Properties

Label 464.3.d.b.175.15
Level $464$
Weight $3$
Character 464.175
Analytic conductor $12.643$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,3,Mod(175,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.175");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 464.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6430842663\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 69 x^{18} + 1795 x^{16} + 24222 x^{14} + 189561 x^{12} + 892623 x^{10} + 2508433 x^{8} + \cdots + 21609 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{36}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 175.15
Root \(-2.79820i\) of defining polynomial
Character \(\chi\) \(=\) 464.175
Dual form 464.3.d.b.175.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.34966i q^{3} -1.82181 q^{5} +0.690645i q^{7} +3.47908 q^{9} -14.2821i q^{11} +11.2627 q^{13} -4.28063i q^{15} +28.7655 q^{17} +27.1784i q^{19} -1.62278 q^{21} +24.2420i q^{23} -21.6810 q^{25} +29.3216i q^{27} +5.38516 q^{29} +8.53755i q^{31} +33.5582 q^{33} -1.25822i q^{35} -26.9435 q^{37} +26.4635i q^{39} +16.1674 q^{41} -25.6365i q^{43} -6.33821 q^{45} +73.0506i q^{47} +48.5230 q^{49} +67.5893i q^{51} +74.9103 q^{53} +26.0192i q^{55} -63.8601 q^{57} -73.7015i q^{59} -90.0602 q^{61} +2.40281i q^{63} -20.5184 q^{65} -26.8696i q^{67} -56.9607 q^{69} +124.423i q^{71} +135.584 q^{73} -50.9431i q^{75} +9.86386 q^{77} -81.1222i q^{79} -37.5843 q^{81} +82.5008i q^{83} -52.4052 q^{85} +12.6533i q^{87} +55.4929 q^{89} +7.77851i q^{91} -20.0604 q^{93} -49.5137i q^{95} +151.078 q^{97} -49.6885i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{5} - 68 q^{9} + 16 q^{13} + 40 q^{17} - 48 q^{21} + 188 q^{25} - 120 q^{33} - 80 q^{37} - 72 q^{41} + 72 q^{45} - 28 q^{49} + 96 q^{53} + 104 q^{57} - 96 q^{61} - 80 q^{65} + 352 q^{69} - 312 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.34966i 0.783221i 0.920131 + 0.391611i \(0.128082\pi\)
−0.920131 + 0.391611i \(0.871918\pi\)
\(4\) 0 0
\(5\) −1.82181 −0.364361 −0.182181 0.983265i \(-0.558316\pi\)
−0.182181 + 0.983265i \(0.558316\pi\)
\(6\) 0 0
\(7\) 0.690645i 0.0986635i 0.998782 + 0.0493318i \(0.0157092\pi\)
−0.998782 + 0.0493318i \(0.984291\pi\)
\(8\) 0 0
\(9\) 3.47908 0.386564
\(10\) 0 0
\(11\) − 14.2821i − 1.29837i −0.760629 0.649187i \(-0.775109\pi\)
0.760629 0.649187i \(-0.224891\pi\)
\(12\) 0 0
\(13\) 11.2627 0.866360 0.433180 0.901307i \(-0.357391\pi\)
0.433180 + 0.901307i \(0.357391\pi\)
\(14\) 0 0
\(15\) − 4.28063i − 0.285376i
\(16\) 0 0
\(17\) 28.7655 1.69209 0.846044 0.533113i \(-0.178978\pi\)
0.846044 + 0.533113i \(0.178978\pi\)
\(18\) 0 0
\(19\) 27.1784i 1.43044i 0.698899 + 0.715220i \(0.253674\pi\)
−0.698899 + 0.715220i \(0.746326\pi\)
\(20\) 0 0
\(21\) −1.62278 −0.0772754
\(22\) 0 0
\(23\) 24.2420i 1.05400i 0.849865 + 0.527001i \(0.176684\pi\)
−0.849865 + 0.527001i \(0.823316\pi\)
\(24\) 0 0
\(25\) −21.6810 −0.867241
\(26\) 0 0
\(27\) 29.3216i 1.08599i
\(28\) 0 0
\(29\) 5.38516 0.185695
\(30\) 0 0
\(31\) 8.53755i 0.275405i 0.990474 + 0.137702i \(0.0439718\pi\)
−0.990474 + 0.137702i \(0.956028\pi\)
\(32\) 0 0
\(33\) 33.5582 1.01691
\(34\) 0 0
\(35\) − 1.25822i − 0.0359492i
\(36\) 0 0
\(37\) −26.9435 −0.728204 −0.364102 0.931359i \(-0.618624\pi\)
−0.364102 + 0.931359i \(0.618624\pi\)
\(38\) 0 0
\(39\) 26.4635i 0.678552i
\(40\) 0 0
\(41\) 16.1674 0.394326 0.197163 0.980371i \(-0.436827\pi\)
0.197163 + 0.980371i \(0.436827\pi\)
\(42\) 0 0
\(43\) − 25.6365i − 0.596198i −0.954535 0.298099i \(-0.903647\pi\)
0.954535 0.298099i \(-0.0963526\pi\)
\(44\) 0 0
\(45\) −6.33821 −0.140849
\(46\) 0 0
\(47\) 73.0506i 1.55427i 0.629335 + 0.777134i \(0.283328\pi\)
−0.629335 + 0.777134i \(0.716672\pi\)
\(48\) 0 0
\(49\) 48.5230 0.990266
\(50\) 0 0
\(51\) 67.5893i 1.32528i
\(52\) 0 0
\(53\) 74.9103 1.41340 0.706701 0.707512i \(-0.250183\pi\)
0.706701 + 0.707512i \(0.250183\pi\)
\(54\) 0 0
\(55\) 26.0192i 0.473077i
\(56\) 0 0
\(57\) −63.8601 −1.12035
\(58\) 0 0
\(59\) − 73.7015i − 1.24918i −0.780954 0.624589i \(-0.785267\pi\)
0.780954 0.624589i \(-0.214733\pi\)
\(60\) 0 0
\(61\) −90.0602 −1.47640 −0.738199 0.674584i \(-0.764323\pi\)
−0.738199 + 0.674584i \(0.764323\pi\)
\(62\) 0 0
\(63\) 2.40281i 0.0381398i
\(64\) 0 0
\(65\) −20.5184 −0.315668
\(66\) 0 0
