Properties

Label 464.3.d.b.175.16
Level 464464
Weight 33
Character 464.175
Analytic conductor 12.64312.643
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,3,Mod(175,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.175");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 3 3
Character orbit: [χ][\chi] == 464.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.643084266312.6430842663
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+69x18+1795x16+24222x14+189561x12+892623x10+2508433x8++21609 x^{20} + 69 x^{18} + 1795 x^{16} + 24222 x^{14} + 189561 x^{12} + 892623 x^{10} + 2508433 x^{8} + \cdots + 21609 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 23672 2^{36}\cdot 7^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 175.16
Root 0.166656i0.166656i of defining polynomial
Character χ\chi == 464.175
Dual form 464.3.d.b.175.5

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3.92832iq3+7.62576q55.54000iq76.43170q9+9.38498iq11+23.1937q13+29.9564iq15+3.39182q1737.5237iq19+21.7629q21+8.17550iq23+33.1521q25+10.0891iq27+5.38516q29+4.41568iq3136.8672q3342.2467iq350.0159584q37+91.1123iq3975.8415q41+16.0497iq4349.0466q45+35.9472iq47+18.3084q49+13.3242iq5171.0080q53+71.5676iq55+147.405q57+64.7708iq59+41.0583q61+35.6316iq63+176.870q65+65.6441iq6732.1160q6932.6479iq71122.284q73+130.232iq75+51.9928q7785.2166iq7997.5185q8180.5050iq83+25.8652q85+21.1547iq8719.5031q89128.493iq9117.3462q93286.146iq95+174.513q9760.3614iq99+O(q100)q+3.92832i q^{3} +7.62576 q^{5} -5.54000i q^{7} -6.43170 q^{9} +9.38498i q^{11} +23.1937 q^{13} +29.9564i q^{15} +3.39182 q^{17} -37.5237i q^{19} +21.7629 q^{21} +8.17550i q^{23} +33.1521 q^{25} +10.0891i q^{27} +5.38516 q^{29} +4.41568i q^{31} -36.8672 q^{33} -42.2467i q^{35} -0.0159584 q^{37} +91.1123i q^{39} -75.8415 q^{41} +16.0497i q^{43} -49.0466 q^{45} +35.9472i q^{47} +18.3084 q^{49} +13.3242i q^{51} -71.0080 q^{53} +71.5676i q^{55} +147.405 q^{57} +64.7708i q^{59} +41.0583 q^{61} +35.6316i q^{63} +176.870 q^{65} +65.6441i q^{67} -32.1160 q^{69} -32.6479i q^{71} -122.284 q^{73} +130.232i q^{75} +51.9928 q^{77} -85.2166i q^{79} -97.5185 q^{81} -80.5050i q^{83} +25.8652 q^{85} +21.1547i q^{87} -19.5031 q^{89} -128.493i q^{91} -17.3462 q^{93} -286.146i q^{95} +174.513 q^{97} -60.3614i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q8q568q9+16q13+40q1748q21+188q25120q3380q3772q41+72q4528q49+96q53+104q5796q6180q65+352q69312q73++56q97+O(q100) 20 q - 8 q^{5} - 68 q^{9} + 16 q^{13} + 40 q^{17} - 48 q^{21} + 188 q^{25} - 120 q^{33} - 80 q^{37} - 72 q^{41} + 72 q^{45} - 28 q^{49} + 96 q^{53} + 104 q^{57} - 96 q^{61} - 80 q^{65} + 352 q^{69} - 312 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.92832i 1.30944i 0.755871 + 0.654720i 0.227213π0.227213\pi
−0.755871 + 0.654720i 0.772787π0.772787\pi
44 0 0
55 7.62576 1.52515 0.762576 0.646899i 0.223935π-0.223935\pi
0.762576 + 0.646899i 0.223935π0.223935\pi
66 0 0
77 − 5.54000i − 0.791428i −0.918374 0.395714i 0.870497π-0.870497\pi
0.918374 0.395714i 0.129503π-0.129503\pi
88 0 0
99 −6.43170 −0.714633
1010 0 0
1111 9.38498i 0.853180i 0.904445 + 0.426590i 0.140285π0.140285\pi
−0.904445 + 0.426590i 0.859715π0.859715\pi
1212 0 0
1313 23.1937 1.78413 0.892066 0.451905i 0.149255π-0.149255\pi
0.892066 + 0.451905i 0.149255π0.149255\pi
1414 0 0
1515 29.9564i 1.99709i
1616 0 0
1717 3.39182 0.199519 0.0997595 0.995012i 0.468193π-0.468193\pi
0.0997595 + 0.995012i 0.468193π0.468193\pi
1818 0 0
1919 − 37.5237i − 1.97493i −0.157840 0.987465i 0.550453π-0.550453\pi
0.157840 0.987465i 0.449547π-0.449547\pi
2020 0 0
2121 21.7629 1.03633
2222 0 0
2323 8.17550i 0.355456i 0.984080 + 0.177728i 0.0568748π0.0568748\pi
−0.984080 + 0.177728i 0.943125π0.943125\pi
2424 0 0
2525 33.1521 1.32609
2626 0 0
2727 10.0891i 0.373670i
2828 0 0
2929 5.38516 0.185695
3030 0 0
3131 4.41568i 0.142441i 0.997461 + 0.0712206i 0.0226894π0.0226894\pi
−0.997461 + 0.0712206i 0.977311π0.977311\pi
3232 0 0
3333 −36.8672 −1.11719
3434 0 0
3535 − 42.2467i − 1.20705i
3636 0 0
3737 −0.0159584 −0.000431309 0 −0.000215654 1.00000i 0.500069π-0.500069\pi
−0.000215654 1.00000i 0.500069π0.500069\pi
3838 0 0
3939 91.1123i 2.33621i
4040 0 0
4141 −75.8415 −1.84979 −0.924896 0.380220i 0.875848π-0.875848\pi
−0.924896 + 0.380220i 0.875848π0.875848\pi
4242 0 0
4343 16.0497i 0.373248i 0.982431 + 0.186624i 0.0597546π0.0597546\pi
−0.982431 + 0.186624i 0.940245π0.940245\pi
4444 0 0
4545 −49.0466 −1.08992
4646 0 0
