Properties

Label 464.3.d.b.175.15
Level 464464
Weight 33
Character 464.175
Analytic conductor 12.64312.643
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,3,Mod(175,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.175");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 3 3
Character orbit: [χ][\chi] == 464.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.643084266312.6430842663
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+69x18+1795x16+24222x14+189561x12+892623x10+2508433x8++21609 x^{20} + 69 x^{18} + 1795 x^{16} + 24222 x^{14} + 189561 x^{12} + 892623 x^{10} + 2508433 x^{8} + \cdots + 21609 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 23672 2^{36}\cdot 7^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 175.15
Root 2.79820i-2.79820i of defining polynomial
Character χ\chi == 464.175
Dual form 464.3.d.b.175.6

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.34966iq31.82181q5+0.690645iq7+3.47908q914.2821iq11+11.2627q134.28063iq15+28.7655q17+27.1784iq191.62278q21+24.2420iq2321.6810q25+29.3216iq27+5.38516q29+8.53755iq31+33.5582q331.25822iq3526.9435q37+26.4635iq39+16.1674q4125.6365iq436.33821q45+73.0506iq47+48.5230q49+67.5893iq51+74.9103q53+26.0192iq5563.8601q5773.7015iq5990.0602q61+2.40281iq6320.5184q6526.8696iq6756.9607q69+124.423iq71+135.584q7350.9431iq75+9.86386q7781.1222iq7937.5843q81+82.5008iq8352.4052q85+12.6533iq87+55.4929q89+7.77851iq9120.0604q9349.5137iq95+151.078q9749.6885iq99+O(q100)q+2.34966i q^{3} -1.82181 q^{5} +0.690645i q^{7} +3.47908 q^{9} -14.2821i q^{11} +11.2627 q^{13} -4.28063i q^{15} +28.7655 q^{17} +27.1784i q^{19} -1.62278 q^{21} +24.2420i q^{23} -21.6810 q^{25} +29.3216i q^{27} +5.38516 q^{29} +8.53755i q^{31} +33.5582 q^{33} -1.25822i q^{35} -26.9435 q^{37} +26.4635i q^{39} +16.1674 q^{41} -25.6365i q^{43} -6.33821 q^{45} +73.0506i q^{47} +48.5230 q^{49} +67.5893i q^{51} +74.9103 q^{53} +26.0192i q^{55} -63.8601 q^{57} -73.7015i q^{59} -90.0602 q^{61} +2.40281i q^{63} -20.5184 q^{65} -26.8696i q^{67} -56.9607 q^{69} +124.423i q^{71} +135.584 q^{73} -50.9431i q^{75} +9.86386 q^{77} -81.1222i q^{79} -37.5843 q^{81} +82.5008i q^{83} -52.4052 q^{85} +12.6533i q^{87} +55.4929 q^{89} +7.77851i q^{91} -20.0604 q^{93} -49.5137i q^{95} +151.078 q^{97} -49.6885i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q8q568q9+16q13+40q1748q21+188q25120q3380q3772q41+72q4528q49+96q53+104q5796q6180q65+352q69312q73++56q97+O(q100) 20 q - 8 q^{5} - 68 q^{9} + 16 q^{13} + 40 q^{17} - 48 q^{21} + 188 q^{25} - 120 q^{33} - 80 q^{37} - 72 q^{41} + 72 q^{45} - 28 q^{49} + 96 q^{53} + 104 q^{57} - 96 q^{61} - 80 q^{65} + 352 q^{69} - 312 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.34966i 0.783221i 0.920131 + 0.391611i 0.128082π0.128082\pi
−0.920131 + 0.391611i 0.871918π0.871918\pi
44 0 0
55 −1.82181 −0.364361 −0.182181 0.983265i 0.558316π-0.558316\pi
−0.182181 + 0.983265i 0.558316π0.558316\pi
66 0 0
77 0.690645i 0.0986635i 0.998782 + 0.0493318i 0.0157092π0.0157092\pi
−0.998782 + 0.0493318i 0.984291π0.984291\pi
88 0 0
99 3.47908 0.386564
1010 0 0
1111 − 14.2821i − 1.29837i −0.760629 0.649187i 0.775109π-0.775109\pi
0.760629 0.649187i 0.224891π-0.224891\pi
1212 0 0
1313 11.2627 0.866360 0.433180 0.901307i 0.357391π-0.357391\pi
0.433180 + 0.901307i 0.357391π0.357391\pi
1414 0 0
1515 − 4.28063i − 0.285376i
1616 0 0
1717 28.7655 1.69209 0.846044 0.533113i 0.178978π-0.178978\pi
0.846044 + 0.533113i 0.178978π0.178978\pi
1818 0 0
1919 27.1784i 1.43044i 0.698899 + 0.715220i 0.253674π0.253674\pi
−0.698899 + 0.715220i 0.746326π0.746326\pi
2020 0 0
2121 −1.62278 −0.0772754
2222 0 0
2323 24.2420i 1.05400i 0.849865 + 0.527001i 0.176684π0.176684\pi
−0.849865 + 0.527001i 0.823316π0.823316\pi
2424 0 0
2525 −21.6810 −0.867241
2626 0 0
2727 29.3216i 1.08599i
2828 0 0
2929 5.38516 0.185695
3030 0 0
3131 8.53755i 0.275405i 0.990474 + 0.137702i 0.0439718π0.0439718\pi
−0.990474 + 0.137702i 0.956028π0.956028\pi
3232 0 0
3333 33.5582 1.01691
3434 0 0
3535 − 1.25822i − 0.0359492i
3636 0 0
3737 −26.9435 −0.728204 −0.364102 0.931359i 0.618624π-0.618624\pi
−0.364102 + 0.931359i 0.618624π0.618624\pi
3838 0 0
3939 26.4635i 0.678552i
4040 0 0
4141 16.1674 0.394326 0.197163 0.980371i 0.436827π-0.436827\pi
0.197163 + 0.980371i 0.436827π0.436827\pi
4242 0 0
4343 − 25.6365i − 0.596198i −0.954535 0.298099i 0.903647π-0.903647\pi
0.954535 0.298099i 0.0963526π-0.0963526\pi
4444 0 0
4545 −6.33821 −0.140849
4646 0 0
