Properties

Label 4655.2.a.br.1.12
Level 46554655
Weight 22
Character 4655.1
Self dual yes
Analytic conductor 37.17037.170
Analytic rank 00
Dimension 2626
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4655=57219 4655 = 5 \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 37.170362140937.1703621409
Analytic rank: 00
Dimension: 2626
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.12
Character χ\chi == 4655.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.162590q23.34603q31.97356q41.00000q5+0.544029q6+0.646060q8+8.19589q9+0.162590q10+0.429014q11+6.60360q125.75642q13+3.34603q15+3.84209q16+7.07631q171.33257q18+1.00000q19+1.97356q200.0697533q22+3.90187q232.16173q24+1.00000q25+0.935934q2617.3856q27+6.42012q290.544029q302.72845q311.91680q321.43549q331.15053q3416.1751q36+7.18753q370.162590q38+19.2611q390.646060q40+11.9120q4112.2010q430.846688q448.19589q450.634403q46+3.66097q4712.8557q480.162590q5023.6775q51+11.3607q523.66806q53+2.82671q540.429014q553.34603q571.04385q586.15976q596.60360q607.90953q61+0.443617q627.37252q64+5.75642q65+0.233396q66+6.45590q6713.9656q6813.0558q692.64572q71+5.29504q726.62975q731.16862q743.34603q751.97356q763.13166q78+1.62292q793.84209q80+33.5849q811.93676q82+3.98106q837.07631q85+1.98375q8621.4819q87+0.277169q88+0.576435q89+1.33257q907.70059q92+9.12945q930.595236q941.00000q95+6.41368q9612.6618q97+3.51615q99+O(q100)q-0.162590 q^{2} -3.34603 q^{3} -1.97356 q^{4} -1.00000 q^{5} +0.544029 q^{6} +0.646060 q^{8} +8.19589 q^{9} +0.162590 q^{10} +0.429014 q^{11} +6.60360 q^{12} -5.75642 q^{13} +3.34603 q^{15} +3.84209 q^{16} +7.07631 q^{17} -1.33257 q^{18} +1.00000 q^{19} +1.97356 q^{20} -0.0697533 q^{22} +3.90187 q^{23} -2.16173 q^{24} +1.00000 q^{25} +0.935934 q^{26} -17.3856 q^{27} +6.42012 q^{29} -0.544029 q^{30} -2.72845 q^{31} -1.91680 q^{32} -1.43549 q^{33} -1.15053 q^{34} -16.1751 q^{36} +7.18753 q^{37} -0.162590 q^{38} +19.2611 q^{39} -0.646060 q^{40} +11.9120 q^{41} -12.2010 q^{43} -0.846688 q^{44} -8.19589 q^{45} -0.634403 q^{46} +3.66097 q^{47} -12.8557 q^{48} -0.162590 q^{50} -23.6775 q^{51} +11.3607 q^{52} -3.66806 q^{53} +2.82671 q^{54} -0.429014 q^{55} -3.34603 q^{57} -1.04385 q^{58} -6.15976 q^{59} -6.60360 q^{60} -7.90953 q^{61} +0.443617 q^{62} -7.37252 q^{64} +5.75642 q^{65} +0.233396 q^{66} +6.45590 q^{67} -13.9656 q^{68} -13.0558 q^{69} -2.64572 q^{71} +5.29504 q^{72} -6.62975 q^{73} -1.16862 q^{74} -3.34603 q^{75} -1.97356 q^{76} -3.13166 q^{78} +1.62292 q^{79} -3.84209 q^{80} +33.5849 q^{81} -1.93676 q^{82} +3.98106 q^{83} -7.07631 q^{85} +1.98375 q^{86} -21.4819 q^{87} +0.277169 q^{88} +0.576435 q^{89} +1.33257 q^{90} -7.70059 q^{92} +9.12945 q^{93} -0.595236 q^{94} -1.00000 q^{95} +6.41368 q^{96} -12.6618 q^{97} +3.51615 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 26q+4q26q3+36q426q5+4q6+12q8+44q94q10+14q1120q1214q13+6q15+64q1618q17+8q18+26q1936q20+36q22++24q99+O(q100) 26 q + 4 q^{2} - 6 q^{3} + 36 q^{4} - 26 q^{5} + 4 q^{6} + 12 q^{8} + 44 q^{9} - 4 q^{10} + 14 q^{11} - 20 q^{12} - 14 q^{13} + 6 q^{15} + 64 q^{16} - 18 q^{17} + 8 q^{18} + 26 q^{19} - 36 q^{20} + 36 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.162590 −0.114968 −0.0574841 0.998346i 0.518308π-0.518308\pi
−0.0574841 + 0.998346i 0.518308π0.518308\pi
33 −3.34603 −1.93183 −0.965914 0.258862i 0.916653π-0.916653\pi
−0.965914 + 0.258862i 0.916653π0.916653\pi
44 −1.97356 −0.986782
55 −1.00000 −0.447214
66 0.544029 0.222099
77 0 0
88 0.646060 0.228417
99 8.19589 2.73196
1010 0.162590 0.0514153
1111 0.429014 0.129353 0.0646764 0.997906i 0.479398π-0.479398\pi
0.0646764 + 0.997906i 0.479398π0.479398\pi
1212 6.60360 1.90629
1313 −5.75642 −1.59654 −0.798272 0.602297i 0.794252π-0.794252\pi
−0.798272 + 0.602297i 0.794252π0.794252\pi
1414 0 0
1515 3.34603 0.863940
1616 3.84209 0.960522
1717 7.07631 1.71626 0.858129 0.513435i 0.171627π-0.171627\pi
0.858129 + 0.513435i 0.171627π0.171627\pi
1818 −1.33257 −0.314089
1919 1.00000 0.229416
2020 1.97356 0.441302
2121 0 0
2222 −0.0697533 −0.0148715
2323 3.90187 0.813596 0.406798 0.913518i 0.366645π-0.366645\pi
0.406798 + 0.913518i 0.366645π0.366645\pi
2424 −2.16173 −0.441262
2525 1.00000 0.200000
2626 0.935934 0.183552
2727 −17.3856 −3.34586
2828 0 0
2929 6.42012 1.19219 0.596093 0.802915i 0.296719π-0.296719\pi
0.596093 + 0.802915i 0.296719π0.296719\pi
3030 −0.544029 −0.0993257
3131 −2.72845 −0.490043 −0.245022 0.969518i 0.578795π-0.578795\pi
−0.245022 + 0.969518i 0.578795π0.578795\pi
3232 −1.91680 −0.338846
3333 −1.43549 −0.249887
3434 −1.15053 −0.197315
3535 0 0
3636 −16.1751 −2.69585
3737 7.18753 1.18162 0.590812 0.806810i 0.298808π-0.298808\pi
0.590812 + 0.806810i 0.298808π0.298808\pi
3838 −0.162590 −0.0263755
3939 19.2611 3.08425
4040 −0.646060 −0.102151
4141 11.9120 1.86034 0.930169 0.367131i 0.119660π-0.119660\pi
0.930169 + 0.367131i 0.119660π0.119660\pi
4242 0 0
4343 −12.2010 −1.86063 −0.930315 0.366761i 0.880467π-0.880467\pi
−0.930315 + 0.366761i 0.880467π0.880467\pi
4444 −0.846688 −0.127643
4545 −8.19589 −1.22177
4646 −0.634403 −0.0935377
