Properties

Label 464.3.d.b.175.16
Level $464$
Weight $3$
Character 464.175
Analytic conductor $12.643$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,3,Mod(175,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.175");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 464.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6430842663\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 69 x^{18} + 1795 x^{16} + 24222 x^{14} + 189561 x^{12} + 892623 x^{10} + 2508433 x^{8} + \cdots + 21609 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{36}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 175.16
Root \(0.166656i\) of defining polynomial
Character \(\chi\) \(=\) 464.175
Dual form 464.3.d.b.175.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.92832i q^{3} +7.62576 q^{5} -5.54000i q^{7} -6.43170 q^{9} +9.38498i q^{11} +23.1937 q^{13} +29.9564i q^{15} +3.39182 q^{17} -37.5237i q^{19} +21.7629 q^{21} +8.17550i q^{23} +33.1521 q^{25} +10.0891i q^{27} +5.38516 q^{29} +4.41568i q^{31} -36.8672 q^{33} -42.2467i q^{35} -0.0159584 q^{37} +91.1123i q^{39} -75.8415 q^{41} +16.0497i q^{43} -49.0466 q^{45} +35.9472i q^{47} +18.3084 q^{49} +13.3242i q^{51} -71.0080 q^{53} +71.5676i q^{55} +147.405 q^{57} +64.7708i q^{59} +41.0583 q^{61} +35.6316i q^{63} +176.870 q^{65} +65.6441i q^{67} -32.1160 q^{69} -32.6479i q^{71} -122.284 q^{73} +130.232i q^{75} +51.9928 q^{77} -85.2166i q^{79} -97.5185 q^{81} -80.5050i q^{83} +25.8652 q^{85} +21.1547i q^{87} -19.5031 q^{89} -128.493i q^{91} -17.3462 q^{93} -286.146i q^{95} +174.513 q^{97} -60.3614i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{5} - 68 q^{9} + 16 q^{13} + 40 q^{17} - 48 q^{21} + 188 q^{25} - 120 q^{33} - 80 q^{37} - 72 q^{41} + 72 q^{45} - 28 q^{49} + 96 q^{53} + 104 q^{57} - 96 q^{61} - 80 q^{65} + 352 q^{69} - 312 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.92832i 1.30944i 0.755871 + 0.654720i \(0.227213\pi\)
−0.755871 + 0.654720i \(0.772787\pi\)
\(4\) 0 0
\(5\) 7.62576 1.52515 0.762576 0.646899i \(-0.223935\pi\)
0.762576 + 0.646899i \(0.223935\pi\)
\(6\) 0 0
\(7\) − 5.54000i − 0.791428i −0.918374 0.395714i \(-0.870497\pi\)
0.918374 0.395714i \(-0.129503\pi\)
\(8\) 0 0
\(9\) −6.43170 −0.714633
\(10\) 0 0
\(11\) 9.38498i 0.853180i 0.904445 + 0.426590i \(0.140285\pi\)
−0.904445 + 0.426590i \(0.859715\pi\)
\(12\) 0 0
\(13\) 23.1937 1.78413 0.892066 0.451905i \(-0.149255\pi\)
0.892066 + 0.451905i \(0.149255\pi\)
\(14\) 0 0
\(15\) 29.9564i 1.99709i
\(16\) 0 0
\(17\) 3.39182 0.199519 0.0997595 0.995012i \(-0.468193\pi\)
0.0997595 + 0.995012i \(0.468193\pi\)
\(18\) 0 0
\(19\) − 37.5237i − 1.97493i −0.157840 0.987465i \(-0.550453\pi\)
0.157840 0.987465i \(-0.449547\pi\)
\(20\) 0 0
\(21\) 21.7629 1.03633
\(22\) 0 0
\(23\) 8.17550i 0.355456i 0.984080 + 0.177728i \(0.0568748\pi\)
−0.984080 + 0.177728i \(0.943125\pi\)
\(24\) 0 0
\(25\) 33.1521 1.32609
\(26\) 0 0
\(27\) 10.0891i 0.373670i
\(28\) 0 0
\(29\) 5.38516 0.185695
\(30\) 0 0
\(31\) 4.41568i 0.142441i 0.997461 + 0.0712206i \(0.0226894\pi\)
−0.997461 + 0.0712206i \(0.977311\pi\)
\(32\) 0 0
\(33\) −36.8672 −1.11719
\(34\) 0 0
\(35\) − 42.2467i − 1.20705i
\(36\) 0 0
\(37\) −0.0159584 −0.000431309 0 −0.000215654 1.00000i \(-0.500069\pi\)
−0.000215654 1.00000i \(0.500069\pi\)
\(38\) 0 0
\(39\) 91.1123i 2.33621i
\(40\) 0 0
\(41\) −75.8415 −1.84979 −0.924896 0.380220i \(-0.875848\pi\)
−0.924896 + 0.380220i \(0.875848\pi\)
\(42\) 0 0
\(43\) 16.0497i 0.373248i 0.982431 + 0.186624i \(0.0597546\pi\)
−0.982431 + 0.186624i \(0.940245\pi\)
\(44\) 0 0
\(45\) −49.0466 −1.08992
\(46\) 0 0
\(47\) 35.9472i 0.764834i 0.923990 + 0.382417i \(0.124908\pi\)
−0.923990 + 0.382417i \(0.875092\pi\)
\(48\) 0 0
\(49\) 18.3084 0.373641
\(50\) 0 0
\(51\) 13.3242i 0.261258i
\(52\) 0 0
\(53\) −71.0080 −1.33977 −0.669887 0.742463i \(-0.733658\pi\)
−0.669887 + 0.742463i \(0.733658\pi\)
\(54\) 0 0
\(55\) 71.5676i 1.30123i
\(56\) 0 0
\(57\) 147.405 2.58605
\(58\) 0 0
\(59\) 64.7708i 1.09781i 0.835885 + 0.548905i \(0.184955\pi\)
−0.835885 + 0.548905i \(0.815045\pi\)
\(60\) 0 0
\(61\) 41.0583 0.673087 0.336544 0.941668i \(-0.390742\pi\)
0.336544 + 0.941668i \(0.390742\pi\)
\(62\) 0 0
\(63\) 35.6316i 0.565581i
\(64\) 0 0
\(65\) 176.870 2.72107
\(66\) 0 0