4747 35.9472i 0.764834i 0.923990 + 0.382417i 0.124908π0.124908\pi
−0.923990 + 0.382417i 0.875092π0.875092\pi
4848 0 0
4949 18.3084 0.373641
5050 0 0
5151 13.3242i 0.261258i
5252 0 0
5353 −71.0080 −1.33977 −0.669887 0.742463i 0.733658π-0.733658\pi
−0.669887 + 0.742463i 0.733658π0.733658\pi
5454 0 0
5555 71.5676i 1.30123i
5656 0 0
5757 147.405 2.58605
5858 0 0
5959 64.7708i 1.09781i 0.835885 + 0.548905i 0.184955π0.184955\pi
−0.835885 + 0.548905i 0.815045π0.815045\pi
6060 0 0
6161 41.0583 0.673087 0.336544 0.941668i 0.390742π-0.390742\pi
0.336544 + 0.941668i 0.390742π0.390742\pi
6262 0 0
6363 35.6316i 0.565581i
6464 0 0
6565 176.870 2.72107
6666 0 0
6767 65.6441i 0.979763i 0.871789 + 0.489882i 0.162960π0.162960\pi
−0.871789 + 0.489882i 0.837040π0.837040\pi
6868 0 0
6969 −32.1160 −0.465449
7070 0 0
7171 − 32.6479i − 0.459830i −0.973211 0.229915i 0.926155π-0.926155\pi
0.973211 0.229915i 0.0738448π-0.0738448\pi
7272 0 0
7373 −122.284 −1.67513 −0.837565 0.546338i 0.816021π-0.816021\pi
−0.837565 + 0.546338i 0.816021π0.816021\pi
7474 0 0
7575 130.232i 1.73643i
7676 0 0
7777 51.9928 0.675231
7878 0 0
7979 − 85.2166i − 1.07869i −0.842085 0.539345i 0.818672π-0.818672\pi
0.842085 0.539345i 0.181328π-0.181328\pi
8080 0 0
8181 −97.5185 −1.20393
8282 0 0
8383 − 80.5050i − 0.969940i −0.874531 0.484970i 0.838831π-0.838831\pi
0.874531 0.484970i 0.161169π-0.161169\pi
8484 0 0
8585 25.8652 0.304297
8686 0 0
8787 21.1547i 0.243157i
8888 0 0
8989 −19.5031 −0.219136 −0.109568 0.993979i 0.534947π-0.534947\pi
−0.109568 + 0.993979i 0.534947π0.534947\pi
9090 0 0
9191 − 128.493i − 1.41201i
9292 0 0
9393 −17.3462 −0.186518
9494 0 0
9595 − 286.146i − 3.01207i
9696 0 0
9797 174.513 1.79910 0.899551 0.436816i 0.143894π-0.143894\pi
0.899551 + 0.436816i 0.143894π0.143894\pi
9898 0 0
9999 − 60.3614i − 0.609711i
100100 0 0
101101 −145.157 −1.43720 −0.718600 0.695424i 0.755217π-0.755217\pi
−0.718600 + 0.695424i 0.755217π0.755217\pi
102102 0 0
103103 85.0272i 0.825507i 0.910843 + 0.412753i 0.135433π0.135433\pi
−0.910843 + 0.412753i 0.864567π0.864567\pi
104104 0 0
105105 165.958 1.58056
106106 0 0
107107 − 135.791i − 1.26907i −0.772893 0.634537i 0.781191π-0.781191\pi
0.772893 0.634537i 0.218809π-0.218809\pi
108108 0 0
109109 −8.73480 −0.0801358 −0.0400679 0.999197i 0.512757π-0.512757\pi
−0.0400679 + 0.999197i 0.512757π0.512757\pi
110110 0 0
111111 − 0.0626898i 0 0.000564773i
112112 0 0
113113 −16.7233 −0.147994 −0.0739970 0.997258i 0.523576π-0.523576\pi
−0.0739970 + 0.997258i 0.523576π0.523576\pi
114114 0 0
115115 62.3443i 0.542125i
116116 0 0
117117 −149.175 −1.27500
118118 0 0
119119 − 18.7907i − 0.157905i
120120 0 0
121121 32.9221 0.272083
122122 0 0
123123 − 297.930i − 2.42219i
124124 0 0
125125 62.1662 0.497330
126126 0 0
127127 74.2716i 0.584815i 0.956294 + 0.292408i 0.0944564π0.0944564\pi
−0.956294 + 0.292408i 0.905544π0.905544\pi
128128 0 0
129129 −63.0482 −0.488746
130130 0 0
131131 156.350i 1.19351i 0.802422 + 0.596756i 0.203544π0.203544\pi
−0.802422 + 0.596756i 0.796456π0.796456\pi
132132 0 0
133133 −207.881 −1.56301
134134 0 0
135135 76.9370i 0.569904i
136136 0 0
137137 99.1270 0.723554 0.361777 0.932265i 0.382170π-0.382170\pi
0.361777 + 0.932265i 0.382170π0.382170\pi
138138 0 0
139139 − 213.058i − 1.53279i −0.642368 0.766396i 0.722048π-0.722048\pi
0.642368 0.766396i 0.277952π-0.277952\pi
140140 0 0
141141 −141.212 −1.00150
142142 0 0
143143 217.673i 1.52219i
144144 0 0
145145 41.0659 0.283213
146146 0 0
147147 71.9214i 0.489261i
148148 0 0
149149 −30.4204 −0.204164 −0.102082 0.994776i 0.532550π-0.532550\pi
−0.102082 + 0.994776i 0.532550π0.532550\pi
150150 0 0
151151 − 263.348i − 1.74402i −0.489484 0.872012i 0.662815π-0.662815\pi
0.489484 0.872012i 0.337185π-0.337185\pi
152152 0 0
153153 −21.8152 −0.142583
154154 0 0
155155 33.6729i 0.217244i
156156 0 0
157157 −15.9827 −0.101801 −0.0509004 0.998704i 0.516209π-0.516209\pi
−0.0509004 + 0.998704i 0.516209π0.516209\pi
158158 0 0
159159 − 278.942i − 1.75435i
160160 0 0
161161 45.2922 0.281318
162162 0 0
163163 − 100.548i − 0.616861i −0.951247 0.308430i 0.900196π-0.900196\pi
0.951247 0.308430i 0.0998037π-0.0998037\pi
164164 0 0
165165 −281.140 −1.70388
166166 0 0
167167 − 110.099i − 0.659274i −0.944108 0.329637i 0.893074π-0.893074\pi
0.944108 0.329637i 0.106926π-0.106926\pi
168168 0 0
169169 368.948 2.18313
170170 0 0
171171 241.341i 1.41135i
172172 0 0
173173 237.942 1.37539 0.687695 0.726000i 0.258623π-0.258623\pi