4747 3.66097 0.534007 0.267004 0.963696i 0.413966π-0.413966\pi
0.267004 + 0.963696i 0.413966π0.413966\pi
4848 −12.8557 −1.85556
4949 0 0
5050 −0.162590 −0.0229936
5151 −23.6775 −3.31552
5252 11.3607 1.57544
5353 −3.66806 −0.503847 −0.251923 0.967747i 0.581063π-0.581063\pi
−0.251923 + 0.967747i 0.581063π0.581063\pi
5454 2.82671 0.384667
5555 −0.429014 −0.0578483
5656 0 0
5757 −3.34603 −0.443192
5858 −1.04385 −0.137064
5959 −6.15976 −0.801933 −0.400967 0.916093i 0.631326π-0.631326\pi
−0.400967 + 0.916093i 0.631326π0.631326\pi
6060 −6.60360 −0.852521
6161 −7.90953 −1.01271 −0.506355 0.862325i 0.669008π-0.669008\pi
−0.506355 + 0.862325i 0.669008π0.669008\pi
6262 0.443617 0.0563394
6363 0 0
6464 −7.37252 −0.921565
6565 5.75642 0.713996
6666 0.233396 0.0287291
6767 6.45590 0.788714 0.394357 0.918957i 0.370967π-0.370967\pi
0.394357 + 0.918957i 0.370967π0.370967\pi
6868 −13.9656 −1.69357
6969 −13.0558 −1.57173
7070 0 0
7171 −2.64572 −0.313989 −0.156995 0.987599i 0.550180π-0.550180\pi
−0.156995 + 0.987599i 0.550180π0.550180\pi
7272 5.29504 0.624026
7373 −6.62975 −0.775954 −0.387977 0.921669i 0.626826π-0.626826\pi
−0.387977 + 0.921669i 0.626826π0.626826\pi
7474 −1.16862 −0.135849
7575 −3.34603 −0.386366
7676 −1.97356 −0.226383
7777 0 0
7878 −3.13166 −0.354591
7979 1.62292 0.182593 0.0912963 0.995824i 0.470899π-0.470899\pi
0.0912963 + 0.995824i 0.470899π0.470899\pi
8080 −3.84209 −0.429558
8181 33.5849 3.73166
8282 −1.93676 −0.213880
8383 3.98106 0.436979 0.218489 0.975839i 0.429887π-0.429887\pi
0.218489 + 0.975839i 0.429887π0.429887\pi
8484 0 0
8585 −7.07631 −0.767534
8686 1.98375 0.213913
8787 −21.4819 −2.30310
8888 0.277169 0.0295463
8989 0.576435 0.0611020 0.0305510 0.999533i 0.490274π-0.490274\pi
0.0305510 + 0.999533i 0.490274π0.490274\pi
9090 1.33257 0.140465
9191 0 0
9292 −7.70059 −0.802842
9393 9.12945 0.946680
9494 −0.595236 −0.0613939
9595 −1.00000 −0.102598
9696 6.41368 0.654593
9797 −12.6618 −1.28562 −0.642808 0.766027i 0.722231π-0.722231\pi
−0.642808 + 0.766027i 0.722231π0.722231\pi
9898 0 0
9999 3.51615 0.353387
100100 −1.97356 −0.197356
101101 14.1804 1.41100 0.705501 0.708708i 0.250722π-0.250722\pi
0.705501 + 0.708708i 0.250722π0.250722\pi
102102 3.84972 0.381179
103103 −15.9521 −1.57181 −0.785903 0.618350i 0.787802π-0.787802\pi
−0.785903 + 0.618350i 0.787802π0.787802\pi
104104 −3.71899 −0.364677
105105 0 0
106106 0.596389 0.0579264
107107 −6.46100 −0.624608 −0.312304 0.949982i 0.601101π-0.601101\pi
−0.312304 + 0.949982i 0.601101π0.601101\pi
108108 34.3116 3.30163
109109 −5.10533 −0.489002 −0.244501 0.969649i 0.578624π-0.578624\pi
−0.244501 + 0.969649i 0.578624π0.578624\pi
110110 0.0697533 0.00665072
111111 −24.0497 −2.28269
112112 0 0
113113 −2.78712 −0.262190 −0.131095 0.991370i 0.541849π-0.541849\pi
−0.131095 + 0.991370i 0.541849π0.541849\pi
114114 0.544029 0.0509530
115115 −3.90187 −0.363851
116116 −12.6705 −1.17643
117117 −47.1790 −4.36170
118118 1.00151 0.0921968
119119 0 0
120120 2.16173 0.197338
121121 −10.8159 −0.983268
122122 1.28601 0.116430
123123 −39.8578 −3.59386
124124 5.38477 0.483566
125125 −1.00000 −0.0894427
126126 0 0
127127 −1.78740 −0.158606 −0.0793029 0.996851i 0.525269π-0.525269\pi
−0.0793029 + 0.996851i 0.525269π0.525269\pi
128128 5.03230 0.444797
129129 40.8248 3.59442
130130 −0.935934 −0.0820868
131131 11.6846 1.02089 0.510443 0.859912i 0.329482π-0.329482\pi
0.510443 + 0.859912i 0.329482π0.329482\pi
132132 2.83304 0.246584
133133 0 0
134134 −1.04966 −0.0906770
135135 17.3856 1.49631
136136 4.57172 0.392022
137137 7.85588 0.671173 0.335587 0.942009i 0.391065π-0.391065\pi
0.335587 + 0.942009i 0.391065π0.391065\pi
138138 2.12273 0.180699
139139 8.34848 0.708109 0.354055 0.935225i 0.384803π-0.384803\pi
0.354055 + 0.935225i 0.384803π0.384803\pi
140140 0 0
141141 −12.2497 −1.03161
142142 0.430166 0.0360988
143143 −2.46959 −0.206517
144144 31.4893 2.62411
145145 −6.42012 −0.533162
146146 1.07793 0.0892100
147147 0 0
148148 −14.1851 −1.16600
149149 19.0334 1.55927 0.779637 0.626232i 0.215404π-0.215404\pi
0.779637 + 0.626232i 0.215404π0.215404\pi
150150 0.544029 0.0444198
151151 11.2945 0.919137 0.459569 0.888142i 0.348004π-0.348004\pi
0.459569 + 0.888142i 0.348004π0.348004\pi
152152 0.646060 0.0524024
153153 57.9967 4.68875
154154 0 0
155155 2.72845 0.219154
156156 −38.0131 −3.04348
157157 −9.39523 −0.749821 −0.374910 0.927061i 0.622327π-0.622327\pi
−0.374910 + 0.927061i 0.622327π0.622327\pi
158158 −0.263870 −0.0209924
159159 12.2734 0.973346
160160 1.91680 0.151537
161161 0 0
162162 −5.46056 −0.429022
163163 23.9250 1.87395 0.936976 0.349393i 0.113612π-0.113612\pi
0.936976 + 0.349393i 0.113612π0.113612\pi
164164 −23.5091 −1.83575
165165 1.43549 0.111753
166166 −0.647280 −0.0502386
167167 5.00493 0.387293 0.193646 0.981071i 0.437969π-0.437969\pi
0.193646 + 0.981071i 0.437969π0.437969\pi
168168 0 0
169169 20.1364 1.54895
170170 1.15053 0.0882420
171171 8.19589 0.626755
172172 24.0794 1.83604
173173 7.41087 0.563438 0.281719 0.959497i 0.409095π-0.409095\pi
0.281719 + 0.959497i 0.409095π0.409095\pi