\(67\) 65.6441i 0.979763i 0.871789 + 0.489882i \(0.162960\pi\)
−0.871789 + 0.489882i \(0.837040\pi\)
\(68\) 0 0
\(69\) −32.1160 −0.465449
\(70\) 0 0
\(71\) − 32.6479i − 0.459830i −0.973211 0.229915i \(-0.926155\pi\)
0.973211 0.229915i \(-0.0738448\pi\)
\(72\) 0 0
\(73\) −122.284 −1.67513 −0.837565 0.546338i \(-0.816021\pi\)
−0.837565 + 0.546338i \(0.816021\pi\)
\(74\) 0 0
\(75\) 130.232i 1.73643i
\(76\) 0 0
\(77\) 51.9928 0.675231
\(78\) 0 0
\(79\) − 85.2166i − 1.07869i −0.842085 0.539345i \(-0.818672\pi\)
0.842085 0.539345i \(-0.181328\pi\)
\(80\) 0 0
\(81\) −97.5185 −1.20393
\(82\) 0 0
\(83\) − 80.5050i − 0.969940i −0.874531 0.484970i \(-0.838831\pi\)
0.874531 0.484970i \(-0.161169\pi\)
\(84\) 0 0
\(85\) 25.8652 0.304297
\(86\) 0 0
\(87\) 21.1547i 0.243157i
\(88\) 0 0
\(89\) −19.5031 −0.219136 −0.109568 0.993979i \(-0.534947\pi\)
−0.109568 + 0.993979i \(0.534947\pi\)
\(90\) 0 0
\(91\) − 128.493i − 1.41201i
\(92\) 0 0
\(93\) −17.3462 −0.186518
\(94\) 0 0
\(95\) − 286.146i − 3.01207i
\(96\) 0 0
\(97\) 174.513 1.79910 0.899551 0.436816i \(-0.143894\pi\)
0.899551 + 0.436816i \(0.143894\pi\)
\(98\) 0 0
\(99\) − 60.3614i − 0.609711i
\(100\) 0 0
\(101\) −145.157 −1.43720 −0.718600 0.695424i \(-0.755217\pi\)
−0.718600 + 0.695424i \(0.755217\pi\)
\(102\) 0 0
\(103\) 85.0272i 0.825507i 0.910843 + 0.412753i \(0.135433\pi\)
−0.910843 + 0.412753i \(0.864567\pi\)
\(104\) 0 0
\(105\) 165.958 1.58056
\(106\) 0 0
\(107\) − 135.791i − 1.26907i −0.772893 0.634537i \(-0.781191\pi\)
0.772893 0.634537i \(-0.218809\pi\)
\(108\) 0 0
\(109\) −8.73480 −0.0801358 −0.0400679 0.999197i \(-0.512757\pi\)
−0.0400679 + 0.999197i \(0.512757\pi\)
\(110\) 0 0
\(111\) − 0.0626898i 0 0.000564773i
\(112\) 0 0
\(113\) −16.7233 −0.147994 −0.0739970 0.997258i \(-0.523576\pi\)
−0.0739970 + 0.997258i \(0.523576\pi\)
\(114\) 0 0
\(115\) 62.3443i 0.542125i
\(116\) 0 0
\(117\) −149.175 −1.27500
\(118\) 0 0
\(119\) − 18.7907i − 0.157905i
\(120\) 0 0
\(121\) 32.9221 0.272083
\(122\) 0 0
\(123\) − 297.930i − 2.42219i
\(124\) 0 0
\(125\) 62.1662 0.497330
\(126\) 0 0
\(127\) 74.2716i 0.584815i 0.956294 + 0.292408i \(0.0944564\pi\)
−0.956294 + 0.292408i \(0.905544\pi\)
\(128\) 0 0
\(129\) −63.0482 −0.488746
\(130\) 0 0
\(131\) 156.350i 1.19351i 0.802422 + 0.596756i \(0.203544\pi\)
−0.802422 + 0.596756i \(0.796456\pi\)
\(132\) 0 0
\(133\) −207.881 −1.56301
\(134\) 0 0
\(135\) 76.9370i 0.569904i
\(136\) 0 0
\(137\) 99.1270 0.723554 0.361777 0.932265i \(-0.382170\pi\)
0.361777 + 0.932265i \(0.382170\pi\)
\(138\) 0 0
\(139\) − 213.058i − 1.53279i −0.642368 0.766396i \(-0.722048\pi\)
0.642368 0.766396i \(-0.277952\pi\)
\(140\) 0 0
\(141\) −141.212 −1.00150
\(142\) 0 0
\(143\) 217.673i 1.52219i
\(144\) 0 0
\(145\) 41.0659 0.283213
\(146\) 0 0
\(147\) 71.9214i 0.489261i
\(148\) 0 0
\(149\) −30.4204 −0.204164 −0.102082 0.994776i \(-0.532550\pi\)
−0.102082 + 0.994776i \(0.532550\pi\)
\(150\) 0 0
\(151\) − 263.348i − 1.74402i −0.489484 0.872012i \(-0.662815\pi\)
0.489484 0.872012i \(-0.337185\pi\)
\(152\) 0 0
\(153\) −21.8152 −0.142583
\(154\) 0 0
\(155\) 33.6729i 0.217244i
\(156\) 0 0
\(157\) −15.9827 −0.101801 −0.0509004 0.998704i \(-0.516209\pi\)
−0.0509004 + 0.998704i \(0.516209\pi\)
\(158\) 0 0
\(159\) − 278.942i − 1.75435i
\(160\) 0 0
\(161\) 45.2922 0.281318
\(162\) 0 0
\(163\) − 100.548i − 0.616861i −0.951247 0.308430i \(-0.900196\pi\)
0.951247 0.308430i \(-0.0998037\pi\)
\(164\) 0 0
\(165\) −281.140 −1.70388
\(166\) 0 0
\(167\) − 110.099i − 0.659274i −0.944108 0.329637i \(-0.893074\pi\)
0.944108 0.329637i \(-0.106926\pi\)
\(168\) 0 0
\(169\) 368.948 2.18313
\(170\) 0 0
\(171\) 241.341i 1.41135i
\(172\) 0 0
\(173\) 237.942 1.37539 0.687695 0.726000i \(-0.258623\pi\)
0.687695 + 0.726000i \(0.258623\pi\)
\(174\) 0 0
\(175\) − 183.663i − 1.04950i
\(176\) 0 0
\(177\) −254.440 −1.43752
\(178\) 0 0
\(179\) 58.3673i 0.326074i 0.986620 + 0.163037i \(0.0521291\pi\)
−0.986620 + 0.163037i \(0.947871\pi\)
\(180\) 0 0
\(181\) −68.2620 −0.377138 −0.188569 0.982060i \(-0.560385\pi\)
−0.188569 + 0.982060i \(0.560385\pi\)
\(182\) 0 0
\(183\) 161.290i 0.881367i
\(184\) 0 0
\(185\) −0.121695 −0.000657811 0
\(186\) 0 0
\(187\) 31.8322i 0.170226i
\(188\) 0 0
\(189\) 55.8936 0.295733
\(190\) 0 0
\(191\) − 98.0523i − 0.513363i −0.966496 0.256681i \(-0.917371\pi\)
