0.329145i \(-0.106761\pi\)
\(24\) 0 0
\(25\) −8.13758 −1.62752
\(26\) 0 0
\(27\) 3.38479 3.38479i 0.651402 0.651402i
\(28\) 0 0
\(29\) −0.639083 + 5.34711i −0.118675 + 0.992933i
\(30\) 0 0
\(31\) 6.58066 + 6.58066i 1.18192 + 1.18192i 0.979246 + 0.202676i \(0.0649637\pi\)
0.202676 + 0.979246i \(0.435036\pi\)
\(32\) 0 0
\(33\) 0.414358i 0.0721304i
\(34\) 0 0
\(35\) −4.78397 −0.808639
\(36\) 0 0
\(37\) 0.338500 + 0.338500i 0.0556491 + 0.0556491i 0.734384 0.678735i \(-0.237471\pi\)
−0.678735 + 0.734384i \(0.737471\pi\)
\(38\) 0 0
\(39\) 5.35937 5.35937i 0.858186 0.858186i
\(40\) 0 0
\(41\) 0.459886 + 0.459886i 0.0718221 + 0.0718221i 0.742105 0.670283i \(-0.233827\pi\)
−0.670283 + 0.742105i \(0.733827\pi\)
\(42\) 0 0
\(43\) 7.46477 + 7.46477i 1.13837 + 1.13837i 0.988743 + 0.149624i \(0.0478065\pi\)
0.149624 + 0.988743i \(0.452194\pi\)
\(44\) 0 0
\(45\) 1.47319 0.219610
\(46\) 0 0
\(47\) −4.11446 + 4.11446i −0.600156 + 0.600156i −0.940354 0.340198i \(-0.889506\pi\)
0.340198 + 0.940354i \(0.389506\pi\)
\(48\) 0 0
\(49\) 5.25795 0.751135
\(50\) 0 0
\(51\) −5.16179 −0.722796
\(52\) 0 0
\(53\) 7.59645 1.04345 0.521726 0.853113i \(-0.325288\pi\)
0.521726 + 0.853113i \(0.325288\pi\)
\(54\) 0 0
\(55\) −0.575397 + 0.575397i −0.0775865 + 0.0775865i
\(56\) 0 0
\(57\) 1.98330i 0.262695i
\(58\) 0 0
\(59\) 10.0339i 1.30630i 0.757230 + 0.653149i \(0.226552\pi\)
−0.757230 + 0.653149i \(0.773448\pi\)
\(60\) 0 0
\(61\) 3.51872 3.51872i 0.450526 0.450526i −0.445003 0.895529i \(-0.646797\pi\)
0.895529 + 0.445003i \(0.146797\pi\)
\(62\) 0 0
\(63\) 0.536453 0.0675868
\(64\) 0 0
\(65\) −14.8845 −1.84620
\(66\) 0 0
\(67\) 2.87626 0.351391 0.175695 0.984445i \(-0.443783\pi\)
0.175695 + 0.984445i \(0.443783\pi\)
\(68\) 0 0
\(69\) 4.12019 4.12019i 0.496012 0.496012i
\(70\) 0 0
\(71\) −14.3931 −1.70815 −0.854073 0.520153i \(-0.825875\pi\)
−0.854073 + 0.520153i \(0.825875\pi\)
\(72\) 0 0
\(73\) −8.40055 8.40055i −0.983210 0.983210i 0.0166514 0.999861i \(-0.494699\pi\)
−0.999861 + 0.0166514i \(0.994699\pi\)
\(74\) 0 0
\(75\) −10.6202 10.6202i −1.22631 1.22631i
\(76\) 0 0
\(77\) −0.209527 + 0.209527i −0.0238778 + 0.0238778i
\(78\) 0 0
\(79\) −8.03404 8.03404i −0.903900 0.903900i 0.0918707 0.995771i \(-0.470715\pi\)
−0.995771 + 0.0918707i \(0.970715\pi\)
\(80\) 0 0
\(81\) 10.0541 1.11713
\(82\) 0 0
\(83\) 15.0176i 1.64840i −0.566298 0.824200i \(-0.691625\pi\)
0.566298 0.824200i \(-0.308375\pi\)
\(84\) 0 0
\(85\) 7.16791 + 7.16791i 0.777469 + 0.777469i
\(86\) 0 0
\(87\) −7.81243 + 6.14433i −0.837581 + 0.658741i
\(88\) 0 0
\(89\) −7.68091 + 7.68091i −0.814175 + 0.814175i −0.985257 0.171082i \(-0.945274\pi\)
0.171082 + 0.985257i \(0.445274\pi\)
\(90\) 0 0
\(91\) −5.42012 −0.568183
\(92\) 0 0
\(93\) 17.1765i 1.78112i
\(94\) 0 0
\(95\) 2.75411 2.75411i 0.282565 0.282565i
\(96\) 0 0
\(97\) 3.16000 + 3.16000i 0.320849 + 0.320849i 0.849093 0.528244i \(-0.177149\pi\)
−0.528244 + 0.849093i \(0.677149\pi\)
\(98\) 0 0
\(99\) 0.0645225 0.0645225i 0.00648475 0.00648475i
\(100\) 0 0
\(101\) 9.65560 9.65560i 0.960769 0.960769i −0.0384904 0.999259i \(-0.512255\pi\)
0.999259 + 0.0384904i \(0.0122549\pi\)
\(102\) 0 0
\(103\) 16.1493i 1.59124i 0.605798 + 0.795619i \(0.292854\pi\)
−0.605798 + 0.795619i \(0.707146\pi\)
\(104\) 0 0
\(105\) −6.24344 6.24344i −0.609298 0.609298i
\(106\) 0 0
\(107\) 1.66695i 0.161150i 0.996749 + 0.0805752i \(0.0256757\pi\)
−0.996749 + 0.0805752i \(0.974324\pi\)
\(108\) 0 0
\(109\) 2.30158i 0.220451i 0.993907 + 0.110226i \(0.0351574\pi\)
−0.993907 + 0.110226i \(0.964843\pi\)
\(110\) 0 0
\(111\) 0.883537i 0.0838616i
\(112\) 0 0
\(113\) −1.52681 1.52681i −0.143630 0.143630i 0.631635 0.775266i \(-0.282384\pi\)
−0.775266 + 0.631635i \(0.782384\pi\)
\(114\) 0 0
\(115\) −11.4430 −1.06706
\(116\) 0 0
\(117\) 1.66909 0.154307
\(118\) 0 0
\(119\) 2.61015 + 2.61015i 0.239272 + 0.239272i
\(120\) 0 0
\(121\) 10.9496i 0.995418i
\(122\) 0 0
\(123\) 1.20037i 0.108234i
\(124\) 0 0
\(125\) 11.3724i 1.01718i
\(126\) 0 0
\(127\) 11.0231 + 11.0231i 0.978142 + 0.978142i 0.999766 0.0216241i \(-0.00688370\pi\)
−0.0216241 + 0.999766i \(0.506884\pi\)
\(128\) 0 0
\(129\) 19.4842i 1.71549i
\(130\) 0 0
\(131\) −3.38044 + 3.38044i −0.295350 + 0.295350i −0.839189 0.543839i \(-0.816970\pi\)
0.543839 + 0.839189i \(0.316970\pi\)
\(132\) 0 0
\(133\) 1.00289 1.00289i 0.0869617 0.0869617i
\(134\) 0 0
\(135\) −12.2684 12.2684i −1.05590 1.05590i
\(136\) 0 0
\(137\) −11.0899 + 11.0899i −0.947471 + 0.947471i −0.998688 0.0512170i \(-0.983690\pi\)
0.0512170 + 0.998688i \(0.483690\pi\)
\(138\) 0 0