174174 3.49273 0.264783
175175 0 0
176176 1.64831 0.124246
177177 20.6107 1.54920
178178 −0.0937223 −0.00702478
179179 −12.4608 −0.931360 −0.465680 0.884953i 0.654190π-0.654190\pi
−0.465680 + 0.884953i 0.654190π0.654190\pi
180180 16.1751 1.20562
181181 2.66274 0.197920 0.0989600 0.995091i 0.468448π-0.468448\pi
0.0989600 + 0.995091i 0.468448π0.468448\pi
182182 0 0
183183 26.4655 1.95638
184184 2.52084 0.185839
185185 −7.18753 −0.528438
186186 −1.48435 −0.108838
187187 3.03584 0.222003
188188 −7.22516 −0.526949
189189 0 0
190190 0.162590 0.0117955
191191 10.4654 0.757247 0.378623 0.925551i 0.376398π-0.376398\pi
0.378623 + 0.925551i 0.376398π0.376398\pi
192192 24.6686 1.78031
193193 −20.4799 −1.47417 −0.737086 0.675799i 0.763799π-0.763799\pi
−0.737086 + 0.675799i 0.763799π0.763799\pi
194194 2.05868 0.147805
195195 −19.2611 −1.37932
196196 0 0
197197 −8.24849 −0.587681 −0.293840 0.955855i 0.594933π-0.594933\pi
−0.293840 + 0.955855i 0.594933π0.594933\pi
198198 −0.571690 −0.0406283
199199 −21.2610 −1.50715 −0.753575 0.657362i 0.771672π-0.771672\pi
−0.753575 + 0.657362i 0.771672π0.771672\pi
200200 0.646060 0.0456834
201201 −21.6016 −1.52366
202202 −2.30559 −0.162220
203203 0 0
204204 46.7291 3.27169
205205 −11.9120 −0.831969
206206 2.59364 0.180708
207207 31.9793 2.22271
208208 −22.1167 −1.53351
209209 0.429014 0.0296756
210210 0 0
211211 −13.6887 −0.942371 −0.471185 0.882034i 0.656174π-0.656174\pi
−0.471185 + 0.882034i 0.656174π0.656174\pi
212212 7.23915 0.497187
213213 8.85264 0.606573
214214 1.05049 0.0718101
215215 12.2010 0.832099
216216 −11.2321 −0.764250
217217 0 0
218218 0.830074 0.0562197
219219 22.1833 1.49901
220220 0.846688 0.0570837
221221 −40.7342 −2.74008
222222 3.91023 0.262437
223223 16.8583 1.12892 0.564458 0.825462i 0.309085π-0.309085\pi
0.564458 + 0.825462i 0.309085π0.309085\pi
224224 0 0
225225 8.19589 0.546393
226226 0.453156 0.0301435
227227 3.95193 0.262299 0.131149 0.991363i 0.458133π-0.458133\pi
0.131149 + 0.991363i 0.458133π0.458133\pi
228228 6.60360 0.437334
229229 17.1650 1.13429 0.567147 0.823617i 0.308047π-0.308047\pi
0.567147 + 0.823617i 0.308047π0.308047\pi
230230 0.634403 0.0418313
231231 0 0
232232 4.14779 0.272315
233233 22.2536 1.45788 0.728942 0.684576i 0.240013π-0.240013\pi
0.728942 + 0.684576i 0.240013π0.240013\pi
234234 7.67081 0.501457
235235 −3.66097 −0.238815
236236 12.1567 0.791333
237237 −5.43033 −0.352738
238238 0 0
239239 17.4276 1.12730 0.563648 0.826015i 0.309397π-0.309397\pi
0.563648 + 0.826015i 0.309397π0.309397\pi
240240 12.8557 0.829833
241241 −7.08256 −0.456228 −0.228114 0.973634i 0.573256π-0.573256\pi
−0.228114 + 0.973634i 0.573256π0.573256\pi
242242 1.75856 0.113045
243243 −60.2193 −3.86307
244244 15.6100 0.999325
245245 0 0
246246 6.48046 0.413179
247247 −5.75642 −0.366272
248248 −1.76274 −0.111934
249249 −13.3207 −0.844168
250250 0.162590 0.0102831
251251 −10.6832 −0.674318 −0.337159 0.941448i 0.609466π-0.609466\pi
−0.337159 + 0.941448i 0.609466π0.609466\pi
252252 0 0
253253 1.67396 0.105241
254254 0.290612 0.0182346
255255 23.6775 1.48274
256256 13.9268 0.870428
257257 17.5873 1.09707 0.548533 0.836129i 0.315186π-0.315186\pi
0.548533 + 0.836129i 0.315186π0.315186\pi
258258 −6.63768 −0.413244
259259 0 0
260260 −11.3607 −0.704559
261261 52.6186 3.25701
262262 −1.89979 −0.117369
263263 −10.8490 −0.668980 −0.334490 0.942399i 0.608564π-0.608564\pi
−0.334490 + 0.942399i 0.608564π0.608564\pi
264264 −0.927415 −0.0570785
265265 3.66806 0.225327
266266 0 0
267267 −1.92877 −0.118039
268268 −12.7411 −0.778289
269269 −0.815536 −0.0497241 −0.0248621 0.999691i 0.507915π-0.507915\pi
−0.0248621 + 0.999691i 0.507915π0.507915\pi
270270 −2.82671 −0.172028
271271 −2.68008 −0.162803 −0.0814016 0.996681i 0.525940π-0.525940\pi
−0.0814016 + 0.996681i 0.525940π0.525940\pi
272272 27.1878 1.64850
273273 0 0
274274 −1.27728 −0.0771636
275275 0.429014 0.0258705
276276 25.7664 1.55095
277277 −29.7471 −1.78733 −0.893665 0.448735i 0.851875π-0.851875\pi
−0.893665 + 0.448735i 0.851875π0.851875\pi
278278 −1.35738 −0.0814100
279279 −22.3620 −1.33878
280280 0 0
281281 13.9492 0.832142 0.416071 0.909332i 0.363407π-0.363407\pi
0.416071 + 0.909332i 0.363407π0.363407\pi
282282 1.99167 0.118602
283283 4.27910 0.254366 0.127183 0.991879i 0.459406π-0.459406\pi
0.127183 + 0.991879i 0.459406π0.459406\pi
284284 5.22150 0.309839
285285 3.34603 0.198201
286286 0.401529 0.0237429
287287 0 0
288288 −15.7099 −0.925715
289289 33.0742 1.94554
290290 1.04385 0.0612967
291291 42.3669 2.48359
292292 13.0842 0.765697
293293 −24.1403 −1.41029 −0.705146 0.709062i 0.749119π-0.749119\pi
−0.705146 + 0.709062i 0.749119π0.749119\pi
294294 0 0
295295 6.15976 0.358635
296296 4.64358 0.269903
297297 −7.45866 −0.432796
298298 −3.09463 −0.179267
299299 −22.4608 −1.29894
300300 6.60360 0.381259
301301 0 0
302302 −1.83638 −0.105672
303303 −47.4480 −2.72582
304304 3.84209 0.220359
305305 7.90953 0.452898
306306 −9.42965 −0.539057
307307 14.0955 0.804475 0.402238 0.915535i 0.368233π-0.368233\pi
0.402238 + 0.915535i 0.368233π0.368233\pi
308308 0 0