0.966496 0.256681i \(-0.0826291\pi\)
\(192\) 0 0
\(193\) −256.470 −1.32886 −0.664431 0.747350i \(-0.731326\pi\)
−0.664431 + 0.747350i \(0.731326\pi\)
\(194\) 0 0
\(195\) 694.800i 3.56308i
\(196\) 0 0
\(197\) −308.149 −1.56421 −0.782104 0.623148i \(-0.785853\pi\)
−0.782104 + 0.623148i \(0.785853\pi\)
\(198\) 0 0
\(199\) 99.3770i 0.499382i 0.968326 + 0.249691i \(0.0803290\pi\)
−0.968326 + 0.249691i \(0.919671\pi\)
\(200\) 0 0
\(201\) −257.871 −1.28294
\(202\) 0 0
\(203\) − 29.8338i − 0.146965i
\(204\) 0 0
\(205\) −578.349 −2.82121
\(206\) 0 0
\(207\) − 52.5824i − 0.254021i
\(208\) 0 0
\(209\) 352.159 1.68497
\(210\) 0 0
\(211\) − 171.658i − 0.813547i −0.913529 0.406774i \(-0.866654\pi\)
0.913529 0.406774i \(-0.133346\pi\)
\(212\) 0 0
\(213\) 128.252 0.602120
\(214\) 0 0
\(215\) 122.391i 0.569260i
\(216\) 0 0
\(217\) 24.4629 0.112732
\(218\) 0 0
\(219\) − 480.373i − 2.19348i
\(220\) 0 0
\(221\) 78.6690 0.355968
\(222\) 0 0
\(223\) − 334.207i − 1.49869i −0.662182 0.749343i \(-0.730369\pi\)
0.662182 0.749343i \(-0.269631\pi\)
\(224\) 0 0
\(225\) −213.225 −0.947665
\(226\) 0 0
\(227\) 77.1942i 0.340062i 0.985439 + 0.170031i \(0.0543868\pi\)
−0.985439 + 0.170031i \(0.945613\pi\)
\(228\) 0 0
\(229\) 89.0065 0.388675 0.194337 0.980935i \(-0.437744\pi\)
0.194337 + 0.980935i \(0.437744\pi\)
\(230\) 0 0
\(231\) 204.244i 0.884174i
\(232\) 0 0
\(233\) 361.682 1.55228 0.776142 0.630558i \(-0.217174\pi\)
0.776142 + 0.630558i \(0.217174\pi\)
\(234\) 0 0
\(235\) 274.124i 1.16649i
\(236\) 0 0
\(237\) 334.758 1.41248
\(238\) 0 0
\(239\) − 51.3625i − 0.214906i −0.994210 0.107453i \(-0.965730\pi\)
0.994210 0.107453i \(-0.0342695\pi\)
\(240\) 0 0
\(241\) −208.917 −0.866874 −0.433437 0.901184i \(-0.642699\pi\)
−0.433437 + 0.901184i \(0.642699\pi\)
\(242\) 0 0
\(243\) − 292.282i − 1.20281i
\(244\) 0 0
\(245\) 139.616 0.569860
\(246\) 0 0
\(247\) − 870.313i − 3.52353i
\(248\) 0 0
\(249\) 316.249 1.27008
\(250\) 0 0
\(251\) 120.972i 0.481960i 0.970530 + 0.240980i \(0.0774689\pi\)
−0.970530 + 0.240980i \(0.922531\pi\)
\(252\) 0 0
\(253\) −76.7269 −0.303268
\(254\) 0 0
\(255\) 101.607i 0.398458i
\(256\) 0 0
\(257\) −33.6370 −0.130883 −0.0654416 0.997856i \(-0.520846\pi\)
−0.0654416 + 0.997856i \(0.520846\pi\)
\(258\) 0 0
\(259\) 0.0884097i 0 0.000341350i
\(260\) 0 0
\(261\) −34.6358 −0.132704
\(262\) 0 0
\(263\) 355.007i 1.34984i 0.737893 + 0.674918i \(0.235821\pi\)
−0.737893 + 0.674918i \(0.764179\pi\)
\(264\) 0 0
\(265\) −541.490 −2.04336
\(266\) 0 0
\(267\) − 76.6145i − 0.286946i
\(268\) 0 0
\(269\) −93.6950 −0.348308 −0.174154 0.984718i \(-0.555719\pi\)
−0.174154 + 0.984718i \(0.555719\pi\)
\(270\) 0 0
\(271\) 87.2682i 0.322023i 0.986953 + 0.161011i \(0.0514756\pi\)
−0.986953 + 0.161011i \(0.948524\pi\)
\(272\) 0 0
\(273\) 504.762 1.84895
\(274\) 0 0
\(275\) 311.132i 1.13139i
\(276\) 0 0
\(277\) 368.254 1.32944 0.664719 0.747093i \(-0.268551\pi\)
0.664719 + 0.747093i \(0.268551\pi\)
\(278\) 0 0
\(279\) − 28.4003i − 0.101793i
\(280\) 0 0
\(281\) 275.626 0.980876 0.490438 0.871476i \(-0.336837\pi\)
0.490438 + 0.871476i \(0.336837\pi\)
\(282\) 0 0
\(283\) − 382.779i − 1.35257i −0.736638 0.676287i \(-0.763588\pi\)
0.736638 0.676287i \(-0.236412\pi\)
\(284\) 0 0
\(285\) 1124.07 3.94412
\(286\) 0 0
\(287\) 420.162i 1.46398i
\(288\) 0 0
\(289\) −277.496 −0.960192
\(290\) 0 0
\(291\) 685.542i 2.35582i
\(292\) 0 0
\(293\) −465.001 −1.58703 −0.793517 0.608548i \(-0.791752\pi\)
−0.793517 + 0.608548i \(0.791752\pi\)
\(294\) 0 0
\(295\) 493.926i 1.67433i
\(296\) 0 0
\(297\) −94.6861 −0.318808
\(298\) 0 0
\(299\) 189.620i 0.634181i
\(300\) 0 0
\(301\) 88.9151 0.295399
\(302\) 0 0
\(303\) − 570.224i − 1.88193i
\(304\) 0 0
\(305\) 313.101 1.02656
\(306\) 0 0
\(307\) − 322.409i − 1.05019i −0.851042 0.525097i \(-0.824029\pi\)
0.851042 0.525097i \(-0.175971\pi\)
\(308\) 0 0
\(309\) −334.014 −1.08095
\(310\) 0 0
\(311\) 540.440i 1.73775i 0.495032 + 0.868875i \(0.335156\pi\)
−0.495032 + 0.868875i \(0.664844\pi\)
\(312\) 0 0
\(313\) −285.630 −0.912555 −0.456277 0.889838i \(-0.650817\pi\)
−0.456277 + 0.889838i \(0.650817\pi\)
\(314\) 0 0
\(315\) 271.718i 0.862596i
\(316\) 0 0
\(317\) 193.635 0.610837 0.305419 0.952218i \(-0.401204\pi\)
0.305419 + 0.952218i \(0.401204\pi\)
\(318\) 0 0
\(319\) 50.5397i 0.158432i