\(139\) 22.6926i 1.92476i 0.271711 + 0.962379i \(0.412410\pi\)
−0.271711 + 0.962379i \(0.587590\pi\)
\(140\) 0 0
\(141\) −10.7394 −0.904419
\(142\) 0 0
\(143\) −0.651910 + 0.651910i −0.0545154 + 0.0545154i
\(144\) 0 0
\(145\) 19.3810 + 2.31641i 1.60951 + 0.192367i
\(146\) 0 0
\(147\) 6.86202 + 6.86202i 0.565970 + 0.565970i
\(148\) 0 0
\(149\) 19.4063i 1.58983i −0.606722 0.794914i \(-0.707516\pi\)
0.606722 0.794914i \(-0.292484\pi\)
\(150\) 0 0
\(151\) −13.7683 −1.12045 −0.560225 0.828341i \(-0.689285\pi\)
−0.560225 + 0.828341i \(0.689285\pi\)
\(152\) 0 0
\(153\) −0.803778 0.803778i −0.0649816 0.0649816i
\(154\) 0 0
\(155\) 23.8521 23.8521i 1.91585 1.91585i
\(156\) 0 0
\(157\) 16.8173 + 16.8173i 1.34217 + 1.34217i 0.893900 + 0.448266i \(0.147958\pi\)
0.448266 + 0.893900i \(0.352042\pi\)
\(158\) 0 0
\(159\) 9.91394 + 9.91394i 0.786226 + 0.786226i
\(160\) 0 0
\(161\) −4.16689 −0.328397
\(162\) 0 0
\(163\) 5.00902 5.00902i 0.392337 0.392337i −0.483183 0.875520i \(-0.660519\pi\)
0.875520 + 0.483183i \(0.160519\pi\)
\(164\) 0 0
\(165\) −1.50187 −0.116921
\(166\) 0 0
\(167\) −1.73439 −0.134211 −0.0671057 0.997746i \(-0.521376\pi\)
−0.0671057 + 0.997746i \(0.521376\pi\)
\(168\) 0 0
\(169\) −3.86381 −0.297216
\(170\) 0 0
\(171\) −0.308833 + 0.308833i −0.0236171 + 0.0236171i
\(172\) 0 0
\(173\) 21.4781i 1.63295i −0.577381 0.816475i \(-0.695925\pi\)
0.577381 0.816475i \(-0.304075\pi\)
\(174\) 0 0
\(175\) 10.7405i 0.811909i
\(176\) 0 0
\(177\) −13.0949 + 13.0949i −0.984276 + 0.984276i
\(178\) 0 0
\(179\) 8.76538 0.655155 0.327578 0.944824i \(-0.393768\pi\)
0.327578 + 0.944824i \(0.393768\pi\)
\(180\) 0 0
\(181\) −5.78208 −0.429778 −0.214889 0.976638i \(-0.568939\pi\)
−0.214889 + 0.976638i \(0.568939\pi\)
\(182\) 0 0
\(183\) 9.18439 0.678929
\(184\) 0 0
\(185\) 1.22692 1.22692i 0.0902051 0.0902051i
\(186\) 0 0
\(187\) 0.627877 0.0459149
\(188\) 0 0
\(189\) −4.46747 4.46747i −0.324961 0.324961i
\(190\) 0 0
\(191\) −12.9379 12.9379i −0.936156 0.936156i 0.0619248 0.998081i \(-0.480276\pi\)
−0.998081 + 0.0619248i \(0.980276\pi\)
\(192\) 0 0
\(193\) 5.05224 5.05224i 0.363668 0.363668i −0.501493 0.865162i \(-0.667216\pi\)
0.865162 + 0.501493i \(0.167216\pi\)
\(194\) 0 0
\(195\) −19.4255 19.4255i −1.39109 1.39109i
\(196\) 0 0
\(197\) −10.7853 −0.768419 −0.384209 0.923246i \(-0.625526\pi\)
−0.384209 + 0.923246i \(0.625526\pi\)
\(198\) 0 0
\(199\) 2.82753i 0.200438i 0.994965 + 0.100219i \(0.0319543\pi\)
−0.994965 + 0.100219i \(0.968046\pi\)
\(200\) 0 0
\(201\) 3.75373 + 3.75373i 0.264768 + 0.264768i
\(202\) 0 0
\(203\) 7.05748 + 0.843506i 0.495338 + 0.0592025i
\(204\) 0 0
\(205\) 1.66689 1.66689i 0.116421 0.116421i
\(206\) 0 0
\(207\) 1.28317 0.0891861
\(208\) 0 0
\(209\) 0.241247i 0.0166874i
\(210\) 0 0
\(211\) −1.59299 + 1.59299i −0.109666 + 0.109666i −0.759810 0.650145i \(-0.774708\pi\)
0.650145 + 0.759810i \(0.274708\pi\)
\(212\) 0 0
\(213\) −18.7841 18.7841i −1.28706 1.28706i
\(214\) 0 0
\(215\) 27.0567 27.0567i 1.84525 1.84525i
\(216\) 0 0
\(217\) 8.68561 8.68561i 0.589618 0.589618i
\(218\) 0 0
\(219\) 21.9267i 1.48167i
\(220\) 0 0
\(221\) 8.12106 + 8.12106i 0.546282 + 0.546282i
\(222\) 0 0
\(223\) 18.8393i 1.26157i −0.775957 0.630786i \(-0.782733\pi\)
0.775957 0.630786i \(-0.217267\pi\)
\(224\) 0 0
\(225\) 3.30748i 0.220498i
\(226\) 0 0
\(227\) 9.30184i 0.617385i 0.951162 + 0.308692i \(0.0998913\pi\)
−0.951162 + 0.308692i \(0.900109\pi\)
\(228\) 0 0
\(229\) −0.834107 0.834107i −0.0551194 0.0551194i 0.679010 0.734129i \(-0.262409\pi\)
−0.734129 + 0.679010i \(0.762409\pi\)
\(230\) 0 0
\(231\) −0.546898 −0.0359832
\(232\) 0 0
\(233\) 5.96051 0.390486 0.195243 0.980755i \(-0.437450\pi\)
0.195243 + 0.980755i \(0.437450\pi\)
\(234\) 0 0
\(235\) 14.9132 + 14.9132i 0.972830 + 0.972830i
\(236\) 0 0
\(237\) 20.9701i 1.36215i
\(238\) 0 0
\(239\) 0.384705i 0.0248845i 0.999923 + 0.0124422i \(0.00396059\pi\)
−0.999923 + 0.0124422i \(0.996039\pi\)
\(240\) 0 0
\(241\) 14.3854i 0.926642i 0.886191 + 0.463321i \(0.153342\pi\)
−0.886191 + 0.463321i \(0.846658\pi\)
\(242\) 0 0
\(243\) 2.96705 + 2.96705i 0.190336 + 0.190336i
\(244\) 0 0
\(245\) 19.0578i 1.21756i
\(246\) 0 0
\(247\) 3.12033 3.12033i 0.198542 0.198542i
\(248\) 0 0
\(249\) 19.5992 19.5992i 1.24205 1.24205i
\(250\) 0 0
\(251\) 2.37640 + 2.37640i 0.149997 + 0.149997i 0.778117 0.628120i \(-0.216175\pi\)
−0.628120 + 0.778117i \(0.716175\pi\)
\(252\) 0 0
\(253\) −0.501177 + 0.501177i −0.0315087 + 0.0315087i
\(254\) 0 0
\(255\) 18.7093i 1.17162i
\(256\) 0 0
\(257\) −1.31539 −0.0820517 −0.0410258 0.999158i \(-0.513063\pi\)
