Properties

Label 464.2.k.c.447.10
Level $464$
Weight $2$
Character 464.447
Analytic conductor $3.705$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(191,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.10
Root \(-0.702175 - 1.22758i\) of defining polynomial
Character \(\chi\) \(=\) 464.447
Dual form 464.2.k.c.191.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.92975 - 1.92975i) q^{3} -2.39709i q^{5} -1.01973i q^{7} -4.44790i q^{9} +O(q^{10})\) \(q+(1.92975 - 1.92975i) q^{3} -2.39709i q^{5} -1.01973i q^{7} -4.44790i q^{9} +(-2.07012 + 2.07012i) q^{11} -1.30477i q^{13} +(-4.62579 - 4.62579i) q^{15} +(3.78485 + 3.78485i) q^{17} +(-3.70412 + 3.70412i) q^{19} +(-1.96782 - 1.96782i) q^{21} -4.28773i q^{23} -0.746041 q^{25} +(-2.79409 - 2.79409i) q^{27} +(3.15397 + 4.36491i) q^{29} +(2.93783 - 2.93783i) q^{31} +7.98963i q^{33} -2.44438 q^{35} +(-1.63087 + 1.63087i) q^{37} +(-2.51788 - 2.51788i) q^{39} +(8.28356 - 8.28356i) q^{41} +(-8.05370 + 8.05370i) q^{43} -10.6620 q^{45} +(-4.09792 - 4.09792i) q^{47} +5.96016 q^{49} +14.6076 q^{51} +6.32929 q^{53} +(4.96226 + 4.96226i) q^{55} +14.2961i q^{57} -4.26443i q^{59} +(-8.36809 - 8.36809i) q^{61} -4.53564 q^{63} -3.12765 q^{65} +9.62370 q^{67} +(-8.27426 - 8.27426i) q^{69} +11.5718 q^{71} +(-2.47075 + 2.47075i) q^{73} +(-1.43968 + 1.43968i) q^{75} +(2.11095 + 2.11095i) q^{77} +(-10.5493 + 10.5493i) q^{79} +2.55989 q^{81} +0.320297i q^{83} +(9.07262 - 9.07262i) q^{85} +(14.5096 + 2.33681i) q^{87} +(-8.21575 - 8.21575i) q^{89} -1.33051 q^{91} -11.3386i q^{93} +(8.87910 + 8.87910i) q^{95} +(1.53089 - 1.53089i) q^{97} +(9.20767 + 9.20767i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 4 q^{17} - 16 q^{21} - 28 q^{25} - 4 q^{29} - 20 q^{37} - 4 q^{41} - 40 q^{45} + 28 q^{49} + 48 q^{53} + 4 q^{61} + 40 q^{65} - 24 q^{69} - 20 q^{73} - 16 q^{77} + 108 q^{81} + 16 q^{85} + 36 q^{89} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.92975 1.92975i 1.11414 1.11414i 0.121560 0.992584i \(-0.461210\pi\)
0.992584 0.121560i \(-0.0387896\pi\)
\(4\) 0 0
\(5\) 2.39709i 1.07201i −0.844214 0.536006i \(-0.819933\pi\)
0.844214 0.536006i \(-0.180067\pi\)
\(6\) 0 0
\(7\) 1.01973i 0.385420i −0.981256 0.192710i \(-0.938272\pi\)
0.981256 0.192710i \(-0.0617277\pi\)
\(8\) 0 0
\(9\) 4.44790i 1.48263i
\(10\) 0 0
\(11\) −2.07012 + 2.07012i −0.624164 + 0.624164i −0.946593 0.322430i \(-0.895500\pi\)
0.322430 + 0.946593i \(0.395500\pi\)
\(12\) 0 0
\(13\) 1.30477i 0.361878i −0.983494 0.180939i \(-0.942086\pi\)
0.983494 0.180939i \(-0.0579136\pi\)
\(14\) 0 0
\(15\) −4.62579 4.62579i −1.19437 1.19437i
\(16\) 0 0
\(17\) 3.78485 + 3.78485i 0.917960 + 0.917960i 0.996881 0.0789206i \(-0.0251474\pi\)
−0.0789206 + 0.996881i \(0.525147\pi\)
\(18\) 0 0
\(19\) −3.70412 + 3.70412i −0.849783 + 0.849783i −0.990106 0.140323i \(-0.955186\pi\)
0.140323 + 0.990106i \(0.455186\pi\)
\(20\) 0 0
\(21\) −1.96782 1.96782i −0.429414 0.429414i
\(22\) 0 0
\(23\) 4.28773i 0.894053i −0.894521 0.447027i \(-0.852483\pi\)
0.894521 0.447027i \(-0.147517\pi\)
\(24\) 0 0
\(25\) −0.746041 −0.149208
\(26\) 0 0
\(27\) −2.79409 2.79409i −0.537723 0.537723i
\(28\) 0 0
\(29\) 3.15397 + 4.36491i 0.585678 + 0.810544i
\(30\) 0 0
\(31\) 2.93783 2.93783i 0.527650 0.527650i −0.392221 0.919871i \(-0.628293\pi\)
0.919871 + 0.392221i \(0.128293\pi\)
\(32\) 0 0
\(33\) 7.98963i 1.39082i
\(34\) 0 0
\(35\) −2.44438 −0.413175
\(36\) 0 0
\(37\) −1.63087 + 1.63087i −0.268114 + 0.268114i −0.828340 0.560226i \(-0.810714\pi\)
0.560226 + 0.828340i \(0.310714\pi\)
\(38\) 0 0
\(39\) −2.51788 2.51788i −0.403184 0.403184i
\(40\) 0 0
\(41\) 8.28356 8.28356i 1.29367 1.29367i 0.361177 0.932497i \(-0.382375\pi\)
0.932497 0.361177i \(-0.117625\pi\)
\(42\) 0 0
\(43\) −8.05370 + 8.05370i −1.22818 + 1.22818i −0.263526 + 0.964652i \(0.584885\pi\)
−0.964652 + 0.263526i \(0.915115\pi\)
\(44\) 0 0
\(45\) −10.6620 −1.58940
\(46\) 0 0
\(47\) −4.09792 4.09792i −0.597743 0.597743i 0.341968 0.939711i \(-0.388906\pi\)
−0.939711 + 0.341968i \(0.888906\pi\)
\(48\) 0 0
\(49\) 5.96016 0.851451
\(50\) 0 0
\(51\) 14.6076 2.04548
\(52\) 0 0
\(53\) 6.32929 0.869394 0.434697 0.900577i \(-0.356855\pi\)
0.434697 + 0.900577i \(0.356855\pi\)
\(54\) 0 0
\(55\) 4.96226 + 4.96226i 0.669111 + 0.669111i
\(56\) 0 0
\(57\) 14.2961i 1.89356i
\(58\) 0 0
\(59\) 4.26443i 0.555182i −0.960699 0.277591i \(-0.910464\pi\)
0.960699 0.277591i \(-0.0895359\pi\)
\(60\) 0 0
\(61\) −8.36809 8.36809i −1.07142 1.07142i −0.997245 0.0741794i \(-0.976366\pi\)
−0.0741794 0.997245i \(-0.523634\pi\)
\(62\) 0 0
\(63\) −4.53564 −0.571437
\(64\) 0 0
\(65\) −3.12765 −0.387937
\(66\) 0 0
\(67\) 9.62370 1.17572 0.587861 0.808962i \(-0.299970\pi\)
0.587861 + 0.808962i \(0.299970\pi\)
\(68\) 0 0
\(69\) −8.27426 8.27426i −0.996104 0.996104i
\(70\) 0 0
\(71\) 11.5718 1.37332 0.686658 0.726981i \(-0.259077\pi\)
0.686658 + 0.726981i \(0.259077\pi\)
\(72\) 0 0