\(67\) − 26.8696i − 0.401039i −0.979690 0.200519i \(-0.935737\pi\)
0.979690 0.200519i \(-0.0642630\pi\)
\(68\) 0 0
\(69\) −56.9607 −0.825517
\(70\) 0 0
\(71\) 124.423i 1.75244i 0.481908 + 0.876222i \(0.339944\pi\)
−0.481908 + 0.876222i \(0.660056\pi\)
\(72\) 0 0
\(73\) 135.584 1.85732 0.928658 0.370937i \(-0.120964\pi\)
0.928658 + 0.370937i \(0.120964\pi\)
\(74\) 0 0
\(75\) − 50.9431i − 0.679242i
\(76\) 0 0
\(77\) 9.86386 0.128102
\(78\) 0 0
\(79\) − 81.1222i − 1.02686i −0.858131 0.513431i \(-0.828374\pi\)
0.858131 0.513431i \(-0.171626\pi\)
\(80\) 0 0
\(81\) −37.5843 −0.464004
\(82\) 0 0
\(83\) 82.5008i 0.993986i 0.867755 + 0.496993i \(0.165563\pi\)
−0.867755 + 0.496993i \(0.834437\pi\)
\(84\) 0 0
\(85\) −52.4052 −0.616532
\(86\) 0 0
\(87\) 12.6533i 0.145441i
\(88\) 0 0
\(89\) 55.4929 0.623516 0.311758 0.950162i \(-0.399082\pi\)
0.311758 + 0.950162i \(0.399082\pi\)
\(90\) 0 0
\(91\) 7.77851i 0.0854782i
\(92\) 0 0
\(93\) −20.0604 −0.215703
\(94\) 0 0
\(95\) − 49.5137i − 0.521197i
\(96\) 0 0
\(97\) 151.078 1.55750 0.778750 0.627334i \(-0.215854\pi\)
0.778750 + 0.627334i \(0.215854\pi\)
\(98\) 0 0
\(99\) − 49.6885i − 0.501905i
\(100\) 0 0
\(101\) 32.6869 0.323633 0.161816 0.986821i \(-0.448265\pi\)
0.161816 + 0.986821i \(0.448265\pi\)
\(102\) 0 0
\(103\) − 61.3478i − 0.595610i −0.954627 0.297805i \(-0.903746\pi\)
0.954627 0.297805i \(-0.0962545\pi\)
\(104\) 0 0
\(105\) 2.95640 0.0281562
\(106\) 0 0
\(107\) − 32.9750i − 0.308178i −0.988057 0.154089i \(-0.950756\pi\)
0.988057 0.154089i \(-0.0492442\pi\)
\(108\) 0 0
\(109\) 6.30640 0.0578569 0.0289284 0.999581i \(-0.490791\pi\)
0.0289284 + 0.999581i \(0.490791\pi\)
\(110\) 0 0
\(111\) − 63.3083i − 0.570345i
\(112\) 0 0
\(113\) −119.124 −1.05419 −0.527097 0.849805i \(-0.676720\pi\)
−0.527097 + 0.849805i \(0.676720\pi\)
\(114\) 0 0
\(115\) − 44.1643i − 0.384038i
\(116\) 0 0
\(117\) 39.1837 0.334904
\(118\) 0 0
\(119\) 19.8667i 0.166947i
\(120\) 0 0
\(121\) −82.9785 −0.685773
\(122\) 0 0
\(123\) 37.9879i 0.308845i
\(124\) 0 0
\(125\) 85.0438 0.680350
\(126\) 0 0
\(127\) − 133.412i − 1.05049i −0.850951 0.525246i \(-0.823973\pi\)
0.850951 0.525246i \(-0.176027\pi\)
\(128\) 0 0
\(129\) 60.2372 0.466955
\(130\) 0 0
\(131\) − 121.191i − 0.925125i −0.886587 0.462563i \(-0.846930\pi\)
0.886587 0.462563i \(-0.153070\pi\)
\(132\) 0 0
\(133\) −18.7706 −0.141132
\(134\) 0 0
\(135\) − 53.4184i − 0.395692i
\(136\) 0 0
\(137\) −32.2763 −0.235594 −0.117797 0.993038i \(-0.537583\pi\)
−0.117797 + 0.993038i \(0.537583\pi\)
\(138\) 0 0
\(139\) 78.0620i 0.561597i 0.959767 + 0.280799i \(0.0905993\pi\)
−0.959767 + 0.280799i \(0.909401\pi\)
\(140\) 0 0
\(141\) −171.644 −1.21734
\(142\) 0 0
\(143\) − 160.855i − 1.12486i
\(144\) 0 0
\(145\) −9.81073 −0.0676602
\(146\) 0 0
\(147\) 114.013i 0.775597i
\(148\) 0 0
\(149\) −182.590 −1.22544 −0.612720 0.790300i \(-0.709925\pi\)
−0.612720 + 0.790300i \(0.709925\pi\)
\(150\) 0 0
\(151\) − 195.412i − 1.29412i −0.762440 0.647058i \(-0.775999\pi\)
0.762440 0.647058i \(-0.224001\pi\)
\(152\) 0 0
\(153\) 100.077 0.654101
\(154\) 0 0
\(155\) − 15.5538i − 0.100347i
\(156\) 0 0
\(157\) −245.914 −1.56633 −0.783164 0.621815i \(-0.786396\pi\)
−0.783164 + 0.621815i \(0.786396\pi\)
\(158\) 0 0
\(159\) 176.014i 1.10701i
\(160\) 0 0
\(161\) −16.7426 −0.103992
\(162\) 0 0
\(163\) − 104.743i − 0.642596i −0.946978 0.321298i \(-0.895881\pi\)
0.946978 0.321298i \(-0.104119\pi\)
\(164\) 0 0
\(165\) −61.1365 −0.370524
\(166\) 0 0
\(167\) − 21.6850i − 0.129850i −0.997890 0.0649250i \(-0.979319\pi\)
0.997890 0.0649250i \(-0.0206808\pi\)
\(168\) 0 0
\(169\) −42.1520 −0.249420
\(170\) 0 0
\(171\) 94.5557i 0.552957i
\(172\) 0 0
\(173\) −203.838 −1.17825 −0.589127 0.808040i \(-0.700528\pi\)
−0.589127 + 0.808040i \(0.700528\pi\)
\(174\) 0 0
\(175\) − 14.9739i − 0.0855650i
\(176\) 0 0
\(177\) 173.174 0.978383
\(178\) 0 0
\(179\) − 67.3420i − 0.376212i −0.982149 0.188106i \(-0.939765\pi\)
0.982149 0.188106i \(-0.0602349\pi\)
\(180\) 0 0
\(181\) 32.6670 0.180481 0.0902403 0.995920i \(-0.471236\pi\)
0.0902403 + 0.995920i \(0.471236\pi\)
\(182\) 0 0
\(183\) − 211.611i − 1.15635i
\(184\) 0 0
\(185\) 49.0859 0.265329
\(186\) 0 0
\(187\) − 410.832i − 2.19696i
\(188\) 0 0
\(189\) −20.2508 −0.107147
\(190\) 0 0
\(191\) 250.711i 1.31263i 0.754489 + 0.656313i \(0.227885\pi\)