−0.0410258 + 0.999158i \(0.513063\pi\)
\(258\) 0 0
\(259\) 0.446776 0.446776i 0.0277613 0.0277613i
\(260\) 0 0
\(261\) −2.17330 0.259752i −0.134524 0.0160782i
\(262\) 0 0
\(263\) 15.4544 + 15.4544i 0.952961 + 0.952961i 0.998942 0.0459810i \(-0.0146414\pi\)
−0.0459810 + 0.998942i \(0.514641\pi\)
\(264\) 0 0
\(265\) 27.5339i 1.69140i
\(266\) 0 0
\(267\) −20.0483 −1.22694
\(268\) 0 0
\(269\) 14.2527 + 14.2527i 0.869005 + 0.869005i 0.992362 0.123357i \(-0.0393660\pi\)
−0.123357 + 0.992362i \(0.539366\pi\)
\(270\) 0 0
\(271\) −6.64099 + 6.64099i −0.403411 + 0.403411i −0.879433 0.476022i \(-0.842078\pi\)
0.476022 + 0.879433i \(0.342078\pi\)
\(272\) 0 0
\(273\) −7.07366 7.07366i −0.428117 0.428117i
\(274\) 0 0
\(275\) 1.29183 + 1.29183i 0.0779002 + 0.0779002i
\(276\) 0 0
\(277\) −17.1329 −1.02942 −0.514708 0.857366i \(-0.672100\pi\)
−0.514708 + 0.857366i \(0.672100\pi\)
\(278\) 0 0
\(279\) −2.67467 + 2.67467i −0.160129 + 0.160129i
\(280\) 0 0
\(281\) 0.939644 0.0560544 0.0280272 0.999607i \(-0.491077\pi\)
0.0280272 + 0.999607i \(0.491077\pi\)
\(282\) 0 0
\(283\) 19.7398 1.17341 0.586704 0.809801i \(-0.300425\pi\)
0.586704 + 0.809801i \(0.300425\pi\)
\(284\) 0 0
\(285\) 7.18863 0.425818
\(286\) 0 0
\(287\) 0.606989 0.606989i 0.0358294 0.0358294i
\(288\) 0 0
\(289\) 9.17833i 0.539901i
\(290\) 0 0
\(291\) 8.24807i 0.483511i
\(292\) 0 0
\(293\) −13.1920 + 13.1920i −0.770687 + 0.770687i −0.978227 0.207539i \(-0.933455\pi\)
0.207539 + 0.978227i \(0.433455\pi\)
\(294\) 0 0
\(295\) 36.3685 2.11746
\(296\) 0 0
\(297\) −1.07466 −0.0623581
\(298\) 0 0
\(299\) −12.9646 −0.749762
\(300\) 0 0
\(301\) 9.85252 9.85252i 0.567890 0.567890i
\(302\) 0 0
\(303\) 25.2026 1.44785
\(304\) 0 0
\(305\) −12.7539 12.7539i −0.730285 0.730285i
\(306\) 0 0
\(307\) 2.17394 + 2.17394i 0.124073 + 0.124073i 0.766417 0.642344i \(-0.222038\pi\)
−0.642344 + 0.766417i \(0.722038\pi\)
\(308\) 0 0
\(309\) −21.0761 + 21.0761i −1.19897 + 1.19897i
\(310\) 0 0
\(311\) −17.8625 17.8625i −1.01289 1.01289i −0.999916 0.0129762i \(-0.995869\pi\)
−0.0129762 0.999916i \(-0.504131\pi\)
\(312\) 0 0
\(313\) 26.2948 1.48627 0.743135 0.669141i \(-0.233338\pi\)
0.743135 + 0.669141i \(0.233338\pi\)
\(314\) 0 0
\(315\) 1.94442i 0.109556i
\(316\) 0 0
\(317\) 17.5916 + 17.5916i 0.988041 + 0.988041i 0.999929 0.0118882i \(-0.00378422\pi\)
−0.0118882 + 0.999929i \(0.503784\pi\)
\(318\) 0 0
\(319\) 0.950299 0.747392i 0.0532065 0.0418459i
\(320\) 0 0
\(321\) −2.17550 + 2.17550i −0.121425 + 0.121425i
\(322\) 0 0
\(323\) −3.00530 −0.167219
\(324\) 0 0
\(325\) 33.4174i 1.85367i
\(326\) 0 0
\(327\) −3.00374 + 3.00374i −0.166107 + 0.166107i
\(328\) 0 0
\(329\) 5.43055 + 5.43055i 0.299396 + 0.299396i
\(330\) 0 0
\(331\) −1.64195 + 1.64195i −0.0902497 + 0.0902497i −0.750790 0.660541i \(-0.770327\pi\)
0.660541 + 0.750790i \(0.270327\pi\)
\(332\) 0 0
\(333\) −0.137582 + 0.137582i −0.00753943 + 0.00753943i
\(334\) 0 0
\(335\) 10.4252i 0.569591i
\(336\) 0 0
\(337\) −0.640281 0.640281i −0.0348783 0.0348783i 0.689453 0.724331i \(-0.257851\pi\)
−0.724331 + 0.689453i \(0.757851\pi\)
\(338\) 0 0
\(339\) 3.98520i 0.216447i
\(340\) 0 0
\(341\) 2.08934i 0.113144i
\(342\) 0 0
\(343\) 16.1789i 0.873577i
\(344\) 0 0
\(345\) −14.9339 14.9339i −0.804017 0.804017i
\(346\) 0 0
\(347\) −5.34958 −0.287181 −0.143590 0.989637i \(-0.545865\pi\)
−0.143590 + 0.989637i \(0.545865\pi\)
\(348\) 0 0
\(349\) −26.0658 −1.39527 −0.697634 0.716454i \(-0.745764\pi\)
−0.697634 + 0.716454i \(0.745764\pi\)
\(350\) 0 0
\(351\) −13.8998 13.8998i −0.741917 0.741917i
\(352\) 0 0
\(353\) 17.1153i 0.910956i 0.890247 + 0.455478i \(0.150532\pi\)
−0.890247 + 0.455478i \(0.849468\pi\)
\(354\) 0 0
\(355\) 52.1689i 2.76884i
\(356\) 0 0
\(357\) 6.81289i 0.360576i
\(358\) 0 0
\(359\) −13.3661 13.3661i −0.705434 0.705434i 0.260138 0.965572i \(-0.416232\pi\)
−0.965572 + 0.260138i \(0.916232\pi\)
\(360\) 0 0
\(361\) 17.8453i 0.939225i
\(362\) 0 0
\(363\) 14.2901 14.2901i 0.750033 0.750033i
\(364\) 0 0
\(365\) −30.4485 + 30.4485i −1.59375 + 1.59375i
\(366\) 0 0
\(367\) −6.30900 6.30900i −0.329327 0.329327i 0.523003 0.852331i \(-0.324812\pi\)
−0.852331 + 0.523003i \(0.824812\pi\)
\(368\) 0 0
\(369\) −0.186918 + 0.186918i −0.00973056 + 0.00973056i
\(370\) 0 0
\(371\) 10.0263i 0.520540i
\(372\) 0 0
\(373\) −4.19470 −0.217193 −0.108597 0.994086i \(-0.534636\pi\)
−0.108597 + 0.994086i \(0.534636\pi\)
\(374\) 0 0
\(375\) −14.8419 + 14.8419i −0.766430 + 0.766430i
\(376\) 0 0
\(377\) 21.9582 + 2.62443i 1.13091 + 0.135165i
\(378\) 0 0