\(320\) 0 0
\(321\) 533.430 1.66178
\(322\) 0 0
\(323\) − 127.274i − 0.394036i
\(324\) 0 0
\(325\) 768.921 2.36591
\(326\) 0 0
\(327\) − 34.3131i − 0.104933i
\(328\) 0 0
\(329\) 199.147 0.605311
\(330\) 0 0
\(331\) 441.209i 1.33296i 0.745524 + 0.666479i \(0.232199\pi\)
−0.745524 + 0.666479i \(0.767801\pi\)
\(332\) 0 0
\(333\) 0.102640 0.000308228 0
\(334\) 0 0
\(335\) 500.586i 1.49429i
\(336\) 0 0
\(337\) 302.671 0.898133 0.449066 0.893498i \(-0.351757\pi\)
0.449066 + 0.893498i \(0.351757\pi\)
\(338\) 0 0
\(339\) − 65.6946i − 0.193789i
\(340\) 0 0
\(341\) −41.4411 −0.121528
\(342\) 0 0
\(343\) − 372.889i − 1.08714i
\(344\) 0 0
\(345\) −244.909 −0.709880
\(346\) 0 0
\(347\) − 363.008i − 1.04613i −0.852292 0.523066i \(-0.824788\pi\)
0.852292 0.523066i \(-0.175212\pi\)
\(348\) 0 0
\(349\) 12.1746 0.0348841 0.0174421 0.999848i \(-0.494448\pi\)
0.0174421 + 0.999848i \(0.494448\pi\)
\(350\) 0 0
\(351\) 234.004i 0.666677i
\(352\) 0 0
\(353\) 70.0382 0.198409 0.0992043 0.995067i \(-0.468370\pi\)
0.0992043 + 0.995067i \(0.468370\pi\)
\(354\) 0 0
\(355\) − 248.965i − 0.701310i
\(356\) 0 0
\(357\) 73.8159 0.206767
\(358\) 0 0
\(359\) 362.358i 1.00935i 0.863308 + 0.504677i \(0.168388\pi\)
−0.863308 + 0.504677i \(0.831612\pi\)
\(360\) 0 0
\(361\) −1047.02 −2.90035
\(362\) 0 0
\(363\) 129.328i 0.356277i
\(364\) 0 0
\(365\) −932.511 −2.55483
\(366\) 0 0
\(367\) 228.998i 0.623973i 0.950086 + 0.311987i \(0.100994\pi\)
−0.950086 + 0.311987i \(0.899006\pi\)
\(368\) 0 0
\(369\) 487.790 1.32192
\(370\) 0 0
\(371\) 393.384i 1.06034i
\(372\) 0 0
\(373\) −233.561 −0.626169 −0.313085 0.949725i \(-0.601362\pi\)
−0.313085 + 0.949725i \(0.601362\pi\)
\(374\) 0 0
\(375\) 244.209i 0.651224i
\(376\) 0 0
\(377\) 124.902 0.331305
\(378\) 0 0
\(379\) 414.460i 1.09356i 0.837276 + 0.546781i \(0.184147\pi\)
−0.837276 + 0.546781i \(0.815853\pi\)
\(380\) 0 0
\(381\) −291.762 −0.765781
\(382\) 0 0
\(383\) 361.668i 0.944303i 0.881517 + 0.472152i \(0.156523\pi\)
−0.881517 + 0.472152i \(0.843477\pi\)
\(384\) 0 0
\(385\) 396.484 1.02983
\(386\) 0 0
\(387\) − 103.227i − 0.266736i
\(388\) 0 0
\(389\) −467.835 −1.20266 −0.601330 0.799001i \(-0.705362\pi\)
−0.601330 + 0.799001i \(0.705362\pi\)
\(390\) 0 0
\(391\) 27.7298i 0.0709203i
\(392\) 0 0
\(393\) −614.194 −1.56283
\(394\) 0 0
\(395\) − 649.841i − 1.64517i
\(396\) 0 0
\(397\) 64.9294 0.163550 0.0817751 0.996651i \(-0.473941\pi\)
0.0817751 + 0.996651i \(0.473941\pi\)
\(398\) 0 0
\(399\) − 816.623i − 2.04667i
\(400\) 0 0
\(401\) −250.312 −0.624221 −0.312110 0.950046i \(-0.601036\pi\)
−0.312110 + 0.950046i \(0.601036\pi\)
\(402\) 0 0
\(403\) 102.416i 0.254134i
\(404\) 0 0
\(405\) −743.652 −1.83618
\(406\) 0 0
\(407\) − 0.149770i 0 0.000367984i
\(408\) 0 0
\(409\) −275.819 −0.674375 −0.337187 0.941438i \(-0.609476\pi\)
−0.337187 + 0.941438i \(0.609476\pi\)
\(410\) 0 0
\(411\) 389.402i 0.947451i
\(412\) 0 0
\(413\) 358.830 0.868837
\(414\) 0 0
\(415\) − 613.911i − 1.47930i
\(416\) 0 0
\(417\) 836.961 2.00710
\(418\) 0 0
\(419\) 106.224i 0.253517i 0.991934 + 0.126758i \(0.0404573\pi\)
−0.991934 + 0.126758i \(0.959543\pi\)
\(420\) 0 0
\(421\) 427.248 1.01484 0.507420 0.861699i \(-0.330599\pi\)
0.507420 + 0.861699i \(0.330599\pi\)
\(422\) 0 0
\(423\) − 231.202i − 0.546576i
\(424\) 0 0
\(425\) 112.446 0.264579
\(426\) 0 0
\(427\) − 227.463i − 0.532700i
\(428\) 0 0
\(429\) −855.088 −1.99321
\(430\) 0 0
\(431\) 682.610i 1.58378i 0.610662 + 0.791891i \(0.290903\pi\)
−0.610662 + 0.791891i \(0.709097\pi\)
\(432\) 0 0
\(433\) 31.9951 0.0738917 0.0369459 0.999317i \(-0.488237\pi\)
0.0369459 + 0.999317i \(0.488237\pi\)
\(434\) 0 0
\(435\) 161.320i 0.370851i
\(436\) 0 0
\(437\) 306.775 0.702001
\(438\) 0 0
\(439\) 832.197i 1.89566i 0.318769 + 0.947832i \(0.396731\pi\)
−0.318769 + 0.947832i \(0.603269\pi\)
\(440\) 0 0
\(441\) −117.754 −0.267017
\(442\) 0 0
\(443\) − 608.511i − 1.37361i −0.726840 0.686807i \(-0.759012\pi\)
0.726840 0.686807i \(-0.240988\pi\)
\(444\) 0 0
\(445\) −148.726 −0.334216
\(446\) 0 0
\(447\) − 119.501i − 0.267340i
\(448\) 0 0
\(449\) −384.818 −0.857055 −0.428528 0.903529i \(-0.640968\pi\)
−0.428528 + 0.903529i \(0.640968\pi\)
\(450\) 0 0
\(451\) − 711.771i − 1.57821i
\(452\) 0 0
\(453\) 1034.51 2.28370
\(454\) 0 0
\(455\) − 979.857i − 2.15353i