−0.754489 + 0.656313i \(0.772115\pi\)
\(192\) 0 0
\(193\) −52.5002 −0.272022 −0.136011 0.990707i \(-0.543428\pi\)
−0.136011 + 0.990707i \(0.543428\pi\)
\(194\) 0 0
\(195\) − 48.2114i − 0.247238i
\(196\) 0 0
\(197\) −170.910 −0.867562 −0.433781 0.901018i \(-0.642821\pi\)
−0.433781 + 0.901018i \(0.642821\pi\)
\(198\) 0 0
\(199\) 58.0168i 0.291542i 0.989318 + 0.145771i \(0.0465662\pi\)
−0.989318 + 0.145771i \(0.953434\pi\)
\(200\) 0 0
\(201\) 63.1346 0.314102
\(202\) 0 0
\(203\) 3.71924i 0.0183214i
\(204\) 0 0
\(205\) −29.4538 −0.143677
\(206\) 0 0
\(207\) 84.3399i 0.407439i
\(208\) 0 0
\(209\) 388.164 1.85725
\(210\) 0 0
\(211\) 224.473i 1.06386i 0.846790 + 0.531928i \(0.178532\pi\)
−0.846790 + 0.531928i \(0.821468\pi\)
\(212\) 0 0
\(213\) −292.353 −1.37255
\(214\) 0 0
\(215\) 46.7048i 0.217232i
\(216\) 0 0
\(217\) −5.89642 −0.0271724
\(218\) 0 0
\(219\) 318.577i 1.45469i
\(220\) 0 0
\(221\) 323.977 1.46596
\(222\) 0 0
\(223\) − 206.571i − 0.926325i −0.886273 0.463163i \(-0.846715\pi\)
0.886273 0.463163i \(-0.153285\pi\)
\(224\) 0 0
\(225\) −75.4299 −0.335244
\(226\) 0 0
\(227\) − 88.9673i − 0.391926i −0.980611 0.195963i \(-0.937217\pi\)
0.980611 0.195963i \(-0.0627833\pi\)
\(228\) 0 0
\(229\) −312.825 −1.36605 −0.683025 0.730395i \(-0.739336\pi\)
−0.683025 + 0.730395i \(0.739336\pi\)
\(230\) 0 0
\(231\) 23.1768i 0.100332i
\(232\) 0 0
\(233\) 16.0101 0.0687128 0.0343564 0.999410i \(-0.489062\pi\)
0.0343564 + 0.999410i \(0.489062\pi\)
\(234\) 0 0
\(235\) − 133.084i − 0.566316i
\(236\) 0 0
\(237\) 190.610 0.804261
\(238\) 0 0
\(239\) − 79.4928i − 0.332606i −0.986075 0.166303i \(-0.946817\pi\)
0.986075 0.166303i \(-0.0531830\pi\)
\(240\) 0 0
\(241\) −310.931 −1.29017 −0.645084 0.764112i \(-0.723178\pi\)
−0.645084 + 0.764112i \(0.723178\pi\)
\(242\) 0 0
\(243\) 175.584i 0.722569i
\(244\) 0 0
\(245\) −88.3996 −0.360815
\(246\) 0 0
\(247\) 306.101i 1.23928i
\(248\) 0 0
\(249\) −193.849 −0.778511
\(250\) 0 0
\(251\) 95.5427i 0.380648i 0.981721 + 0.190324i \(0.0609539\pi\)
−0.981721 + 0.190324i \(0.939046\pi\)
\(252\) 0 0
\(253\) 346.227 1.36849
\(254\) 0 0
\(255\) − 123.135i − 0.482881i
\(256\) 0 0
\(257\) 450.968 1.75474 0.877369 0.479816i \(-0.159297\pi\)
0.877369 + 0.479816i \(0.159297\pi\)
\(258\) 0 0
\(259\) − 18.6084i − 0.0718471i
\(260\) 0 0
\(261\) 18.7354 0.0717832
\(262\) 0 0
\(263\) − 154.826i − 0.588691i −0.955699 0.294345i \(-0.904898\pi\)
0.955699 0.294345i \(-0.0951016\pi\)
\(264\) 0 0
\(265\) −136.472 −0.514989
\(266\) 0 0
\(267\) 130.390i 0.488351i
\(268\) 0 0
\(269\) 344.712 1.28146 0.640729 0.767768i \(-0.278632\pi\)
0.640729 + 0.767768i \(0.278632\pi\)
\(270\) 0 0
\(271\) − 321.091i − 1.18484i −0.805630 0.592420i \(-0.798173\pi\)
0.805630 0.592420i \(-0.201827\pi\)
\(272\) 0 0
\(273\) −18.2769 −0.0669483
\(274\) 0 0
\(275\) 309.651i 1.12600i
\(276\) 0 0
\(277\) 312.665 1.12875 0.564377 0.825517i \(-0.309117\pi\)
0.564377 + 0.825517i \(0.309117\pi\)
\(278\) 0 0
\(279\) 29.7028i 0.106462i
\(280\) 0 0
\(281\) −29.2825 −0.104208 −0.0521041 0.998642i \(-0.516593\pi\)
−0.0521041 + 0.998642i \(0.516593\pi\)
\(282\) 0 0
\(283\) − 274.731i − 0.970782i −0.874297 0.485391i \(-0.838677\pi\)
0.874297 0.485391i \(-0.161323\pi\)
\(284\) 0 0
\(285\) 116.341 0.408213
\(286\) 0 0
\(287\) 11.1659i 0.0389056i
\(288\) 0 0
\(289\) 538.454 1.86316
\(290\) 0 0
\(291\) 354.982i 1.21987i
\(292\) 0 0
\(293\) −197.711 −0.674780 −0.337390 0.941365i \(-0.609544\pi\)
−0.337390 + 0.941365i \(0.609544\pi\)
\(294\) 0 0
\(295\) 134.270i 0.455152i
\(296\) 0 0
\(297\) 418.775 1.41002
\(298\) 0 0
\(299\) 273.030i 0.913145i
\(300\) 0 0
\(301\) 17.7057 0.0588230
\(302\) 0 0
\(303\) 76.8032i 0.253476i
\(304\) 0 0
\(305\) 164.072 0.537942
\(306\) 0 0
\(307\) − 274.770i − 0.895017i −0.894280 0.447508i \(-0.852311\pi\)
0.894280 0.447508i \(-0.147689\pi\)
\(308\) 0 0
\(309\) 144.147 0.466494
\(310\) 0 0
\(311\) 498.598i 1.60321i 0.597854 + 0.801605i \(0.296020\pi\)
−0.597854 + 0.801605i \(0.703980\pi\)
\(312\) 0 0
\(313\) −374.490 −1.19645 −0.598227 0.801326i \(-0.704128\pi\)
−0.598227 + 0.801326i \(0.704128\pi\)
\(314\) 0 0
\(315\) − 4.37745i − 0.0138967i
\(316\) 0 0
\(317\) −240.543 −0.758810 −0.379405 0.925231i \(-0.623871\pi\)
−0.379405 + 0.925231i \(0.623871\pi\)
\(318\) 0 0