\(379\) −3.31860 3.31860i −0.170465 0.170465i 0.616719 0.787184i \(-0.288462\pi\)
−0.787184 + 0.616719i \(0.788462\pi\)
\(380\) 0 0
\(381\) 28.7720i 1.47403i
\(382\) 0 0
\(383\) 0.00735121 0.000375629 0.000187815 1.00000i \(-0.499940\pi\)
0.000187815 1.00000i \(0.499940\pi\)
\(384\) 0 0
\(385\) 0.759448 + 0.759448i 0.0387051 + 0.0387051i
\(386\) 0 0
\(387\) −3.03402 + 3.03402i −0.154228 + 0.154228i
\(388\) 0 0
\(389\) −20.7929 20.7929i −1.05424 1.05424i −0.998442 0.0557978i \(-0.982230\pi\)
−0.0557978 0.998442i \(-0.517770\pi\)
\(390\) 0 0
\(391\) 6.24333 + 6.24333i 0.315739 + 0.315739i
\(392\) 0 0
\(393\) −8.82345 −0.445084
\(394\) 0 0
\(395\) −29.1200 + 29.1200i −1.46519 + 1.46519i
\(396\) 0 0
\(397\) 10.8751 0.545807 0.272904 0.962041i \(-0.412016\pi\)
0.272904 + 0.962041i \(0.412016\pi\)
\(398\) 0 0
\(399\) 2.61770 0.131049
\(400\) 0 0
\(401\) 36.1804 1.80677 0.903383 0.428835i \(-0.141076\pi\)
0.903383 + 0.428835i \(0.141076\pi\)
\(402\) 0 0
\(403\) 27.0239 27.0239i 1.34615 1.34615i
\(404\) 0 0
\(405\) 36.4420i 1.81082i
\(406\) 0 0
\(407\) 0.107473i 0.00532723i
\(408\) 0 0
\(409\) 11.4711 11.4711i 0.567207 0.567207i −0.364138 0.931345i \(-0.618636\pi\)
0.931345 + 0.364138i \(0.118636\pi\)
\(410\) 0 0
\(411\) −28.9462 −1.42781
\(412\) 0 0
\(413\) 13.2434 0.651664
\(414\) 0 0
\(415\) −54.4327 −2.67199
\(416\) 0 0
\(417\) −29.6155 + 29.6155i −1.45028 + 1.45028i
\(418\) 0 0
\(419\) −19.2783 −0.941805 −0.470903 0.882185i \(-0.656072\pi\)
−0.470903 + 0.882185i \(0.656072\pi\)
\(420\) 0 0
\(421\) 11.3169 + 11.3169i 0.551553 + 0.551553i 0.926889 0.375336i \(-0.122473\pi\)
−0.375336 + 0.926889i \(0.622473\pi\)
\(422\) 0 0
\(423\) −1.67230 1.67230i −0.0813101 0.0813101i
\(424\) 0 0
\(425\) 16.0927 16.0927i 0.780613 0.780613i
\(426\) 0 0
\(427\) −4.64425 4.64425i −0.224751 0.224751i
\(428\) 0 0
\(429\) −1.70158 −0.0821532
\(430\) 0 0
\(431\) 9.42869i 0.454164i 0.973876 + 0.227082i \(0.0729185\pi\)
−0.973876 + 0.227082i \(0.927081\pi\)
\(432\) 0 0
\(433\) 1.81117 + 1.81117i 0.0870394 + 0.0870394i 0.749286 0.662247i \(-0.230397\pi\)
−0.662247 + 0.749286i \(0.730397\pi\)
\(434\) 0 0
\(435\) 22.2706 + 28.3168i 1.06779 + 1.35769i
\(436\) 0 0
\(437\) 2.39886 2.39886i 0.114753 0.114753i
\(438\) 0 0
\(439\) −14.8886 −0.710594 −0.355297 0.934753i \(-0.615620\pi\)
−0.355297 + 0.934753i \(0.615620\pi\)
\(440\) 0 0
\(441\) 2.13706i 0.101765i
\(442\) 0 0
\(443\) −3.03003 + 3.03003i −0.143961 + 0.143961i −0.775414 0.631453i \(-0.782459\pi\)
0.631453 + 0.775414i \(0.282459\pi\)
\(444\) 0 0
\(445\) 27.8401 + 27.8401i 1.31975 + 1.31975i
\(446\) 0 0
\(447\) 25.3267 25.3267i 1.19791 1.19791i
\(448\) 0 0
\(449\) −8.18122 + 8.18122i −0.386095 + 0.386095i −0.873292 0.487197i \(-0.838019\pi\)
0.487197 + 0.873292i \(0.338019\pi\)
\(450\) 0 0
\(451\) 0.146012i 0.00687545i
\(452\) 0 0
\(453\) −17.9687 17.9687i −0.844242 0.844242i
\(454\) 0 0
\(455\) 19.6456i 0.921002i
\(456\) 0 0
\(457\) 8.85533i 0.414235i −0.978316 0.207117i \(-0.933592\pi\)
0.978316 0.207117i \(-0.0664082\pi\)
\(458\) 0 0
\(459\) 13.3874i 0.624870i
\(460\) 0 0
\(461\) −5.48110 5.48110i −0.255280 0.255280i 0.567851 0.823131i \(-0.307775\pi\)
−0.823131 + 0.567851i \(0.807775\pi\)
\(462\) 0 0
\(463\) 12.0188 0.558561 0.279280 0.960210i \(-0.409904\pi\)
0.279280 + 0.960210i \(0.409904\pi\)
\(464\) 0 0
\(465\) 62.2577 2.88713
\(466\) 0 0
\(467\) −24.1723 24.1723i −1.11856 1.11856i −0.991953 0.126609i \(-0.959591\pi\)
−0.126609 0.991953i \(-0.540409\pi\)
\(468\) 0 0
\(469\) 3.79628i 0.175296i
\(470\) 0 0
\(471\) 43.8957i 2.02261i
\(472\) 0 0
\(473\) 2.37004i 0.108975i
\(474\) 0 0
\(475\) −6.18327 6.18327i −0.283708 0.283708i
\(476\) 0 0
\(477\) 3.08753i 0.141368i
\(478\) 0 0
\(479\) −1.58667 + 1.58667i −0.0724966 + 0.0724966i −0.742425 0.669929i \(-0.766325\pi\)
0.669929 + 0.742425i \(0.266325\pi\)
\(480\) 0 0
\(481\) 1.39007 1.39007i 0.0633818 0.0633818i
\(482\) 0 0
\(483\) −5.43811 5.43811i −0.247442 0.247442i
\(484\) 0 0
\(485\) 11.4537 11.4537i 0.520084 0.520084i
\(486\) 0 0
\(487\) 24.3457i 1.10321i 0.834105 + 0.551605i \(0.185985\pi\)
−0.834105 + 0.551605i \(0.814015\pi\)
\(488\) 0 0
\(489\) 13.0743 0.591240
\(490\) 0 0
\(491\) −16.2302 + 16.2302i −0.732457 + 0.732457i −0.971106 0.238649i \(-0.923295\pi\)
0.238649 + 0.971106i \(0.423295\pi\)
\(492\) 0 0
\(493\) −9.31051 11.8382i −0.419324 0.533166i
\(494\) 0 0
\(495\) −0.233867 0.233867i −0.0105115 0.0105115i
\(496\) 0 0
\(497\) 18.9970i 0.852132i
\(498\) 0 0
\(499\) −32.7378 −1.46554 −0.732772 0.680474i \(-0.761774\pi\)
−0.732772 + 0.680474i \(0.761774\pi\)
\(500\) 0 0