\(73\) −2.47075 + 2.47075i −0.289179 + 0.289179i −0.836756 0.547577i \(-0.815550\pi\)
0.547577 + 0.836756i \(0.315550\pi\)
\(74\) 0 0
\(75\) −1.43968 + 1.43968i −0.166240 + 0.166240i
\(76\) 0 0
\(77\) 2.11095 + 2.11095i 0.240565 + 0.240565i
\(78\) 0 0
\(79\) −10.5493 + 10.5493i −1.18689 + 1.18689i −0.208966 + 0.977923i \(0.567010\pi\)
−0.977923 + 0.208966i \(0.932990\pi\)
\(80\) 0 0
\(81\) 2.55989 0.284432
\(82\) 0 0
\(83\) 0.320297i 0.0351572i 0.999845 + 0.0175786i \(0.00559573\pi\)
−0.999845 + 0.0175786i \(0.994404\pi\)
\(84\) 0 0
\(85\) 9.07262 9.07262i 0.984064 0.984064i
\(86\) 0 0
\(87\) 14.5096 + 2.33681i 1.55559 + 0.250532i
\(88\) 0 0
\(89\) −8.21575 8.21575i −0.870868 0.870868i 0.121699 0.992567i \(-0.461166\pi\)
−0.992567 + 0.121699i \(0.961166\pi\)
\(90\) 0 0
\(91\) −1.33051 −0.139475
\(92\) 0 0
\(93\) 11.3386i 1.17576i
\(94\) 0 0
\(95\) 8.87910 + 8.87910i 0.910977 + 0.910977i
\(96\) 0 0
\(97\) 1.53089 1.53089i 0.155438 0.155438i −0.625104 0.780542i \(-0.714943\pi\)
0.780542 + 0.625104i \(0.214943\pi\)
\(98\) 0 0
\(99\) 9.20767 + 9.20767i 0.925406 + 0.925406i
\(100\) 0 0
\(101\) 1.65372 + 1.65372i 0.164551 + 0.164551i 0.784579 0.620028i \(-0.212879\pi\)
−0.620028 + 0.784579i \(0.712879\pi\)
\(102\) 0 0
\(103\) 7.31685i 0.720951i 0.932769 + 0.360475i \(0.117386\pi\)
−0.932769 + 0.360475i \(0.882614\pi\)
\(104\) 0 0
\(105\) −4.71704 + 4.71704i −0.460336 + 0.460336i
\(106\) 0 0
\(107\) 2.77845i 0.268603i 0.990941 + 0.134302i \(0.0428791\pi\)
−0.990941 + 0.134302i \(0.957121\pi\)
\(108\) 0 0
\(109\) 7.65884i 0.733583i 0.930303 + 0.366792i \(0.119544\pi\)
−0.930303 + 0.366792i \(0.880456\pi\)
\(110\) 0 0
\(111\) 6.29437i 0.597435i
\(112\) 0 0
\(113\) −13.6620 + 13.6620i −1.28521 + 1.28521i −0.347555 + 0.937660i \(0.612988\pi\)
−0.937660 + 0.347555i \(0.887012\pi\)
\(114\) 0 0
\(115\) −10.2781 −0.958435
\(116\) 0 0
\(117\) −5.80348 −0.536532
\(118\) 0 0
\(119\) 3.85951 3.85951i 0.353800 0.353800i
\(120\) 0 0
\(121\) 2.42923i 0.220839i
\(122\) 0 0
\(123\) 31.9704i 2.88268i
\(124\) 0 0
\(125\) 10.1971i 0.912058i
\(126\) 0 0
\(127\) −11.7272 + 11.7272i −1.04062 + 1.04062i −0.0414774 + 0.999139i \(0.513206\pi\)
−0.999139 + 0.0414774i \(0.986794\pi\)
\(128\) 0 0
\(129\) 31.0833i 2.73673i
\(130\) 0 0
\(131\) 3.45621 + 3.45621i 0.301970 + 0.301970i 0.841784 0.539814i \(-0.181505\pi\)
−0.539814 + 0.841784i \(0.681505\pi\)
\(132\) 0 0
\(133\) 3.77719 + 3.77719i 0.327524 + 0.327524i
\(134\) 0 0
\(135\) −6.69769 + 6.69769i −0.576445 + 0.576445i
\(136\) 0 0
\(137\) 10.6008 + 10.6008i 0.905691 + 0.905691i 0.995921 0.0902302i \(-0.0287603\pi\)
−0.0902302 + 0.995921i \(0.528760\pi\)
\(138\) 0 0
\(139\) 7.28724i 0.618096i 0.951046 + 0.309048i \(0.100010\pi\)
−0.951046 + 0.309048i \(0.899990\pi\)
\(140\) 0 0
\(141\) −15.8160 −1.33194
\(142\) 0 0
\(143\) 2.70102 + 2.70102i 0.225871 + 0.225871i
\(144\) 0 0
\(145\) 10.4631 7.56036i 0.868912 0.627854i
\(146\) 0 0
\(147\) 11.5016 11.5016i 0.948639 0.948639i
\(148\) 0 0
\(149\) 19.0251i 1.55860i 0.626652 + 0.779299i \(0.284425\pi\)
−0.626652 + 0.779299i \(0.715575\pi\)
\(150\) 0 0
\(151\) 2.57130 0.209249 0.104625 0.994512i \(-0.466636\pi\)
0.104625 + 0.994512i \(0.466636\pi\)
\(152\) 0 0
\(153\) 16.8346 16.8346i 1.36100 1.36100i
\(154\) 0 0
\(155\) −7.04225 7.04225i −0.565647 0.565647i
\(156\) 0 0
\(157\) −12.2269 + 12.2269i −0.975812 + 0.975812i −0.999714 0.0239018i \(-0.992391\pi\)
0.0239018 + 0.999714i \(0.492391\pi\)
\(158\) 0 0
\(159\) 12.2140 12.2140i 0.968630 0.968630i
\(160\) 0 0
\(161\) −4.37231 −0.344586
\(162\) 0 0
\(163\) −10.5052 10.5052i −0.822832 0.822832i 0.163682 0.986513i \(-0.447663\pi\)
−0.986513 + 0.163682i \(0.947663\pi\)
\(164\) 0 0
\(165\) 19.1519 1.49097
\(166\) 0 0
\(167\) 0.0200904 0.00155464 0.000777320 1.00000i \(-0.499753\pi\)
0.000777320 1.00000i \(0.499753\pi\)
\(168\) 0 0
\(169\) 11.2976 0.869045
\(170\) 0 0
\(171\) 16.4755 + 16.4755i 1.25992 + 1.25992i
\(172\) 0 0
\(173\) 5.67975i 0.431823i 0.976413 + 0.215912i \(0.0692723\pi\)
−0.976413 + 0.215912i \(0.930728\pi\)
\(174\) 0 0
\(175\) 0.760758i 0.0575079i
\(176\) 0 0
\(177\) −8.22930 8.22930i −0.618552 0.618552i
\(178\) 0 0
\(179\) 3.66020 0.273576 0.136788 0.990600i \(-0.456322\pi\)
0.136788 + 0.990600i \(0.456322\pi\)
\(180\) 0 0
\(181\) −24.3983 −1.81351 −0.906755 0.421657i \(-0.861449\pi\)
−0.906755 + 0.421657i \(0.861449\pi\)
\(182\) 0 0
\(183\) −32.2967 −2.38744
\(184\) 0 0
\(185\) 3.90935 + 3.90935i 0.287421 + 0.287421i
\(186\) 0 0
\(187\) −15.6702 −1.14591
\(188\) 0 0
\(189\) −2.84921 + 2.84921i −0.207249 + 0.207249i
\(190\) 0 0
\(191\) −5.04414 + 5.04414i −0.364981 + 0.364981i −0.865643 0.500662i \(-0.833090\pi\)
0.500662 + 0.865643i \(0.333090\pi\)
\(192\) 0 0
\(193\) −13.3530 13.3530i −0.961172 0.961172i 0.0381016 0.999274i \(-0.487869\pi\)
−0.999274 + 0.0381016i \(0.987869\pi\)
\(194\) 0 0
\(195\) −6.03559 + 6.03559i −0.432217 + 0.432217i
\(196\) 0 0