309309 53.3761 3.03646
310310 −0.443617 −0.0251958
311311 0.781255 0.0443009 0.0221504 0.999755i 0.492949π-0.492949\pi
0.0221504 + 0.999755i 0.492949π0.492949\pi
312312 12.4439 0.704494
313313 7.61271 0.430296 0.215148 0.976581i 0.430977π-0.430977\pi
0.215148 + 0.976581i 0.430977π0.430977\pi
314314 1.52757 0.0862056
315315 0 0
316316 −3.20294 −0.180179
317317 −5.63539 −0.316515 −0.158258 0.987398i 0.550588π-0.550588\pi
−0.158258 + 0.987398i 0.550588π0.550588\pi
318318 −1.99553 −0.111904
319319 2.75433 0.154213
320320 7.37252 0.412136
321321 21.6187 1.20664
322322 0 0
323323 7.07631 0.393736
324324 −66.2820 −3.68233
325325 −5.75642 −0.319309
326326 −3.88996 −0.215445
327327 17.0826 0.944668
328328 7.69586 0.424933
329329 0 0
330330 −0.233396 −0.0128480
331331 −3.71669 −0.204288 −0.102144 0.994770i 0.532570π-0.532570\pi
−0.102144 + 0.994770i 0.532570π0.532570\pi
332332 −7.85689 −0.431203
333333 58.9082 3.22815
334334 −0.813749 −0.0445264
335335 −6.45590 −0.352724
336336 0 0
337337 10.5696 0.575762 0.287881 0.957666i 0.407049π-0.407049\pi
0.287881 + 0.957666i 0.407049π0.407049\pi
338338 −3.27396 −0.178080
339339 9.32577 0.506506
340340 13.9656 0.757389
341341 −1.17054 −0.0633885
342342 −1.33257 −0.0720569
343343 0 0
344344 −7.88256 −0.424999
345345 13.0558 0.702898
346346 −1.20493 −0.0647775
347347 −26.0140 −1.39650 −0.698251 0.715853i 0.746038π-0.746038\pi
−0.698251 + 0.715853i 0.746038π0.746038\pi
348348 42.3959 2.27266
349349 −4.54860 −0.243481 −0.121741 0.992562i 0.538848π-0.538848\pi
−0.121741 + 0.992562i 0.538848π0.538848\pi
350350 0 0
351351 100.079 5.34180
352352 −0.822337 −0.0438307
353353 9.75866 0.519401 0.259701 0.965689i 0.416376π-0.416376\pi
0.259701 + 0.965689i 0.416376π0.416376\pi
354354 −3.35109 −0.178108
355355 2.64572 0.140420
356356 −1.13763 −0.0602943
357357 0 0
358358 2.02599 0.107077
359359 −11.7831 −0.621888 −0.310944 0.950428i 0.600645π-0.600645\pi
−0.310944 + 0.950428i 0.600645π0.600645\pi
360360 −5.29504 −0.279073
361361 1.00000 0.0526316
362362 −0.432934 −0.0227545
363363 36.1904 1.89951
364364 0 0
365365 6.62975 0.347017
366366 −4.30301 −0.224922
367367 28.7505 1.50076 0.750382 0.661004i 0.229869π-0.229869\pi
0.750382 + 0.661004i 0.229869π0.229869\pi
368368 14.9913 0.781476
369369 97.6293 5.08238
370370 1.16862 0.0607536
371371 0 0
372372 −18.0176 −0.934167
373373 31.9527 1.65445 0.827223 0.561874i 0.189919π-0.189919\pi
0.827223 + 0.561874i 0.189919π0.189919\pi
374374 −0.493596 −0.0255232
375375 3.34603 0.172788
376376 2.36521 0.121976
377377 −36.9569 −1.90338
378378 0 0
379379 −12.8469 −0.659901 −0.329951 0.943998i 0.607032π-0.607032\pi
−0.329951 + 0.943998i 0.607032π0.607032\pi
380380 1.97356 0.101242
381381 5.98068 0.306399
382382 −1.70156 −0.0870593
383383 2.36576 0.120885 0.0604423 0.998172i 0.480749π-0.480749\pi
0.0604423 + 0.998172i 0.480749π0.480749\pi
384384 −16.8382 −0.859272
385385 0 0
386386 3.32981 0.169483
387387 −99.9978 −5.08317
388388 24.9890 1.26862
389389 13.4160 0.680219 0.340110 0.940386i 0.389536π-0.389536\pi
0.340110 + 0.940386i 0.389536π0.389536\pi
390390 3.13166 0.158578
391391 27.6108 1.39634
392392 0 0
393393 −39.0969 −1.97218
394394 1.34112 0.0675646
395395 −1.62292 −0.0816579
396396 −6.93936 −0.348716
397397 −17.9615 −0.901461 −0.450730 0.892660i 0.648836π-0.648836\pi
−0.450730 + 0.892660i 0.648836π0.648836\pi
398398 3.45681 0.173274
399399 0 0
400400 3.84209 0.192104
401401 −15.8829 −0.793152 −0.396576 0.918002i 0.629802π-0.629802\pi
−0.396576 + 0.918002i 0.629802π0.629802\pi
402402 3.51220 0.175172
403403 15.7061 0.782376
404404 −27.9859 −1.39235
405405 −33.5849 −1.66885
406406 0 0
407407 3.08356 0.152846
408408 −15.2971 −0.757320
409409 13.4731 0.666201 0.333101 0.942891i 0.391905π-0.391905\pi
0.333101 + 0.942891i 0.391905π0.391905\pi
410410 1.93676 0.0956500
411411 −26.2860 −1.29659
412412 31.4825 1.55103
413413 0 0
414414 −5.19950 −0.255541
415415 −3.98106 −0.195423
416416 11.0339 0.540983
417417 −27.9342 −1.36795
418418 −0.0697533 −0.00341175
419419 −10.0858 −0.492723 −0.246362 0.969178i 0.579235π-0.579235\pi
−0.246362 + 0.969178i 0.579235π0.579235\pi
420420 0 0
421421 −25.0368 −1.22022 −0.610110 0.792317i 0.708875π-0.708875\pi
−0.610110 + 0.792317i 0.708875π0.708875\pi
422422 2.22564 0.108343
423423 30.0049 1.45889
424424 −2.36979 −0.115087
425425 7.07631 0.343251
426426 −1.43935 −0.0697366
427427 0 0
428428 12.7512 0.616352
429429 8.26330 0.398956
430430 −1.98375 −0.0956650
431431 14.4877 0.697848 0.348924 0.937151i 0.386547π-0.386547\pi
0.348924 + 0.937151i 0.386547π0.386547\pi
432432 −66.7969 −3.21377
433433 13.1763 0.633211 0.316605 0.948557i 0.397457π-0.397457\pi
0.316605 + 0.948557i 0.397457π0.397457\pi
434434 0 0
435435 21.4819 1.02998
436436 10.0757 0.482538
437437 3.90187 0.186652
438438 −3.60678 −0.172338
439439 1.46559 0.0699488 0.0349744 0.999388i 0.488865π-0.488865\pi
0.0349744 + 0.999388i 0.488865π0.488865\pi
440440 −0.277169 −0.0132135
441441 0 0
442442 6.62296 0.315022
443443 −28.0706 −1.33367 −0.666837 0.745204i 0.732352π-0.732352\pi