\(319\) − 76.9115i − 0.241102i
\(320\) 0 0
\(321\) 77.4802 0.241371
\(322\) 0 0
\(323\) 781.800i 2.42043i
\(324\) 0 0
\(325\) −244.186 −0.751343
\(326\) 0 0
\(327\) 14.8179i 0.0453147i
\(328\) 0 0
\(329\) −50.4520 −0.153350
\(330\) 0 0
\(331\) − 150.863i − 0.455779i −0.973687 0.227890i \(-0.926817\pi\)
0.973687 0.227890i \(-0.0731825\pi\)
\(332\) 0 0
\(333\) −93.7386 −0.281497
\(334\) 0 0
\(335\) 48.9512i 0.146123i
\(336\) 0 0
\(337\) 190.087 0.564055 0.282028 0.959406i \(-0.408993\pi\)
0.282028 + 0.959406i \(0.408993\pi\)
\(338\) 0 0
\(339\) − 279.901i − 0.825668i
\(340\) 0 0
\(341\) 121.934 0.357578
\(342\) 0 0
\(343\) 67.3538i 0.196367i
\(344\) 0 0
\(345\) 103.771 0.300786
\(346\) 0 0
\(347\) − 334.477i − 0.963910i −0.876196 0.481955i \(-0.839927\pi\)
0.876196 0.481955i \(-0.160073\pi\)
\(348\) 0 0
\(349\) −386.383 −1.10711 −0.553557 0.832811i \(-0.686730\pi\)
−0.553557 + 0.832811i \(0.686730\pi\)
\(350\) 0 0
\(351\) 330.240i 0.940856i
\(352\) 0 0
\(353\) −133.391 −0.377878 −0.188939 0.981989i \(-0.560505\pi\)
−0.188939 + 0.981989i \(0.560505\pi\)
\(354\) 0 0
\(355\) − 226.676i − 0.638523i
\(356\) 0 0
\(357\) −46.6802 −0.130757
\(358\) 0 0
\(359\) − 410.303i − 1.14290i −0.820635 0.571452i \(-0.806380\pi\)
0.820635 0.571452i \(-0.193620\pi\)
\(360\) 0 0
\(361\) −377.664 −1.04616
\(362\) 0 0
\(363\) − 194.972i − 0.537112i
\(364\) 0 0
\(365\) −247.008 −0.676734
\(366\) 0 0
\(367\) 544.463i 1.48355i 0.670648 + 0.741776i \(0.266016\pi\)
−0.670648 + 0.741776i \(0.733984\pi\)
\(368\) 0 0
\(369\) 56.2475 0.152432
\(370\) 0 0
\(371\) 51.7364i 0.139451i
\(372\) 0 0
\(373\) 55.6448 0.149182 0.0745909 0.997214i \(-0.476235\pi\)
0.0745909 + 0.997214i \(0.476235\pi\)
\(374\) 0 0
\(375\) 199.824i 0.532865i
\(376\) 0 0
\(377\) 60.6514 0.160879
\(378\) 0 0
\(379\) 512.831i 1.35312i 0.736389 + 0.676558i \(0.236529\pi\)
−0.736389 + 0.676558i \(0.763471\pi\)
\(380\) 0 0
\(381\) 313.474 0.822767
\(382\) 0 0
\(383\) − 138.427i − 0.361428i −0.983536 0.180714i \(-0.942159\pi\)
0.983536 0.180714i \(-0.0578409\pi\)
\(384\) 0 0
\(385\) −17.9701 −0.0466755
\(386\) 0 0
\(387\) − 89.1914i − 0.230469i
\(388\) 0 0
\(389\) 132.836 0.341482 0.170741 0.985316i \(-0.445384\pi\)
0.170741 + 0.985316i \(0.445384\pi\)
\(390\) 0 0
\(391\) 697.335i 1.78346i
\(392\) 0 0
\(393\) 284.759 0.724578
\(394\) 0 0
\(395\) 147.789i 0.374149i
\(396\) 0 0
\(397\) 693.912 1.74789 0.873945 0.486025i \(-0.161554\pi\)
0.873945 + 0.486025i \(0.161554\pi\)
\(398\) 0 0
\(399\) − 44.1046i − 0.110538i
\(400\) 0 0
\(401\) 595.379 1.48474 0.742368 0.669992i \(-0.233702\pi\)
0.742368 + 0.669992i \(0.233702\pi\)
\(402\) 0 0
\(403\) 96.1558i 0.238600i
\(404\) 0 0
\(405\) 68.4714 0.169065
\(406\) 0 0
\(407\) 384.810i 0.945480i
\(408\) 0 0
\(409\) −401.801 −0.982399 −0.491200 0.871047i \(-0.663441\pi\)
−0.491200 + 0.871047i \(0.663441\pi\)
\(410\) 0 0
\(411\) − 75.8386i − 0.184522i
\(412\) 0 0
\(413\) 50.9015 0.123248
\(414\) 0 0
\(415\) − 150.301i − 0.362170i
\(416\) 0 0
\(417\) −183.419 −0.439855
\(418\) 0 0
\(419\) − 298.317i − 0.711975i −0.934491 0.355987i \(-0.884145\pi\)
0.934491 0.355987i \(-0.115855\pi\)
\(420\) 0 0
\(421\) −540.634 −1.28417 −0.642084 0.766635i \(-0.721930\pi\)
−0.642084 + 0.766635i \(0.721930\pi\)
\(422\) 0 0
\(423\) 254.149i 0.600825i
\(424\) 0 0
\(425\) −623.666 −1.46745
\(426\) 0 0
\(427\) − 62.1996i − 0.145667i
\(428\) 0 0
\(429\) 377.955 0.881014
\(430\) 0 0
\(431\) 742.588i 1.72294i 0.507807 + 0.861471i \(0.330456\pi\)
−0.507807 + 0.861471i \(0.669544\pi\)
\(432\) 0 0
\(433\) −336.183 −0.776403 −0.388202 0.921574i \(-0.626904\pi\)
−0.388202 + 0.921574i \(0.626904\pi\)
\(434\) 0 0
\(435\) − 23.0519i − 0.0529929i
\(436\) 0 0
\(437\) −658.859 −1.50769
\(438\) 0 0
\(439\) − 733.097i − 1.66993i −0.550306 0.834963i \(-0.685489\pi\)
0.550306 0.834963i \(-0.314511\pi\)
\(440\) 0 0
\(441\) 168.815 0.382801
\(442\) 0 0
\(443\) − 664.117i − 1.49914i −0.661928 0.749568i \(-0.730262\pi\)
0.661928 0.749568i \(-0.269738\pi\)
\(444\) 0 0
\(445\) −101.097 −0.227185
\(446\) 0 0
\(447\) − 429.026i − 0.959791i
\(448\) 0 0
\(449\) −139.219 −0.310065 −0.155032 0.987909i \(-0.549548\pi\)
−0.155032 + 0.987909i \(0.549548\pi\)
\(450\) 0 0
\(451\) − 230.904i − 0.511982i
\(452\) 0 0
\(453\) 459.152 1.01358
\(454\) 0 0
\(455\) − 14.1709i − 0.0311449i