\(456\) 0 0
\(457\) −330.157 −0.722444 −0.361222 0.932480i \(-0.617640\pi\)
−0.361222 + 0.932480i \(0.617640\pi\)
\(458\) 0 0
\(459\) 34.2204i 0.0745544i
\(460\) 0 0
\(461\) −873.905 −1.89567 −0.947836 0.318758i \(-0.896734\pi\)
−0.947836 + 0.318758i \(0.896734\pi\)
\(462\) 0 0
\(463\) 269.148i 0.581313i 0.956828 + 0.290656i \(0.0938736\pi\)
−0.956828 + 0.290656i \(0.906126\pi\)
\(464\) 0 0
\(465\) −132.278 −0.284469
\(466\) 0 0
\(467\) − 719.153i − 1.53994i −0.638079 0.769971i \(-0.720271\pi\)
0.638079 0.769971i \(-0.279729\pi\)
\(468\) 0 0
\(469\) 363.668 0.775412
\(470\) 0 0
\(471\) − 62.7852i − 0.133302i
\(472\) 0 0
\(473\) −150.626 −0.318448
\(474\) 0 0
\(475\) − 1243.99i − 2.61893i
\(476\) 0 0
\(477\) 456.702 0.957447
\(478\) 0 0
\(479\) 96.7800i 0.202046i 0.994884 + 0.101023i \(0.0322116\pi\)
−0.994884 + 0.101023i \(0.967788\pi\)
\(480\) 0 0
\(481\) −0.370135 −0.000769512 0
\(482\) 0 0
\(483\) 177.922i 0.368369i
\(484\) 0 0
\(485\) 1330.79 2.74390
\(486\) 0 0
\(487\) 279.484i 0.573889i 0.957947 + 0.286945i \(0.0926395\pi\)
−0.957947 + 0.286945i \(0.907360\pi\)
\(488\) 0 0
\(489\) 394.986 0.807742
\(490\) 0 0
\(491\) − 394.911i − 0.804299i −0.915574 0.402149i \(-0.868263\pi\)
0.915574 0.402149i \(-0.131737\pi\)
\(492\) 0 0
\(493\) 18.2655 0.0370497
\(494\) 0 0
\(495\) − 460.301i − 0.929902i
\(496\) 0 0
\(497\) −180.869 −0.363922
\(498\) 0 0
\(499\) 86.1332i 0.172612i 0.996269 + 0.0863059i \(0.0275062\pi\)
−0.996269 + 0.0863059i \(0.972494\pi\)
\(500\) 0 0
\(501\) 432.503 0.863279
\(502\) 0 0
\(503\) − 63.2534i − 0.125752i −0.998021 0.0628761i \(-0.979973\pi\)
0.998021 0.0628761i \(-0.0200273\pi\)
\(504\) 0 0
\(505\) −1106.93 −2.19195
\(506\) 0 0
\(507\) 1449.35i 2.85867i
\(508\) 0 0
\(509\) 473.051 0.929373 0.464687 0.885475i \(-0.346167\pi\)
0.464687 + 0.885475i \(0.346167\pi\)
\(510\) 0 0
\(511\) 677.456i 1.32574i
\(512\) 0 0
\(513\) 378.580 0.737973
\(514\) 0 0
\(515\) 648.397i 1.25902i
\(516\) 0 0
\(517\) −337.364 −0.652541
\(518\) 0 0
\(519\) 934.714i 1.80099i
\(520\) 0 0
\(521\) 365.912 0.702326 0.351163 0.936314i \(-0.385786\pi\)
0.351163 + 0.936314i \(0.385786\pi\)
\(522\) 0 0
\(523\) − 118.474i − 0.226528i −0.993565 0.113264i \(-0.963869\pi\)
0.993565 0.113264i \(-0.0361305\pi\)
\(524\) 0 0
\(525\) 721.486 1.37426
\(526\) 0 0
\(527\) 14.9772i 0.0284197i
\(528\) 0 0
\(529\) 462.161 0.873651
\(530\) 0 0
\(531\) − 416.586i − 0.784531i
\(532\) 0 0
\(533\) −1759.05 −3.30027
\(534\) 0 0
\(535\) − 1035.51i − 1.93553i
\(536\) 0 0
\(537\) −229.286 −0.426975
\(538\) 0 0
\(539\) 171.824i 0.318784i
\(540\) 0 0
\(541\) 270.289 0.499610 0.249805 0.968296i \(-0.419633\pi\)
0.249805 + 0.968296i \(0.419633\pi\)
\(542\) 0 0
\(543\) − 268.155i − 0.493839i
\(544\) 0 0
\(545\) −66.6094 −0.122219
\(546\) 0 0
\(547\) − 675.879i − 1.23561i −0.786331 0.617805i \(-0.788022\pi\)
0.786331 0.617805i \(-0.211978\pi\)
\(548\) 0 0
\(549\) −264.075 −0.481010
\(550\) 0 0
\(551\) − 202.071i − 0.366735i
\(552\) 0 0
\(553\) −472.099 −0.853706
\(554\) 0 0
\(555\) − 0.478057i 0 0.000861364i
\(556\) 0 0
\(557\) 654.060 1.17426 0.587128 0.809494i \(-0.300259\pi\)
0.587128 + 0.809494i \(0.300259\pi\)
\(558\) 0 0
\(559\) 372.251i 0.665924i
\(560\) 0 0
\(561\) −125.047 −0.222900
\(562\) 0 0
\(563\) − 394.468i − 0.700654i −0.936628 0.350327i \(-0.886071\pi\)
0.936628 0.350327i \(-0.113929\pi\)
\(564\) 0 0
\(565\) −127.528 −0.225713
\(566\) 0 0
\(567\) 540.252i 0.952826i
\(568\) 0 0
\(569\) 5.31708 0.00934460 0.00467230 0.999989i \(-0.498513\pi\)
0.00467230 + 0.999989i \(0.498513\pi\)
\(570\) 0 0
\(571\) − 801.525i − 1.40372i −0.712314 0.701861i \(-0.752353\pi\)
0.712314 0.701861i \(-0.247647\pi\)
\(572\) 0 0
\(573\) 385.181 0.672218
\(574\) 0 0
\(575\) 271.035i 0.471366i
\(576\) 0 0
\(577\) −332.817 −0.576805 −0.288403 0.957509i \(-0.593124\pi\)
−0.288403 + 0.957509i \(0.593124\pi\)
\(578\) 0 0
\(579\) − 1007.50i − 1.74007i
\(580\) 0 0
\(581\) −445.998 −0.767638
\(582\) 0 0
\(583\) − 666.409i − 1.14307i
\(584\) 0 0
\(585\) −1137.57 −1.94457
\(586\) 0 0
\(587\) − 529.513i − 0.902066i −0.892507 0.451033i \(-0.851056\pi\)
0.892507 0.451033i \(-0.148944\pi\)
\(588\) 0 0
\(589\) 165.692 0.281311
\(590\) 0 0
\(591\) − 1210.51i − 2.04824i
\(592\) 0 0
\(593\) 939.990 1.58514 0.792571 0.609779i \(-0.208742\pi\)