4747 73.0506i 1.55427i 0.629335 + 0.777134i 0.283328π0.283328\pi
−0.629335 + 0.777134i 0.716672π0.716672\pi
4848 0 0
4949 48.5230 0.990266
5050 0 0
5151 67.5893i 1.32528i
5252 0 0
5353 74.9103 1.41340 0.706701 0.707512i 0.250183π-0.250183\pi
0.706701 + 0.707512i 0.250183π0.250183\pi
5454 0 0
5555 26.0192i 0.473077i
5656 0 0
5757 −63.8601 −1.12035
5858 0 0
5959 − 73.7015i − 1.24918i −0.780954 0.624589i 0.785267π-0.785267\pi
0.780954 0.624589i 0.214733π-0.214733\pi
6060 0 0
6161 −90.0602 −1.47640 −0.738199 0.674584i 0.764323π-0.764323\pi
−0.738199 + 0.674584i 0.764323π0.764323\pi
6262 0 0
6363 2.40281i 0.0381398i
6464 0 0
6565 −20.5184 −0.315668
6666 0 0
6767 − 26.8696i − 0.401039i −0.979690 0.200519i 0.935737π-0.935737\pi
0.979690 0.200519i 0.0642630π-0.0642630\pi
6868 0 0
6969 −56.9607 −0.825517
7070 0 0
7171 124.423i 1.75244i 0.481908 + 0.876222i 0.339944π0.339944\pi
−0.481908 + 0.876222i 0.660056π0.660056\pi
7272 0 0
7373 135.584 1.85732 0.928658 0.370937i 0.120964π-0.120964\pi
0.928658 + 0.370937i 0.120964π0.120964\pi
7474 0 0
7575 − 50.9431i − 0.679242i
7676 0 0
7777 9.86386 0.128102
7878 0 0
7979 − 81.1222i − 1.02686i −0.858131 0.513431i 0.828374π-0.828374\pi
0.858131 0.513431i 0.171626π-0.171626\pi
8080 0 0
8181 −37.5843 −0.464004
8282 0 0
8383 82.5008i 0.993986i 0.867755 + 0.496993i 0.165563π0.165563\pi
−0.867755 + 0.496993i 0.834437π0.834437\pi
8484 0 0
8585 −52.4052 −0.616532
8686 0 0
8787 12.6533i 0.145441i
8888 0 0
8989 55.4929 0.623516 0.311758 0.950162i 0.399082π-0.399082\pi
0.311758 + 0.950162i 0.399082π0.399082\pi
9090 0 0
9191 7.77851i 0.0854782i
9292 0 0
9393 −20.0604 −0.215703
9494 0 0
9595 − 49.5137i − 0.521197i
9696 0 0
9797 151.078 1.55750 0.778750 0.627334i 0.215854π-0.215854\pi
0.778750 + 0.627334i 0.215854π0.215854\pi
9898 0 0
9999 − 49.6885i − 0.501905i
100100 0 0
101101 32.6869 0.323633 0.161816 0.986821i 0.448265π-0.448265\pi
0.161816 + 0.986821i 0.448265π0.448265\pi
102102 0 0
103103 − 61.3478i − 0.595610i −0.954627 0.297805i 0.903746π-0.903746\pi
0.954627 0.297805i 0.0962545π-0.0962545\pi
104104 0 0
105105 2.95640 0.0281562
106106 0 0
107107 − 32.9750i − 0.308178i −0.988057 0.154089i 0.950756π-0.950756\pi
0.988057 0.154089i 0.0492442π-0.0492442\pi
108108 0 0
109109 6.30640 0.0578569 0.0289284 0.999581i 0.490791π-0.490791\pi
0.0289284 + 0.999581i 0.490791π0.490791\pi
110110 0 0
111111 − 63.3083i − 0.570345i
112112 0 0
113113 −119.124 −1.05419 −0.527097 0.849805i 0.676720π-0.676720\pi
−0.527097 + 0.849805i 0.676720π0.676720\pi
114114 0 0
115115 − 44.1643i − 0.384038i
116116 0 0
117117 39.1837 0.334904
118118 0 0
119119 19.8667i 0.166947i
120120 0 0
121121 −82.9785 −0.685773
122122 0 0
123123 37.9879i 0.308845i
124124 0 0
125125 85.0438 0.680350
126126 0 0
127127 − 133.412i − 1.05049i −0.850951 0.525246i 0.823973π-0.823973\pi
0.850951 0.525246i 0.176027π-0.176027\pi
128128 0 0
129129 60.2372 0.466955
130130 0 0
131131 − 121.191i − 0.925125i −0.886587 0.462563i 0.846930π-0.846930\pi
0.886587 0.462563i 0.153070π-0.153070\pi
132132 0 0
133133 −18.7706 −0.141132
134134 0 0
135135 − 53.4184i − 0.395692i
136136 0 0
137137 −32.2763 −0.235594 −0.117797 0.993038i 0.537583π-0.537583\pi
−0.117797 + 0.993038i 0.537583π0.537583\pi
138138 0 0
139139 78.0620i 0.561597i 0.959767 + 0.280799i 0.0905993π0.0905993\pi
−0.959767 + 0.280799i 0.909401π0.909401\pi
140140 0 0
141141 −171.644 −1.21734
142142 0 0
143143 − 160.855i − 1.12486i
144144 0 0
145145 −9.81073 −0.0676602
146146 0 0
147147 114.013i 0.775597i
148148 0 0
149149 −182.590 −1.22544 −0.612720 0.790300i 0.709925π-0.709925\pi
−0.612720 + 0.790300i 0.709925π0.709925\pi
150150 0 0
151151 − 195.412i − 1.29412i −0.762440 0.647058i 0.775999π-0.775999\pi
0.762440 0.647058i 0.224001π-0.224001\pi
152152 0 0
153153 100.077 0.654101
154154 0 0
155155 − 15.5538i − 0.100347i
156156 0 0
157157 −245.914 −1.56633 −0.783164 0.621815i 0.786396π-0.786396\pi
−0.783164 + 0.621815i 0.786396π0.786396\pi
158158 0 0
159159 176.014i 1.10701i
160160 0 0
161161 −16.7426 −0.103992
162162 0 0
163163 − 104.743i − 0.642596i −0.946978 0.321298i 0.895881π-0.895881\pi
0.946978 0.321298i 0.104119π-0.104119\pi
164164 0 0
165165 −61.1365 −0.370524
166166 0 0
167167 − 21.6850i − 0.129850i −0.997890 0.0649250i 0.979319π-0.979319\pi
0.997890 0.0649250i 0.0206808π-0.0206808\pi
168168 0 0
169169 −42.1520 −0.249420
170170 0 0
171171 94.5557i 0.552957i
172172 0 0
173173 −203.838 −1.17825 −0.589127 0.808040i 0.700528π-0.700528\pi