\(456\) 0 0
\(457\) −644.897 −1.41115 −0.705577 0.708634i \(-0.749312\pi\)
−0.705577 + 0.708634i \(0.749312\pi\)
\(458\) 0 0
\(459\) 843.452i 1.83759i
\(460\) 0 0
\(461\) 558.356 1.21119 0.605593 0.795775i \(-0.292936\pi\)
0.605593 + 0.795775i \(0.292936\pi\)
\(462\) 0 0
\(463\) − 568.468i − 1.22779i −0.789386 0.613897i \(-0.789601\pi\)
0.789386 0.613897i \(-0.210399\pi\)
\(464\) 0 0
\(465\) 36.5461 0.0785939
\(466\) 0 0
\(467\) 165.113i 0.353561i 0.984250 + 0.176780i \(0.0565682\pi\)
−0.984250 + 0.176780i \(0.943432\pi\)
\(468\) 0 0
\(469\) 18.5574 0.0395679
\(470\) 0 0
\(471\) − 577.814i − 1.22678i
\(472\) 0 0
\(473\) −366.143 −0.774088
\(474\) 0 0
\(475\) − 589.255i − 1.24054i
\(476\) 0 0
\(477\) 260.619 0.546371
\(478\) 0 0
\(479\) − 400.122i − 0.835329i −0.908601 0.417664i \(-0.862849\pi\)
0.908601 0.417664i \(-0.137151\pi\)
\(480\) 0 0
\(481\) −303.456 −0.630887
\(482\) 0 0
\(483\) − 39.3396i − 0.0814484i
\(484\) 0 0
\(485\) −275.234 −0.567493
\(486\) 0 0
\(487\) 22.9865i 0.0472002i 0.999721 + 0.0236001i \(0.00751284\pi\)
−0.999721 + 0.0236001i \(0.992487\pi\)
\(488\) 0 0
\(489\) 246.111 0.503295
\(490\) 0 0
\(491\) 381.074i 0.776117i 0.921635 + 0.388059i \(0.126854\pi\)
−0.921635 + 0.388059i \(0.873146\pi\)
\(492\) 0 0
\(493\) 154.907 0.314213
\(494\) 0 0
\(495\) 90.5229i 0.182875i
\(496\) 0 0
\(497\) −85.9324 −0.172902
\(498\) 0 0
\(499\) − 915.621i − 1.83491i −0.397837 0.917456i \(-0.630239\pi\)
0.397837 0.917456i \(-0.369761\pi\)
\(500\) 0 0
\(501\) 50.9524 0.101701
\(502\) 0 0
\(503\) 456.416i 0.907387i 0.891158 + 0.453694i \(0.149894\pi\)
−0.891158 + 0.453694i \(0.850106\pi\)
\(504\) 0 0
\(505\) −59.5492 −0.117919
\(506\) 0 0
\(507\) − 99.0430i − 0.195351i
\(508\) 0 0
\(509\) 229.681 0.451240 0.225620 0.974215i \(-0.427559\pi\)
0.225620 + 0.974215i \(0.427559\pi\)
\(510\) 0 0
\(511\) 93.6404i 0.183249i
\(512\) 0 0
\(513\) −796.915 −1.55344
\(514\) 0 0
\(515\) 111.764i 0.217017i
\(516\) 0 0
\(517\) 1043.32 2.01802
\(518\) 0 0
\(519\) − 478.951i − 0.922835i
\(520\) 0 0
\(521\) −831.060 −1.59512 −0.797562 0.603237i \(-0.793877\pi\)
−0.797562 + 0.603237i \(0.793877\pi\)
\(522\) 0 0
\(523\) − 679.074i − 1.29842i −0.760609 0.649211i \(-0.775099\pi\)
0.760609 0.649211i \(-0.224901\pi\)
\(524\) 0 0
\(525\) 35.1836 0.0670164
\(526\) 0 0
\(527\) 245.587i 0.466010i
\(528\) 0 0
\(529\) −58.6766 −0.110920
\(530\) 0 0
\(531\) − 256.413i − 0.482887i
\(532\) 0 0
\(533\) 182.088 0.341628
\(534\) 0 0
\(535\) 60.0741i 0.112288i
\(536\) 0 0
\(537\) 158.231 0.294658
\(538\) 0 0
\(539\) − 693.011i − 1.28573i
\(540\) 0 0
\(541\) −33.1593 −0.0612925 −0.0306463 0.999530i \(-0.509757\pi\)
−0.0306463 + 0.999530i \(0.509757\pi\)
\(542\) 0 0
\(543\) 76.7565i 0.141356i
\(544\) 0 0
\(545\) −11.4890 −0.0210808
\(546\) 0 0
\(547\) 299.078i 0.546761i 0.961906 + 0.273380i \(0.0881418\pi\)
−0.961906 + 0.273380i \(0.911858\pi\)
\(548\) 0 0
\(549\) −313.326 −0.570722
\(550\) 0 0
\(551\) 146.360i 0.265626i
\(552\) 0 0
\(553\) 56.0266 0.101314
\(554\) 0 0
\(555\) 115.335i 0.207812i
\(556\) 0 0
\(557\) 389.777 0.699778 0.349889 0.936791i \(-0.386219\pi\)
0.349889 + 0.936791i \(0.386219\pi\)
\(558\) 0 0
\(559\) − 288.736i − 0.516522i
\(560\) 0 0
\(561\) 965.317 1.72071
\(562\) 0 0
\(563\) − 781.149i − 1.38748i −0.720227 0.693738i \(-0.755963\pi\)
0.720227 0.693738i \(-0.244037\pi\)
\(564\) 0 0
\(565\) 217.021 0.384108
\(566\) 0 0
\(567\) − 25.9574i − 0.0457803i
\(568\) 0 0
\(569\) 974.448 1.71256 0.856282 0.516509i \(-0.172769\pi\)
0.856282 + 0.516509i \(0.172769\pi\)
\(570\) 0 0
\(571\) − 248.880i − 0.435866i −0.975964 0.217933i \(-0.930069\pi\)
0.975964 0.217933i \(-0.0699315\pi\)
\(572\) 0 0
\(573\) −589.088 −1.02808
\(574\) 0 0
\(575\) − 525.592i − 0.914073i
\(576\) 0 0
\(577\) −1123.31 −1.94682 −0.973409 0.229075i \(-0.926430\pi\)
−0.973409 + 0.229075i \(0.926430\pi\)
\(578\) 0 0
\(579\) − 123.358i − 0.213053i
\(580\) 0 0
\(581\) −56.9788 −0.0980702
\(582\) 0 0
\(583\) − 1069.88i − 1.83512i
\(584\) 0 0
\(585\) −71.3852 −0.122026
\(586\) 0 0
\(587\) 430.729i 0.733781i 0.930264 + 0.366890i \(0.119578\pi\)
−0.930264 + 0.366890i \(0.880422\pi\)
\(588\) 0 0
\(589\) −232.037 −0.393950
\(590\) 0 0
\(591\) − 401.580i − 0.679493i
\(592\) 0 0
\(593\) −29.7378 −0.0501481 −0.0250741 0.999686i \(-0.507982\pi\)