0.687695 + 0.726000i 0.258623π0.258623\pi
174174 0 0
175175 − 183.663i − 1.04950i
176176 0 0
177177 −254.440 −1.43752
178178 0 0
179179 58.3673i 0.326074i 0.986620 + 0.163037i 0.0521291π0.0521291\pi
−0.986620 + 0.163037i 0.947871π0.947871\pi
180180 0 0
181181 −68.2620 −0.377138 −0.188569 0.982060i 0.560385π-0.560385\pi
−0.188569 + 0.982060i 0.560385π0.560385\pi
182182 0 0
183183 161.290i 0.881367i
184184 0 0
185185 −0.121695 −0.000657811 0
186186 0 0
187187 31.8322i 0.170226i
188188 0 0
189189 55.8936 0.295733
190190 0 0
191191 − 98.0523i − 0.513363i −0.966496 0.256681i 0.917371π-0.917371\pi
0.966496 0.256681i 0.0826291π-0.0826291\pi
192192 0 0
193193 −256.470 −1.32886 −0.664431 0.747350i 0.731326π-0.731326\pi
−0.664431 + 0.747350i 0.731326π0.731326\pi
194194 0 0
195195 694.800i 3.56308i
196196 0 0
197197 −308.149 −1.56421 −0.782104 0.623148i 0.785853π-0.785853\pi
−0.782104 + 0.623148i 0.785853π0.785853\pi
198198 0 0
199199 99.3770i 0.499382i 0.968326 + 0.249691i 0.0803290π0.0803290\pi
−0.968326 + 0.249691i 0.919671π0.919671\pi
200200 0 0
201201 −257.871 −1.28294
202202 0 0
203203 − 29.8338i − 0.146965i
204204 0 0
205205 −578.349 −2.82121
206206 0 0
207207 − 52.5824i − 0.254021i
208208 0 0
209209 352.159 1.68497
210210 0 0
211211 − 171.658i − 0.813547i −0.913529 0.406774i 0.866654π-0.866654\pi
0.913529 0.406774i 0.133346π-0.133346\pi
212212 0 0
213213 128.252 0.602120
214214 0 0
215215 122.391i 0.569260i
216216 0 0
217217 24.4629 0.112732
218218 0 0
219219 − 480.373i − 2.19348i
220220 0 0
221221 78.6690 0.355968
222222 0 0
223223 − 334.207i − 1.49869i −0.662182 0.749343i 0.730369π-0.730369\pi
0.662182 0.749343i 0.269631π-0.269631\pi
224224 0 0
225225 −213.225 −0.947665
226226 0 0
227227 77.1942i 0.340062i 0.985439 + 0.170031i 0.0543868π0.0543868\pi
−0.985439 + 0.170031i 0.945613π0.945613\pi
228228 0 0
229229 89.0065 0.388675 0.194337 0.980935i 0.437744π-0.437744\pi
0.194337 + 0.980935i 0.437744π0.437744\pi
230230 0 0
231231 204.244i 0.884174i
232232 0 0
233233 361.682 1.55228 0.776142 0.630558i 0.217174π-0.217174\pi
0.776142 + 0.630558i 0.217174π0.217174\pi
234234 0 0
235235 274.124i 1.16649i
236236 0 0
237237 334.758 1.41248
238238 0 0
239239 − 51.3625i − 0.214906i −0.994210 0.107453i 0.965730π-0.965730\pi
0.994210 0.107453i 0.0342695π-0.0342695\pi
240240 0 0
241241 −208.917 −0.866874 −0.433437 0.901184i 0.642699π-0.642699\pi
−0.433437 + 0.901184i 0.642699π0.642699\pi
242242 0 0
243243 − 292.282i − 1.20281i
244244 0 0
245245 139.616 0.569860
246246 0 0
247247 − 870.313i − 3.52353i
248248 0 0
249249 316.249 1.27008
250250 0 0
251251 120.972i 0.481960i 0.970530 + 0.240980i 0.0774689π0.0774689\pi
−0.970530 + 0.240980i 0.922531π0.922531\pi
252252 0 0
253253 −76.7269 −0.303268
254254 0 0
255255 101.607i 0.398458i
256256 0 0
257257 −33.6370 −0.130883 −0.0654416 0.997856i 0.520846π-0.520846\pi
−0.0654416 + 0.997856i 0.520846π0.520846\pi
258258 0 0
259259 0.0884097i 0 0.000341350i
260260 0 0
261261 −34.6358 −0.132704
262262 0 0
263263 355.007i 1.34984i 0.737893 + 0.674918i 0.235821π0.235821\pi
−0.737893 + 0.674918i 0.764179π0.764179\pi
264264 0 0
265265 −541.490 −2.04336
266266 0 0
267267 − 76.6145i − 0.286946i
268268 0 0
269269 −93.6950 −0.348308 −0.174154 0.984718i 0.555719π-0.555719\pi
−0.174154 + 0.984718i 0.555719π0.555719\pi
270270 0 0
271271 87.2682i 0.322023i 0.986953 + 0.161011i 0.0514756π0.0514756\pi
−0.986953 + 0.161011i 0.948524π0.948524\pi
272272 0 0
273273 504.762 1.84895
274274 0 0
275275 311.132i 1.13139i
276276 0 0
277277 368.254 1.32944 0.664719 0.747093i 0.268551π-0.268551\pi
0.664719 + 0.747093i 0.268551π0.268551\pi
278278 0 0
279279 − 28.4003i − 0.101793i
280280 0 0
281281 275.626 0.980876 0.490438 0.871476i 0.336837π-0.336837\pi
0.490438 + 0.871476i 0.336837π0.336837\pi
282282 0 0
283283 − 382.779i − 1.35257i −0.736638 0.676287i 0.763588π-0.763588\pi
0.736638 0.676287i 0.236412π-0.236412\pi
284284 0 0
285285 1124.07 3.94412
286286 0 0
287287 420.162i 1.46398i
288288 0 0
289289 −277.496 −0.960192
290290 0 0
291291 685.542i 2.35582i
292292 0 0
293293 −465.001 −1.58703 −0.793517 0.608548i 0.791752π-0.791752\pi
−0.793517 + 0.608548i 0.791752π0.791752\pi
294294 0 0
295295 493.926i 1.67433i
296296 0 0
297297 −94.6861 −0.318808
298298 0 0
299299 189.620i 0.634181i
300300 0 0
301301 88.9151 0.295399
302302 0 0
303303 − 570.224i − 1.88193i
304304 0 0
305305 313.101 1.02656
306306 0 0
307307 − 322.409i − 1.05019i −0.851042 0.525097i 0.824029π-0.824029\pi