\(197\) 8.14197 0.580091 0.290046 0.957013i \(-0.406329\pi\)
0.290046 + 0.957013i \(0.406329\pi\)
\(198\) 0 0
\(199\) 17.8100i 1.26252i −0.775572 0.631259i \(-0.782538\pi\)
0.775572 0.631259i \(-0.217462\pi\)
\(200\) 0 0
\(201\) 18.5714 18.5714i 1.30992 1.30992i
\(202\) 0 0
\(203\) 4.45101 3.21619i 0.312400 0.225732i
\(204\) 0 0
\(205\) −19.8564 19.8564i −1.38683 1.38683i
\(206\) 0 0
\(207\) −19.0714 −1.32555
\(208\) 0 0
\(209\) 15.3359i 1.06081i
\(210\) 0 0
\(211\) −11.9689 11.9689i −0.823976 0.823976i 0.162699 0.986676i \(-0.447980\pi\)
−0.986676 + 0.162699i \(0.947980\pi\)
\(212\) 0 0
\(213\) 22.3307 22.3307i 1.53007 1.53007i
\(214\) 0 0
\(215\) 19.3055 + 19.3055i 1.31662 + 1.31662i
\(216\) 0 0
\(217\) −2.99578 2.99578i −0.203367 0.203367i
\(218\) 0 0
\(219\) 9.53586i 0.644374i
\(220\) 0 0
\(221\) 4.93835 4.93835i 0.332189 0.332189i
\(222\) 0 0
\(223\) 1.58592i 0.106201i −0.998589 0.0531007i \(-0.983090\pi\)
0.998589 0.0531007i \(-0.0169104\pi\)
\(224\) 0 0
\(225\) 3.31832i 0.221221i
\(226\) 0 0
\(227\) 0.875438i 0.0581049i 0.999578 + 0.0290524i \(0.00924898\pi\)
−0.999578 + 0.0290524i \(0.990751\pi\)
\(228\) 0 0
\(229\) 7.50804 7.50804i 0.496145 0.496145i −0.414090 0.910236i \(-0.635900\pi\)
0.910236 + 0.414090i \(0.135900\pi\)
\(230\) 0 0
\(231\) 8.14724 0.536049
\(232\) 0 0
\(233\) 8.17093 0.535296 0.267648 0.963517i \(-0.413754\pi\)
0.267648 + 0.963517i \(0.413754\pi\)
\(234\) 0 0
\(235\) −9.82308 + 9.82308i −0.640787 + 0.640787i
\(236\) 0 0
\(237\) 40.7151i 2.64473i
\(238\) 0 0
\(239\) 27.7911i 1.79766i −0.438299 0.898829i \(-0.644419\pi\)
0.438299 0.898829i \(-0.355581\pi\)
\(240\) 0 0
\(241\) 17.5034i 1.12749i −0.825948 0.563747i \(-0.809359\pi\)
0.825948 0.563747i \(-0.190641\pi\)
\(242\) 0 0
\(243\) 13.3222 13.3222i 0.854621 0.854621i
\(244\) 0 0
\(245\) 14.2870i 0.912765i
\(246\) 0 0
\(247\) 4.83301 + 4.83301i 0.307517 + 0.307517i
\(248\) 0 0
\(249\) 0.618095 + 0.618095i 0.0391702 + 0.0391702i
\(250\) 0 0
\(251\) 15.4849 15.4849i 0.977396 0.977396i −0.0223544 0.999750i \(-0.507116\pi\)
0.999750 + 0.0223544i \(0.00711621\pi\)
\(252\) 0 0
\(253\) 8.87610 + 8.87610i 0.558035 + 0.558035i
\(254\) 0 0
\(255\) 35.0158i 2.19278i
\(256\) 0 0
\(257\) −4.86005 −0.303162 −0.151581 0.988445i \(-0.548436\pi\)
−0.151581 + 0.988445i \(0.548436\pi\)
\(258\) 0 0
\(259\) 1.66304 + 1.66304i 0.103336 + 0.103336i
\(260\) 0 0
\(261\) 19.4147 14.0286i 1.20174 0.868346i
\(262\) 0 0
\(263\) 11.3440 11.3440i 0.699503 0.699503i −0.264800 0.964303i \(-0.585306\pi\)
0.964303 + 0.264800i \(0.0853060\pi\)
\(264\) 0 0
\(265\) 15.1719i 0.932001i
\(266\) 0 0
\(267\) −31.7088 −1.94054
\(268\) 0 0
\(269\) −6.29276 + 6.29276i −0.383677 + 0.383677i −0.872425 0.488748i \(-0.837454\pi\)
0.488748 + 0.872425i \(0.337454\pi\)
\(270\) 0 0
\(271\) 18.2544 + 18.2544i 1.10888 + 1.10888i 0.993298 + 0.115579i \(0.0368724\pi\)
0.115579 + 0.993298i \(0.463128\pi\)
\(272\) 0 0
\(273\) −2.56755 + 2.56755i −0.155395 + 0.155395i
\(274\) 0 0
\(275\) 1.54439 1.54439i 0.0931304 0.0931304i
\(276\) 0 0
\(277\) −21.9576 −1.31930 −0.659651 0.751572i \(-0.729296\pi\)
−0.659651 + 0.751572i \(0.729296\pi\)
\(278\) 0 0
\(279\) −13.0672 13.0672i −0.782312 0.782312i
\(280\) 0 0
\(281\) −14.5131 −0.865780 −0.432890 0.901447i \(-0.642506\pi\)
−0.432890 + 0.901447i \(0.642506\pi\)
\(282\) 0 0
\(283\) 8.00022 0.475564 0.237782 0.971319i \(-0.423580\pi\)
0.237782 + 0.971319i \(0.423580\pi\)
\(284\) 0 0
\(285\) 34.2690 2.02992
\(286\) 0 0
\(287\) −8.44696 8.44696i −0.498608 0.498608i
\(288\) 0 0
\(289\) 11.6501i 0.685302i
\(290\) 0 0
\(291\) 5.90848i 0.346361i
\(292\) 0 0
\(293\) −11.2820 11.2820i −0.659102 0.659102i 0.296066 0.955168i \(-0.404325\pi\)
−0.955168 + 0.296066i \(0.904325\pi\)
\(294\) 0 0
\(295\) −10.2222 −0.595161
\(296\) 0 0
\(297\) 11.5682 0.671254
\(298\) 0 0
\(299\) −5.59449 −0.323538
\(300\) 0 0
\(301\) 8.21257 + 8.21257i 0.473365 + 0.473365i
\(302\) 0 0
\(303\) 6.38254 0.366667
\(304\) 0 0
\(305\) −20.0591 + 20.0591i −1.14858 + 1.14858i
\(306\) 0 0
\(307\) −11.8614 + 11.8614i −0.676966 + 0.676966i −0.959312 0.282347i \(-0.908887\pi\)
0.282347 + 0.959312i \(0.408887\pi\)
\(308\) 0 0
\(309\) 14.1197 + 14.1197i 0.803243 + 0.803243i
\(310\) 0 0
\(311\) −12.8979 + 12.8979i −0.731374 + 0.731374i −0.970892 0.239518i \(-0.923011\pi\)
0.239518 + 0.970892i \(0.423011\pi\)
\(312\) 0 0
\(313\) −2.84860 −0.161012 −0.0805061 0.996754i \(-0.525654\pi\)
−0.0805061 + 0.996754i \(0.525654\pi\)
\(314\) 0 0
\(315\) 10.8723i 0.612587i
\(316\) 0 0
\(317\) 8.05244 8.05244i 0.452270 0.452270i −0.443837 0.896107i \(-0.646383\pi\)
0.896107 + 0.443837i \(0.146383\pi\)
\(318\) 0 0
\(319\) −15.5650 2.50678i −0.871471 0.140353i
\(320\) 0 0
\(321\) 5.36173 + 5.36173i 0.299263 + 0.299263i
\(322\) 0 0
\(323\) −28.0390 −1.56013
\(324\) 0 0
\(325\) 0.973411i 0.0539951i
\(326\) 0 0
\(327\) 14.7797 + 14.7797i 0.817317 + 0.817317i
\(328\) 0 0
\(329\) −4.17876 + 4.17876i −0.230382 + 0.230382i