−0.0250741 + 0.999686i \(0.507982\pi\)
\(594\) 0 0
\(595\) − 36.1934i − 0.0608292i
\(596\) 0 0
\(597\) −136.320 −0.228342
\(598\) 0 0
\(599\) 39.8356i 0.0665035i 0.999447 + 0.0332518i \(0.0105863\pi\)
−0.999447 + 0.0332518i \(0.989414\pi\)
\(600\) 0 0
\(601\) 51.8730 0.0863111 0.0431555 0.999068i \(-0.486259\pi\)
0.0431555 + 0.999068i \(0.486259\pi\)
\(602\) 0 0
\(603\) − 93.4814i − 0.155027i
\(604\) 0 0
\(605\) 151.171 0.249869
\(606\) 0 0
\(607\) 223.429i 0.368087i 0.982918 + 0.184044i \(0.0589188\pi\)
−0.982918 + 0.184044i \(0.941081\pi\)
\(608\) 0 0
\(609\) −8.73896 −0.0143497
\(610\) 0 0
\(611\) 822.746i 1.34656i
\(612\) 0 0
\(613\) −315.690 −0.514992 −0.257496 0.966279i \(-0.582897\pi\)
−0.257496 + 0.966279i \(0.582897\pi\)
\(614\) 0 0
\(615\) − 69.2066i − 0.112531i
\(616\) 0 0
\(617\) −696.107 −1.12821 −0.564106 0.825702i \(-0.690779\pi\)
−0.564106 + 0.825702i \(0.690779\pi\)
\(618\) 0 0
\(619\) 922.143i 1.48973i 0.667215 + 0.744865i \(0.267486\pi\)
−0.667215 + 0.744865i \(0.732514\pi\)
\(620\) 0 0
\(621\) −710.817 −1.14463
\(622\) 0 0
\(623\) 38.3259i 0.0615183i
\(624\) 0 0
\(625\) 387.092 0.619347
\(626\) 0 0
\(627\) 912.056i 1.45463i
\(628\) 0 0
\(629\) −775.044 −1.23218
\(630\) 0 0
\(631\) − 935.862i − 1.48314i −0.670875 0.741570i \(-0.734081\pi\)
0.670875 0.741570i \(-0.265919\pi\)
\(632\) 0 0
\(633\) −527.437 −0.833234
\(634\) 0 0
\(635\) 243.052i 0.382758i
\(636\) 0 0
\(637\) 546.499 0.857927
\(638\) 0 0
\(639\) 432.879i 0.677432i
\(640\) 0 0
\(641\) −359.262 −0.560472 −0.280236 0.959931i \(-0.590413\pi\)
−0.280236 + 0.959931i \(0.590413\pi\)
\(642\) 0 0
\(643\) − 487.138i − 0.757602i −0.925478 0.378801i \(-0.876336\pi\)
0.925478 0.378801i \(-0.123664\pi\)
\(644\) 0 0
\(645\) −109.741 −0.170140
\(646\) 0 0
\(647\) − 511.959i − 0.791282i −0.918405 0.395641i \(-0.870522\pi\)
0.918405 0.395641i \(-0.129478\pi\)
\(648\) 0 0
\(649\) −1052.61 −1.62190
\(650\) 0 0
\(651\) − 13.8546i − 0.0212820i
\(652\) 0 0
\(653\) 1077.84 1.65060 0.825299 0.564696i \(-0.191007\pi\)
0.825299 + 0.564696i \(0.191007\pi\)
\(654\) 0 0
\(655\) 220.787i 0.337080i
\(656\) 0 0
\(657\) 471.707 0.717972
\(658\) 0 0
\(659\) 894.373i 1.35717i 0.734523 + 0.678584i \(0.237406\pi\)
−0.734523 + 0.678584i \(0.762594\pi\)
\(660\) 0 0
\(661\) −933.964 −1.41296 −0.706478 0.707735i \(-0.749717\pi\)
−0.706478 + 0.707735i \(0.749717\pi\)
\(662\) 0 0
\(663\) 761.237i 1.14817i
\(664\) 0 0
\(665\) 34.1964 0.0514232
\(666\) 0 0
\(667\) 130.547i 0.195723i
\(668\) 0 0
\(669\) 485.372 0.725518
\(670\) 0 0
\(671\) 1286.25i 1.91691i
\(672\) 0 0
\(673\) −629.790 −0.935795 −0.467898 0.883783i \(-0.654988\pi\)
−0.467898 + 0.883783i \(0.654988\pi\)
\(674\) 0 0
\(675\) − 635.723i − 0.941812i
\(676\) 0 0
\(677\) 685.354 1.01234 0.506170 0.862434i \(-0.331061\pi\)
0.506170 + 0.862434i \(0.331061\pi\)
\(678\) 0 0
\(679\) 104.341i 0.153669i
\(680\) 0 0
\(681\) 209.043 0.306965
\(682\) 0 0
\(683\) − 258.863i − 0.379009i −0.981880 0.189504i \(-0.939312\pi\)
0.981880 0.189504i \(-0.0606881\pi\)
\(684\) 0 0
\(685\) 58.8013 0.0858413
\(686\) 0 0
\(687\) − 735.035i − 1.06992i
\(688\) 0 0
\(689\) 843.691 1.22452
\(690\) 0 0
\(691\) − 214.788i − 0.310837i −0.987849 0.155419i \(-0.950327\pi\)
0.987849 0.155419i \(-0.0496726\pi\)
\(692\) 0 0
\(693\) 34.3171 0.0495197
\(694\) 0 0
\(695\) − 142.214i − 0.204624i
\(696\) 0 0
\(697\) 465.063 0.667235
\(698\) 0 0
\(699\) 37.6183i 0.0538173i
\(700\) 0 0
\(701\) 376.058 0.536460 0.268230 0.963355i \(-0.413561\pi\)
0.268230 + 0.963355i \(0.413561\pi\)
\(702\) 0 0
\(703\) − 732.281i − 1.04165i
\(704\) 0 0
\(705\) 312.703 0.443551
\(706\) 0 0
\(707\) 22.5750i 0.0319307i
\(708\) 0 0
\(709\) −39.7841 −0.0561130 −0.0280565 0.999606i \(-0.508932\pi\)
−0.0280565 + 0.999606i \(0.508932\pi\)
\(710\) 0 0
\(711\) − 282.230i − 0.396948i
\(712\) 0 0
\(713\) −206.968 −0.290277
\(714\) 0 0
\(715\) 293.046i 0.409855i
\(716\) 0 0
\(717\) 186.781 0.260504
\(718\) 0 0
\(719\) − 503.430i − 0.700180i −0.936716 0.350090i \(-0.886151\pi\)
0.936716 0.350090i \(-0.113849\pi\)
\(720\) 0 0
\(721\) 42.3695 0.0587650
\(722\) 0 0
\(723\) − 730.583i − 1.01049i
\(724\) 0 0
\(725\) −116.756 −0.161043
\(726\) 0 0
\(727\) 249.531i 0.343234i 0.985164 + 0.171617i \(0.0548992\pi\)
−0.985164 + 0.171617i \(0.945101\pi\)