−0.589127 + 0.808040i 0.700528π0.700528\pi
174174 0 0
175175 − 14.9739i − 0.0855650i
176176 0 0
177177 173.174 0.978383
178178 0 0
179179 − 67.3420i − 0.376212i −0.982149 0.188106i 0.939765π-0.939765\pi
0.982149 0.188106i 0.0602349π-0.0602349\pi
180180 0 0
181181 32.6670 0.180481 0.0902403 0.995920i 0.471236π-0.471236\pi
0.0902403 + 0.995920i 0.471236π0.471236\pi
182182 0 0
183183 − 211.611i − 1.15635i
184184 0 0
185185 49.0859 0.265329
186186 0 0
187187 − 410.832i − 2.19696i
188188 0 0
189189 −20.2508 −0.107147
190190 0 0
191191 250.711i 1.31263i 0.754489 + 0.656313i 0.227885π0.227885\pi
−0.754489 + 0.656313i 0.772115π0.772115\pi
192192 0 0
193193 −52.5002 −0.272022 −0.136011 0.990707i 0.543428π-0.543428\pi
−0.136011 + 0.990707i 0.543428π0.543428\pi
194194 0 0
195195 − 48.2114i − 0.247238i
196196 0 0
197197 −170.910 −0.867562 −0.433781 0.901018i 0.642821π-0.642821\pi
−0.433781 + 0.901018i 0.642821π0.642821\pi
198198 0 0
199199 58.0168i 0.291542i 0.989318 + 0.145771i 0.0465662π0.0465662\pi
−0.989318 + 0.145771i 0.953434π0.953434\pi
200200 0 0
201201 63.1346 0.314102
202202 0 0
203203 3.71924i 0.0183214i
204204 0 0
205205 −29.4538 −0.143677
206206 0 0
207207 84.3399i 0.407439i
208208 0 0
209209 388.164 1.85725
210210 0 0
211211 224.473i 1.06386i 0.846790 + 0.531928i 0.178532π0.178532\pi
−0.846790 + 0.531928i 0.821468π0.821468\pi
212212 0 0
213213 −292.353 −1.37255
214214 0 0
215215 46.7048i 0.217232i
216216 0 0
217217 −5.89642 −0.0271724
218218 0 0
219219 318.577i 1.45469i
220220 0 0
221221 323.977 1.46596
222222 0 0
223223 − 206.571i − 0.926325i −0.886273 0.463163i 0.846715π-0.846715\pi
0.886273 0.463163i 0.153285π-0.153285\pi
224224 0 0
225225 −75.4299 −0.335244
226226 0 0
227227 − 88.9673i − 0.391926i −0.980611 0.195963i 0.937217π-0.937217\pi
0.980611 0.195963i 0.0627833π-0.0627833\pi
228228 0 0
229229 −312.825 −1.36605 −0.683025 0.730395i 0.739336π-0.739336\pi
−0.683025 + 0.730395i 0.739336π0.739336\pi
230230 0 0
231231 23.1768i 0.100332i
232232 0 0
233233 16.0101 0.0687128 0.0343564 0.999410i 0.489062π-0.489062\pi
0.0343564 + 0.999410i 0.489062π0.489062\pi
234234 0 0
235235 − 133.084i − 0.566316i
236236 0 0
237237 190.610 0.804261
238238 0 0
239239 − 79.4928i − 0.332606i −0.986075 0.166303i 0.946817π-0.946817\pi
0.986075 0.166303i 0.0531830π-0.0531830\pi
240240 0 0
241241 −310.931 −1.29017 −0.645084 0.764112i 0.723178π-0.723178\pi
−0.645084 + 0.764112i 0.723178π0.723178\pi
242242 0 0
243243 175.584i 0.722569i
244244 0 0
245245 −88.3996 −0.360815
246246 0 0
247247 306.101i 1.23928i
248248 0 0
249249 −193.849 −0.778511
250250 0 0
251251 95.5427i 0.380648i 0.981721 + 0.190324i 0.0609539π0.0609539\pi
−0.981721 + 0.190324i 0.939046π0.939046\pi
252252 0 0
253253 346.227 1.36849
254254 0 0
255255 − 123.135i − 0.482881i
256256 0 0
257257 450.968 1.75474 0.877369 0.479816i 0.159297π-0.159297\pi
0.877369 + 0.479816i 0.159297π0.159297\pi
258258 0 0
259259 − 18.6084i − 0.0718471i
260260 0 0
261261 18.7354 0.0717832
262262 0 0
263263 − 154.826i − 0.588691i −0.955699 0.294345i 0.904898π-0.904898\pi
0.955699 0.294345i 0.0951016π-0.0951016\pi
264264 0 0
265265 −136.472 −0.514989
266266 0 0
267267 130.390i 0.488351i
268268 0 0
269269 344.712 1.28146 0.640729 0.767768i 0.278632π-0.278632\pi
0.640729 + 0.767768i 0.278632π0.278632\pi
270270 0 0
271271 − 321.091i − 1.18484i −0.805630 0.592420i 0.798173π-0.798173\pi
0.805630 0.592420i 0.201827π-0.201827\pi
272272 0 0
273273 −18.2769 −0.0669483
274274 0 0
275275 309.651i 1.12600i
276276 0 0
277277 312.665 1.12875 0.564377 0.825517i 0.309117π-0.309117\pi
0.564377 + 0.825517i 0.309117π0.309117\pi
278278 0 0
279279 29.7028i 0.106462i
280280 0 0
281281 −29.2825 −0.104208 −0.0521041 0.998642i 0.516593π-0.516593\pi
−0.0521041 + 0.998642i 0.516593π0.516593\pi
282282 0 0
283283 − 274.731i − 0.970782i −0.874297 0.485391i 0.838677π-0.838677\pi
0.874297 0.485391i 0.161323π-0.161323\pi
284284 0 0
285285 116.341 0.408213
286286 0 0
287287 11.1659i 0.0389056i
288288 0 0
289289 538.454 1.86316
290290 0 0
291291 354.982i 1.21987i
292292 0 0
293293 −197.711 −0.674780 −0.337390 0.941365i 0.609544π-0.609544\pi
−0.337390 + 0.941365i 0.609544π0.609544\pi
294294 0 0
295295 134.270i 0.455152i
296296 0 0
297297 418.775 1.41002
298298 0 0
299299 273.030i 0.913145i
300300 0 0
301301 17.7057 0.0588230
302302 0 0
303303 76.8032i 0.253476i
304304 0 0
305305 164.072 0.537942
306306 0 0
307307 − 274.770i − 0.895017i −0.894280 0.447508i 0.852311π-0.852311\pi