\(501\) −2.26352 2.26352i −0.101126 0.101126i
\(502\) 0 0
\(503\) −19.4612 + 19.4612i −0.867732 + 0.867732i −0.992221 0.124489i \(-0.960271\pi\)
0.124489 + 0.992221i \(0.460271\pi\)
\(504\) 0 0
\(505\) −34.9975 34.9975i −1.55737 1.55737i
\(506\) 0 0
\(507\) −5.04256 5.04256i −0.223948 0.223948i
\(508\) 0 0
\(509\) −13.4157 −0.594642 −0.297321 0.954778i \(-0.596093\pi\)
−0.297321 + 0.954778i \(0.596093\pi\)
\(510\) 0 0
\(511\) −11.0876 + 11.0876i −0.490488 + 0.490488i
\(512\) 0 0
\(513\) 5.14380 0.227104
\(514\) 0 0
\(515\) 58.5344 2.57933
\(516\) 0 0
\(517\) 1.30633 0.0574523
\(518\) 0 0
\(519\) 28.0305 28.0305i 1.23040 1.23040i
\(520\) 0 0
\(521\) 40.9342i 1.79336i 0.442681 + 0.896679i \(0.354027\pi\)
−0.442681 + 0.896679i \(0.645973\pi\)
\(522\) 0 0
\(523\) 24.5240i 1.07236i −0.844104 0.536179i \(-0.819867\pi\)
0.844104 0.536179i \(-0.180133\pi\)
\(524\) 0 0
\(525\) −14.0172 + 14.0172i −0.611762 + 0.611762i
\(526\) 0 0
\(527\) −26.0276 −1.13378
\(528\) 0 0
\(529\) 13.0330 0.566654
\(530\) 0 0
\(531\) −4.07821 −0.176979
\(532\) 0 0
\(533\) 1.88855 1.88855i 0.0818020 0.0818020i
\(534\) 0 0
\(535\) 6.04200 0.261219
\(536\) 0 0
\(537\) 11.4395 + 11.4395i 0.493650 + 0.493650i
\(538\) 0 0
\(539\) −0.834691 0.834691i −0.0359527 0.0359527i
\(540\) 0 0
\(541\) −18.5956 + 18.5956i −0.799486 + 0.799486i −0.983014 0.183528i \(-0.941248\pi\)
0.183528 + 0.983014i \(0.441248\pi\)
\(542\) 0 0
\(543\) −7.54605 7.54605i −0.323832 0.323832i
\(544\) 0 0
\(545\) 8.34226 0.357343
\(546\) 0 0
\(547\) 34.1340i 1.45946i −0.683734 0.729731i \(-0.739645\pi\)
0.683734 0.729731i \(-0.260355\pi\)
\(548\) 0 0
\(549\) 1.43016 + 1.43016i 0.0610379 + 0.0610379i
\(550\) 0 0
\(551\) −4.54856 + 3.57735i −0.193775 + 0.152400i
\(552\) 0 0
\(553\) −10.6039 + 10.6039i −0.450923 + 0.450923i
\(554\) 0 0
\(555\) 3.20245 0.135936
\(556\) 0 0
\(557\) 11.5591i 0.489775i −0.969551 0.244888i \(-0.921249\pi\)
0.969551 0.244888i \(-0.0787511\pi\)
\(558\) 0 0
\(559\) 30.6545 30.6545i 1.29655 1.29655i
\(560\) 0 0
\(561\) 0.819427 + 0.819427i 0.0345962 + 0.0345962i
\(562\) 0 0
\(563\) 14.8665 14.8665i 0.626546 0.626546i −0.320651 0.947197i \(-0.603902\pi\)
0.947197 + 0.320651i \(0.103902\pi\)
\(564\) 0 0
\(565\) −5.53404 + 5.53404i −0.232819 + 0.232819i
\(566\) 0 0
\(567\) 13.2701i 0.557294i
\(568\) 0 0
\(569\) 13.7956 + 13.7956i 0.578340 + 0.578340i 0.934446 0.356106i \(-0.115896\pi\)
−0.356106 + 0.934446i \(0.615896\pi\)
\(570\) 0 0
\(571\) 27.4810i 1.15004i −0.818138 0.575022i \(-0.804993\pi\)
0.818138 0.575022i \(-0.195007\pi\)
\(572\) 0 0
\(573\) 33.7700i 1.41076i
\(574\) 0 0
\(575\) 25.6907i 1.07138i
\(576\) 0 0
\(577\) −18.3907 18.3907i −0.765617 0.765617i 0.211715 0.977331i \(-0.432095\pi\)
−0.977331 + 0.211715i \(0.932095\pi\)
\(578\) 0 0
\(579\) 13.1871 0.548038
\(580\) 0 0
\(581\) −19.8213 −0.822327
\(582\) 0 0
\(583\) −1.20592 1.20592i −0.0499443 0.0499443i
\(584\) 0 0
\(585\) 6.04974i 0.250126i
\(586\) 0 0
\(587\) 16.6544i 0.687401i 0.939079 + 0.343701i \(0.111681\pi\)
−0.939079 + 0.343701i \(0.888319\pi\)
\(588\) 0 0
\(589\) 10.0005i 0.412064i
\(590\) 0 0
\(591\) −14.0756 14.0756i −0.578993 0.578993i
\(592\) 0 0
\(593\) 8.82050i 0.362215i −0.983463 0.181107i \(-0.942032\pi\)
0.983463 0.181107i \(-0.0579681\pi\)
\(594\) 0 0
\(595\) 9.46070 9.46070i 0.387851 0.387851i
\(596\) 0 0
\(597\) −3.69014 + 3.69014i −0.151027 + 0.151027i
\(598\) 0 0
\(599\) 1.93353 + 1.93353i 0.0790018 + 0.0790018i 0.745504 0.666502i \(-0.232209\pi\)
−0.666502 + 0.745504i \(0.732209\pi\)
\(600\) 0 0
\(601\) −31.8434 + 31.8434i −1.29892 + 1.29892i −0.369814 + 0.929106i \(0.620579\pi\)
−0.929106 + 0.369814i \(0.879421\pi\)
\(602\) 0 0
\(603\) 1.16904i 0.0476069i
\(604\) 0 0
\(605\) −39.6877 −1.61353
\(606\) 0 0
\(607\) −24.7745 + 24.7745i −1.00557 + 1.00557i −0.00558134 + 0.999984i \(0.501777\pi\)
−0.999984 + 0.00558134i \(0.998223\pi\)
\(608\) 0 0
\(609\) 8.10971 + 10.3114i 0.328622 + 0.417838i
\(610\) 0 0
\(611\) 16.8963 + 16.8963i 0.683550 + 0.683550i
\(612\) 0 0
\(613\) 9.51409i 0.384270i 0.981368 + 0.192135i \(0.0615412\pi\)
−0.981368 + 0.192135i \(0.938459\pi\)
\(614\) 0 0
\(615\) 4.35084 0.175443
\(616\) 0 0
\(617\) −7.44325 7.44325i −0.299654 0.299654i 0.541224 0.840878i \(-0.317961\pi\)
−0.840878 + 0.541224i \(0.817961\pi\)
\(618\) 0 0
\(619\) −28.3133 + 28.3133i −1.13801 + 1.13801i −0.149199 + 0.988807i \(0.547669\pi\)
−0.988807 + 0.149199i \(0.952331\pi\)
\(620\) 0 0
\(621\) −10.6859 10.6859i −0.428812 0.428812i
\(622\) 0 0
\(623\) 10.1378 + 10.1378i 0.406162 + 0.406162i
\(624\) 0 0