0.851042 0.525097i 0.175971π-0.175971\pi
308308 0 0
309309 −334.014 −1.08095
310310 0 0
311311 540.440i 1.73775i 0.495032 + 0.868875i 0.335156π0.335156\pi
−0.495032 + 0.868875i 0.664844π0.664844\pi
312312 0 0
313313 −285.630 −0.912555 −0.456277 0.889838i 0.650817π-0.650817\pi
−0.456277 + 0.889838i 0.650817π0.650817\pi
314314 0 0
315315 271.718i 0.862596i
316316 0 0
317317 193.635 0.610837 0.305419 0.952218i 0.401204π-0.401204\pi
0.305419 + 0.952218i 0.401204π0.401204\pi
318318 0 0
319319 50.5397i 0.158432i
320320 0 0
321321 533.430 1.66178
322322 0 0
323323 − 127.274i − 0.394036i
324324 0 0
325325 768.921 2.36591
326326 0 0
327327 − 34.3131i − 0.104933i
328328 0 0
329329 199.147 0.605311
330330 0 0
331331 441.209i 1.33296i 0.745524 + 0.666479i 0.232199π0.232199\pi
−0.745524 + 0.666479i 0.767801π0.767801\pi
332332 0 0
333333 0.102640 0.000308228 0
334334 0 0
335335 500.586i 1.49429i
336336 0 0
337337 302.671 0.898133 0.449066 0.893498i 0.351757π-0.351757\pi
0.449066 + 0.893498i 0.351757π0.351757\pi
338338 0 0
339339 − 65.6946i − 0.193789i
340340 0 0
341341 −41.4411 −0.121528
342342 0 0
343343 − 372.889i − 1.08714i
344344 0 0
345345 −244.909 −0.709880
346346 0 0
347347 − 363.008i − 1.04613i −0.852292 0.523066i 0.824788π-0.824788\pi
0.852292 0.523066i 0.175212π-0.175212\pi
348348 0 0
349349 12.1746 0.0348841 0.0174421 0.999848i 0.494448π-0.494448\pi
0.0174421 + 0.999848i 0.494448π0.494448\pi
350350 0 0
351351 234.004i 0.666677i
352352 0 0
353353 70.0382 0.198409 0.0992043 0.995067i 0.468370π-0.468370\pi
0.0992043 + 0.995067i 0.468370π0.468370\pi
354354 0 0
355355 − 248.965i − 0.701310i
356356 0 0
357357 73.8159 0.206767
358358 0 0
359359 362.358i 1.00935i 0.863308 + 0.504677i 0.168388π0.168388\pi
−0.863308 + 0.504677i 0.831612π0.831612\pi
360360 0 0
361361 −1047.02 −2.90035
362362 0 0
363363 129.328i 0.356277i
364364 0 0
365365 −932.511 −2.55483
366366 0 0
367367 228.998i 0.623973i 0.950086 + 0.311987i 0.100994π0.100994\pi
−0.950086 + 0.311987i 0.899006π0.899006\pi
368368 0 0
369369 487.790 1.32192
370370 0 0
371371 393.384i 1.06034i
372372 0 0
373373 −233.561 −0.626169 −0.313085 0.949725i 0.601362π-0.601362\pi
−0.313085 + 0.949725i 0.601362π0.601362\pi
374374 0 0
375375 244.209i 0.651224i
376376 0 0
377377 124.902 0.331305
378378 0 0
379379 414.460i 1.09356i 0.837276 + 0.546781i 0.184147π0.184147\pi
−0.837276 + 0.546781i 0.815853π0.815853\pi
380380 0 0
381381 −291.762 −0.765781
382382 0 0
383383 361.668i 0.944303i 0.881517 + 0.472152i 0.156523π0.156523\pi
−0.881517 + 0.472152i 0.843477π0.843477\pi
384384 0 0
385385 396.484 1.02983
386386 0 0
387387 − 103.227i − 0.266736i
388388 0 0
389389 −467.835 −1.20266 −0.601330 0.799001i 0.705362π-0.705362\pi
−0.601330 + 0.799001i 0.705362π0.705362\pi
390390 0 0
391391 27.7298i 0.0709203i
392392 0 0
393393 −614.194 −1.56283
394394 0 0
395395 − 649.841i − 1.64517i
396396 0 0
397397 64.9294 0.163550 0.0817751 0.996651i 0.473941π-0.473941\pi
0.0817751 + 0.996651i 0.473941π0.473941\pi
398398 0 0
399399 − 816.623i − 2.04667i
400400 0 0
401401 −250.312 −0.624221 −0.312110 0.950046i 0.601036π-0.601036\pi
−0.312110 + 0.950046i 0.601036π0.601036\pi
402402 0 0
403403 102.416i 0.254134i
404404 0 0
405405 −743.652 −1.83618
406406 0 0
407407 − 0.149770i 0 0.000367984i
408408 0 0
409409 −275.819 −0.674375 −0.337187 0.941438i 0.609476π-0.609476\pi
−0.337187 + 0.941438i 0.609476π0.609476\pi
410410 0 0
411411 389.402i 0.947451i
412412 0 0
413413 358.830 0.868837
414414 0 0
415415 − 613.911i − 1.47930i
416416 0 0
417417 836.961 2.00710
418418 0 0
419419 106.224i 0.253517i 0.991934 + 0.126758i 0.0404573π0.0404573\pi
−0.991934 + 0.126758i 0.959543π0.959543\pi
420420 0 0
421421 427.248 1.01484 0.507420 0.861699i 0.330599π-0.330599\pi
0.507420 + 0.861699i 0.330599π0.330599\pi
422422 0 0
423423 − 231.202i − 0.546576i
424424 0 0
425425 112.446 0.264579
426426 0 0
427427 − 227.463i − 0.532700i
428428 0 0
429429 −855.088 −1.99321
430430 0 0
431431 682.610i 1.58378i 0.610662 + 0.791891i 0.290903π0.290903\pi
−0.610662 + 0.791891i 0.709097π0.709097\pi
432432 0 0
433433 31.9951 0.0738917 0.0369459 0.999317i 0.488237π-0.488237\pi
0.0369459 + 0.999317i 0.488237π0.488237\pi
434434 0 0
435435 161.320i 0.370851i
436436 0 0
437437 306.775 0.702001
438438 0 0
439439 832.197i 1.89566i 0.318769 + 0.947832i 0.396731π0.396731\pi
−0.318769 + 0.947832i 0.603269π0.603269\pi
440440 0 0
441441 −117.754 −0.267017
442442 0 0