−0.666837 + 0.745204i 0.732352π0.732352\pi
444444 47.4636 2.25252
445445 −0.576435 −0.0273256
446446 −2.74098 −0.129789
447447 −63.6861 −3.01225
448448 0 0
449449 21.9342 1.03514 0.517569 0.855642i 0.326837π-0.326837\pi
0.517569 + 0.855642i 0.326837π0.326837\pi
450450 −1.33257 −0.0628178
451451 5.11041 0.240640
452452 5.50056 0.258724
453453 −37.7918 −1.77562
454454 −0.642542 −0.0301560
455455 0 0
456456 −2.16173 −0.101232
457457 −4.81613 −0.225289 −0.112645 0.993635i 0.535932π-0.535932\pi
−0.112645 + 0.993635i 0.535932π0.535932\pi
458458 −2.79085 −0.130408
459459 −123.026 −5.74235
460460 7.70059 0.359042
461461 38.2152 1.77986 0.889930 0.456098i 0.150753π-0.150753\pi
0.889930 + 0.456098i 0.150753π0.150753\pi
462462 0 0
463463 −15.7283 −0.730958 −0.365479 0.930820i 0.619095π-0.619095\pi
−0.365479 + 0.930820i 0.619095π0.619095\pi
464464 24.6667 1.14512
465465 −9.12945 −0.423368
466466 −3.61821 −0.167610
467467 −24.2986 −1.12441 −0.562203 0.826999i 0.690046π-0.690046\pi
−0.562203 + 0.826999i 0.690046π0.690046\pi
468468 93.1108 4.30405
469469 0 0
470470 0.595236 0.0274562
471471 31.4367 1.44853
472472 −3.97958 −0.183175
473473 −5.23439 −0.240678
474474 0.882915 0.0405536
475475 1.00000 0.0458831
476476 0 0
477477 −30.0630 −1.37649
478478 −2.83354 −0.129603
479479 30.0503 1.37303 0.686517 0.727113i 0.259139π-0.259139\pi
0.686517 + 0.727113i 0.259139π0.259139\pi
480480 −6.41368 −0.292743
481481 −41.3745 −1.88651
482482 1.15155 0.0524517
483483 0 0
484484 21.3460 0.970271
485485 12.6618 0.574945
486486 9.79103 0.444130
487487 −35.9313 −1.62820 −0.814101 0.580723i 0.802770π-0.802770\pi
−0.814101 + 0.580723i 0.802770π0.802770\pi
488488 −5.11003 −0.231320
489489 −80.0537 −3.62016
490490 0 0
491491 31.0852 1.40286 0.701428 0.712740i 0.252546π-0.252546\pi
0.701428 + 0.712740i 0.252546π0.252546\pi
492492 78.6619 3.54635
493493 45.4308 2.04610
494494 0.935934 0.0421097
495495 −3.51615 −0.158039
496496 −10.4829 −0.470697
497497 0 0
498498 2.16581 0.0970525
499499 −17.1058 −0.765762 −0.382881 0.923798i 0.625068π-0.625068\pi
−0.382881 + 0.923798i 0.625068π0.625068\pi
500500 1.97356 0.0882605
501501 −16.7466 −0.748183
502502 1.73698 0.0775251
503503 1.78210 0.0794601 0.0397301 0.999210i 0.487350π-0.487350\pi
0.0397301 + 0.999210i 0.487350π0.487350\pi
504504 0 0
505505 −14.1804 −0.631020
506506 −0.272168 −0.0120994
507507 −67.3768 −2.99231
508508 3.52754 0.156509
509509 13.0626 0.578990 0.289495 0.957179i 0.406513π-0.406513\pi
0.289495 + 0.957179i 0.406513π0.406513\pi
510510 −3.84972 −0.170468
511511 0 0
512512 −12.3290 −0.544868
513513 −17.3856 −0.767592
514514 −2.85951 −0.126128
515515 15.9521 0.702933
516516 −80.5703 −3.54691
517517 1.57061 0.0690753
518518 0 0
519519 −24.7970 −1.08847
520520 3.71899 0.163089
521521 −18.0147 −0.789238 −0.394619 0.918845i 0.629123π-0.629123\pi
−0.394619 + 0.918845i 0.629123π0.629123\pi
522522 −8.55524 −0.374453
523523 3.60602 0.157680 0.0788401 0.996887i 0.474878π-0.474878\pi
0.0788401 + 0.996887i 0.474878π0.474878\pi
524524 −23.0602 −1.00739
525525 0 0
526526 1.76394 0.0769115
527527 −19.3073 −0.841041
528528 −5.51529 −0.240022
529529 −7.77542 −0.338062
530530 −0.596389 −0.0259055
531531 −50.4847 −2.19085
532532 0 0
533533 −68.5704 −2.97011
534534 0.313597 0.0135707
535535 6.46100 0.279333
536536 4.17090 0.180156
537537 41.6940 1.79923
538538 0.132598 0.00571669
539539 0 0
540540 −34.3116 −1.47653
541541 10.2231 0.439526 0.219763 0.975553i 0.429472π-0.429472\pi
0.219763 + 0.975553i 0.429472π0.429472\pi
542542 0.435753 0.0187172
543543 −8.90960 −0.382347
544544 −13.5639 −0.581547
545545 5.10533 0.218688
546546 0 0
547547 8.44524 0.361092 0.180546 0.983567i 0.442213π-0.442213\pi
0.180546 + 0.983567i 0.442213π0.442213\pi
548548 −15.5041 −0.662302
549549 −64.8256 −2.76669
550550 −0.0697533 −0.00297429
551551 6.42012 0.273506
552552 −8.43480 −0.359009
553553 0 0
554554 4.83657 0.205486
555555 24.0497 1.02085
556556 −16.4763 −0.698749
557557 7.84656 0.332469 0.166235 0.986086i 0.446839π-0.446839\pi
0.166235 + 0.986086i 0.446839π0.446839\pi
558558 3.63584 0.153917
559559 70.2339 2.97058
560560 0 0
561561 −10.1580 −0.428871
562562 −2.26800 −0.0956699
563563 −29.1855 −1.23002 −0.615012 0.788518i 0.710849π-0.710849\pi
−0.615012 + 0.788518i 0.710849π0.710849\pi
564564 24.1756 1.01798
565565 2.78712 0.117255
566566 −0.695737 −0.0292440
567567 0 0
568568 −1.70929 −0.0717204
569569 26.6848 1.11869 0.559343 0.828936i 0.311053π-0.311053\pi
0.559343 + 0.828936i 0.311053π0.311053\pi
570570 −0.544029 −0.0227869
571571 −4.24457 −0.177630 −0.0888148 0.996048i 0.528308π-0.528308\pi
−0.0888148 + 0.996048i 0.528308π0.528308\pi
572572 4.87389 0.203788
573573 −35.0174 −1.46287
574574 0 0
575575 3.90187 0.162719
576576 −60.4244 −2.51768
577577 −38.4331 −1.59999 −0.799995 0.600006i 0.795165π-0.795165\pi
−0.799995 + 0.600006i 0.795165π0.795165\pi
578578 −5.37752 −0.223675
579579 68.5261 2.84785
580580 12.6705 0.526115
581581 0 0
582582 −6.88841 −0.285534
583583 −1.57365 −0.0651740
584584 −4.28322 −0.177241
585585 47.1790 1.95061