0.894280 0.447508i 0.147689π-0.147689\pi
308308 0 0
309309 144.147 0.466494
310310 0 0
311311 498.598i 1.60321i 0.597854 + 0.801605i 0.296020π0.296020\pi
−0.597854 + 0.801605i 0.703980π0.703980\pi
312312 0 0
313313 −374.490 −1.19645 −0.598227 0.801326i 0.704128π-0.704128\pi
−0.598227 + 0.801326i 0.704128π0.704128\pi
314314 0 0
315315 − 4.37745i − 0.0138967i
316316 0 0
317317 −240.543 −0.758810 −0.379405 0.925231i 0.623871π-0.623871\pi
−0.379405 + 0.925231i 0.623871π0.623871\pi
318318 0 0
319319 − 76.9115i − 0.241102i
320320 0 0
321321 77.4802 0.241371
322322 0 0
323323 781.800i 2.42043i
324324 0 0
325325 −244.186 −0.751343
326326 0 0
327327 14.8179i 0.0453147i
328328 0 0
329329 −50.4520 −0.153350
330330 0 0
331331 − 150.863i − 0.455779i −0.973687 0.227890i 0.926817π-0.926817\pi
0.973687 0.227890i 0.0731825π-0.0731825\pi
332332 0 0
333333 −93.7386 −0.281497
334334 0 0
335335 48.9512i 0.146123i
336336 0 0
337337 190.087 0.564055 0.282028 0.959406i 0.408993π-0.408993\pi
0.282028 + 0.959406i 0.408993π0.408993\pi
338338 0 0
339339 − 279.901i − 0.825668i
340340 0 0
341341 121.934 0.357578
342342 0 0
343343 67.3538i 0.196367i
344344 0 0
345345 103.771 0.300786
346346 0 0
347347 − 334.477i − 0.963910i −0.876196 0.481955i 0.839927π-0.839927\pi
0.876196 0.481955i 0.160073π-0.160073\pi
348348 0 0
349349 −386.383 −1.10711 −0.553557 0.832811i 0.686730π-0.686730\pi
−0.553557 + 0.832811i 0.686730π0.686730\pi
350350 0 0
351351 330.240i 0.940856i
352352 0 0
353353 −133.391 −0.377878 −0.188939 0.981989i 0.560505π-0.560505\pi
−0.188939 + 0.981989i 0.560505π0.560505\pi
354354 0 0
355355 − 226.676i − 0.638523i
356356 0 0
357357 −46.6802 −0.130757
358358 0 0
359359 − 410.303i − 1.14290i −0.820635 0.571452i 0.806380π-0.806380\pi
0.820635 0.571452i 0.193620π-0.193620\pi
360360 0 0
361361 −377.664 −1.04616
362362 0 0
363363 − 194.972i − 0.537112i
364364 0 0
365365 −247.008 −0.676734
366366 0 0
367367 544.463i 1.48355i 0.670648 + 0.741776i 0.266016π0.266016\pi
−0.670648 + 0.741776i 0.733984π0.733984\pi
368368 0 0
369369 56.2475 0.152432
370370 0 0
371371 51.7364i 0.139451i
372372 0 0
373373 55.6448 0.149182 0.0745909 0.997214i 0.476235π-0.476235\pi
0.0745909 + 0.997214i 0.476235π0.476235\pi
374374 0 0
375375 199.824i 0.532865i
376376 0 0
377377 60.6514 0.160879
378378 0 0
379379 512.831i 1.35312i 0.736389 + 0.676558i 0.236529π0.236529\pi
−0.736389 + 0.676558i 0.763471π0.763471\pi
380380 0 0
381381 313.474 0.822767
382382 0 0
383383 − 138.427i − 0.361428i −0.983536 0.180714i 0.942159π-0.942159\pi
0.983536 0.180714i 0.0578409π-0.0578409\pi
384384 0 0
385385 −17.9701 −0.0466755
386386 0 0
387387 − 89.1914i − 0.230469i
388388 0 0
389389 132.836 0.341482 0.170741 0.985316i 0.445384π-0.445384\pi
0.170741 + 0.985316i 0.445384π0.445384\pi
390390 0 0
391391 697.335i 1.78346i
392392 0 0
393393 284.759 0.724578
394394 0 0
395395 147.789i 0.374149i
396396 0 0
397397 693.912 1.74789 0.873945 0.486025i 0.161554π-0.161554\pi
0.873945 + 0.486025i 0.161554π0.161554\pi
398398 0 0
399399 − 44.1046i − 0.110538i
400400 0 0
401401 595.379 1.48474 0.742368 0.669992i 0.233702π-0.233702\pi
0.742368 + 0.669992i 0.233702π0.233702\pi
402402 0 0
403403 96.1558i 0.238600i
404404 0 0
405405 68.4714 0.169065
406406 0 0
407407 384.810i 0.945480i
408408 0 0
409409 −401.801 −0.982399 −0.491200 0.871047i 0.663441π-0.663441\pi
−0.491200 + 0.871047i 0.663441π0.663441\pi
410410 0 0
411411 − 75.8386i − 0.184522i
412412 0 0
413413 50.9015 0.123248
414414 0 0
415415 − 150.301i − 0.362170i
416416 0 0
417417 −183.419 −0.439855
418418 0 0
419419 − 298.317i − 0.711975i −0.934491 0.355987i 0.884145π-0.884145\pi
0.934491 0.355987i 0.115855π-0.115855\pi
420420 0 0
421421 −540.634 −1.28417 −0.642084 0.766635i 0.721930π-0.721930\pi
−0.642084 + 0.766635i 0.721930π0.721930\pi
422422 0 0
423423 254.149i 0.600825i
424424 0 0
425425 −623.666 −1.46745
426426 0 0
427427 − 62.1996i − 0.145667i
428428 0 0
429429 377.955 0.881014
430430 0 0
431431 742.588i 1.72294i 0.507807 + 0.861471i 0.330456π0.330456\pi
−0.507807 + 0.861471i 0.669544π0.669544\pi
432432 0 0
433433 −336.183 −0.776403 −0.388202 0.921574i 0.626904π-0.626904\pi
−0.388202 + 0.921574i 0.626904π0.626904\pi
434434 0 0
435435 − 23.0519i − 0.0529929i
436436 0 0
437437 −658.859 −1.50769
438438 0 0
439439 − 733.097i − 1.66993i −0.550306 0.834963i 0.685489π-0.685489\pi
0.550306 0.834963i 0.314511π-0.314511\pi
440440 0 0
441441 168.815 0.382801