0.792571 + 0.609779i \(0.208742\pi\)
\(594\) 0 0
\(595\) − 143.293i − 0.240829i
\(596\) 0 0
\(597\) −390.385 −0.653911
\(598\) 0 0
\(599\) − 683.114i − 1.14042i −0.821498 0.570212i \(-0.806861\pi\)
0.821498 0.570212i \(-0.193139\pi\)
\(600\) 0 0
\(601\) −554.853 −0.923216 −0.461608 0.887084i \(-0.652727\pi\)
−0.461608 + 0.887084i \(0.652727\pi\)
\(602\) 0 0
\(603\) − 422.204i − 0.700172i
\(604\) 0 0
\(605\) 251.056 0.414968
\(606\) 0 0
\(607\) − 102.168i − 0.168317i −0.996452 0.0841585i \(-0.973180\pi\)
0.996452 0.0841585i \(-0.0268202\pi\)
\(608\) 0 0
\(609\) 117.197 0.192441
\(610\) 0 0
\(611\) 833.749i 1.36456i
\(612\) 0 0
\(613\) −728.098 −1.18776 −0.593881 0.804553i \(-0.702405\pi\)
−0.593881 + 0.804553i \(0.702405\pi\)
\(614\) 0 0
\(615\) − 2271.94i − 3.69421i
\(616\) 0 0
\(617\) 37.0181 0.0599969 0.0299984 0.999550i \(-0.490450\pi\)
0.0299984 + 0.999550i \(0.490450\pi\)
\(618\) 0 0
\(619\) − 56.3733i − 0.0910716i −0.998963 0.0455358i \(-0.985500\pi\)
0.998963 0.0455358i \(-0.0144995\pi\)
\(620\) 0 0
\(621\) −82.4834 −0.132824
\(622\) 0 0
\(623\) 108.047i 0.173430i
\(624\) 0 0
\(625\) −354.739 −0.567583
\(626\) 0 0
\(627\) 1383.39i 2.20637i
\(628\) 0 0
\(629\) −0.0541282 −8.60543e−5 0
\(630\) 0 0
\(631\) 1011.93i 1.60369i 0.597532 + 0.801845i \(0.296148\pi\)
−0.597532 + 0.801845i \(0.703852\pi\)
\(632\) 0 0
\(633\) 674.329 1.06529
\(634\) 0 0
\(635\) 566.377i 0.891932i
\(636\) 0 0
\(637\) 424.641 0.666626
\(638\) 0 0
\(639\) 209.982i 0.328610i
\(640\) 0 0
\(641\) −45.5733 −0.0710972 −0.0355486 0.999368i \(-0.511318\pi\)
−0.0355486 + 0.999368i \(0.511318\pi\)
\(642\) 0 0
\(643\) − 624.626i − 0.971424i −0.874119 0.485712i \(-0.838560\pi\)
0.874119 0.485712i \(-0.161440\pi\)
\(644\) 0 0
\(645\) −480.790 −0.745411
\(646\) 0 0
\(647\) − 186.160i − 0.287727i −0.989598 0.143864i \(-0.954047\pi\)
0.989598 0.143864i \(-0.0459527\pi\)
\(648\) 0 0
\(649\) −607.873 −0.936630
\(650\) 0 0
\(651\) 96.0979i 0.147616i
\(652\) 0 0
\(653\) 676.168 1.03548 0.517740 0.855538i \(-0.326773\pi\)
0.517740 + 0.855538i \(0.326773\pi\)
\(654\) 0 0
\(655\) 1192.29i 1.82029i
\(656\) 0 0
\(657\) 786.497 1.19710
\(658\) 0 0
\(659\) − 678.525i − 1.02963i −0.857302 0.514814i \(-0.827861\pi\)
0.857302 0.514814i \(-0.172139\pi\)
\(660\) 0 0
\(661\) 125.237 0.189467 0.0947333 0.995503i \(-0.469800\pi\)
0.0947333 + 0.995503i \(0.469800\pi\)
\(662\) 0 0
\(663\) 309.037i 0.466119i
\(664\) 0 0
\(665\) −1585.25 −2.38383
\(666\) 0 0
\(667\) 44.0264i 0.0660066i
\(668\) 0 0
\(669\) 1312.87 1.96244
\(670\) 0 0
\(671\) 385.332i 0.574265i
\(672\) 0 0
\(673\) −1042.29 −1.54872 −0.774362 0.632743i \(-0.781929\pi\)
−0.774362 + 0.632743i \(0.781929\pi\)
\(674\) 0 0
\(675\) 334.475i 0.495519i
\(676\) 0 0
\(677\) −648.606 −0.958059 −0.479029 0.877799i \(-0.659011\pi\)
−0.479029 + 0.877799i \(0.659011\pi\)
\(678\) 0 0
\(679\) − 966.801i − 1.42386i
\(680\) 0 0
\(681\) −303.243 −0.445291
\(682\) 0 0
\(683\) 967.574i 1.41665i 0.705885 + 0.708327i \(0.250550\pi\)
−0.705885 + 0.708327i \(0.749450\pi\)
\(684\) 0 0
\(685\) 755.918 1.10353
\(686\) 0 0
\(687\) 349.646i 0.508946i
\(688\) 0 0
\(689\) −1646.94 −2.39033
\(690\) 0 0
\(691\) 1049.17i 1.51834i 0.650891 + 0.759171i \(0.274395\pi\)
−0.650891 + 0.759171i \(0.725605\pi\)
\(692\) 0 0
\(693\) −334.402 −0.482543
\(694\) 0 0
\(695\) − 1624.73i − 2.33774i
\(696\) 0 0
\(697\) −257.241 −0.369069
\(698\) 0 0
\(699\) 1420.80i 2.03262i
\(700\) 0 0
\(701\) 47.3109 0.0674906 0.0337453 0.999430i \(-0.489256\pi\)
0.0337453 + 0.999430i \(0.489256\pi\)
\(702\) 0 0
\(703\) 0.598819i 0 0.000851805i
\(704\) 0 0
\(705\) −1076.85 −1.52744
\(706\) 0 0
\(707\) 804.170i 1.13744i
\(708\) 0 0
\(709\) 847.156 1.19486 0.597430 0.801921i \(-0.296188\pi\)
0.597430 + 0.801921i \(0.296188\pi\)
\(710\) 0 0
\(711\) 548.087i 0.770868i
\(712\) 0 0
\(713\) −36.1004 −0.0506317
\(714\) 0 0
\(715\) 1659.92i 2.32156i
\(716\) 0 0
\(717\) 201.768 0.281406
\(718\) 0 0
\(719\) − 1041.20i − 1.44812i −0.689739 0.724058i \(-0.742275\pi\)
0.689739 0.724058i \(-0.257725\pi\)
\(720\) 0 0
\(721\) 471.050 0.653329
\(722\) 0 0
\(723\) − 820.691i − 1.13512i
\(724\) 0 0
\(725\) 178.530 0.246248
\(726\) 0 0
\(727\) 176.419i 0.242667i 0.992612 + 0.121334i \(0.0387171\pi\)
−0.992612 + 0.121334i \(0.961283\pi\)