586586 3.92497 0.162139
587587 33.0878 1.36568 0.682841 0.730567i 0.260744π-0.260744\pi
0.682841 + 0.730567i 0.260744π0.260744\pi
588588 0 0
589589 −2.72845 −0.112424
590590 −1.00151 −0.0412317
591591 27.5997 1.13530
592592 27.6151 1.13497
593593 38.8212 1.59420 0.797098 0.603850i 0.206367π-0.206367\pi
0.797098 + 0.603850i 0.206367π0.206367\pi
594594 1.21270 0.0497577
595595 0 0
596596 −37.5636 −1.53866
597597 71.1397 2.91155
598598 3.65189 0.149337
599599 −1.94592 −0.0795083 −0.0397541 0.999209i 0.512657π-0.512657\pi
−0.0397541 + 0.999209i 0.512657π0.512657\pi
600600 −2.16173 −0.0882524
601601 10.5788 0.431518 0.215759 0.976447i 0.430777π-0.430777\pi
0.215759 + 0.976447i 0.430777π0.430777\pi
602602 0 0
603603 52.9118 2.15474
604604 −22.2905 −0.906988
605605 10.8159 0.439731
606606 7.71455 0.313382
607607 −7.81398 −0.317160 −0.158580 0.987346i 0.550692π-0.550692\pi
−0.158580 + 0.987346i 0.550692π0.550692\pi
608608 −1.91680 −0.0777367
609609 0 0
610610 −1.28601 −0.0520689
611611 −21.0741 −0.852566
612612 −114.460 −4.62678
613613 −7.61718 −0.307655 −0.153827 0.988098i 0.549160π-0.549160\pi
−0.153827 + 0.988098i 0.549160π0.549160\pi
614614 −2.29179 −0.0924891
615615 39.8578 1.60722
616616 0 0
617617 −5.97061 −0.240368 −0.120184 0.992752i 0.538348π-0.538348\pi
−0.120184 + 0.992752i 0.538348π0.538348\pi
618618 −8.67840 −0.349097
619619 −13.6068 −0.546904 −0.273452 0.961886i 0.588165π-0.588165\pi
−0.273452 + 0.961886i 0.588165π0.588165\pi
620620 −5.38477 −0.216257
621621 −67.8362 −2.72217
622622 −0.127024 −0.00509319
623623 0 0
624624 74.0029 2.96249
625625 1.00000 0.0400000
626626 −1.23775 −0.0494703
627627 −1.43549 −0.0573281
628628 18.5421 0.739910
629629 50.8612 2.02797
630630 0 0
631631 −32.1031 −1.27801 −0.639003 0.769204i 0.720653π-0.720653\pi
−0.639003 + 0.769204i 0.720653π0.720653\pi
632632 1.04850 0.0417072
633633 45.8028 1.82050
634634 0.916257 0.0363892
635635 1.78740 0.0709307
636636 −24.2224 −0.960481
637637 0 0
638638 −0.447825 −0.0177295
639639 −21.6840 −0.857806
640640 −5.03230 −0.198919
641641 −27.3440 −1.08002 −0.540012 0.841657i 0.681580π-0.681580\pi
−0.540012 + 0.841657i 0.681580π0.681580\pi
642642 −3.51497 −0.138725
643643 8.25125 0.325397 0.162699 0.986676i 0.447980π-0.447980\pi
0.162699 + 0.986676i 0.447980π0.447980\pi
644644 0 0
645645 −40.8248 −1.60747
646646 −1.15053 −0.0452672
647647 33.9053 1.33295 0.666476 0.745526i 0.267802π-0.267802\pi
0.666476 + 0.745526i 0.267802π0.267802\pi
648648 21.6979 0.852374
649649 −2.64263 −0.103732
650650 0.935934 0.0367104
651651 0 0
652652 −47.2176 −1.84918
653653 5.26328 0.205968 0.102984 0.994683i 0.467161π-0.467161\pi
0.102984 + 0.994683i 0.467161π0.467161\pi
654654 −2.77745 −0.108607
655655 −11.6846 −0.456554
656656 45.7669 1.78690
657657 −54.3367 −2.11988
658658 0 0
659659 −27.0002 −1.05178 −0.525890 0.850553i 0.676268π-0.676268\pi
−0.525890 + 0.850553i 0.676268π0.676268\pi
660660 −2.83304 −0.110276
661661 38.0408 1.47962 0.739808 0.672818i 0.234916π-0.234916\pi
0.739808 + 0.672818i 0.234916π0.234916\pi
662662 0.604295 0.0234866
663663 136.298 5.29336
664664 2.57201 0.0998133
665665 0 0
666666 −9.57787 −0.371135
667667 25.0505 0.969958
668668 −9.87754 −0.382174
669669 −56.4083 −2.18087
670670 1.04966 0.0405520
671671 −3.39330 −0.130997
672672 0 0
673673 −1.52284 −0.0587011 −0.0293505 0.999569i 0.509344π-0.509344\pi
−0.0293505 + 0.999569i 0.509344π0.509344\pi
674674 −1.71850 −0.0661943
675675 −17.3856 −0.669171
676676 −39.7404 −1.52848
677677 −3.81536 −0.146636 −0.0733182 0.997309i 0.523359π-0.523359\pi
−0.0733182 + 0.997309i 0.523359π0.523359\pi
678678 −1.51627 −0.0582321
679679 0 0
680680 −4.57172 −0.175318
681681 −13.2232 −0.506716
682682 0.190318 0.00728766
683683 −37.8095 −1.44674 −0.723370 0.690460i 0.757408π-0.757408\pi
−0.723370 + 0.690460i 0.757408π0.757408\pi
684684 −16.1751 −0.618471
685685 −7.85588 −0.300158
686686 0 0
687687 −57.4344 −2.19126
688688 −46.8772 −1.78718
689689 21.1149 0.804414
690690 −2.12273 −0.0808109
691691 −9.57018 −0.364067 −0.182033 0.983292i 0.558268π-0.558268\pi
−0.182033 + 0.983292i 0.558268π0.558268\pi
692692 −14.6258 −0.555991
693693 0 0
694694 4.22960 0.160553
695695 −8.34848 −0.316676
696696 −13.8786 −0.526067
697697 84.2929 3.19282
698698 0.739555 0.0279926
699699 −74.4612 −2.81638
700700 0 0
701701 −2.19668 −0.0829676 −0.0414838 0.999139i 0.513208π-0.513208\pi
−0.0414838 + 0.999139i 0.513208π0.513208\pi
702702 −16.2718 −0.614138
703703 7.18753 0.271083
704704 −3.16292 −0.119207
705705 12.2497 0.461350
706706 −1.58666 −0.0597146
707707 0 0
708708 −40.6766 −1.52872
709709 10.6911 0.401514 0.200757 0.979641i 0.435660π-0.435660\pi
0.200757 + 0.979641i 0.435660π0.435660\pi
710710 −0.430166 −0.0161439
711711 13.3013 0.498836
712712 0.372412 0.0139567
713713 −10.6460 −0.398697
714714 0 0
715715 2.46959 0.0923573
716716 24.5921 0.919050
717717 −58.3131 −2.17774
718718 1.91581 0.0714973
719719 −29.7949 −1.11116 −0.555580 0.831463i 0.687504π-0.687504\pi
−0.555580 + 0.831463i 0.687504π0.687504\pi
720720 −31.4893 −1.17354
721721 0 0