443443 − 608.511i − 1.37361i −0.726840 0.686807i 0.759012π-0.759012\pi
0.726840 0.686807i 0.240988π-0.240988\pi
444444 0 0
445445 −148.726 −0.334216
446446 0 0
447447 − 119.501i − 0.267340i
448448 0 0
449449 −384.818 −0.857055 −0.428528 0.903529i 0.640968π-0.640968\pi
−0.428528 + 0.903529i 0.640968π0.640968\pi
450450 0 0
451451 − 711.771i − 1.57821i
452452 0 0
453453 1034.51 2.28370
454454 0 0
455455 − 979.857i − 2.15353i
456456 0 0
457457 −330.157 −0.722444 −0.361222 0.932480i 0.617640π-0.617640\pi
−0.361222 + 0.932480i 0.617640π0.617640\pi
458458 0 0
459459 34.2204i 0.0745544i
460460 0 0
461461 −873.905 −1.89567 −0.947836 0.318758i 0.896734π-0.896734\pi
−0.947836 + 0.318758i 0.896734π0.896734\pi
462462 0 0
463463 269.148i 0.581313i 0.956828 + 0.290656i 0.0938736π0.0938736\pi
−0.956828 + 0.290656i 0.906126π0.906126\pi
464464 0 0
465465 −132.278 −0.284469
466466 0 0
467467 − 719.153i − 1.53994i −0.638079 0.769971i 0.720271π-0.720271\pi
0.638079 0.769971i 0.279729π-0.279729\pi
468468 0 0
469469 363.668 0.775412
470470 0 0
471471 − 62.7852i − 0.133302i
472472 0 0
473473 −150.626 −0.318448
474474 0 0
475475 − 1243.99i − 2.61893i
476476 0 0
477477 456.702 0.957447
478478 0 0
479479 96.7800i 0.202046i 0.994884 + 0.101023i 0.0322116π0.0322116\pi
−0.994884 + 0.101023i 0.967788π0.967788\pi
480480 0 0
481481 −0.370135 −0.000769512 0
482482 0 0
483483 177.922i 0.368369i
484484 0 0
485485 1330.79 2.74390
486486 0 0
487487 279.484i 0.573889i 0.957947 + 0.286945i 0.0926395π0.0926395\pi
−0.957947 + 0.286945i 0.907360π0.907360\pi
488488 0 0
489489 394.986 0.807742
490490 0 0
491491 − 394.911i − 0.804299i −0.915574 0.402149i 0.868263π-0.868263\pi
0.915574 0.402149i 0.131737π-0.131737\pi
492492 0 0
493493 18.2655 0.0370497
494494 0 0
495495 − 460.301i − 0.929902i
496496 0 0
497497 −180.869 −0.363922
498498 0 0
499499 86.1332i 0.172612i 0.996269 + 0.0863059i 0.0275062π0.0275062\pi
−0.996269 + 0.0863059i 0.972494π0.972494\pi
500500 0 0
501501 432.503 0.863279
502502 0 0
503503 − 63.2534i − 0.125752i −0.998021 0.0628761i 0.979973π-0.979973\pi
0.998021 0.0628761i 0.0200273π-0.0200273\pi
504504 0 0
505505 −1106.93 −2.19195
506506 0 0
507507 1449.35i 2.85867i
508508 0 0
509509 473.051 0.929373 0.464687 0.885475i 0.346167π-0.346167\pi
0.464687 + 0.885475i 0.346167π0.346167\pi
510510 0 0
511511 677.456i 1.32574i
512512 0 0
513513 378.580 0.737973
514514 0 0
515515 648.397i 1.25902i
516516 0 0
517517 −337.364 −0.652541
518518 0 0
519519 934.714i 1.80099i
520520 0 0
521521 365.912 0.702326 0.351163 0.936314i 0.385786π-0.385786\pi
0.351163 + 0.936314i 0.385786π0.385786\pi
522522 0 0
523523 − 118.474i − 0.226528i −0.993565 0.113264i 0.963869π-0.963869\pi
0.993565 0.113264i 0.0361305π-0.0361305\pi
524524 0 0
525525 721.486 1.37426
526526 0 0
527527 14.9772i 0.0284197i
528528 0 0
529529 462.161 0.873651
530530 0 0
531531 − 416.586i − 0.784531i
532532 0 0
533533 −1759.05 −3.30027
534534 0 0
535535 − 1035.51i − 1.93553i
536536 0 0
537537 −229.286 −0.426975
538538 0 0
539539 171.824i 0.318784i
540540 0 0
541541 270.289 0.499610 0.249805 0.968296i 0.419633π-0.419633\pi
0.249805 + 0.968296i 0.419633π0.419633\pi
542542 0 0
543543 − 268.155i − 0.493839i
544544 0 0
545545 −66.6094 −0.122219
546546 0 0
547547 − 675.879i − 1.23561i −0.786331 0.617805i 0.788022π-0.788022\pi
0.786331 0.617805i 0.211978π-0.211978\pi
548548 0 0
549549 −264.075 −0.481010
550550 0 0
551551 − 202.071i − 0.366735i
552552 0 0
553553 −472.099 −0.853706
554554 0 0
555555 − 0.478057i 0 0.000861364i
556556 0 0
557557 654.060 1.17426 0.587128 0.809494i 0.300259π-0.300259\pi
0.587128 + 0.809494i 0.300259π0.300259\pi
558558 0 0
559559 372.251i 0.665924i
560560 0 0
561561 −125.047 −0.222900
562562 0 0
563563 − 394.468i − 0.700654i −0.936628 0.350327i 0.886071π-0.886071\pi
0.936628 0.350327i 0.113929π-0.113929\pi
564564 0 0
565565 −127.528 −0.225713
566566 0 0
567567 540.252i 0.952826i
568568 0 0
569569 5.31708 0.00934460 0.00467230 0.999989i 0.498513π-0.498513\pi
0.00467230 + 0.999989i 0.498513π0.498513\pi
570570 0 0
571571 − 801.525i − 1.40372i −0.712314 0.701861i 0.752353π-0.752353\pi
0.712314 0.701861i 0.247647π-0.247647\pi
572572 0 0
573573 385.181 0.672218
574574 0 0
575575 271.035i 0.471366i
576576 0 0
577577 −332.817 −0.576805 −0.288403 0.957509i 0.593124π-0.593124\pi
−0.288403 + 0.957509i 0.593124π0.593124\pi
578578 0 0
579579 − 1007.50i − 1.74007i
580580 0 0
581581 −445.998 −0.767638
582582 0 0