\(625\) 0.532326 0.0212931
\(626\) 0 0
\(627\) 0.314846 0.314846i 0.0125737 0.0125737i
\(628\) 0 0
\(629\) −1.33883 −0.0533825
\(630\) 0 0
\(631\) 37.7016 1.50088 0.750438 0.660941i \(-0.229843\pi\)
0.750438 + 0.660941i \(0.229843\pi\)
\(632\) 0 0
\(633\) −4.15793 −0.165263
\(634\) 0 0
\(635\) 39.9541 39.9541i 1.58553 1.58553i
\(636\) 0 0
\(637\) 21.5921i 0.855508i
\(638\) 0 0
\(639\) 5.84999i 0.231422i
\(640\) 0 0
\(641\) −7.01502 + 7.01502i −0.277077 + 0.277077i −0.831941 0.554864i \(-0.812770\pi\)
0.554864 + 0.831941i \(0.312770\pi\)
\(642\) 0 0
\(643\) 49.0251 1.93336 0.966680 0.255989i \(-0.0824011\pi\)
0.966680 + 0.255989i \(0.0824011\pi\)
\(644\) 0 0
\(645\) 70.6220 2.78074
\(646\) 0 0
\(647\) −38.0184 −1.49466 −0.747329 0.664454i \(-0.768664\pi\)
−0.747329 + 0.664454i \(0.768664\pi\)
\(648\) 0 0
\(649\) 1.59286 1.59286i 0.0625252 0.0625252i
\(650\) 0 0
\(651\) 22.6708 0.888537
\(652\) 0 0
\(653\) −6.33630 6.33630i −0.247959 0.247959i 0.572174 0.820132i \(-0.306100\pi\)
−0.820132 + 0.572174i \(0.806100\pi\)
\(654\) 0 0
\(655\) 12.2527 + 12.2527i 0.478751 + 0.478751i
\(656\) 0 0
\(657\) 3.41436 3.41436i 0.133207 0.133207i
\(658\) 0 0
\(659\) 27.2704 + 27.2704i 1.06230 + 1.06230i 0.997925 + 0.0643794i \(0.0205068\pi\)
0.0643794 + 0.997925i \(0.479493\pi\)
\(660\) 0 0
\(661\) 12.7239 0.494901 0.247451 0.968900i \(-0.420407\pi\)
0.247451 + 0.968900i \(0.420407\pi\)
\(662\) 0 0
\(663\) 21.1972i 0.823231i
\(664\) 0 0
\(665\) −3.63506 3.63506i −0.140962 0.140962i
\(666\) 0 0
\(667\) 16.8811 + 2.01762i 0.653638 + 0.0781225i
\(668\) 0 0
\(669\) 24.5867 24.5867i 0.950576 0.950576i
\(670\) 0 0
\(671\) −1.11718 −0.0431284
\(672\) 0 0
\(673\) 27.2188i 1.04921i −0.851346 0.524605i \(-0.824213\pi\)
0.851346 0.524605i \(-0.175787\pi\)
\(674\) 0 0
\(675\) −27.5440 + 27.5440i −1.06017 + 1.06017i
\(676\) 0 0
\(677\) −21.2693 21.2693i −0.817444 0.817444i 0.168293 0.985737i \(-0.446175\pi\)
−0.985737 + 0.168293i \(0.946175\pi\)
\(678\) 0 0
\(679\) 4.17078 4.17078i 0.160060 0.160060i
\(680\) 0 0
\(681\) −12.1396 + 12.1396i −0.465190 + 0.465190i
\(682\) 0 0
\(683\) 47.8073i 1.82929i −0.404254 0.914647i \(-0.632469\pi\)
0.404254 0.914647i \(-0.367531\pi\)
\(684\) 0 0
\(685\) 40.1961 + 40.1961i 1.53581 + 1.53581i
\(686\) 0 0
\(687\) 2.17715i 0.0830633i
\(688\) 0 0
\(689\) 31.1952i 1.18844i
\(690\) 0 0
\(691\) 13.4998i 0.513556i −0.966470 0.256778i \(-0.917339\pi\)
0.966470 0.256778i \(-0.0826609\pi\)
\(692\) 0 0
\(693\) −0.0851612 0.0851612i −0.00323501 0.00323501i
\(694\) 0 0
\(695\) 82.2510 3.11996
\(696\) 0 0
\(697\) −1.81892 −0.0688967
\(698\) 0 0
\(699\) 7.77892 + 7.77892i 0.294226 + 0.294226i
\(700\) 0 0
\(701\) 27.1986i 1.02728i 0.858006 + 0.513639i \(0.171703\pi\)
−0.858006 + 0.513639i \(0.828297\pi\)
\(702\) 0 0
\(703\) 0.514413i 0.0194015i
\(704\) 0 0
\(705\) 38.9257i 1.46603i
\(706\) 0 0
\(707\) −12.7441 12.7441i −0.479292 0.479292i
\(708\) 0 0
\(709\) 6.89109i 0.258800i −0.991592 0.129400i \(-0.958695\pi\)
0.991592 0.129400i \(-0.0413052\pi\)
\(710\) 0 0
\(711\) 3.26539 3.26539i 0.122462 0.122462i
\(712\) 0 0
\(713\) 20.7755 20.7755i 0.778047 0.778047i
\(714\) 0 0
\(715\) 2.36290 + 2.36290i 0.0883674 + 0.0883674i
\(716\) 0 0
\(717\) −0.502069 + 0.502069i −0.0187501 + 0.0187501i
\(718\) 0 0
\(719\) 20.7114i 0.772406i 0.922414 + 0.386203i \(0.126214\pi\)
−0.922414 + 0.386203i \(0.873786\pi\)
\(720\) 0 0
\(721\) 21.3150 0.793810
\(722\) 0 0
\(723\) −18.7740 + 18.7740i −0.698211 + 0.698211i
\(724\) 0 0
\(725\) 5.20059 43.5125i 0.193145 1.61601i
\(726\) 0 0
\(727\) −14.3286 14.3286i −0.531417 0.531417i 0.389577 0.920994i \(-0.372621\pi\)
−0.920994 + 0.389577i \(0.872621\pi\)
\(728\) 0 0
\(729\) 22.4180i 0.830295i
\(730\) 0 0
\(731\) −29.5244 −1.09200
\(732\) 0 0
\(733\) −23.9466 23.9466i −0.884488 0.884488i 0.109499 0.993987i \(-0.465075\pi\)
−0.993987 + 0.109499i \(0.965075\pi\)
\(734\) 0 0
\(735\) 24.8719 24.8719i 0.917415 0.917415i
\(736\) 0 0
\(737\) −0.456601 0.456601i −0.0168191 0.0168191i
\(738\) 0 0
\(739\) −31.5715 31.5715i −1.16138 1.16138i −0.984174 0.177202i \(-0.943295\pi\)
−0.177202 0.984174i \(-0.556705\pi\)
\(740\) 0 0
\(741\) 8.14454 0.299197
\(742\) 0 0
\(743\) 21.0790 21.0790i 0.773314 0.773314i −0.205371 0.978684i \(-0.565840\pi\)
0.978684 + 0.205371i \(0.0658400\pi\)
\(744\) 0 0
\(745\) −70.3398 −2.57705
\(746\) 0 0
\(747\) 6.10384 0.223328
\(748\) 0 0
\(749\) 2.20016 0.0803920
\(750\) 0 0
\(751\) −18.0100 + 18.0100i −0.657196 + 0.657196i −0.954716 0.297520i \(-0.903841\pi\)
0.297520 + 0.954716i \(0.403841\pi\)
\(752\) 0 0