722722 −0.162590 −0.00605096
723723 23.6984 0.881354
724724 −5.25509 −0.195304
725725 6.42012 0.238437
726726 −5.88419 −0.218383
727727 −5.53987 −0.205463 −0.102731 0.994709i 0.532758π-0.532758\pi
−0.102731 + 0.994709i 0.532758π0.532758\pi
728728 0 0
729729 100.741 3.73113
730730 −1.07793 −0.0398959
731731 −86.3379 −3.19332
732732 −52.2313 −1.93053
733733 −17.2838 −0.638390 −0.319195 0.947689i 0.603412π-0.603412\pi
−0.319195 + 0.947689i 0.603412π0.603412\pi
734734 −4.67453 −0.172540
735735 0 0
736736 −7.47912 −0.275684
737737 2.76967 0.102022
738738 −15.8735 −0.584312
739739 28.0267 1.03098 0.515489 0.856896i 0.327610π-0.327610\pi
0.515489 + 0.856896i 0.327610π0.327610\pi
740740 14.1851 0.521453
741741 19.2611 0.707575
742742 0 0
743743 2.52819 0.0927503 0.0463752 0.998924i 0.485233π-0.485233\pi
0.0463752 + 0.998924i 0.485233π0.485233\pi
744744 5.89818 0.216238
745745 −19.0334 −0.697329
746746 −5.19517 −0.190209
747747 32.6284 1.19381
748748 −5.99143 −0.219068
749749 0 0
750750 −0.544029 −0.0198651
751751 −20.9658 −0.765054 −0.382527 0.923944i 0.624946π-0.624946\pi
−0.382527 + 0.923944i 0.624946π0.624946\pi
752752 14.0658 0.512926
753753 35.7463 1.30267
754754 6.00881 0.218828
755755 −11.2945 −0.411051
756756 0 0
757757 23.2438 0.844812 0.422406 0.906407i 0.361186π-0.361186\pi
0.422406 + 0.906407i 0.361186π0.361186\pi
758758 2.08877 0.0758676
759759 −5.60111 −0.203307
760760 −0.646060 −0.0234351
761761 38.8082 1.40680 0.703398 0.710796i 0.251665π-0.251665\pi
0.703398 + 0.710796i 0.251665π0.251665\pi
762762 −0.972396 −0.0352262
763763 0 0
764764 −20.6541 −0.747238
765765 −57.9967 −2.09687
766766 −0.384648 −0.0138979
767767 35.4582 1.28032
768768 −46.5996 −1.68152
769769 41.2415 1.48721 0.743603 0.668622i 0.233116π-0.233116\pi
0.743603 + 0.668622i 0.233116π0.233116\pi
770770 0 0
771771 −58.8476 −2.11934
772772 40.4183 1.45469
773773 −3.23499 −0.116355 −0.0581773 0.998306i 0.518529π-0.518529\pi
−0.0581773 + 0.998306i 0.518529π0.518529\pi
774774 16.2586 0.584403
775775 −2.72845 −0.0980087
776776 −8.18032 −0.293656
777777 0 0
778778 −2.18131 −0.0782036
779779 11.9120 0.426791
780780 38.0131 1.36109
781781 −1.13505 −0.0406153
782782 −4.48923 −0.160535
783783 −111.618 −3.98888
784784 0 0
785785 9.39523 0.335330
786786 6.35674 0.226738
787787 21.6620 0.772167 0.386083 0.922464i 0.373828π-0.373828\pi
0.386083 + 0.922464i 0.373828π0.373828\pi
788788 16.2789 0.579913
789789 36.3012 1.29236
790790 0.263870 0.00938806
791791 0 0
792792 2.27165 0.0807195
793793 45.5305 1.61684
794794 2.92035 0.103639
795795 −12.2734 −0.435294
796796 41.9599 1.48723
797797 −9.77694 −0.346317 −0.173159 0.984894i 0.555397π-0.555397\pi
−0.173159 + 0.984894i 0.555397π0.555397\pi
798798 0 0
799799 25.9062 0.916494
800800 −1.91680 −0.0677693
801801 4.72440 0.166928
802802 2.58239 0.0911872
803803 −2.84426 −0.100372
804804 42.6322 1.50352
805805 0 0
806806 −2.55365 −0.0899483
807807 2.72880 0.0960585
808808 9.16140 0.322297
809809 5.43414 0.191054 0.0955272 0.995427i 0.469546π-0.469546\pi
0.0955272 + 0.995427i 0.469546π0.469546\pi
810810 5.46056 0.191865
811811 7.75425 0.272289 0.136144 0.990689i 0.456529π-0.456529\pi
0.136144 + 0.990689i 0.456529π0.456529\pi
812812 0 0
813813 8.96761 0.314508
814814 −0.501354 −0.0175725
815815 −23.9250 −0.838057
816816 −90.9711 −3.18462
817817 −12.2010 −0.426858
818818 −2.19058 −0.0765919
819819 0 0
820820 23.5091 0.820972
821821 53.8309 1.87871 0.939356 0.342944i 0.111424π-0.111424\pi
0.939356 + 0.342944i 0.111424π0.111424\pi
822822 4.27383 0.149067
823823 26.2581 0.915301 0.457650 0.889132i 0.348691π-0.348691\pi
0.457650 + 0.889132i 0.348691π0.348691\pi
824824 −10.3060 −0.359027
825825 −1.43549 −0.0499775
826826 0 0
827827 8.54688 0.297204 0.148602 0.988897i 0.452523π-0.452523\pi
0.148602 + 0.988897i 0.452523π0.452523\pi
828828 −63.1132 −2.19333
829829 −38.6838 −1.34354 −0.671772 0.740758i 0.734467π-0.734467\pi
−0.671772 + 0.740758i 0.734467π0.734467\pi
830830 0.647280 0.0224674
831831 99.5346 3.45282
832832 42.4393 1.47132
833833 0 0
834834 4.54182 0.157270
835835 −5.00493 −0.173203
836836 −0.846688 −0.0292833
837837 47.4356 1.63961
838838 1.63985 0.0566475
839839 39.7958 1.37390 0.686951 0.726704i 0.258949π-0.258949\pi
0.686951 + 0.726704i 0.258949π0.258949\pi
840840 0 0
841841 12.2180 0.421309
842842 4.07072 0.140286
843843 −46.6745 −1.60756
844844 27.0156 0.929915
845845 −20.1364 −0.692712
846846 −4.87849 −0.167726
847847 0 0
848848 −14.0930 −0.483956
849849 −14.3180 −0.491392
850850 −1.15053 −0.0394630
851851 28.0448 0.961364
852852 −17.4713 −0.598556
853853 16.5832 0.567796 0.283898 0.958854i 0.408372π-0.408372\pi
0.283898 + 0.958854i 0.408372π0.408372\pi
854854 0 0
855855 −8.19589 −0.280293
856856 −4.17419 −0.142671
857857 14.6297 0.499740 0.249870 0.968279i 0.419612π-0.419612\pi
0.249870 + 0.968279i 0.419612π0.419612\pi
858858 −1.34353 −0.0458673
859859 55.3776 1.88946 0.944729 0.327852i 0.106325π-0.106325\pi
0.944729 + 0.327852i 0.106325π0.106325\pi
860860 −24.0794 −0.821101
861861 0 0
862862 −2.35555 −0.0802303