583583 − 666.409i − 1.14307i
584584 0 0
585585 −1137.57 −1.94457
586586 0 0
587587 − 529.513i − 0.902066i −0.892507 0.451033i 0.851056π-0.851056\pi
0.892507 0.451033i 0.148944π-0.148944\pi
588588 0 0
589589 165.692 0.281311
590590 0 0
591591 − 1210.51i − 2.04824i
592592 0 0
593593 939.990 1.58514 0.792571 0.609779i 0.208742π-0.208742\pi
0.792571 + 0.609779i 0.208742π0.208742\pi
594594 0 0
595595 − 143.293i − 0.240829i
596596 0 0
597597 −390.385 −0.653911
598598 0 0
599599 − 683.114i − 1.14042i −0.821498 0.570212i 0.806861π-0.806861\pi
0.821498 0.570212i 0.193139π-0.193139\pi
600600 0 0
601601 −554.853 −0.923216 −0.461608 0.887084i 0.652727π-0.652727\pi
−0.461608 + 0.887084i 0.652727π0.652727\pi
602602 0 0
603603 − 422.204i − 0.700172i
604604 0 0
605605 251.056 0.414968
606606 0 0
607607 − 102.168i − 0.168317i −0.996452 0.0841585i 0.973180π-0.973180\pi
0.996452 0.0841585i 0.0268202π-0.0268202\pi
608608 0 0
609609 117.197 0.192441
610610 0 0
611611 833.749i 1.36456i
612612 0 0
613613 −728.098 −1.18776 −0.593881 0.804553i 0.702405π-0.702405\pi
−0.593881 + 0.804553i 0.702405π0.702405\pi
614614 0 0
615615 − 2271.94i − 3.69421i
616616 0 0
617617 37.0181 0.0599969 0.0299984 0.999550i 0.490450π-0.490450\pi
0.0299984 + 0.999550i 0.490450π0.490450\pi
618618 0 0
619619 − 56.3733i − 0.0910716i −0.998963 0.0455358i 0.985500π-0.985500\pi
0.998963 0.0455358i 0.0144995π-0.0144995\pi
620620 0 0
621621 −82.4834 −0.132824
622622 0 0
623623 108.047i 0.173430i
624624 0 0
625625 −354.739 −0.567583
626626 0 0
627627 1383.39i 2.20637i
628628 0 0
629629 −0.0541282 −8.60543e−5 0
630630 0 0
631631 1011.93i 1.60369i 0.597532 + 0.801845i 0.296148π0.296148\pi
−0.597532 + 0.801845i 0.703852π0.703852\pi
632632 0 0
633633 674.329 1.06529
634634 0 0
635635 566.377i 0.891932i
636636 0 0
637637 424.641 0.666626
638638 0 0
639639 209.982i 0.328610i
640640 0 0
641641 −45.5733 −0.0710972 −0.0355486 0.999368i 0.511318π-0.511318\pi
−0.0355486 + 0.999368i 0.511318π0.511318\pi
642642 0 0
643643 − 624.626i − 0.971424i −0.874119 0.485712i 0.838560π-0.838560\pi
0.874119 0.485712i 0.161440π-0.161440\pi
644644 0 0
645645 −480.790 −0.745411
646646 0 0
647647 − 186.160i − 0.287727i −0.989598 0.143864i 0.954047π-0.954047\pi
0.989598 0.143864i 0.0459527π-0.0459527\pi
648648 0 0
649649 −607.873 −0.936630
650650 0 0
651651 96.0979i 0.147616i
652652 0 0
653653 676.168 1.03548 0.517740 0.855538i 0.326773π-0.326773\pi
0.517740 + 0.855538i 0.326773π0.326773\pi
654654 0 0
655655 1192.29i 1.82029i
656656 0 0
657657 786.497 1.19710
658658 0 0
659659 − 678.525i − 1.02963i −0.857302 0.514814i 0.827861π-0.827861\pi
0.857302 0.514814i 0.172139π-0.172139\pi
660660 0 0
661661 125.237 0.189467 0.0947333 0.995503i 0.469800π-0.469800\pi
0.0947333 + 0.995503i 0.469800π0.469800\pi
662662 0 0
663663 309.037i 0.466119i
664664 0 0
665665 −1585.25 −2.38383
666666 0 0
667667 44.0264i 0.0660066i
668668 0 0
669669 1312.87 1.96244
670670 0 0
671671 385.332i 0.574265i
672672 0 0
673673 −1042.29 −1.54872 −0.774362 0.632743i 0.781929π-0.781929\pi
−0.774362 + 0.632743i 0.781929π0.781929\pi
674674 0 0
675675 334.475i 0.495519i
676676 0 0
677677 −648.606 −0.958059 −0.479029 0.877799i 0.659011π-0.659011\pi
−0.479029 + 0.877799i 0.659011π0.659011\pi
678678 0 0
679679 − 966.801i − 1.42386i
680680 0 0
681681 −303.243 −0.445291
682682 0 0
683683 967.574i 1.41665i 0.705885 + 0.708327i 0.250550π0.250550\pi
−0.705885 + 0.708327i 0.749450π0.749450\pi
684684 0 0
685685 755.918 1.10353
686686 0 0
687687 349.646i 0.508946i
688688 0 0
689689 −1646.94 −2.39033
690690 0 0
691691 1049.17i 1.51834i 0.650891 + 0.759171i 0.274395π0.274395\pi
−0.650891 + 0.759171i 0.725605π0.725605\pi
692692 0 0
693693 −334.402 −0.482543
694694 0 0
695695 − 1624.73i − 2.33774i
696696 0 0
697697 −257.241 −0.369069
698698 0 0
699699 1420.80i 2.03262i
700700 0 0
701701 47.3109 0.0674906 0.0337453 0.999430i 0.489256π-0.489256\pi
0.0337453 + 0.999430i 0.489256π0.489256\pi
702702 0 0
703703 0.598819i 0 0.000851805i
704704 0 0
705705 −1076.85 −1.52744
706706 0 0
707707 804.170i 1.13744i
708708 0 0
709709 847.156 1.19486 0.597430 0.801921i 0.296188π-0.296188\pi
0.597430 + 0.801921i 0.296188π0.296188\pi
710710 0 0
711711 548.087i 0.770868i
712712 0 0
713713 −36.1004 −0.0506317
714714 0 0
715715 1659.92i 2.32156i
716716 0 0
717717 201.768 0.281406
718718 0 0
719719 − 1041.20i − 1.44812i −0.689739 0.724058i 0.742275π-0.742275\pi
0.689739 0.724058i 0.257725π-0.257725\pi