\(330\) 0 0
\(331\) 17.1099 + 17.1099i 0.940446 + 0.940446i 0.998324 0.0578780i \(-0.0184334\pi\)
−0.0578780 + 0.998324i \(0.518433\pi\)
\(332\) 0 0
\(333\) 7.25396 + 7.25396i 0.397514 + 0.397514i
\(334\) 0 0
\(335\) 23.0689i 1.26039i
\(336\) 0 0
\(337\) −19.0347 + 19.0347i −1.03689 + 1.03689i −0.0375939 + 0.999293i \(0.511969\pi\)
−0.999293 + 0.0375939i \(0.988031\pi\)
\(338\) 0 0
\(339\) 52.7287i 2.86383i
\(340\) 0 0
\(341\) 12.1633i 0.658680i
\(342\) 0 0
\(343\) 13.2158i 0.713587i
\(344\) 0 0
\(345\) −19.8341 + 19.8341i −1.06783 + 1.06783i
\(346\) 0 0
\(347\) −5.24183 −0.281396 −0.140698 0.990053i \(-0.544935\pi\)
−0.140698 + 0.990053i \(0.544935\pi\)
\(348\) 0 0
\(349\) 3.74531 0.200482 0.100241 0.994963i \(-0.468039\pi\)
0.100241 + 0.994963i \(0.468039\pi\)
\(350\) 0 0
\(351\) −3.64564 + 3.64564i −0.194590 + 0.194590i
\(352\) 0 0
\(353\) 3.55110i 0.189006i 0.995525 + 0.0945030i \(0.0301262\pi\)
−0.995525 + 0.0945030i \(0.969874\pi\)
\(354\) 0 0
\(355\) 27.7386i 1.47221i
\(356\) 0 0
\(357\) 14.8958i 0.788369i
\(358\) 0 0
\(359\) 4.54790 4.54790i 0.240029 0.240029i −0.576833 0.816862i \(-0.695712\pi\)
0.816862 + 0.576833i \(0.195712\pi\)
\(360\) 0 0
\(361\) 8.44098i 0.444262i
\(362\) 0 0
\(363\) 4.68782 + 4.68782i 0.246047 + 0.246047i
\(364\) 0 0
\(365\) 5.92260 + 5.92260i 0.310003 + 0.310003i
\(366\) 0 0
\(367\) −16.0417 + 16.0417i −0.837372 + 0.837372i −0.988512 0.151141i \(-0.951705\pi\)
0.151141 + 0.988512i \(0.451705\pi\)
\(368\) 0 0
\(369\) −36.8444 36.8444i −1.91804 1.91804i
\(370\) 0 0
\(371\) 6.45414i 0.335082i
\(372\) 0 0
\(373\) 13.3301 0.690209 0.345104 0.938564i \(-0.387843\pi\)
0.345104 + 0.938564i \(0.387843\pi\)
\(374\) 0 0
\(375\) −19.6779 19.6779i −1.01616 1.01616i
\(376\) 0 0
\(377\) 5.69520 4.11521i 0.293317 0.211944i
\(378\) 0 0
\(379\) −1.77935 + 1.77935i −0.0913989 + 0.0913989i −0.751328 0.659929i \(-0.770586\pi\)
0.659929 + 0.751328i \(0.270586\pi\)
\(380\) 0 0
\(381\) 45.2610i 2.31879i
\(382\) 0 0
\(383\) 3.05809 0.156261 0.0781304 0.996943i \(-0.475105\pi\)
0.0781304 + 0.996943i \(0.475105\pi\)
\(384\) 0 0
\(385\) 5.06014 5.06014i 0.257889 0.257889i
\(386\) 0 0
\(387\) 35.8221 + 35.8221i 1.82094 + 1.82094i
\(388\) 0 0
\(389\) 7.57632 7.57632i 0.384135 0.384135i −0.488455 0.872589i \(-0.662439\pi\)
0.872589 + 0.488455i \(0.162439\pi\)
\(390\) 0 0
\(391\) 16.2284 16.2284i 0.820705 0.820705i
\(392\) 0 0
\(393\) 13.3393 0.672876
\(394\) 0 0
\(395\) 25.2876 + 25.2876i 1.27236 + 1.27236i
\(396\) 0 0
\(397\) −29.7428 −1.49275 −0.746374 0.665526i \(-0.768207\pi\)
−0.746374 + 0.665526i \(0.768207\pi\)
\(398\) 0 0
\(399\) 14.5781 0.729817
\(400\) 0 0
\(401\) −30.4125 −1.51873 −0.759365 0.650665i \(-0.774490\pi\)
−0.759365 + 0.650665i \(0.774490\pi\)
\(402\) 0 0
\(403\) −3.83319 3.83319i −0.190945 0.190945i
\(404\) 0 0
\(405\) 6.13628i 0.304914i
\(406\) 0 0
\(407\) 6.75219i 0.334694i
\(408\) 0 0
\(409\) 1.35062 + 1.35062i 0.0667840 + 0.0667840i 0.739710 0.672926i \(-0.234963\pi\)
−0.672926 + 0.739710i \(0.734963\pi\)
\(410\) 0 0
\(411\) 40.9140 2.01814
\(412\) 0 0
\(413\) −4.34855 −0.213978
\(414\) 0 0
\(415\) 0.767781 0.0376889
\(416\) 0 0
\(417\) 14.0626 + 14.0626i 0.688648 + 0.688648i
\(418\) 0 0
\(419\) −10.2511 −0.500798 −0.250399 0.968143i \(-0.580562\pi\)
−0.250399 + 0.968143i \(0.580562\pi\)
\(420\) 0 0
\(421\) −15.2038 + 15.2038i −0.740987 + 0.740987i −0.972768 0.231781i \(-0.925545\pi\)
0.231781 + 0.972768i \(0.425545\pi\)
\(422\) 0 0
\(423\) −18.2271 + 18.2271i −0.886234 + 0.886234i
\(424\) 0 0
\(425\) −2.82365 2.82365i −0.136967 0.136967i
\(426\) 0 0
\(427\) −8.53316 + 8.53316i −0.412949 + 0.412949i
\(428\) 0 0
\(429\) 10.4246 0.503305
\(430\) 0 0
\(431\) 30.8075i 1.48395i 0.670430 + 0.741973i \(0.266110\pi\)
−0.670430 + 0.741973i \(0.733890\pi\)
\(432\) 0 0
\(433\) 19.4713 19.4713i 0.935729 0.935729i −0.0623269 0.998056i \(-0.519852\pi\)
0.998056 + 0.0623269i \(0.0198521\pi\)
\(434\) 0 0
\(435\) 5.60154 34.7808i 0.268573 1.66761i
\(436\) 0 0
\(437\) 15.8822 + 15.8822i 0.759751 + 0.759751i
\(438\) 0 0
\(439\) 18.0950 0.863629 0.431815 0.901962i \(-0.357873\pi\)
0.431815 + 0.901962i \(0.357873\pi\)
\(440\) 0 0
\(441\) 26.5102i 1.26239i
\(442\) 0 0
\(443\) −25.8647 25.8647i −1.22887 1.22887i −0.964391 0.264479i \(-0.914800\pi\)
−0.264479 0.964391i \(-0.585200\pi\)
\(444\) 0 0
\(445\) −19.6939 + 19.6939i −0.933580 + 0.933580i
\(446\) 0 0
\(447\) 36.7138 + 36.7138i 1.73650 + 1.73650i
\(448\) 0 0
\(449\) 9.87295 + 9.87295i 0.465933 + 0.465933i 0.900594 0.434661i \(-0.143132\pi\)
−0.434661 + 0.900594i \(0.643132\pi\)
\(450\) 0 0
\(451\) 34.2959i 1.61493i
\(452\) 0 0
\(453\) 4.96197 4.96197i 0.233134 0.233134i
\(454\) 0 0
\(455\) 3.18934i 0.149519i
\(456\) 0 0
\(457\) 15.9119i 0.744327i −0.928167 0.372163i \(-0.878616\pi\)
0.928167 0.372163i \(-0.121384\pi\)
\(458\) 0 0
\(459\) 21.1504i 0.987217i
\(460\) 0 0