\(753\) 6.20277i 0.226041i
\(754\) 0 0
\(755\) 49.9043i 1.81621i
\(756\) 0 0
\(757\) 20.7974 20.7974i 0.755895 0.755895i −0.219677 0.975573i \(-0.570500\pi\)
0.975573 + 0.219677i \(0.0705005\pi\)
\(758\) 0 0
\(759\) −1.30815 −0.0474827
\(760\) 0 0
\(761\) 5.52228 0.200183 0.100091 0.994978i \(-0.468087\pi\)
0.100091 + 0.994978i \(0.468087\pi\)
\(762\) 0 0
\(763\) 3.03778 0.109975
\(764\) 0 0
\(765\) −2.91336 + 2.91336i −0.105333 + 0.105333i
\(766\) 0 0
\(767\) 41.2046 1.48781
\(768\) 0 0
\(769\) −33.3883 33.3883i −1.20401 1.20401i −0.972936 0.231076i \(-0.925776\pi\)
−0.231076 0.972936i \(-0.574224\pi\)
\(770\) 0 0
\(771\) −1.71668 1.71668i −0.0618248 0.0618248i
\(772\) 0 0
\(773\) −17.2207 + 17.2207i −0.619384 + 0.619384i −0.945373 0.325989i \(-0.894303\pi\)
0.325989 + 0.945373i \(0.394303\pi\)
\(774\) 0 0
\(775\) −53.5507 53.5507i −1.92360 1.92360i
\(776\) 0 0
\(777\) 1.16615 0.0418355
\(778\) 0 0
\(779\) 0.698880i 0.0250400i
\(780\) 0 0
\(781\) 2.28488 + 2.28488i 0.0817595 + 0.0817595i
\(782\) 0 0
\(783\) 15.9357 + 20.2620i 0.569494 + 0.724104i
\(784\) 0 0
\(785\) 60.9556 60.9556i 2.17560 2.17560i
\(786\) 0 0
\(787\) 14.9600 0.533266 0.266633 0.963798i \(-0.414089\pi\)
0.266633 + 0.963798i \(0.414089\pi\)
\(788\) 0 0
\(789\) 40.3384i 1.43609i
\(790\) 0 0
\(791\) −2.01519 + 2.01519i −0.0716518 + 0.0716518i
\(792\) 0 0
\(793\) −14.4498 14.4498i −0.513128 0.513128i
\(794\) 0 0
\(795\) 35.9339 35.9339i 1.27444 1.27444i
\(796\) 0 0
\(797\) 24.8899 24.8899i 0.881647 0.881647i −0.112055 0.993702i \(-0.535743\pi\)
0.993702 + 0.112055i \(0.0357433\pi\)
\(798\) 0 0
\(799\) 16.2734i 0.575711i
\(800\) 0 0
\(801\) −3.12186 3.12186i −0.110306 0.110306i
\(802\) 0 0
\(803\) 2.66715i 0.0941217i
\(804\) 0 0
\(805\) 15.1032i 0.532319i
\(806\) 0 0
\(807\) 37.2018i 1.30957i
\(808\) 0 0
\(809\) −2.76934 2.76934i −0.0973650 0.0973650i 0.656746 0.754111i \(-0.271932\pi\)
−0.754111 + 0.656746i \(0.771932\pi\)
\(810\) 0 0
\(811\) −48.0311 −1.68660 −0.843299 0.537444i \(-0.819390\pi\)
−0.843299 + 0.537444i \(0.819390\pi\)
\(812\) 0 0
\(813\) −17.3340 −0.607929
\(814\) 0 0
\(815\) −18.1556 18.1556i −0.635963 0.635963i
\(816\) 0 0
\(817\) 11.3441i 0.396879i
\(818\) 0 0
\(819\) 2.20298i 0.0769782i
\(820\) 0 0
\(821\) 31.3808i 1.09520i −0.836742 0.547598i \(-0.815542\pi\)
0.836742 0.547598i \(-0.184458\pi\)
\(822\) 0 0
\(823\) −14.5737 14.5737i −0.508008 0.508008i 0.405907 0.913915i \(-0.366956\pi\)
−0.913915 + 0.405907i \(0.866956\pi\)
\(824\) 0 0
\(825\) 3.37187i 0.117393i
\(826\) 0 0
\(827\) −0.898564 + 0.898564i −0.0312461 + 0.0312461i −0.722557 0.691311i \(-0.757033\pi\)
0.691311 + 0.722557i \(0.257033\pi\)
\(828\) 0 0
\(829\) −20.0381 + 20.0381i −0.695953 + 0.695953i −0.963535 0.267582i \(-0.913775\pi\)
0.267582 + 0.963535i \(0.413775\pi\)
\(830\) 0 0
\(831\) −22.3597 22.3597i −0.775650 0.775650i
\(832\) 0 0
\(833\) −10.3980 + 10.3980i −0.360270 + 0.360270i
\(834\) 0 0
\(835\) 6.28645i 0.217552i
\(836\) 0 0
\(837\) 44.5483 1.53981
\(838\) 0 0
\(839\) 17.8338 17.8338i 0.615691 0.615691i −0.328732 0.944423i \(-0.606621\pi\)
0.944423 + 0.328732i \(0.106621\pi\)
\(840\) 0 0
\(841\) −28.1831 6.83450i −0.971833 0.235672i
\(842\) 0 0
\(843\) 1.22631 + 1.22631i 0.0422362 + 0.0422362i
\(844\) 0 0
\(845\) 14.0047i 0.481776i
\(846\) 0 0
\(847\) −14.4520 −0.496578
\(848\) 0 0
\(849\) 25.7619 + 25.7619i 0.884146 + 0.884146i
\(850\) 0 0
\(851\) 1.06866 1.06866i 0.0366333 0.0366333i
\(852\) 0 0
\(853\) 18.7598 + 18.7598i 0.642323 + 0.642323i 0.951126 0.308803i \(-0.0999284\pi\)
−0.308803 + 0.951126i \(0.599928\pi\)
\(854\) 0 0
\(855\) 1.11939 + 1.11939i 0.0382824 + 0.0382824i
\(856\) 0 0
\(857\) −26.2669 −0.897260 −0.448630 0.893718i \(-0.648088\pi\)
−0.448630 + 0.893718i \(0.648088\pi\)
\(858\) 0 0
\(859\) 5.92377 5.92377i 0.202117 0.202117i −0.598790 0.800906i \(-0.704351\pi\)
0.800906 + 0.598790i \(0.204351\pi\)
\(860\) 0 0
\(861\) 1.58433 0.0539939
\(862\) 0 0
\(863\) 2.67772 0.0911506 0.0455753 0.998961i \(-0.485488\pi\)
0.0455753 + 0.998961i \(0.485488\pi\)
\(864\) 0 0
\(865\) −77.8491 −2.64695
\(866\) 0 0
\(867\) −11.9784 + 11.9784i −0.406808 + 0.406808i
\(868\) 0 0
\(869\) 2.55078i 0.0865294i
\(870\) 0 0
\(871\) 11.8115i 0.400218i
\(872\) 0 0
\(873\) −1.28436 + 1.28436i −0.0434691 + 0.0434691i
\(874\) 0 0
\(875\) 15.0101 0.507434
\(876\) 0 0
\(877\) 45.5570 1.53835 0.769176 0.639037i \(-0.220667\pi\)
0.769176 + 0.639037i \(0.220667\pi\)
\(878\) 0 0
\(879\) −34.4332 −1.16140
\(880\) 0 0
\(881\) −18.6854 + 18.6854i −0.629528 + 0.629528i −0.947949 0.318421i \(-0.896847\pi\)