720720 0 0
721721 471.050 0.653329
722722 0 0
723723 − 820.691i − 1.13512i
724724 0 0
725725 178.530 0.246248
726726 0 0
727727 176.419i 0.242667i 0.992612 + 0.121334i 0.0387171π0.0387171\pi
−0.992612 + 0.121334i 0.961283π0.961283\pi
728728 0 0
729729 270.511 0.371071
730730 0 0
731731 54.4376i 0.0744701i
732732 0 0
733733 −199.309 −0.271908 −0.135954 0.990715i 0.543410π-0.543410\pi
−0.135954 + 0.990715i 0.543410π0.543410\pi
734734 0 0
735735 548.455i 0.746197i
736736 0 0
737737 −616.069 −0.835915
738738 0 0
739739 1262.49i 1.70838i 0.519963 + 0.854189i 0.325946π0.325946\pi
−0.519963 + 0.854189i 0.674054π0.674054\pi
740740 0 0
741741 3418.87 4.61386
742742 0 0
743743 773.056i 1.04045i 0.854028 + 0.520226i 0.174152π0.174152\pi
−0.854028 + 0.520226i 0.825848π0.825848\pi
744744 0 0
745745 −231.979 −0.311381
746746 0 0
747747 517.784i 0.693151i
748748 0 0
749749 −752.281 −1.00438
750750 0 0
751751 − 1466.80i − 1.95313i −0.215223 0.976565i 0.569048π-0.569048\pi
0.215223 0.976565i 0.430952π-0.430952\pi
752752 0 0
753753 −475.217 −0.631098
754754 0 0
755755 − 2008.23i − 2.65990i
756756 0 0
757757 271.705 0.358923 0.179462 0.983765i 0.442564π-0.442564\pi
0.179462 + 0.983765i 0.442564π0.442564\pi
758758 0 0
759759 − 301.408i − 0.397112i
760760 0 0
761761 1211.23 1.59163 0.795817 0.605537i 0.207042π-0.207042\pi
0.795817 + 0.605537i 0.207042π0.207042\pi
762762 0 0
763763 48.3908i 0.0634217i
764764 0 0
765765 −166.357 −0.217461
766766 0 0
767767 1502.27i 1.95864i
768768 0 0
769769 1036.42 1.34775 0.673873 0.738847i 0.264629π-0.264629\pi
0.673873 + 0.738847i 0.264629π0.264629\pi
770770 0 0
771771 − 132.137i − 0.171384i
772772 0 0
773773 −1053.73 −1.36317 −0.681583 0.731741i 0.738708π-0.738708\pi
−0.681583 + 0.731741i 0.738708π0.738708\pi
774774 0 0
775775 146.389i 0.188889i
776776 0 0
777777 −0.347301 −0.000446977 0
778778 0 0
779779 2845.85i 3.65321i
780780 0 0
781781 306.400 0.392318
782782 0 0
783783 54.3315i 0.0693889i
784784 0 0
785785 −121.880 −0.155261
786786 0 0
787787 701.506i 0.891368i 0.895190 + 0.445684i 0.147039π0.147039\pi
−0.895190 + 0.445684i 0.852961π0.852961\pi
788788 0 0
789789 −1394.58 −1.76753
790790 0 0
791791 92.6471i 0.117127i
792792 0 0
793793 952.295 1.20088
794794 0 0
795795 − 2127.15i − 2.67566i
796796 0 0
797797 1406.70 1.76500 0.882498 0.470316i 0.155860π-0.155860\pi
0.882498 + 0.470316i 0.155860π0.155860\pi
798798 0 0
799799 121.926i 0.152599i
800800 0 0
801801 125.438 0.156602
802802 0 0
803803 − 1147.64i − 1.42919i
804804 0 0
805805 345.388 0.429053
806806 0 0
807807 − 368.064i − 0.456089i
808808 0 0
809809 432.584 0.534714 0.267357 0.963598i 0.413850π-0.413850\pi
0.267357 + 0.963598i 0.413850π0.413850\pi
810810 0 0
811811 908.477i 1.12019i 0.828427 + 0.560097i 0.189236π0.189236\pi
−0.828427 + 0.560097i 0.810764π0.810764\pi
812812 0 0
813813 −342.817 −0.421670
814814 0 0
815815 − 766.757i − 0.940806i
816816 0 0
817817 602.242 0.737138
818818 0 0
819819 826.429i 1.00907i
820820 0 0
821821 139.911 0.170416 0.0852078 0.996363i 0.472845π-0.472845\pi
0.0852078 + 0.996363i 0.472845π0.472845\pi
822822 0 0
823823 − 444.474i − 0.540066i −0.962851 0.270033i 0.912965π-0.912965\pi
0.962851 0.270033i 0.0870346π-0.0870346\pi
824824 0 0
825825 −1222.23 −1.48149
826826 0 0
827827 431.195i 0.521396i 0.965420 + 0.260698i 0.0839527π0.0839527\pi
−0.965420 + 0.260698i 0.916047π0.916047\pi
828828 0 0
829829 −83.4125 −0.100618 −0.0503091 0.998734i 0.516021π-0.516021\pi
−0.0503091 + 0.998734i 0.516021π0.516021\pi
830830 0 0
831831 1446.62i 1.74082i
832832 0 0
833833 62.0990 0.0745486
834834 0 0
835835 − 839.586i − 1.00549i
836836 0 0
837837 −44.5502 −0.0532261
838838 0 0
839839 835.598i 0.995945i 0.867193 + 0.497973i 0.165922π0.165922\pi
−0.867193 + 0.497973i 0.834078π0.834078\pi
840840 0 0
841841 29.0000 0.0344828
842842 0 0
843843 1082.75i 1.28440i
844844 0 0
845845 2813.51 3.32960
846846 0 0
847847 − 182.388i − 0.215334i
848848 0 0
849849 1503.68 1.77112
850850 0 0
851851 − 0.130468i 0 0.000153312i
852852 0 0
853853 58.9242 0.0690788 0.0345394 0.999403i 0.489004π-0.489004\pi
0.0345394 + 0.999403i 0.489004π0.489004\pi
854854 0 0
855855 1840.41i 2.15252i
856856 0 0
857857 712.595 0.831500 0.415750 0.909479i 0.363519π-0.363519\pi
0.415750 + 0.909479i 0.363519π0.363519\pi
858858 0 0
859859 − 729.876i − 0.849681i −0.905268 0.424841i 0.860330π-0.860330\pi
0.905268 0.424841i 0.139670π-0.139670\pi
860860 0 0
861861 −1650.53 −1.91699
862862 0 0