442442 0 0
443443 − 664.117i − 1.49914i −0.661928 0.749568i 0.730262π-0.730262\pi
0.661928 0.749568i 0.269738π-0.269738\pi
444444 0 0
445445 −101.097 −0.227185
446446 0 0
447447 − 429.026i − 0.959791i
448448 0 0
449449 −139.219 −0.310065 −0.155032 0.987909i 0.549548π-0.549548\pi
−0.155032 + 0.987909i 0.549548π0.549548\pi
450450 0 0
451451 − 230.904i − 0.511982i
452452 0 0
453453 459.152 1.01358
454454 0 0
455455 − 14.1709i − 0.0311449i
456456 0 0
457457 −644.897 −1.41115 −0.705577 0.708634i 0.749312π-0.749312\pi
−0.705577 + 0.708634i 0.749312π0.749312\pi
458458 0 0
459459 843.452i 1.83759i
460460 0 0
461461 558.356 1.21119 0.605593 0.795775i 0.292936π-0.292936\pi
0.605593 + 0.795775i 0.292936π0.292936\pi
462462 0 0
463463 − 568.468i − 1.22779i −0.789386 0.613897i 0.789601π-0.789601\pi
0.789386 0.613897i 0.210399π-0.210399\pi
464464 0 0
465465 36.5461 0.0785939
466466 0 0
467467 165.113i 0.353561i 0.984250 + 0.176780i 0.0565682π0.0565682\pi
−0.984250 + 0.176780i 0.943432π0.943432\pi
468468 0 0
469469 18.5574 0.0395679
470470 0 0
471471 − 577.814i − 1.22678i
472472 0 0
473473 −366.143 −0.774088
474474 0 0
475475 − 589.255i − 1.24054i
476476 0 0
477477 260.619 0.546371
478478 0 0
479479 − 400.122i − 0.835329i −0.908601 0.417664i 0.862849π-0.862849\pi
0.908601 0.417664i 0.137151π-0.137151\pi
480480 0 0
481481 −303.456 −0.630887
482482 0 0
483483 − 39.3396i − 0.0814484i
484484 0 0
485485 −275.234 −0.567493
486486 0 0
487487 22.9865i 0.0472002i 0.999721 + 0.0236001i 0.00751284π0.00751284\pi
−0.999721 + 0.0236001i 0.992487π0.992487\pi
488488 0 0
489489 246.111 0.503295
490490 0 0
491491 381.074i 0.776117i 0.921635 + 0.388059i 0.126854π0.126854\pi
−0.921635 + 0.388059i 0.873146π0.873146\pi
492492 0 0
493493 154.907 0.314213
494494 0 0
495495 90.5229i 0.182875i
496496 0 0
497497 −85.9324 −0.172902
498498 0 0
499499 − 915.621i − 1.83491i −0.397837 0.917456i 0.630239π-0.630239\pi
0.397837 0.917456i 0.369761π-0.369761\pi
500500 0 0
501501 50.9524 0.101701
502502 0 0
503503 456.416i 0.907387i 0.891158 + 0.453694i 0.149894π0.149894\pi
−0.891158 + 0.453694i 0.850106π0.850106\pi
504504 0 0
505505 −59.5492 −0.117919
506506 0 0
507507 − 99.0430i − 0.195351i
508508 0 0
509509 229.681 0.451240 0.225620 0.974215i 0.427559π-0.427559\pi
0.225620 + 0.974215i 0.427559π0.427559\pi
510510 0 0
511511 93.6404i 0.183249i
512512 0 0
513513 −796.915 −1.55344
514514 0 0
515515 111.764i 0.217017i
516516 0 0
517517 1043.32 2.01802
518518 0 0
519519 − 478.951i − 0.922835i
520520 0 0
521521 −831.060 −1.59512 −0.797562 0.603237i 0.793877π-0.793877\pi
−0.797562 + 0.603237i 0.793877π0.793877\pi
522522 0 0
523523 − 679.074i − 1.29842i −0.760609 0.649211i 0.775099π-0.775099\pi
0.760609 0.649211i 0.224901π-0.224901\pi
524524 0 0
525525 35.1836 0.0670164
526526 0 0
527527 245.587i 0.466010i
528528 0 0
529529 −58.6766 −0.110920
530530 0 0
531531 − 256.413i − 0.482887i
532532 0 0
533533 182.088 0.341628
534534 0 0
535535 60.0741i 0.112288i
536536 0 0
537537 158.231 0.294658
538538 0 0
539539 − 693.011i − 1.28573i
540540 0 0
541541 −33.1593 −0.0612925 −0.0306463 0.999530i 0.509757π-0.509757\pi
−0.0306463 + 0.999530i 0.509757π0.509757\pi
542542 0 0
543543 76.7565i 0.141356i
544544 0 0
545545 −11.4890 −0.0210808
546546 0 0
547547 299.078i 0.546761i 0.961906 + 0.273380i 0.0881418π0.0881418\pi
−0.961906 + 0.273380i 0.911858π0.911858\pi
548548 0 0
549549 −313.326 −0.570722
550550 0 0
551551 146.360i 0.265626i
552552 0 0
553553 56.0266 0.101314
554554 0 0
555555 115.335i 0.207812i
556556 0 0
557557 389.777 0.699778 0.349889 0.936791i 0.386219π-0.386219\pi
0.349889 + 0.936791i 0.386219π0.386219\pi
558558 0 0
559559 − 288.736i − 0.516522i
560560 0 0
561561 965.317 1.72071
562562 0 0
563563 − 781.149i − 1.38748i −0.720227 0.693738i 0.755963π-0.755963\pi
0.720227 0.693738i 0.244037π-0.244037\pi
564564 0 0
565565 217.021 0.384108
566566 0 0
567567 − 25.9574i − 0.0457803i
568568 0 0
569569 974.448 1.71256 0.856282 0.516509i 0.172769π-0.172769\pi
0.856282 + 0.516509i 0.172769π0.172769\pi
570570 0 0
571571 − 248.880i − 0.435866i −0.975964 0.217933i 0.930069π-0.930069\pi
0.975964 0.217933i 0.0699315π-0.0699315\pi
572572 0 0
573573 −589.088 −1.02808
574574 0 0
575575 − 525.592i − 0.914073i
576576 0 0
577577 −1123.31 −1.94682 −0.973409 0.229075i 0.926430π-0.926430\pi
−0.973409 + 0.229075i 0.926430π0.926430\pi
578578 0 0
579579 − 123.358i − 0.213053i
580580 0 0
581581 −56.9788 −0.0980702
582582 0 0