0.318421 + 0.947949i \(0.396847\pi\)
\(882\) 0 0
\(883\) 29.3384 0.987315 0.493658 0.869656i \(-0.335660\pi\)
0.493658 + 0.869656i \(0.335660\pi\)
\(884\) 0 0
\(885\) 47.4637 + 47.4637i 1.59547 + 1.59547i
\(886\) 0 0
\(887\) 4.71298 + 4.71298i 0.158246 + 0.158246i 0.781789 0.623543i \(-0.214307\pi\)
−0.623543 + 0.781789i \(0.714307\pi\)
\(888\) 0 0
\(889\) 14.5490 14.5490i 0.487959 0.487959i
\(890\) 0 0
\(891\) −1.59608 1.59608i −0.0534707 0.0534707i
\(892\) 0 0
\(893\) −6.25268 −0.209238
\(894\) 0 0
\(895\) 31.7708i 1.06198i
\(896\) 0 0
\(897\) −16.9198 16.9198i −0.564935 0.564935i
\(898\) 0 0
\(899\) −39.3931 + 30.9819i −1.31383 + 1.03330i
\(900\) 0 0
\(901\) −15.0226 + 15.0226i −0.500476 + 0.500476i
\(902\) 0 0
\(903\) 25.7166 0.855794
\(904\) 0 0
\(905\) 20.9576i 0.696654i
\(906\) 0 0
\(907\) −22.1276 + 22.1276i −0.734736 + 0.734736i −0.971554 0.236818i \(-0.923895\pi\)
0.236818 + 0.971554i \(0.423895\pi\)
\(908\) 0 0
\(909\) 3.92447 + 3.92447i 0.130166 + 0.130166i
\(910\) 0 0
\(911\) 6.59269 6.59269i 0.218425 0.218425i −0.589409 0.807835i \(-0.700639\pi\)
0.807835 + 0.589409i \(0.200639\pi\)
\(912\) 0 0
\(913\) −2.38403 + 2.38403i −0.0788998 + 0.0788998i
\(914\) 0 0
\(915\) 33.2896i 1.10052i
\(916\) 0 0
\(917\) 4.46173 + 4.46173i 0.147339 + 0.147339i
\(918\) 0 0
\(919\) 14.3930i 0.474782i 0.971414 + 0.237391i \(0.0762923\pi\)
−0.971414 + 0.237391i \(0.923708\pi\)
\(920\) 0 0
\(921\) 5.67430i 0.186975i
\(922\) 0 0
\(923\) 59.1061i 1.94550i
\(924\) 0 0
\(925\) −2.75457 2.75457i −0.0905698 0.0905698i
\(926\) 0 0
\(927\) −6.56379 −0.215583
\(928\) 0 0
\(929\) −8.76445 −0.287552 −0.143776 0.989610i \(-0.545924\pi\)
−0.143776 + 0.989610i \(0.545924\pi\)
\(930\) 0 0
\(931\) 3.99521 + 3.99521i 0.130938 + 0.130938i
\(932\) 0 0
\(933\) 46.6239i 1.52640i
\(934\) 0 0
\(935\) 2.27579i 0.0744263i
\(936\) 0 0
\(937\) 11.3979i 0.372352i 0.982516 + 0.186176i \(0.0596095\pi\)
−0.982516 + 0.186176i \(0.940390\pi\)
\(938\) 0 0
\(939\) 34.3167 + 34.3167i 1.11988 + 1.11988i
\(940\) 0 0
\(941\) 44.2177i 1.44146i 0.693218 + 0.720728i \(0.256192\pi\)
−0.693218 + 0.720728i \(0.743808\pi\)
\(942\) 0 0
\(943\) 1.45188 1.45188i 0.0472798 0.0472798i
\(944\) 0 0
\(945\) −16.1927 + 16.1927i −0.526749 + 0.526749i
\(946\) 0 0
\(947\) −21.6876 21.6876i −0.704754 0.704754i 0.260673 0.965427i \(-0.416055\pi\)
−0.965427 + 0.260673i \(0.916055\pi\)
\(948\) 0 0
\(949\) −34.4973 + 34.4973i −1.11983 + 1.11983i
\(950\) 0 0
\(951\) 45.9167i 1.48895i
\(952\) 0 0
\(953\) 44.8070 1.45144 0.725720 0.687990i \(-0.241507\pi\)
0.725720 + 0.687990i \(0.241507\pi\)
\(954\) 0 0
\(955\) −46.8946 + 46.8946i −1.51747 + 1.51747i
\(956\) 0 0
\(957\) 2.21561 + 0.264809i 0.0716207 + 0.00856006i
\(958\) 0 0
\(959\) 14.6372 + 14.6372i 0.472658 + 0.472658i
\(960\) 0 0
\(961\) 55.6102i 1.79388i
\(962\) 0 0
\(963\) −0.677524 −0.0218329
\(964\) 0 0
\(965\) −18.3123 18.3123i −0.589493 0.589493i
\(966\) 0 0
\(967\) −7.39928 + 7.39928i −0.237945 + 0.237945i −0.815999 0.578054i \(-0.803812\pi\)
0.578054 + 0.815999i \(0.303812\pi\)
\(968\) 0 0
\(969\) −3.92214 3.92214i −0.125997 0.125997i
\(970\) 0 0
\(971\) 11.1100 + 11.1100i 0.356538 + 0.356538i 0.862535 0.505997i \(-0.168875\pi\)
−0.505997 + 0.862535i \(0.668875\pi\)
\(972\) 0 0
\(973\) 29.9512 0.960191
\(974\) 0 0
\(975\) −43.6123 + 43.6123i −1.39671 + 1.39671i
\(976\) 0 0
\(977\) 12.0170 0.384458 0.192229 0.981350i \(-0.438428\pi\)
0.192229 + 0.981350i \(0.438428\pi\)
\(978\) 0 0
\(979\) 2.43867 0.0779401
\(980\) 0 0
\(981\) −0.935465 −0.0298671
\(982\) 0 0
\(983\) −5.99283 + 5.99283i −0.191142 + 0.191142i −0.796189 0.605048i \(-0.793154\pi\)
0.605048 + 0.796189i \(0.293154\pi\)
\(984\) 0 0
\(985\) 39.0921i 1.24558i
\(986\) 0 0
\(987\) 14.1746i 0.451181i
\(988\) 0 0
\(989\) 23.5667 23.5667i 0.749376 0.749376i
\(990\) 0 0
\(991\) 36.8496 1.17057 0.585283 0.810829i \(-0.300983\pi\)
0.585283 + 0.810829i \(0.300983\pi\)
\(992\) 0 0
\(993\) −4.28574 −0.136004
\(994\) 0 0
\(995\) 10.2486 0.324902
\(996\) 0 0
\(997\) 26.0557 26.0557i 0.825194 0.825194i −0.161654 0.986848i \(-0.551683\pi\)
0.986848 + 0.161654i \(0.0516828\pi\)
\(998\) 0 0
\(999\) 2.29150 0.0724999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.k.c.191.7 yes 20
4.3 odd 2 inner 464.2.k.c.191.4 20
29.12 odd 4 inner 464.2.k.c.447.4 yes 20
116.99 even 4 inner 464.2.k.c.447.7 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.2.k.c.191.4 20 4.3 odd 2 inner
464.2.k.c.191.7 yes 20 1.1 even 1 trivial
464.2.k.c.447.4 yes 20 29.12 odd 4 inner
464.2.k.c.447.7 yes 20 116.99 even 4 inner