863863 − 736.184i − 0.853052i −0.904475 0.426526i 0.859737π-0.859737\pi
0.904475 0.426526i 0.140263π-0.140263\pi
864864 0 0
865865 1814.49 2.09768
866866 0 0
867867 − 1090.09i − 1.25731i
868868 0 0
869869 799.756 0.920318
870870 0 0
871871 1522.53i 1.74803i
872872 0 0
873873 −1122.41 −1.28570
874874 0 0
875875 − 344.401i − 0.393601i
876876 0 0
877877 −402.913 −0.459422 −0.229711 0.973259i 0.573778π-0.573778\pi
−0.229711 + 0.973259i 0.573778π0.573778\pi
878878 0 0
879879 − 1826.67i − 2.07813i
880880 0 0
881881 1086.82 1.23362 0.616810 0.787112i 0.288425π-0.288425\pi
0.616810 + 0.787112i 0.288425π0.288425\pi
882882 0 0
883883 − 1470.42i − 1.66526i −0.553833 0.832628i 0.686835π-0.686835\pi
0.553833 0.832628i 0.313165π-0.313165\pi
884884 0 0
885885 −1940.30 −2.19243
886886 0 0
887887 76.3569i 0.0860844i 0.999073 + 0.0430422i 0.0137050π0.0137050\pi
−0.999073 + 0.0430422i 0.986295π0.986295\pi
888888 0 0
889889 411.464 0.462839
890890 0 0
891891 − 915.210i − 1.02717i
892892 0 0
893893 1348.87 1.51049
894894 0 0
895895 445.095i 0.497313i
896896 0 0
897897 −744.889 −0.830422
898898 0 0
899899 23.7792i 0.0264507i
900900 0 0
901901 −240.847 −0.267310
902902 0 0
903903 349.287i 0.386807i
904904 0 0
905905 −520.549 −0.575192
906906 0 0
907907 842.164i 0.928516i 0.885700 + 0.464258i 0.153679π0.153679\pi
−0.885700 + 0.464258i 0.846321π0.846321\pi
908908 0 0
909909 933.607 1.02707
910910 0 0
911911 − 793.529i − 0.871052i −0.900176 0.435526i 0.856562π-0.856562\pi
0.900176 0.435526i 0.143438π-0.143438\pi
912912 0 0
913913 755.538 0.827534
914914 0 0
915915 1229.96i 1.34422i
916916 0 0
917917 866.180 0.944580
918918 0 0
919919 36.0028i 0.0391761i 0.999808 + 0.0195880i 0.00623546π0.00623546\pi
−0.999808 + 0.0195880i 0.993765π0.993765\pi
920920 0 0
921921 1266.53 1.37517
922922 0 0
923923 − 757.227i − 0.820397i
924924 0 0
925925 −0.529056 −0.000571953 0
926926 0 0
927927 − 546.869i − 0.589935i
928928 0 0
929929 −522.582 −0.562521 −0.281260 0.959631i 0.590752π-0.590752\pi
−0.281260 + 0.959631i 0.590752π0.590752\pi
930930 0 0
931931 − 686.999i − 0.737915i
932932 0 0
933933 −2123.02 −2.27548
934934 0 0
935935 242.745i 0.259620i
936936 0 0
937937 328.762 0.350867 0.175434 0.984491i 0.443867π-0.443867\pi
0.175434 + 0.984491i 0.443867π0.443867\pi
938938 0 0
939939 − 1122.04i − 1.19494i
940940 0 0
941941 −1532.08 −1.62814 −0.814070 0.580766i 0.802753π-0.802753\pi
−0.814070 + 0.580766i 0.802753π0.802753\pi
942942 0 0
943943 − 620.042i − 0.657521i
944944 0 0
945945 426.231 0.451038
946946 0 0
947947 − 886.618i − 0.936239i −0.883665 0.468119i 0.844932π-0.844932\pi
0.883665 0.468119i 0.155068π-0.155068\pi
948948 0 0
949949 −2836.23 −2.98865
950950 0 0
951951 760.662i 0.799855i
952952 0 0
953953 1248.28 1.30984 0.654920 0.755699i 0.272702π-0.272702\pi
0.654920 + 0.755699i 0.272702π0.272702\pi
954954 0 0
955955 − 747.722i − 0.782955i
956956 0 0
957957 −198.536 −0.207457
958958 0 0
959959 − 549.163i − 0.572641i
960960 0 0
961961 941.502 0.979710
962962 0 0
963963 873.367i 0.906923i
964964 0 0
965965 −1955.78 −2.02672
966966 0 0
967967 1048.21i 1.08398i 0.840386 + 0.541989i 0.182329π0.182329\pi
−0.840386 + 0.541989i 0.817671π0.817671\pi
968968 0 0
969969 499.971 0.515966
970970 0 0
971971 1023.67i 1.05424i 0.849790 + 0.527122i 0.176729π0.176729\pi
−0.849790 + 0.527122i 0.823271π0.823271\pi
972972 0 0
973973 −1180.34 −1.21310
974974 0 0
975975 3020.57i 3.09802i
976976 0 0
977977 543.045 0.555829 0.277914 0.960606i 0.410357π-0.410357\pi
0.277914 + 0.960606i 0.410357π0.410357\pi
978978 0 0
979979 − 183.036i − 0.186963i
980980 0 0
981981 56.1796 0.0572677
982982 0 0
983983 − 1592.68i − 1.62022i −0.586275 0.810112i 0.699406π-0.699406\pi
0.586275 0.810112i 0.300594π-0.300594\pi
984984 0 0
985985 −2349.87 −2.38565
986986 0 0
987987 782.314i 0.792618i
988988 0 0
989989 −131.214 −0.132673
990990 0 0
991991 − 836.707i − 0.844306i −0.906525 0.422153i 0.861274π-0.861274\pi
0.906525 0.422153i 0.138726π-0.138726\pi
992992 0 0
993993 −1733.21 −1.74543
994994 0 0
995995 757.825i 0.761633i
996996 0 0
997997 −76.2615 −0.0764910 −0.0382455 0.999268i 0.512177π-0.512177\pi
−0.0382455 + 0.999268i 0.512177π0.512177\pi
998998 0 0
999999 − 0.161006i 0 0.000161167i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.3.d.b.175.16 yes 20
4.3 odd 2 inner 464.3.d.b.175.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.3.d.b.175.5 20 4.3 odd 2 inner
464.3.d.b.175.16 yes 20 1.1 even 1 trivial