583583 − 1069.88i − 1.83512i
584584 0 0
585585 −71.3852 −0.122026
586586 0 0
587587 430.729i 0.733781i 0.930264 + 0.366890i 0.119578π0.119578\pi
−0.930264 + 0.366890i 0.880422π0.880422\pi
588588 0 0
589589 −232.037 −0.393950
590590 0 0
591591 − 401.580i − 0.679493i
592592 0 0
593593 −29.7378 −0.0501481 −0.0250741 0.999686i 0.507982π-0.507982\pi
−0.0250741 + 0.999686i 0.507982π0.507982\pi
594594 0 0
595595 − 36.1934i − 0.0608292i
596596 0 0
597597 −136.320 −0.228342
598598 0 0
599599 39.8356i 0.0665035i 0.999447 + 0.0332518i 0.0105863π0.0105863\pi
−0.999447 + 0.0332518i 0.989414π0.989414\pi
600600 0 0
601601 51.8730 0.0863111 0.0431555 0.999068i 0.486259π-0.486259\pi
0.0431555 + 0.999068i 0.486259π0.486259\pi
602602 0 0
603603 − 93.4814i − 0.155027i
604604 0 0
605605 151.171 0.249869
606606 0 0
607607 223.429i 0.368087i 0.982918 + 0.184044i 0.0589188π0.0589188\pi
−0.982918 + 0.184044i 0.941081π0.941081\pi
608608 0 0
609609 −8.73896 −0.0143497
610610 0 0
611611 822.746i 1.34656i
612612 0 0
613613 −315.690 −0.514992 −0.257496 0.966279i 0.582897π-0.582897\pi
−0.257496 + 0.966279i 0.582897π0.582897\pi
614614 0 0
615615 − 69.2066i − 0.112531i
616616 0 0
617617 −696.107 −1.12821 −0.564106 0.825702i 0.690779π-0.690779\pi
−0.564106 + 0.825702i 0.690779π0.690779\pi
618618 0 0
619619 922.143i 1.48973i 0.667215 + 0.744865i 0.267486π0.267486\pi
−0.667215 + 0.744865i 0.732514π0.732514\pi
620620 0 0
621621 −710.817 −1.14463
622622 0 0
623623 38.3259i 0.0615183i
624624 0 0
625625 387.092 0.619347
626626 0 0
627627 912.056i 1.45463i
628628 0 0
629629 −775.044 −1.23218
630630 0 0
631631 − 935.862i − 1.48314i −0.670875 0.741570i 0.734081π-0.734081\pi
0.670875 0.741570i 0.265919π-0.265919\pi
632632 0 0
633633 −527.437 −0.833234
634634 0 0
635635 243.052i 0.382758i
636636 0 0
637637 546.499 0.857927
638638 0 0
639639 432.879i 0.677432i
640640 0 0
641641 −359.262 −0.560472 −0.280236 0.959931i 0.590413π-0.590413\pi
−0.280236 + 0.959931i 0.590413π0.590413\pi
642642 0 0
643643 − 487.138i − 0.757602i −0.925478 0.378801i 0.876336π-0.876336\pi
0.925478 0.378801i 0.123664π-0.123664\pi
644644 0 0
645645 −109.741 −0.170140
646646 0 0
647647 − 511.959i − 0.791282i −0.918405 0.395641i 0.870522π-0.870522\pi
0.918405 0.395641i 0.129478π-0.129478\pi
648648 0 0
649649 −1052.61 −1.62190
650650 0 0
651651 − 13.8546i − 0.0212820i
652652 0 0
653653 1077.84 1.65060 0.825299 0.564696i 0.191007π-0.191007\pi
0.825299 + 0.564696i 0.191007π0.191007\pi
654654 0 0
655655 220.787i 0.337080i
656656 0 0
657657 471.707 0.717972
658658 0 0
659659 894.373i 1.35717i 0.734523 + 0.678584i 0.237406π0.237406\pi
−0.734523 + 0.678584i 0.762594π0.762594\pi
660660 0 0
661661 −933.964 −1.41296 −0.706478 0.707735i 0.749717π-0.749717\pi
−0.706478 + 0.707735i 0.749717π0.749717\pi
662662 0 0
663663 761.237i 1.14817i
664664 0 0
665665 34.1964 0.0514232
666666 0 0
667667 130.547i 0.195723i
668668 0 0
669669 485.372 0.725518
670670 0 0
671671 1286.25i 1.91691i
672672 0 0
673673 −629.790 −0.935795 −0.467898 0.883783i 0.654988π-0.654988\pi
−0.467898 + 0.883783i 0.654988π0.654988\pi
674674 0 0
675675 − 635.723i − 0.941812i
676676 0 0
677677 685.354 1.01234 0.506170 0.862434i 0.331061π-0.331061\pi
0.506170 + 0.862434i 0.331061π0.331061\pi
678678 0 0
679679 104.341i 0.153669i
680680 0 0
681681 209.043 0.306965
682682 0 0
683683 − 258.863i − 0.379009i −0.981880 0.189504i 0.939312π-0.939312\pi
0.981880 0.189504i 0.0606881π-0.0606881\pi
684684 0 0
685685 58.8013 0.0858413
686686 0 0
687687 − 735.035i − 1.06992i
688688 0 0
689689 843.691 1.22452
690690 0 0
691691 − 214.788i − 0.310837i −0.987849 0.155419i 0.950327π-0.950327\pi
0.987849 0.155419i 0.0496726π-0.0496726\pi
692692 0 0
693693 34.3171 0.0495197
694694 0 0
695695 − 142.214i − 0.204624i
696696 0 0
697697 465.063 0.667235
698698 0 0
699699 37.6183i 0.0538173i
700700 0 0
701701 376.058 0.536460 0.268230 0.963355i 0.413561π-0.413561\pi
0.268230 + 0.963355i 0.413561π0.413561\pi
702702 0 0
703703 − 732.281i − 1.04165i
704704 0 0
705705 312.703 0.443551
706706 0 0
707707 22.5750i 0.0319307i
708708 0 0
709709 −39.7841 −0.0561130 −0.0280565 0.999606i 0.508932π-0.508932\pi
−0.0280565 + 0.999606i 0.508932π0.508932\pi
710710 0 0
711711 − 282.230i − 0.396948i
712712 0 0
713713 −206.968 −0.290277
714714 0 0
715715 293.046i 0.409855i
716716 0 0
717717 186.781 0.260504
718718 0 0
719719 − 503.430i − 0.700180i −0.936716 0.350090i 0.886151π-0.886151\pi
0.936716 0.350090i 0.113849π-0.113849\pi