\(728\) 0 0
\(729\) 270.511 0.371071
\(730\) 0 0
\(731\) 54.4376i 0.0744701i
\(732\) 0 0
\(733\) −199.309 −0.271908 −0.135954 0.990715i \(-0.543410\pi\)
−0.135954 + 0.990715i \(0.543410\pi\)
\(734\) 0 0
\(735\) 548.455i 0.746197i
\(736\) 0 0
\(737\) −616.069 −0.835915
\(738\) 0 0
\(739\) 1262.49i 1.70838i 0.519963 + 0.854189i \(0.325946\pi\)
−0.519963 + 0.854189i \(0.674054\pi\)
\(740\) 0 0
\(741\) 3418.87 4.61386
\(742\) 0 0
\(743\) 773.056i 1.04045i 0.854028 + 0.520226i \(0.174152\pi\)
−0.854028 + 0.520226i \(0.825848\pi\)
\(744\) 0 0
\(745\) −231.979 −0.311381
\(746\) 0 0
\(747\) 517.784i 0.693151i
\(748\) 0 0
\(749\) −752.281 −1.00438
\(750\) 0 0
\(751\) − 1466.80i − 1.95313i −0.215223 0.976565i \(-0.569048\pi\)
0.215223 0.976565i \(-0.430952\pi\)
\(752\) 0 0
\(753\) −475.217 −0.631098
\(754\) 0 0
\(755\) − 2008.23i − 2.65990i
\(756\) 0 0
\(757\) 271.705 0.358923 0.179462 0.983765i \(-0.442564\pi\)
0.179462 + 0.983765i \(0.442564\pi\)
\(758\) 0 0
\(759\) − 301.408i − 0.397112i
\(760\) 0 0
\(761\) 1211.23 1.59163 0.795817 0.605537i \(-0.207042\pi\)
0.795817 + 0.605537i \(0.207042\pi\)
\(762\) 0 0
\(763\) 48.3908i 0.0634217i
\(764\) 0 0
\(765\) −166.357 −0.217461
\(766\) 0 0
\(767\) 1502.27i 1.95864i
\(768\) 0 0
\(769\) 1036.42 1.34775 0.673873 0.738847i \(-0.264629\pi\)
0.673873 + 0.738847i \(0.264629\pi\)
\(770\) 0 0
\(771\) − 132.137i − 0.171384i
\(772\) 0 0
\(773\) −1053.73 −1.36317 −0.681583 0.731741i \(-0.738708\pi\)
−0.681583 + 0.731741i \(0.738708\pi\)
\(774\) 0 0
\(775\) 146.389i 0.188889i
\(776\) 0 0
\(777\) −0.347301 −0.000446977 0
\(778\) 0 0
\(779\) 2845.85i 3.65321i
\(780\) 0 0
\(781\) 306.400 0.392318
\(782\) 0 0
\(783\) 54.3315i 0.0693889i
\(784\) 0 0
\(785\) −121.880 −0.155261
\(786\) 0 0
\(787\) 701.506i 0.891368i 0.895190 + 0.445684i \(0.147039\pi\)
−0.895190 + 0.445684i \(0.852961\pi\)
\(788\) 0 0
\(789\) −1394.58 −1.76753
\(790\) 0 0
\(791\) 92.6471i 0.117127i
\(792\) 0 0
\(793\) 952.295 1.20088
\(794\) 0 0
\(795\) − 2127.15i − 2.67566i
\(796\) 0 0
\(797\) 1406.70 1.76500 0.882498 0.470316i \(-0.155860\pi\)
0.882498 + 0.470316i \(0.155860\pi\)
\(798\) 0 0
\(799\) 121.926i 0.152599i
\(800\) 0 0
\(801\) 125.438 0.156602
\(802\) 0 0
\(803\) − 1147.64i − 1.42919i
\(804\) 0 0
\(805\) 345.388 0.429053
\(806\) 0 0
\(807\) − 368.064i − 0.456089i
\(808\) 0 0
\(809\) 432.584 0.534714 0.267357 0.963598i \(-0.413850\pi\)
0.267357 + 0.963598i \(0.413850\pi\)
\(810\) 0 0
\(811\) 908.477i 1.12019i 0.828427 + 0.560097i \(0.189236\pi\)
−0.828427 + 0.560097i \(0.810764\pi\)
\(812\) 0 0
\(813\) −342.817 −0.421670
\(814\) 0 0
\(815\) − 766.757i − 0.940806i
\(816\) 0 0
\(817\) 602.242 0.737138
\(818\) 0 0
\(819\) 826.429i 1.00907i
\(820\) 0 0
\(821\) 139.911 0.170416 0.0852078 0.996363i \(-0.472845\pi\)
0.0852078 + 0.996363i \(0.472845\pi\)
\(822\) 0 0
\(823\) − 444.474i − 0.540066i −0.962851 0.270033i \(-0.912965\pi\)
0.962851 0.270033i \(-0.0870346\pi\)
\(824\) 0 0
\(825\) −1222.23 −1.48149
\(826\) 0 0
\(827\) 431.195i 0.521396i 0.965420 + 0.260698i \(0.0839527\pi\)
−0.965420 + 0.260698i \(0.916047\pi\)
\(828\) 0 0
\(829\) −83.4125 −0.100618 −0.0503091 0.998734i \(-0.516021\pi\)
−0.0503091 + 0.998734i \(0.516021\pi\)
\(830\) 0 0
\(831\) 1446.62i 1.74082i
\(832\) 0 0
\(833\) 62.0990 0.0745486
\(834\) 0 0
\(835\) − 839.586i − 1.00549i
\(836\) 0 0
\(837\) −44.5502 −0.0532261
\(838\) 0 0
\(839\) 835.598i 0.995945i 0.867193 + 0.497973i \(0.165922\pi\)
−0.867193 + 0.497973i \(0.834078\pi\)
\(840\) 0 0
\(841\) 29.0000 0.0344828
\(842\) 0 0
\(843\) 1082.75i 1.28440i
\(844\) 0 0
\(845\) 2813.51 3.32960
\(846\) 0 0
\(847\) − 182.388i − 0.215334i
\(848\) 0 0
\(849\) 1503.68 1.77112
\(850\) 0 0
\(851\) − 0.130468i 0 0.000153312i
\(852\) 0 0
\(853\) 58.9242 0.0690788 0.0345394 0.999403i \(-0.489004\pi\)
0.0345394 + 0.999403i \(0.489004\pi\)
\(854\) 0 0
\(855\) 1840.41i 2.15252i
\(856\) 0 0
\(857\) 712.595 0.831500 0.415750 0.909479i \(-0.363519\pi\)
0.415750 + 0.909479i \(0.363519\pi\)
\(858\) 0 0
\(859\) − 729.876i − 0.849681i −0.905268 0.424841i \(-0.860330\pi\)
0.905268 0.424841i \(-0.139670\pi\)
\(860\) 0 0
\(861\) −1650.53 −1.91699
\(862\) 0 0
\(863\) − 736.184i − 0.853052i −0.904475 0.426526i \(-0.859737\pi\)
0.904475 0.426526i \(-0.140263\pi\)
\(864\) 0 0