\(461\) 3.12029 3.12029i 0.145326 0.145326i −0.630700 0.776026i \(-0.717232\pi\)
0.776026 + 0.630700i \(0.217232\pi\)
\(462\) 0 0
\(463\) 30.3565 1.41078 0.705392 0.708817i \(-0.250771\pi\)
0.705392 + 0.708817i \(0.250771\pi\)
\(464\) 0 0
\(465\) −27.1796 −1.26042
\(466\) 0 0
\(467\) 15.6312 15.6312i 0.723325 0.723325i −0.245956 0.969281i \(-0.579102\pi\)
0.969281 + 0.245956i \(0.0791018\pi\)
\(468\) 0 0
\(469\) 9.81354i 0.453147i
\(470\) 0 0
\(471\) 47.1898i 2.17439i
\(472\) 0 0
\(473\) 33.3442i 1.53317i
\(474\) 0 0
\(475\) 2.76343 2.76343i 0.126795 0.126795i
\(476\) 0 0
\(477\) 28.1520i 1.28899i
\(478\) 0 0
\(479\) 10.3990 + 10.3990i 0.475141 + 0.475141i 0.903574 0.428433i \(-0.140934\pi\)
−0.428433 + 0.903574i \(0.640934\pi\)
\(480\) 0 0
\(481\) 2.12791 + 2.12791i 0.0970244 + 0.0970244i
\(482\) 0 0
\(483\) −8.43748 + 8.43748i −0.383919 + 0.383919i
\(484\) 0 0
\(485\) −3.66968 3.66968i −0.166632 0.166632i
\(486\) 0 0
\(487\) 21.1081i 0.956500i −0.878224 0.478250i \(-0.841271\pi\)
0.878224 0.478250i \(-0.158729\pi\)
\(488\) 0 0
\(489\) −40.5449 −1.83351
\(490\) 0 0
\(491\) 4.39350 + 4.39350i 0.198276 + 0.198276i 0.799261 0.600985i \(-0.205225\pi\)
−0.600985 + 0.799261i \(0.705225\pi\)
\(492\) 0 0
\(493\) −4.58321 + 28.4578i −0.206417 + 1.28168i
\(494\) 0 0
\(495\) 22.0716 22.0716i 0.992046 0.992046i
\(496\) 0 0
\(497\) 11.8000i 0.529304i
\(498\) 0 0
\(499\) −4.86379 −0.217733 −0.108866 0.994056i \(-0.534722\pi\)
−0.108866 + 0.994056i \(0.534722\pi\)
\(500\) 0 0
\(501\) 0.0387695 0.0387695i 0.00173209 0.00173209i
\(502\) 0 0
\(503\) −22.7249 22.7249i −1.01325 1.01325i −0.999911 0.0133431i \(-0.995753\pi\)
−0.0133431 0.999911i \(-0.504247\pi\)
\(504\) 0 0
\(505\) 3.96411 3.96411i 0.176401 0.176401i
\(506\) 0 0
\(507\) 21.8015 21.8015i 0.968241 0.968241i
\(508\) 0 0
\(509\) 11.3980 0.505205 0.252603 0.967570i \(-0.418713\pi\)
0.252603 + 0.967570i \(0.418713\pi\)
\(510\) 0 0
\(511\) 2.51948 + 2.51948i 0.111455 + 0.111455i
\(512\) 0 0
\(513\) 20.6993 0.913895
\(514\) 0 0
\(515\) 17.5392 0.772868
\(516\) 0 0
\(517\) 16.9663 0.746179
\(518\) 0 0
\(519\) 10.9605 + 10.9605i 0.481113 + 0.481113i
\(520\) 0 0
\(521\) 20.6772i 0.905885i 0.891540 + 0.452942i \(0.149626\pi\)
−0.891540 + 0.452942i \(0.850374\pi\)
\(522\) 0 0
\(523\) 10.4479i 0.456856i −0.973561 0.228428i \(-0.926641\pi\)
0.973561 0.228428i \(-0.0733586\pi\)
\(524\) 0 0
\(525\) 1.46808 + 1.46808i 0.0640721 + 0.0640721i
\(526\) 0 0
\(527\) 22.2385 0.968724
\(528\) 0 0
\(529\) 4.61539 0.200669
\(530\) 0 0
\(531\) −18.9678 −0.823131
\(532\) 0 0
\(533\) −10.8081 10.8081i −0.468152 0.468152i
\(534\) 0 0
\(535\) 6.66020 0.287946
\(536\) 0 0
\(537\) 7.06329 7.06329i 0.304803 0.304803i
\(538\) 0 0
\(539\) −12.3382 + 12.3382i −0.531445 + 0.531445i
\(540\) 0 0
\(541\) −8.11668 8.11668i −0.348963 0.348963i 0.510760 0.859723i \(-0.329364\pi\)
−0.859723 + 0.510760i \(0.829364\pi\)
\(542\) 0 0
\(543\) −47.0827 + 47.0827i −2.02051 + 2.02051i
\(544\) 0 0
\(545\) 18.3589 0.786410
\(546\) 0 0
\(547\) 25.6172i 1.09531i 0.836703 + 0.547656i \(0.184480\pi\)
−0.836703 + 0.547656i \(0.815520\pi\)
\(548\) 0 0
\(549\) −37.2204 + 37.2204i −1.58853 + 1.58853i
\(550\) 0 0
\(551\) −27.8508 4.48545i −1.18649 0.191087i
\(552\) 0 0
\(553\) 10.7574 + 10.7574i 0.457451 + 0.457451i
\(554\) 0 0
\(555\) 15.0882 0.640457
\(556\) 0 0
\(557\) 5.26149i 0.222937i −0.993768 0.111468i \(-0.964445\pi\)
0.993768 0.111468i \(-0.0355554\pi\)
\(558\) 0 0
\(559\) 10.5082 + 10.5082i 0.444450 + 0.444450i
\(560\) 0 0
\(561\) −30.2395 + 30.2395i −1.27671 + 1.27671i
\(562\) 0 0
\(563\) −18.2037 18.2037i −0.767192 0.767192i 0.210419 0.977611i \(-0.432517\pi\)
−0.977611 + 0.210419i \(0.932517\pi\)
\(564\) 0 0
\(565\) 32.7491 + 32.7491i 1.37776 + 1.37776i
\(566\) 0 0
\(567\) 2.61038i 0.109626i
\(568\) 0 0
\(569\) 32.9411 32.9411i 1.38096 1.38096i 0.538049 0.842914i \(-0.319162\pi\)
0.842914 0.538049i \(-0.180838\pi\)
\(570\) 0 0
\(571\) 41.7994i 1.74925i −0.484799 0.874626i \(-0.661107\pi\)
0.484799 0.874626i \(-0.338893\pi\)
\(572\) 0 0
\(573\) 19.4679i 0.813283i
\(574\) 0 0
\(575\) 3.19882i 0.133400i
\(576\) 0 0
\(577\) 1.98390 1.98390i 0.0825910 0.0825910i −0.664604 0.747195i \(-0.731400\pi\)
0.747195 + 0.664604i \(0.231400\pi\)
\(578\) 0 0
\(579\) −51.5361 −2.14177
\(580\) 0 0
\(581\) 0.326615 0.0135503
\(582\) 0 0
\(583\) −13.1024 + 13.1024i −0.542644 + 0.542644i
\(584\) 0 0
\(585\) 13.9115i 0.575168i
\(586\) 0 0
\(587\) 1.01770i 0.0420051i 0.999779 + 0.0210025i \(0.00668581\pi\)
−0.999779 + 0.0210025i \(0.993314\pi\)
\(588\) 0 0
\(589\) 21.7641i 0.896776i
\(590\) 0 0
\(591\) 15.7120 15.7120i 0.646305 0.646305i
\(592\) 0 0
\(593\) 17.2975i 0.710323i 0.934805 + 0.355162i \(0.115574\pi\)
−0.934805 + 0.355162i \(0.884426\pi\)
\(594\) 0 0
\(595\) −9.25159 9.25159i −0.379278 0.379278i
\(596\) 0 0
\(597\) −34.3690 34.3690i −1.40663 1.40663i
\(598\) 0 0
\(599\) −18.4376 + 18.4376i −0.753339 + 0.753339i −0.975101 0.221762i \(-0.928819\pi\)