720720 0 0
721721 42.3695 0.0587650
722722 0 0
723723 − 730.583i − 1.01049i
724724 0 0
725725 −116.756 −0.161043
726726 0 0
727727 249.531i 0.343234i 0.985164 + 0.171617i 0.0548992π0.0548992\pi
−0.985164 + 0.171617i 0.945101π0.945101\pi
728728 0 0
729729 −750.823 −1.02994
730730 0 0
731731 − 737.447i − 1.00882i
732732 0 0
733733 141.209 0.192645 0.0963223 0.995350i 0.469292π-0.469292\pi
0.0963223 + 0.995350i 0.469292π0.469292\pi
734734 0 0
735735 − 207.709i − 0.282598i
736736 0 0
737737 −383.755 −0.520698
738738 0 0
739739 1418.57i 1.91959i 0.280709 + 0.959793i 0.409430π0.409430\pi
−0.280709 + 0.959793i 0.590570π0.590570\pi
740740 0 0
741741 −719.235 −0.970628
742742 0 0
743743 886.796i 1.19353i 0.802415 + 0.596767i 0.203548π0.203548\pi
−0.802415 + 0.596767i 0.796452π0.796452\pi
744744 0 0
745745 332.645 0.446503
746746 0 0
747747 287.027i 0.384239i
748748 0 0
749749 22.7740 0.0304059
750750 0 0
751751 1471.29i 1.95911i 0.201182 + 0.979554i 0.435522π0.435522\pi
−0.201182 + 0.979554i 0.564478π0.564478\pi
752752 0 0
753753 −224.493 −0.298132
754754 0 0
755755 356.002i 0.471526i
756756 0 0
757757 −211.707 −0.279666 −0.139833 0.990175i 0.544657π-0.544657\pi
−0.139833 + 0.990175i 0.544657π0.544657\pi
758758 0 0
759759 813.518i 1.07183i
760760 0 0
761761 −508.153 −0.667743 −0.333872 0.942619i 0.608355π-0.608355\pi
−0.333872 + 0.942619i 0.608355π0.608355\pi
762762 0 0
763763 4.35548i 0.00570836i
764764 0 0
765765 −182.322 −0.238329
766766 0 0
767767 − 830.076i − 1.08224i
768768 0 0
769769 −278.591 −0.362277 −0.181139 0.983458i 0.557978π-0.557978\pi
−0.181139 + 0.983458i 0.557978π0.557978\pi
770770 0 0
771771 1059.62i 1.37435i
772772 0 0
773773 552.597 0.714874 0.357437 0.933937i 0.383651π-0.383651\pi
0.357437 + 0.933937i 0.383651π0.383651\pi
774774 0 0
775775 − 185.103i − 0.238842i
776776 0 0
777777 43.7235 0.0562722
778778 0 0
779779 439.403i 0.564060i
780780 0 0
781781 1777.03 2.27533
782782 0 0
783783 157.902i 0.201663i
784784 0 0
785785 448.007 0.570710
786786 0 0
787787 − 1140.18i − 1.44877i −0.689395 0.724386i 0.742123π-0.742123\pi
0.689395 0.724386i 0.257877π-0.257877\pi
788788 0 0
789789 363.788 0.461075
790790 0 0
791791 − 82.2723i − 0.104011i
792792 0 0
793793 −1014.32 −1.27909
794794 0 0
795795 − 320.664i − 0.403351i
796796 0 0
797797 778.570 0.976875 0.488438 0.872599i 0.337567π-0.337567\pi
0.488438 + 0.872599i 0.337567π0.337567\pi
798798 0 0
799799 2101.34i 2.62996i
800800 0 0
801801 193.064 0.241029
802802 0 0
803803 − 1936.43i − 2.41149i
804804 0 0
805805 30.5019 0.0378905
806806 0 0
807807 809.957i 1.00366i
808808 0 0
809809 −199.801 −0.246973 −0.123486 0.992346i 0.539408π-0.539408\pi
−0.123486 + 0.992346i 0.539408π0.539408\pi
810810 0 0
811811 1021.54i 1.25961i 0.776754 + 0.629804i 0.216865π0.216865\pi
−0.776754 + 0.629804i 0.783135π0.783135\pi
812812 0 0
813813 754.457 0.927991
814814 0 0
815815 190.822i 0.234137i
816816 0 0
817817 696.759 0.852826
818818 0 0
819819 27.0620i 0.0330428i
820820 0 0
821821 148.801 0.181244 0.0906219 0.995885i 0.471115π-0.471115\pi
0.0906219 + 0.995885i 0.471115π0.471115\pi
822822 0 0
823823 − 791.060i − 0.961190i −0.876943 0.480595i 0.840421π-0.840421\pi
0.876943 0.480595i 0.159579π-0.159579\pi
824824 0 0
825825 −727.575 −0.881909
826826 0 0
827827 925.059i 1.11857i 0.828975 + 0.559286i 0.188925π0.188925\pi
−0.828975 + 0.559286i 0.811075π0.811075\pi
828828 0 0
829829 877.725 1.05878 0.529388 0.848380i 0.322422π-0.322422\pi
0.529388 + 0.848380i 0.322422π0.322422\pi
830830 0 0
831831 734.657i 0.884064i
832832 0 0
833833 1395.79 1.67562
834834 0 0
835835 39.5058i 0.0473123i
836836 0 0
837837 −250.335 −0.299086
838838 0 0
839839 − 787.049i − 0.938079i −0.883177 0.469040i 0.844600π-0.844600\pi
0.883177 0.469040i 0.155400π-0.155400\pi
840840 0 0
841841 29.0000 0.0344828
842842 0 0
843843 − 68.8040i − 0.0816181i
844844 0 0
845845 76.7928 0.0908790
846846 0 0
847847 − 57.3087i − 0.0676608i
848848 0 0
849849 645.526 0.760337
850850 0 0
851851 − 653.166i − 0.767528i
852852 0 0
853853 −327.020 −0.383377 −0.191688 0.981456i 0.561396π-0.561396\pi
−0.191688 + 0.981456i 0.561396π0.561396\pi
854854 0 0
855855 − 172.262i − 0.201476i
856856 0 0
857857 212.896 0.248420 0.124210 0.992256i 0.460360π-0.460360\pi
0.124210 + 0.992256i 0.460360π0.460360\pi
858858 0 0
859859 1527.79i 1.77857i 0.457358 + 0.889283i 0.348796π0.348796\pi
−0.457358 + 0.889283i 0.651204π0.651204\pi
860860 0 0
861861 −26.2361 −0.0304717