\(865\) 1814.49 2.09768
\(866\) 0 0
\(867\) − 1090.09i − 1.25731i
\(868\) 0 0
\(869\) 799.756 0.920318
\(870\) 0 0
\(871\) 1522.53i 1.74803i
\(872\) 0 0
\(873\) −1122.41 −1.28570
\(874\) 0 0
\(875\) − 344.401i − 0.393601i
\(876\) 0 0
\(877\) −402.913 −0.459422 −0.229711 0.973259i \(-0.573778\pi\)
−0.229711 + 0.973259i \(0.573778\pi\)
\(878\) 0 0
\(879\) − 1826.67i − 2.07813i
\(880\) 0 0
\(881\) 1086.82 1.23362 0.616810 0.787112i \(-0.288425\pi\)
0.616810 + 0.787112i \(0.288425\pi\)
\(882\) 0 0
\(883\) − 1470.42i − 1.66526i −0.553833 0.832628i \(-0.686835\pi\)
0.553833 0.832628i \(-0.313165\pi\)
\(884\) 0 0
\(885\) −1940.30 −2.19243
\(886\) 0 0
\(887\) 76.3569i 0.0860844i 0.999073 + 0.0430422i \(0.0137050\pi\)
−0.999073 + 0.0430422i \(0.986295\pi\)
\(888\) 0 0
\(889\) 411.464 0.462839
\(890\) 0 0
\(891\) − 915.210i − 1.02717i
\(892\) 0 0
\(893\) 1348.87 1.51049
\(894\) 0 0
\(895\) 445.095i 0.497313i
\(896\) 0 0
\(897\) −744.889 −0.830422
\(898\) 0 0
\(899\) 23.7792i 0.0264507i
\(900\) 0 0
\(901\) −240.847 −0.267310
\(902\) 0 0
\(903\) 349.287i 0.386807i
\(904\) 0 0
\(905\) −520.549 −0.575192
\(906\) 0 0
\(907\) 842.164i 0.928516i 0.885700 + 0.464258i \(0.153679\pi\)
−0.885700 + 0.464258i \(0.846321\pi\)
\(908\) 0 0
\(909\) 933.607 1.02707
\(910\) 0 0
\(911\) − 793.529i − 0.871052i −0.900176 0.435526i \(-0.856562\pi\)
0.900176 0.435526i \(-0.143438\pi\)
\(912\) 0 0
\(913\) 755.538 0.827534
\(914\) 0 0
\(915\) 1229.96i 1.34422i
\(916\) 0 0
\(917\) 866.180 0.944580
\(918\) 0 0
\(919\) 36.0028i 0.0391761i 0.999808 + 0.0195880i \(0.00623546\pi\)
−0.999808 + 0.0195880i \(0.993765\pi\)
\(920\) 0 0
\(921\) 1266.53 1.37517
\(922\) 0 0
\(923\) − 757.227i − 0.820397i
\(924\) 0 0
\(925\) −0.529056 −0.000571953 0
\(926\) 0 0
\(927\) − 546.869i − 0.589935i
\(928\) 0 0
\(929\) −522.582 −0.562521 −0.281260 0.959631i \(-0.590752\pi\)
−0.281260 + 0.959631i \(0.590752\pi\)
\(930\) 0 0
\(931\) − 686.999i − 0.737915i
\(932\) 0 0
\(933\) −2123.02 −2.27548
\(934\) 0 0
\(935\) 242.745i 0.259620i
\(936\) 0 0
\(937\) 328.762 0.350867 0.175434 0.984491i \(-0.443867\pi\)
0.175434 + 0.984491i \(0.443867\pi\)
\(938\) 0 0
\(939\) − 1122.04i − 1.19494i
\(940\) 0 0
\(941\) −1532.08 −1.62814 −0.814070 0.580766i \(-0.802753\pi\)
−0.814070 + 0.580766i \(0.802753\pi\)
\(942\) 0 0
\(943\) − 620.042i − 0.657521i
\(944\) 0 0
\(945\) 426.231 0.451038
\(946\) 0 0
\(947\) − 886.618i − 0.936239i −0.883665 0.468119i \(-0.844932\pi\)
0.883665 0.468119i \(-0.155068\pi\)
\(948\) 0 0
\(949\) −2836.23 −2.98865
\(950\) 0 0
\(951\) 760.662i 0.799855i
\(952\) 0 0
\(953\) 1248.28 1.30984 0.654920 0.755699i \(-0.272702\pi\)
0.654920 + 0.755699i \(0.272702\pi\)
\(954\) 0 0
\(955\) − 747.722i − 0.782955i
\(956\) 0 0
\(957\) −198.536 −0.207457
\(958\) 0 0
\(959\) − 549.163i − 0.572641i
\(960\) 0 0
\(961\) 941.502 0.979710
\(962\) 0 0
\(963\) 873.367i 0.906923i
\(964\) 0 0
\(965\) −1955.78 −2.02672
\(966\) 0 0
\(967\) 1048.21i 1.08398i 0.840386 + 0.541989i \(0.182329\pi\)
−0.840386 + 0.541989i \(0.817671\pi\)
\(968\) 0 0
\(969\) 499.971 0.515966
\(970\) 0 0
\(971\) 1023.67i 1.05424i 0.849790 + 0.527122i \(0.176729\pi\)
−0.849790 + 0.527122i \(0.823271\pi\)
\(972\) 0 0
\(973\) −1180.34 −1.21310
\(974\) 0 0
\(975\) 3020.57i 3.09802i
\(976\) 0 0
\(977\) 543.045 0.555829 0.277914 0.960606i \(-0.410357\pi\)
0.277914 + 0.960606i \(0.410357\pi\)
\(978\) 0 0
\(979\) − 183.036i − 0.186963i
\(980\) 0 0
\(981\) 56.1796 0.0572677
\(982\) 0 0
\(983\) − 1592.68i − 1.62022i −0.586275 0.810112i \(-0.699406\pi\)
0.586275 0.810112i \(-0.300594\pi\)
\(984\) 0 0
\(985\) −2349.87 −2.38565
\(986\) 0 0
\(987\) 782.314i 0.792618i
\(988\) 0 0
\(989\) −131.214 −0.132673
\(990\) 0 0
\(991\) − 836.707i − 0.844306i −0.906525 0.422153i \(-0.861274\pi\)
0.906525 0.422153i \(-0.138726\pi\)
\(992\) 0 0
\(993\) −1733.21 −1.74543
\(994\) 0 0
\(995\) 757.825i 0.761633i
\(996\) 0 0
\(997\) −76.2615 −0.0764910 −0.0382455 0.999268i \(-0.512177\pi\)
−0.0382455 + 0.999268i \(0.512177\pi\)
\(998\) 0 0
\(999\) − 0.161006i 0 0.000161167i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.3.d.b.175.16 yes 20
4.3 odd 2 inner 464.3.d.b.175.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.3.d.b.175.5 20 4.3 odd 2 inner
464.3.d.b.175.16 yes 20 1.1 even 1 trivial