0.221762 + 0.975101i \(0.428819\pi\)
\(600\) 0 0
\(601\) −4.48215 4.48215i −0.182831 0.182831i 0.609757 0.792588i \(-0.291267\pi\)
−0.792588 + 0.609757i \(0.791267\pi\)
\(602\) 0 0
\(603\) 42.8052i 1.74316i
\(604\) 0 0
\(605\) 5.82309 0.236742
\(606\) 0 0
\(607\) 3.31696 + 3.31696i 0.134631 + 0.134631i 0.771211 0.636580i \(-0.219651\pi\)
−0.636580 + 0.771211i \(0.719651\pi\)
\(608\) 0 0
\(609\) 2.38290 14.7958i 0.0965602 0.599557i
\(610\) 0 0
\(611\) −5.34684 + 5.34684i −0.216310 + 0.216310i
\(612\) 0 0
\(613\) 25.9090i 1.04646i −0.852193 0.523228i \(-0.824728\pi\)
0.852193 0.523228i \(-0.175272\pi\)
\(614\) 0 0
\(615\) −76.6361 −3.09026
\(616\) 0 0
\(617\) −15.0531 + 15.0531i −0.606014 + 0.606014i −0.941902 0.335888i \(-0.890964\pi\)
0.335888 + 0.941902i \(0.390964\pi\)
\(618\) 0 0
\(619\) 29.7437 + 29.7437i 1.19550 + 1.19550i 0.975500 + 0.220000i \(0.0706058\pi\)
0.220000 + 0.975500i \(0.429394\pi\)
\(620\) 0 0
\(621\) −11.9803 + 11.9803i −0.480753 + 0.480753i
\(622\) 0 0
\(623\) −8.37782 + 8.37782i −0.335650 + 0.335650i
\(624\) 0 0
\(625\) −28.1736 −1.12695
\(626\) 0 0
\(627\) −29.5945 29.5945i −1.18189 1.18189i
\(628\) 0 0
\(629\) −12.3452 −0.492236
\(630\) 0 0
\(631\) −46.8743 −1.86604 −0.933018 0.359831i \(-0.882834\pi\)
−0.933018 + 0.359831i \(0.882834\pi\)
\(632\) 0 0
\(633\) −46.1942 −1.83606
\(634\) 0 0
\(635\) 28.1111 + 28.1111i 1.11555 + 1.11555i
\(636\) 0 0
\(637\) 7.77662i 0.308121i
\(638\) 0 0
\(639\) 51.4701i 2.03612i
\(640\) 0 0
\(641\) 22.5210 + 22.5210i 0.889527 + 0.889527i 0.994477 0.104950i \(-0.0334683\pi\)
−0.104950 + 0.994477i \(0.533468\pi\)
\(642\) 0 0
\(643\) −3.60602 −0.142208 −0.0711038 0.997469i \(-0.522652\pi\)
−0.0711038 + 0.997469i \(0.522652\pi\)
\(644\) 0 0
\(645\) 74.5095 2.93381
\(646\) 0 0
\(647\) 8.60945 0.338473 0.169236 0.985576i \(-0.445870\pi\)
0.169236 + 0.985576i \(0.445870\pi\)
\(648\) 0 0
\(649\) 8.82787 + 8.82787i 0.346524 + 0.346524i
\(650\) 0 0
\(651\) −11.5622 −0.453160
\(652\) 0 0
\(653\) 9.68383 9.68383i 0.378957 0.378957i −0.491769 0.870726i \(-0.663649\pi\)
0.870726 + 0.491769i \(0.163649\pi\)
\(654\) 0 0
\(655\) 8.28484 8.28484i 0.323715 0.323715i
\(656\) 0 0
\(657\) 10.9896 + 10.9896i 0.428746 + 0.428746i
\(658\) 0 0
\(659\) −1.84113 + 1.84113i −0.0717203 + 0.0717203i −0.742057 0.670337i \(-0.766150\pi\)
0.670337 + 0.742057i \(0.266150\pi\)
\(660\) 0 0
\(661\) 23.7086 0.922157 0.461078 0.887359i \(-0.347463\pi\)
0.461078 + 0.887359i \(0.347463\pi\)
\(662\) 0 0
\(663\) 19.0596i 0.740213i
\(664\) 0 0
\(665\) 9.05425 9.05425i 0.351109 0.351109i
\(666\) 0 0
\(667\) 18.7155 13.5234i 0.724669 0.523628i
\(668\) 0 0
\(669\) −3.06044 3.06044i −0.118324 0.118324i
\(670\) 0 0
\(671\) 34.6459 1.33749
\(672\) 0 0
\(673\) 15.8919i 0.612587i −0.951937 0.306294i \(-0.900911\pi\)
0.951937 0.306294i \(-0.0990889\pi\)
\(674\) 0 0
\(675\) 2.08451 + 2.08451i 0.0802327 + 0.0802327i
\(676\) 0 0
\(677\) 3.48507 3.48507i 0.133942 0.133942i −0.636957 0.770899i \(-0.719807\pi\)
0.770899 + 0.636957i \(0.219807\pi\)
\(678\) 0 0
\(679\) −1.56109 1.56109i −0.0599090 0.0599090i
\(680\) 0 0
\(681\) 1.68938 + 1.68938i 0.0647372 + 0.0647372i
\(682\) 0 0
\(683\) 16.1199i 0.616809i 0.951255 + 0.308405i \(0.0997951\pi\)
−0.951255 + 0.308405i \(0.900205\pi\)
\(684\) 0 0
\(685\) 25.4112 25.4112i 0.970911 0.970911i
\(686\) 0 0
\(687\) 28.9773i 1.10555i
\(688\) 0 0
\(689\) 8.25825i 0.314614i
\(690\) 0 0
\(691\) 35.7904i 1.36153i −0.732502 0.680765i \(-0.761647\pi\)
0.732502 0.680765i \(-0.238353\pi\)
\(692\) 0 0
\(693\) 9.38930 9.38930i 0.356670 0.356670i
\(694\) 0 0
\(695\) 17.4682 0.662606
\(696\) 0 0
\(697\) 62.7040 2.37508
\(698\) 0 0
\(699\) 15.7679 15.7679i 0.596396 0.596396i
\(700\) 0 0
\(701\) 2.21227i 0.0835563i −0.999127 0.0417782i \(-0.986698\pi\)
0.999127 0.0417782i \(-0.0133023\pi\)
\(702\) 0 0
\(703\) 12.0819i 0.455677i
\(704\) 0 0
\(705\) 37.9123i 1.42786i
\(706\) 0 0
\(707\) 1.68634 1.68634i 0.0634214 0.0634214i
\(708\) 0 0
\(709\) 31.0570i 1.16637i 0.812340 + 0.583184i \(0.198193\pi\)
−0.812340 + 0.583184i \(0.801807\pi\)
\(710\) 0 0
\(711\) 46.9222 + 46.9222i 1.75972 + 1.75972i
\(712\) 0 0
\(713\) −12.5966 12.5966i −0.471747 0.471747i
\(714\) 0 0
\(715\) 6.47459 6.47459i 0.242136 0.242136i
\(716\) 0 0
\(717\) −53.6300 53.6300i −2.00285 2.00285i
\(718\) 0 0
\(719\) 36.2112i 1.35045i 0.737611 + 0.675226i \(0.235954\pi\)
−0.737611 + 0.675226i \(0.764046\pi\)
\(720\) 0 0
\(721\) 7.46119 0.277869
\(722\) 0 0
\(723\) −33.7773 33.7773i −1.25619 1.25619i
\(724\) 0 0
\(725\) −2.35300 3.25640i −0.0873881 0.120940i
\(726\) 0 0
\(727\) 20.7794 20.7794i 0.770667 0.770667i −0.207556 0.978223i \(-0.566551\pi\)
0.978223 + 0.207556i \(0.0665510\pi\)
\(728\) 0 0
\(729\) 43.7376i 1.61991i
\(730\) 0 0
\(731\) −60.9641 −2.25484
\(732\) 0 0
\(733\) −8.22927 + 8.22927i −0.303955 + 0.303955i −0.842559 0.538604i \(-0.818952\pi\)