862862 0 0
863863 − 557.729i − 0.646268i −0.946353 0.323134i 0.895264π-0.895264\pi
0.946353 0.323134i 0.104736π-0.104736\pi
864864 0 0
865865 371.354 0.429311
866866 0 0
867867 1265.19i 1.45927i
868868 0 0
869869 −1158.60 −1.33325
870870 0 0
871871 − 302.624i − 0.347444i
872872 0 0
873873 525.610 0.602074
874874 0 0
875875 58.7351i 0.0671258i
876876 0 0
877877 135.773 0.154816 0.0774079 0.997000i 0.475336π-0.475336\pi
0.0774079 + 0.997000i 0.475336π0.475336\pi
878878 0 0
879879 − 464.554i − 0.528502i
880880 0 0
881881 560.838 0.636592 0.318296 0.947991i 0.396889π-0.396889\pi
0.318296 + 0.947991i 0.396889π0.396889\pi
882882 0 0
883883 − 1230.79i − 1.39388i −0.717131 0.696938i 0.754545π-0.754545\pi
0.717131 0.696938i 0.245455π-0.245455\pi
884884 0 0
885885 −315.489 −0.356485
886886 0 0
887887 − 772.049i − 0.870404i −0.900333 0.435202i 0.856677π-0.856677\pi
0.900333 0.435202i 0.143323π-0.143323\pi
888888 0 0
889889 92.1406 0.103645
890890 0 0
891891 536.783i 0.602450i
892892 0 0
893893 −1985.40 −2.22329
894894 0 0
895895 122.684i 0.137077i
896896 0 0
897897 −641.530 −0.715195
898898 0 0
899899 45.9761i 0.0511414i
900900 0 0
901901 2154.83 2.39160
902902 0 0
903903 41.6025i 0.0460714i
904904 0 0
905905 −59.5130 −0.0657602
906906 0 0
907907 1495.84i 1.64922i 0.565705 + 0.824608i 0.308604π0.308604\pi
−0.565705 + 0.824608i 0.691396π0.691396\pi
908908 0 0
909909 113.720 0.125105
910910 0 0
911911 − 199.158i − 0.218615i −0.994008 0.109307i 0.965137π-0.965137\pi
0.994008 0.109307i 0.0348633π-0.0348633\pi
912912 0 0
913913 1178.29 1.29056
914914 0 0
915915 385.515i 0.421328i
916916 0 0
917917 83.7002 0.0912761
918918 0 0
919919 − 791.506i − 0.861268i −0.902527 0.430634i 0.858290π-0.858290\pi
0.902527 0.430634i 0.141710π-0.141710\pi
920920 0 0
921921 645.618 0.700996
922922 0 0
923923 1401.34i 1.51825i
924924 0 0
925925 584.163 0.631528
926926 0 0
927927 − 213.434i − 0.230241i
928928 0 0
929929 12.2055 0.0131383 0.00656913 0.999978i 0.497909π-0.497909\pi
0.00656913 + 0.999978i 0.497909π0.497909\pi
930930 0 0
931931 1318.78i 1.41652i
932932 0 0
933933 −1171.54 −1.25567
934934 0 0
935935 748.457i 0.800488i
936936 0 0
937937 89.2686 0.0952706 0.0476353 0.998865i 0.484831π-0.484831\pi
0.0476353 + 0.998865i 0.484831π0.484831\pi
938938 0 0
939939 − 879.926i − 0.937089i
940940 0 0
941941 −481.158 −0.511326 −0.255663 0.966766i 0.582294π-0.582294\pi
−0.255663 + 0.966766i 0.582294π0.582294\pi
942942 0 0
943943 391.930i 0.415620i
944944 0 0
945945 36.8931 0.0390403
946946 0 0
947947 − 796.225i − 0.840786i −0.907342 0.420393i 0.861892π-0.861892\pi
0.907342 0.420393i 0.138108π-0.138108\pi
948948 0 0
949949 1527.04 1.60910
950950 0 0
951951 − 565.195i − 0.594316i
952952 0 0
953953 −95.6047 −0.100320 −0.0501598 0.998741i 0.515973π-0.515973\pi
−0.0501598 + 0.998741i 0.515973π0.515973\pi
954954 0 0
955955 − 456.748i − 0.478270i
956956 0 0
957957 180.716 0.188836
958958 0 0
959959 − 22.2915i − 0.0232445i
960960 0 0
961961 888.110 0.924152
962962 0 0
963963 − 114.723i − 0.119130i
964964 0 0
965965 95.6451 0.0991141
966966 0 0
967967 640.927i 0.662800i 0.943490 + 0.331400i 0.107521π0.107521\pi
−0.943490 + 0.331400i 0.892479π0.892479\pi
968968 0 0
969969 −1836.97 −1.89573
970970 0 0
971971 1512.11i 1.55727i 0.627476 + 0.778636i 0.284088π0.284088\pi
−0.627476 + 0.778636i 0.715912π0.715912\pi
972972 0 0
973973 −53.9131 −0.0554092
974974 0 0
975975 − 573.756i − 0.588468i
976976 0 0
977977 −1540.22 −1.57648 −0.788240 0.615369i 0.789007π-0.789007\pi
−0.788240 + 0.615369i 0.789007π0.789007\pi
978978 0 0
979979 − 792.556i − 0.809557i
980980 0 0
981981 21.9405 0.0223654
982982 0 0
983983 − 755.412i − 0.768476i −0.923234 0.384238i 0.874464π-0.874464\pi
0.923234 0.384238i 0.125536π-0.125536\pi
984984 0 0
985985 311.364 0.316106
986986 0 0
987987 − 118.545i − 0.120107i
988988 0 0
989989 621.481 0.628394
990990 0 0
991991 1510.68i 1.52440i 0.647344 + 0.762198i 0.275880π0.275880\pi
−0.647344 + 0.762198i 0.724120π0.724120\pi
992992 0 0
993993 354.477 0.356976
994994 0 0
995995 − 105.695i − 0.106227i
996996 0 0
997997 −1362.77 −1.36687 −0.683436 0.730011i 0.739515π-0.739515\pi
−0.683436 + 0.730011i 0.739515π0.739515\pi
998998 0 0
999999 − 790.029i − 0.790819i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.3.d.b.175.15 yes 20
4.3 odd 2 inner 464.3.d.b.175.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.3.d.b.175.6 20 4.3 odd 2 inner
464.3.d.b.175.15 yes 20 1.1 even 1 trivial