\(728\) 0 0
\(729\) −750.823 −1.02994
\(730\) 0 0
\(731\) − 737.447i − 1.00882i
\(732\) 0 0
\(733\) 141.209 0.192645 0.0963223 0.995350i \(-0.469292\pi\)
0.0963223 + 0.995350i \(0.469292\pi\)
\(734\) 0 0
\(735\) − 207.709i − 0.282598i
\(736\) 0 0
\(737\) −383.755 −0.520698
\(738\) 0 0
\(739\) 1418.57i 1.91959i 0.280709 + 0.959793i \(0.409430\pi\)
−0.280709 + 0.959793i \(0.590570\pi\)
\(740\) 0 0
\(741\) −719.235 −0.970628
\(742\) 0 0
\(743\) 886.796i 1.19353i 0.802415 + 0.596767i \(0.203548\pi\)
−0.802415 + 0.596767i \(0.796452\pi\)
\(744\) 0 0
\(745\) 332.645 0.446503
\(746\) 0 0
\(747\) 287.027i 0.384239i
\(748\) 0 0
\(749\) 22.7740 0.0304059
\(750\) 0 0
\(751\) 1471.29i 1.95911i 0.201182 + 0.979554i \(0.435522\pi\)
−0.201182 + 0.979554i \(0.564478\pi\)
\(752\) 0 0
\(753\) −224.493 −0.298132
\(754\) 0 0
\(755\) 356.002i 0.471526i
\(756\) 0 0
\(757\) −211.707 −0.279666 −0.139833 0.990175i \(-0.544657\pi\)
−0.139833 + 0.990175i \(0.544657\pi\)
\(758\) 0 0
\(759\) 813.518i 1.07183i
\(760\) 0 0
\(761\) −508.153 −0.667743 −0.333872 0.942619i \(-0.608355\pi\)
−0.333872 + 0.942619i \(0.608355\pi\)
\(762\) 0 0
\(763\) 4.35548i 0.00570836i
\(764\) 0 0
\(765\) −182.322 −0.238329
\(766\) 0 0
\(767\) − 830.076i − 1.08224i
\(768\) 0 0
\(769\) −278.591 −0.362277 −0.181139 0.983458i \(-0.557978\pi\)
−0.181139 + 0.983458i \(0.557978\pi\)
\(770\) 0 0
\(771\) 1059.62i 1.37435i
\(772\) 0 0
\(773\) 552.597 0.714874 0.357437 0.933937i \(-0.383651\pi\)
0.357437 + 0.933937i \(0.383651\pi\)
\(774\) 0 0
\(775\) − 185.103i − 0.238842i
\(776\) 0 0
\(777\) 43.7235 0.0562722
\(778\) 0 0
\(779\) 439.403i 0.564060i
\(780\) 0 0
\(781\) 1777.03 2.27533
\(782\) 0 0
\(783\) 157.902i 0.201663i
\(784\) 0 0
\(785\) 448.007 0.570710
\(786\) 0 0
\(787\) − 1140.18i − 1.44877i −0.689395 0.724386i \(-0.742123\pi\)
0.689395 0.724386i \(-0.257877\pi\)
\(788\) 0 0
\(789\) 363.788 0.461075
\(790\) 0 0
\(791\) − 82.2723i − 0.104011i
\(792\) 0 0
\(793\) −1014.32 −1.27909
\(794\) 0 0
\(795\) − 320.664i − 0.403351i
\(796\) 0 0
\(797\) 778.570 0.976875 0.488438 0.872599i \(-0.337567\pi\)
0.488438 + 0.872599i \(0.337567\pi\)
\(798\) 0 0
\(799\) 2101.34i 2.62996i
\(800\) 0 0
\(801\) 193.064 0.241029
\(802\) 0 0
\(803\) − 1936.43i − 2.41149i
\(804\) 0 0
\(805\) 30.5019 0.0378905
\(806\) 0 0
\(807\) 809.957i 1.00366i
\(808\) 0 0
\(809\) −199.801 −0.246973 −0.123486 0.992346i \(-0.539408\pi\)
−0.123486 + 0.992346i \(0.539408\pi\)
\(810\) 0 0
\(811\) 1021.54i 1.25961i 0.776754 + 0.629804i \(0.216865\pi\)
−0.776754 + 0.629804i \(0.783135\pi\)
\(812\) 0 0
\(813\) 754.457 0.927991
\(814\) 0 0
\(815\) 190.822i 0.234137i
\(816\) 0 0
\(817\) 696.759 0.852826
\(818\) 0 0
\(819\) 27.0620i 0.0330428i
\(820\) 0 0
\(821\) 148.801 0.181244 0.0906219 0.995885i \(-0.471115\pi\)
0.0906219 + 0.995885i \(0.471115\pi\)
\(822\) 0 0
\(823\) − 791.060i − 0.961190i −0.876943 0.480595i \(-0.840421\pi\)
0.876943 0.480595i \(-0.159579\pi\)
\(824\) 0 0
\(825\) −727.575 −0.881909
\(826\) 0 0
\(827\) 925.059i 1.11857i 0.828975 + 0.559286i \(0.188925\pi\)
−0.828975 + 0.559286i \(0.811075\pi\)
\(828\) 0 0
\(829\) 877.725 1.05878 0.529388 0.848380i \(-0.322422\pi\)
0.529388 + 0.848380i \(0.322422\pi\)
\(830\) 0 0
\(831\) 734.657i 0.884064i
\(832\) 0 0
\(833\) 1395.79 1.67562
\(834\) 0 0
\(835\) 39.5058i 0.0473123i
\(836\) 0 0
\(837\) −250.335 −0.299086
\(838\) 0 0
\(839\) − 787.049i − 0.938079i −0.883177 0.469040i \(-0.844600\pi\)
0.883177 0.469040i \(-0.155400\pi\)
\(840\) 0 0
\(841\) 29.0000 0.0344828
\(842\) 0 0
\(843\) − 68.8040i − 0.0816181i
\(844\) 0 0
\(845\) 76.7928 0.0908790
\(846\) 0 0
\(847\) − 57.3087i − 0.0676608i
\(848\) 0 0
\(849\) 645.526 0.760337
\(850\) 0 0
\(851\) − 653.166i − 0.767528i
\(852\) 0 0
\(853\) −327.020 −0.383377 −0.191688 0.981456i \(-0.561396\pi\)
−0.191688 + 0.981456i \(0.561396\pi\)
\(854\) 0 0
\(855\) − 172.262i − 0.201476i
\(856\) 0 0
\(857\) 212.896 0.248420 0.124210 0.992256i \(-0.460360\pi\)
0.124210 + 0.992256i \(0.460360\pi\)
\(858\) 0 0
\(859\) 1527.79i 1.77857i 0.457358 + 0.889283i \(0.348796\pi\)
−0.457358 + 0.889283i \(0.651204\pi\)
\(860\) 0 0
\(861\) −26.2361 −0.0304717
\(862\) 0 0
\(863\) − 557.729i − 0.646268i −0.946353 0.323134i \(-0.895264\pi\)
0.946353 0.323134i \(-0.104736\pi\)