0.538604 + 0.842559i \(0.318952\pi\)
\(734\) 0 0
\(735\) −27.5705 27.5705i −1.01695 1.01695i
\(736\) 0 0
\(737\) −19.9222 + 19.9222i −0.733843 + 0.733843i
\(738\) 0 0
\(739\) 14.6530 14.6530i 0.539017 0.539017i −0.384223 0.923240i \(-0.625531\pi\)
0.923240 + 0.384223i \(0.125531\pi\)
\(740\) 0 0
\(741\) 18.6531 0.685237
\(742\) 0 0
\(743\) −24.0803 24.0803i −0.883419 0.883419i 0.110462 0.993880i \(-0.464767\pi\)
−0.993880 + 0.110462i \(0.964767\pi\)
\(744\) 0 0
\(745\) 45.6049 1.67084
\(746\) 0 0
\(747\) 1.42465 0.0521252
\(748\) 0 0
\(749\) 2.83326 0.103525
\(750\) 0 0
\(751\) 3.36482 + 3.36482i 0.122784 + 0.122784i 0.765829 0.643045i \(-0.222329\pi\)
−0.643045 + 0.765829i \(0.722329\pi\)
\(752\) 0 0
\(753\) 59.7639i 2.17792i
\(754\) 0 0
\(755\) 6.16363i 0.224317i
\(756\) 0 0
\(757\) 22.8533 + 22.8533i 0.830619 + 0.830619i 0.987601 0.156983i \(-0.0501767\pi\)
−0.156983 + 0.987601i \(0.550177\pi\)
\(758\) 0 0
\(759\) 34.2574 1.24346
\(760\) 0 0
\(761\) −24.7027 −0.895473 −0.447736 0.894166i \(-0.647770\pi\)
−0.447736 + 0.894166i \(0.647770\pi\)
\(762\) 0 0
\(763\) 7.80991 0.282738
\(764\) 0 0
\(765\) −40.3541 40.3541i −1.45901 1.45901i
\(766\) 0 0
\(767\) −5.56409 −0.200908
\(768\) 0 0
\(769\) 25.9480 25.9480i 0.935710 0.935710i −0.0623451 0.998055i \(-0.519858\pi\)
0.998055 + 0.0623451i \(0.0198580\pi\)
\(770\) 0 0
\(771\) −9.37870 + 9.37870i −0.337766 + 0.337766i
\(772\) 0 0
\(773\) −34.1840 34.1840i −1.22951 1.22951i −0.964147 0.265367i \(-0.914507\pi\)
−0.265367 0.964147i \(-0.585493\pi\)
\(774\) 0 0
\(775\) −2.19174 + 2.19174i −0.0787298 + 0.0787298i
\(776\) 0 0
\(777\) 6.41853 0.230263
\(778\) 0 0
\(779\) 61.3665i 2.19868i
\(780\) 0 0
\(781\) −23.9549 + 23.9549i −0.857174 + 0.857174i
\(782\) 0 0
\(783\) 3.38346 21.0084i 0.120915 0.750780i
\(784\) 0 0
\(785\) 29.3090 + 29.3090i 1.04608 + 1.04608i
\(786\) 0 0
\(787\) 28.0749 1.00076 0.500381 0.865805i \(-0.333193\pi\)
0.500381 + 0.865805i \(0.333193\pi\)
\(788\) 0 0
\(789\) 43.7824i 1.55869i
\(790\) 0 0
\(791\) 13.9315 + 13.9315i 0.495348 + 0.495348i
\(792\) 0 0
\(793\) −10.9184 + 10.9184i −0.387724 + 0.387724i
\(794\) 0 0
\(795\) −29.2780 29.2780i −1.03838 1.03838i
\(796\) 0 0
\(797\) −10.3597 10.3597i −0.366958 0.366958i 0.499409 0.866367i \(-0.333551\pi\)
−0.866367 + 0.499409i \(0.833551\pi\)
\(798\) 0 0
\(799\) 31.0200i 1.09741i
\(800\) 0 0
\(801\) −36.5428 + 36.5428i −1.29118 + 1.29118i
\(802\) 0 0
\(803\) 10.2295i 0.360990i
\(804\) 0 0
\(805\) 10.4808i 0.369400i
\(806\) 0 0
\(807\) 24.2870i 0.854942i
\(808\) 0 0
\(809\) −16.1015 + 16.1015i −0.566100 + 0.566100i −0.931033 0.364934i \(-0.881092\pi\)
0.364934 + 0.931033i \(0.381092\pi\)
\(810\) 0 0
\(811\) 4.16152 0.146131 0.0730654 0.997327i \(-0.476722\pi\)
0.0730654 + 0.997327i \(0.476722\pi\)
\(812\) 0 0
\(813\) 70.4531 2.47090
\(814\) 0 0
\(815\) −25.1819 + 25.1819i −0.882085 + 0.882085i
\(816\) 0 0
\(817\) 59.6637i 2.08737i
\(818\) 0 0
\(819\) 5.91796i 0.206790i
\(820\) 0 0
\(821\) 7.38797i 0.257842i 0.991655 + 0.128921i \(0.0411514\pi\)
−0.991655 + 0.128921i \(0.958849\pi\)
\(822\) 0 0
\(823\) −30.7910 + 30.7910i −1.07331 + 1.07331i −0.0762167 + 0.997091i \(0.524284\pi\)
−0.997091 + 0.0762167i \(0.975716\pi\)
\(824\) 0 0
\(825\) 5.96060i 0.207521i
\(826\) 0 0
\(827\) 30.1364 + 30.1364i 1.04794 + 1.04794i 0.998791 + 0.0491533i \(0.0156523\pi\)
0.0491533 + 0.998791i \(0.484348\pi\)
\(828\) 0 0
\(829\) −28.4455 28.4455i −0.987954 0.987954i 0.0119743 0.999928i \(-0.496188\pi\)
−0.999928 + 0.0119743i \(0.996188\pi\)
\(830\) 0 0
\(831\) −42.3727 + 42.3727i −1.46989 + 1.46989i
\(832\) 0 0
\(833\) 22.5583 + 22.5583i 0.781598 + 0.781598i
\(834\) 0 0
\(835\) 0.0481585i 0.00166659i
\(836\) 0 0
\(837\) −16.4171 −0.567459
\(838\) 0 0
\(839\) −35.9098 35.9098i −1.23975 1.23975i −0.960105 0.279640i \(-0.909785\pi\)
−0.279640 0.960105i \(-0.590215\pi\)
\(840\) 0 0
\(841\) −9.10489 + 27.5336i −0.313962 + 0.949436i
\(842\) 0 0
\(843\) −28.0068 + 28.0068i −0.964604 + 0.964604i
\(844\) 0 0
\(845\) 27.0813i 0.931626i
\(846\) 0 0
\(847\) 2.47715 0.0851160
\(848\) 0 0
\(849\) 15.4385 15.4385i 0.529847 0.529847i
\(850\) 0 0
\(851\) 6.99274 + 6.99274i 0.239708 + 0.239708i
\(852\) 0 0
\(853\) −29.1924 + 29.1924i −0.999528 + 0.999528i −1.00000 0.000471811i \(-0.999850\pi\)
0.000471811 1.00000i \(0.499850\pi\)
\(854\) 0 0
\(855\) 39.4934 39.4934i 1.35064 1.35064i
\(856\) 0 0
\(857\) 14.8618 0.507669 0.253834 0.967248i \(-0.418308\pi\)
0.253834 + 0.967248i \(0.418308\pi\)
\(858\) 0 0
\(859\) 19.8098 + 19.8098i 0.675901 + 0.675901i 0.959070 0.283169i \(-0.0913858\pi\)
−0.283169 + 0.959070i \(0.591386\pi\)
\(860\) 0 0
\(861\) −32.6011 −1.11104
\(862\) 0 0
\(863\) 52.8614 1.79942 0.899712 0.436484i \(-0.143776\pi\)
0.899712 + 0.436484i \(0.143776\pi\)
\(864\) 0 0
\(865\) 13.6149 0.462919
\(866\) 0 0
\(867\) 22.4819 + 22.4819i 0.763525 + 0.763525i
\(868\) 0 0
\(869\) 43.6766i 1.48163i
\(870\) 0 0