863863 −49.6705 −1.69080 −0.845401 0.534132i 0.820638π-0.820638\pi
−0.845401 + 0.534132i 0.820638π0.820638\pi
864864 33.3247 1.13373
865865 −7.41087 −0.251977
866866 −2.14232 −0.0727991
867867 −110.667 −3.75845
868868 0 0
869869 0.696256 0.0236189
870870 −3.49273 −0.118415
871871 −37.1629 −1.25922
872872 −3.29835 −0.111696
873873 −103.775 −3.51225
874874 −0.634403 −0.0214590
875875 0 0
876876 −43.7802 −1.47920
877877 8.24405 0.278382 0.139191 0.990266i 0.455550π-0.455550\pi
0.139191 + 0.990266i 0.455550π0.455550\pi
878878 −0.238290 −0.00804189
879879 80.7741 2.72444
880880 −1.64831 −0.0555645
881881 −31.3524 −1.05629 −0.528145 0.849154i 0.677112π-0.677112\pi
−0.528145 + 0.849154i 0.677112π0.677112\pi
882882 0 0
883883 24.0326 0.808761 0.404381 0.914591i 0.367487π-0.367487\pi
0.404381 + 0.914591i 0.367487π0.367487\pi
884884 80.3916 2.70386
885885 −20.6107 −0.692822
886886 4.56398 0.153330
887887 −9.30530 −0.312441 −0.156221 0.987722i 0.549931π-0.549931\pi
−0.156221 + 0.987722i 0.549931π0.549931\pi
888888 −15.5375 −0.521406
889889 0 0
890890 0.0937223 0.00314158
891891 14.4084 0.482700
892892 −33.2709 −1.11399
893893 3.66097 0.122510
894894 10.3547 0.346313
895895 12.4608 0.416517
896896 0 0
897897 75.1544 2.50933
898898 −3.56627 −0.119008
899899 −17.5170 −0.584223
900900 −16.1751 −0.539171
901901 −25.9563 −0.864731
902902 −0.830900 −0.0276659
903903 0 0
904904 −1.80065 −0.0598886
905905 −2.66274 −0.0885125
906906 6.14456 0.204139
907907 −43.8256 −1.45521 −0.727603 0.685999i 0.759365π-0.759365\pi
−0.727603 + 0.685999i 0.759365π0.759365\pi
908908 −7.79938 −0.258832
909909 116.221 3.85481
910910 0 0
911911 38.8428 1.28692 0.643459 0.765480i 0.277499π-0.277499\pi
0.643459 + 0.765480i 0.277499π0.277499\pi
912912 −12.8557 −0.425695
913913 1.70793 0.0565244
914914 0.783053 0.0259011
915915 −26.4655 −0.874922
916916 −33.8762 −1.11930
917917 0 0
918918 20.0027 0.660188
919919 −46.0432 −1.51882 −0.759412 0.650610i 0.774513π-0.774513\pi
−0.759412 + 0.650610i 0.774513π0.774513\pi
920920 −2.52084 −0.0831097
921921 −47.1641 −1.55411
922922 −6.21339 −0.204627
923923 15.2299 0.501297
924924 0 0
925925 7.18753 0.236325
926926 2.55727 0.0840369
927927 −130.742 −4.29412
928928 −12.3061 −0.403968
929929 33.7831 1.10839 0.554193 0.832388i 0.313027π-0.313027\pi
0.554193 + 0.832388i 0.313027π0.313027\pi
930930 1.48435 0.0486739
931931 0 0
932932 −43.9190 −1.43861
933933 −2.61410 −0.0855817
934934 3.95070 0.129271
935935 −3.03584 −0.0992826
936936 −30.4805 −0.996285
937937 −8.10845 −0.264891 −0.132446 0.991190i 0.542283π-0.542283\pi
−0.132446 + 0.991190i 0.542283π0.542283\pi
938938 0 0
939939 −25.4723 −0.831257
940940 7.22516 0.235659
941941 −19.6784 −0.641498 −0.320749 0.947164i 0.603935π-0.603935\pi
−0.320749 + 0.947164i 0.603935π0.603935\pi
942942 −5.11128 −0.166534
943943 46.4790 1.51356
944944 −23.6663 −0.770274
945945 0 0
946946 0.851058 0.0276703
947947 45.6312 1.48282 0.741408 0.671055i 0.234159π-0.234159\pi
0.741408 + 0.671055i 0.234159π0.234159\pi
948948 10.7171 0.348075
949949 38.1636 1.23884
950950 −0.162590 −0.00527510
951951 18.8562 0.611453
952952 0 0
953953 −21.0135 −0.680696 −0.340348 0.940300i 0.610545π-0.610545\pi
−0.340348 + 0.940300i 0.610545π0.610545\pi
954954 4.88793 0.158253
955955 −10.4654 −0.338651
956956 −34.3944 −1.11240
957957 −9.21604 −0.297912
958958 −4.88587 −0.157855
959959 0 0
960960 −24.6686 −0.796177
961961 −23.5556 −0.759857
962962 6.72706 0.216889
963963 −52.9536 −1.70641
964964 13.9779 0.450197
965965 20.4799 0.659270
966966 0 0
967967 28.6328 0.920769 0.460384 0.887720i 0.347712π-0.347712\pi
0.460384 + 0.887720i 0.347712π0.347712\pi
968968 −6.98775 −0.224595
969969 −23.6775 −0.760631
970970 −2.05868 −0.0661004
971971 16.3552 0.524864 0.262432 0.964950i 0.415475π-0.415475\pi
0.262432 + 0.964950i 0.415475π0.415475\pi
972972 118.847 3.81201
973973 0 0
974974 5.84206 0.187192
975975 19.2611 0.616850
976976 −30.3891 −0.972731
977977 −3.83078 −0.122558 −0.0612788 0.998121i 0.519518π-0.519518\pi
−0.0612788 + 0.998121i 0.519518π0.519518\pi
978978 13.0159 0.416203
979979 0.247299 0.00790371
980980 0 0
981981 −41.8427 −1.33593
982982 −5.05413 −0.161284
983983 52.3305 1.66908 0.834542 0.550945i 0.185733π-0.185733\pi
0.834542 + 0.550945i 0.185733π0.185733\pi
984984 −25.7505 −0.820897
985985 8.24849 0.262819
986986 −7.38657 −0.235236
987987 0 0
988988 11.3607 0.361431
989989 −47.6066 −1.51380
990990 0.571690 0.0181695
991991 0.0540071 0.00171559 0.000857795 1.00000i 0.499727π-0.499727\pi
0.000857795 1.00000i 0.499727π0.499727\pi
992992 5.22990 0.166049
993993 12.4361 0.394649
994994 0 0
995995 21.2610 0.674018
996996 26.2893 0.833010
997997 41.5667 1.31643 0.658215 0.752830i 0.271312π-0.271312\pi
0.658215 + 0.752830i 0.271312π0.271312\pi
998998 2.78123 0.0880383
999999 −124.959 −3.95354
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4655.2.a.br.1.12 26
7.6 odd 2 4655.2.a.bs.1.12 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4655.2.a.br.1.12 26 1.1 even 1 trivial
4655.2.a.bs.1.12 yes 26 7.6 odd 2