\(864\) 0 0
\(865\) 371.354 0.429311
\(866\) 0 0
\(867\) 1265.19i 1.45927i
\(868\) 0 0
\(869\) −1158.60 −1.33325
\(870\) 0 0
\(871\) − 302.624i − 0.347444i
\(872\) 0 0
\(873\) 525.610 0.602074
\(874\) 0 0
\(875\) 58.7351i 0.0671258i
\(876\) 0 0
\(877\) 135.773 0.154816 0.0774079 0.997000i \(-0.475336\pi\)
0.0774079 + 0.997000i \(0.475336\pi\)
\(878\) 0 0
\(879\) − 464.554i − 0.528502i
\(880\) 0 0
\(881\) 560.838 0.636592 0.318296 0.947991i \(-0.396889\pi\)
0.318296 + 0.947991i \(0.396889\pi\)
\(882\) 0 0
\(883\) − 1230.79i − 1.39388i −0.717131 0.696938i \(-0.754545\pi\)
0.717131 0.696938i \(-0.245455\pi\)
\(884\) 0 0
\(885\) −315.489 −0.356485
\(886\) 0 0
\(887\) − 772.049i − 0.870404i −0.900333 0.435202i \(-0.856677\pi\)
0.900333 0.435202i \(-0.143323\pi\)
\(888\) 0 0
\(889\) 92.1406 0.103645
\(890\) 0 0
\(891\) 536.783i 0.602450i
\(892\) 0 0
\(893\) −1985.40 −2.22329
\(894\) 0 0
\(895\) 122.684i 0.137077i
\(896\) 0 0
\(897\) −641.530 −0.715195
\(898\) 0 0
\(899\) 45.9761i 0.0511414i
\(900\) 0 0
\(901\) 2154.83 2.39160
\(902\) 0 0
\(903\) 41.6025i 0.0460714i
\(904\) 0 0
\(905\) −59.5130 −0.0657602
\(906\) 0 0
\(907\) 1495.84i 1.64922i 0.565705 + 0.824608i \(0.308604\pi\)
−0.565705 + 0.824608i \(0.691396\pi\)
\(908\) 0 0
\(909\) 113.720 0.125105
\(910\) 0 0
\(911\) − 199.158i − 0.218615i −0.994008 0.109307i \(-0.965137\pi\)
0.994008 0.109307i \(-0.0348633\pi\)
\(912\) 0 0
\(913\) 1178.29 1.29056
\(914\) 0 0
\(915\) 385.515i 0.421328i
\(916\) 0 0
\(917\) 83.7002 0.0912761
\(918\) 0 0
\(919\) − 791.506i − 0.861268i −0.902527 0.430634i \(-0.858290\pi\)
0.902527 0.430634i \(-0.141710\pi\)
\(920\) 0 0
\(921\) 645.618 0.700996
\(922\) 0 0
\(923\) 1401.34i 1.51825i
\(924\) 0 0
\(925\) 584.163 0.631528
\(926\) 0 0
\(927\) − 213.434i − 0.230241i
\(928\) 0 0
\(929\) 12.2055 0.0131383 0.00656913 0.999978i \(-0.497909\pi\)
0.00656913 + 0.999978i \(0.497909\pi\)
\(930\) 0 0
\(931\) 1318.78i 1.41652i
\(932\) 0 0
\(933\) −1171.54 −1.25567
\(934\) 0 0
\(935\) 748.457i 0.800488i
\(936\) 0 0
\(937\) 89.2686 0.0952706 0.0476353 0.998865i \(-0.484831\pi\)
0.0476353 + 0.998865i \(0.484831\pi\)
\(938\) 0 0
\(939\) − 879.926i − 0.937089i
\(940\) 0 0
\(941\) −481.158 −0.511326 −0.255663 0.966766i \(-0.582294\pi\)
−0.255663 + 0.966766i \(0.582294\pi\)
\(942\) 0 0
\(943\) 391.930i 0.415620i
\(944\) 0 0
\(945\) 36.8931 0.0390403
\(946\) 0 0
\(947\) − 796.225i − 0.840786i −0.907342 0.420393i \(-0.861892\pi\)
0.907342 0.420393i \(-0.138108\pi\)
\(948\) 0 0
\(949\) 1527.04 1.60910
\(950\) 0 0
\(951\) − 565.195i − 0.594316i
\(952\) 0 0
\(953\) −95.6047 −0.100320 −0.0501598 0.998741i \(-0.515973\pi\)
−0.0501598 + 0.998741i \(0.515973\pi\)
\(954\) 0 0
\(955\) − 456.748i − 0.478270i
\(956\) 0 0
\(957\) 180.716 0.188836
\(958\) 0 0
\(959\) − 22.2915i − 0.0232445i
\(960\) 0 0
\(961\) 888.110 0.924152
\(962\) 0 0
\(963\) − 114.723i − 0.119130i
\(964\) 0 0
\(965\) 95.6451 0.0991141
\(966\) 0 0
\(967\) 640.927i 0.662800i 0.943490 + 0.331400i \(0.107521\pi\)
−0.943490 + 0.331400i \(0.892479\pi\)
\(968\) 0 0
\(969\) −1836.97 −1.89573
\(970\) 0 0
\(971\) 1512.11i 1.55727i 0.627476 + 0.778636i \(0.284088\pi\)
−0.627476 + 0.778636i \(0.715912\pi\)
\(972\) 0 0
\(973\) −53.9131 −0.0554092
\(974\) 0 0
\(975\) − 573.756i − 0.588468i
\(976\) 0 0
\(977\) −1540.22 −1.57648 −0.788240 0.615369i \(-0.789007\pi\)
−0.788240 + 0.615369i \(0.789007\pi\)
\(978\) 0 0
\(979\) − 792.556i − 0.809557i
\(980\) 0 0
\(981\) 21.9405 0.0223654
\(982\) 0 0
\(983\) − 755.412i − 0.768476i −0.923234 0.384238i \(-0.874464\pi\)
0.923234 0.384238i \(-0.125536\pi\)
\(984\) 0 0
\(985\) 311.364 0.316106
\(986\) 0 0
\(987\) − 118.545i − 0.120107i
\(988\) 0 0
\(989\) 621.481 0.628394
\(990\) 0 0
\(991\) 1510.68i 1.52440i 0.647344 + 0.762198i \(0.275880\pi\)
−0.647344 + 0.762198i \(0.724120\pi\)
\(992\) 0 0
\(993\) 354.477 0.356976
\(994\) 0 0
\(995\) − 105.695i − 0.106227i
\(996\) 0 0
\(997\) −1362.77 −1.36687 −0.683436 0.730011i \(-0.739515\pi\)
−0.683436 + 0.730011i \(0.739515\pi\)
\(998\) 0 0
\(999\) − 790.029i − 0.790819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.3.d.b.175.15 yes 20
4.3 odd 2 inner 464.3.d.b.175.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.3.d.b.175.6 20 4.3 odd 2 inner
464.3.d.b.175.15 yes 20 1.1 even 1 trivial