\(871\) 12.5567i 0.425467i
\(872\) 0 0
\(873\) −6.80924 6.80924i −0.230458 0.230458i
\(874\) 0 0
\(875\) −10.3983 −0.351526
\(876\) 0 0
\(877\) −2.66279 −0.0899161 −0.0449580 0.998989i \(-0.514315\pi\)
−0.0449580 + 0.998989i \(0.514315\pi\)
\(878\) 0 0
\(879\) −43.5430 −1.46867
\(880\) 0 0
\(881\) 13.4842 + 13.4842i 0.454293 + 0.454293i 0.896777 0.442484i \(-0.145903\pi\)
−0.442484 + 0.896777i \(0.645903\pi\)
\(882\) 0 0
\(883\) 36.1788 1.21751 0.608756 0.793357i \(-0.291669\pi\)
0.608756 + 0.793357i \(0.291669\pi\)
\(884\) 0 0
\(885\) −19.7264 + 19.7264i −0.663095 + 0.663095i
\(886\) 0 0
\(887\) 0.606597 0.606597i 0.0203675 0.0203675i −0.696850 0.717217i \(-0.745416\pi\)
0.717217 + 0.696850i \(0.245416\pi\)
\(888\) 0 0
\(889\) 11.9585 + 11.9585i 0.401075 + 0.401075i
\(890\) 0 0
\(891\) −5.29927 + 5.29927i −0.177532 + 0.177532i
\(892\) 0 0
\(893\) 30.3584 1.01590
\(894\) 0 0
\(895\) 8.77383i 0.293277i
\(896\) 0 0
\(897\) −10.7960 + 10.7960i −0.360468 + 0.360468i
\(898\) 0 0
\(899\) 22.0892 + 3.55753i 0.736717 + 0.118650i
\(900\) 0 0
\(901\) 23.9554 + 23.9554i 0.798069 + 0.798069i
\(902\) 0 0
\(903\) 31.6965 1.05479
\(904\) 0 0
\(905\) 58.4849i 1.94410i
\(906\) 0 0
\(907\) −40.2170 40.2170i −1.33538 1.33538i −0.900475 0.434907i \(-0.856781\pi\)
−0.434907 0.900475i \(-0.643219\pi\)
\(908\) 0 0
\(909\) 7.35558 7.35558i 0.243969 0.243969i
\(910\) 0 0
\(911\) −23.3002 23.3002i −0.771968 0.771968i 0.206482 0.978450i \(-0.433799\pi\)
−0.978450 + 0.206482i \(0.933799\pi\)
\(912\) 0 0
\(913\) −0.663052 0.663052i −0.0219438 0.0219438i
\(914\) 0 0
\(915\) 77.4181i 2.55936i
\(916\) 0 0
\(917\) 3.52438 3.52438i 0.116385 0.116385i
\(918\) 0 0
\(919\) 27.0113i 0.891021i −0.895277 0.445511i \(-0.853022\pi\)
0.895277 0.445511i \(-0.146978\pi\)
\(920\) 0 0
\(921\) 45.7792i 1.50847i
\(922\) 0 0
\(923\) 15.0985i 0.496972i
\(924\) 0 0
\(925\) 1.21670 1.21670i 0.0400048 0.0400048i
\(926\) 0 0
\(927\) 32.5446 1.06891
\(928\) 0 0
\(929\) −35.3035 −1.15827 −0.579136 0.815231i \(-0.696610\pi\)
−0.579136 + 0.815231i \(0.696610\pi\)
\(930\) 0 0
\(931\) −22.0771 + 22.0771i −0.723549 + 0.723549i
\(932\) 0 0
\(933\) 49.7796i 1.62971i
\(934\) 0 0
\(935\) 37.5628i 1.22843i
\(936\) 0 0
\(937\) 32.2106i 1.05228i 0.850399 + 0.526138i \(0.176360\pi\)
−0.850399 + 0.526138i \(0.823640\pi\)
\(938\) 0 0
\(939\) −5.49709 + 5.49709i −0.179391 + 0.179391i
\(940\) 0 0
\(941\) 16.7561i 0.546235i −0.961981 0.273117i \(-0.911945\pi\)
0.961981 0.273117i \(-0.0880547\pi\)
\(942\) 0 0
\(943\) −35.5176 35.5176i −1.15661 1.15661i
\(944\) 0 0
\(945\) 6.82981 + 6.82981i 0.222174 + 0.222174i
\(946\) 0 0
\(947\) 19.1359 19.1359i 0.621834 0.621834i −0.324166 0.946000i \(-0.605084\pi\)
0.946000 + 0.324166i \(0.105084\pi\)
\(948\) 0 0
\(949\) 3.22375 + 3.22375i 0.104647 + 0.104647i
\(950\) 0 0
\(951\) 31.0785i 1.00779i
\(952\) 0 0
\(953\) −10.6671 −0.345543 −0.172771 0.984962i \(-0.555272\pi\)
−0.172771 + 0.984962i \(0.555272\pi\)
\(954\) 0 0
\(955\) 12.0913 + 12.0913i 0.391264 + 0.391264i
\(956\) 0 0
\(957\) −34.8740 + 25.1991i −1.12732 + 0.814571i
\(958\) 0 0
\(959\) 10.8100 10.8100i 0.349072 0.349072i
\(960\) 0 0
\(961\) 13.7383i 0.443171i
\(962\) 0 0
\(963\) 12.3583 0.398240
\(964\) 0 0
\(965\) −32.0084 + 32.0084i −1.03039 + 1.03039i
\(966\) 0 0
\(967\) 18.6237 + 18.6237i 0.598898 + 0.598898i 0.940019 0.341121i \(-0.110807\pi\)
−0.341121 + 0.940019i \(0.610807\pi\)
\(968\) 0 0
\(969\) −54.1084 + 54.1084i −1.73821 + 1.73821i
\(970\) 0 0
\(971\) 14.0949 14.0949i 0.452326 0.452326i −0.443800 0.896126i \(-0.646370\pi\)
0.896126 + 0.443800i \(0.146370\pi\)
\(972\) 0 0
\(973\) 7.43099 0.238227
\(974\) 0 0
\(975\) 1.87844 + 1.87844i 0.0601583 + 0.0601583i
\(976\) 0 0
\(977\) −12.0214 −0.384598 −0.192299 0.981336i \(-0.561594\pi\)
−0.192299 + 0.981336i \(0.561594\pi\)
\(978\) 0 0
\(979\) 34.0151 1.08713
\(980\) 0 0
\(981\) 34.0657 1.08764
\(982\) 0 0
\(983\) 18.0750 + 18.0750i 0.576502 + 0.576502i 0.933938 0.357436i \(-0.116349\pi\)
−0.357436 + 0.933938i \(0.616349\pi\)
\(984\) 0 0
\(985\) 19.5170i 0.621865i
\(986\) 0 0
\(987\) 16.1279i 0.513358i
\(988\) 0 0
\(989\) 34.5321 + 34.5321i 1.09806 + 1.09806i
\(990\) 0 0
\(991\) 48.5529 1.54233 0.771167 0.636633i \(-0.219674\pi\)
0.771167 + 0.636633i \(0.219674\pi\)
\(992\) 0 0
\(993\) 66.0358 2.09558
\(994\) 0 0
\(995\) −42.6922 −1.35343
\(996\) 0 0
\(997\) 4.56165 + 4.56165i 0.144469 + 0.144469i 0.775642 0.631173i \(-0.217426\pi\)
−0.631173 + 0.775642i \(0.717426\pi\)
\(998\) 0 0
\(999\) 9.11361 0.288342
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.k.c.447.10 yes 20
4.3 odd 2 inner 464.2.k.c.447.1 yes 20
29.17 odd 4 inner 464.2.k.c.191.1 20
116.75 even 4 inner 464.2.k.c.191.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.2.k.c.191.1 20 29.17 odd 4 inner
464.2.k.c.191.10 yes 20 116.75 even 4 inner
464.2.k.c.447.1 yes 20 4.3 odd 2 inner
464.2.k.c.447.10 yes 20 1.1 even 1 trivial