Properties

Label 4655.2.a.br.1.12
Level $4655$
Weight $2$
Character 4655.1
Self dual yes
Analytic conductor $37.170$
Analytic rank $0$
Dimension $26$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4655 = 5 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1703621409\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 4655.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.162590 q^{2} -3.34603 q^{3} -1.97356 q^{4} -1.00000 q^{5} +0.544029 q^{6} +0.646060 q^{8} +8.19589 q^{9} +0.162590 q^{10} +0.429014 q^{11} +6.60360 q^{12} -5.75642 q^{13} +3.34603 q^{15} +3.84209 q^{16} +7.07631 q^{17} -1.33257 q^{18} +1.00000 q^{19} +1.97356 q^{20} -0.0697533 q^{22} +3.90187 q^{23} -2.16173 q^{24} +1.00000 q^{25} +0.935934 q^{26} -17.3856 q^{27} +6.42012 q^{29} -0.544029 q^{30} -2.72845 q^{31} -1.91680 q^{32} -1.43549 q^{33} -1.15053 q^{34} -16.1751 q^{36} +7.18753 q^{37} -0.162590 q^{38} +19.2611 q^{39} -0.646060 q^{40} +11.9120 q^{41} -12.2010 q^{43} -0.846688 q^{44} -8.19589 q^{45} -0.634403 q^{46} +3.66097 q^{47} -12.8557 q^{48} -0.162590 q^{50} -23.6775 q^{51} +11.3607 q^{52} -3.66806 q^{53} +2.82671 q^{54} -0.429014 q^{55} -3.34603 q^{57} -1.04385 q^{58} -6.15976 q^{59} -6.60360 q^{60} -7.90953 q^{61} +0.443617 q^{62} -7.37252 q^{64} +5.75642 q^{65} +0.233396 q^{66} +6.45590 q^{67} -13.9656 q^{68} -13.0558 q^{69} -2.64572 q^{71} +5.29504 q^{72} -6.62975 q^{73} -1.16862 q^{74} -3.34603 q^{75} -1.97356 q^{76} -3.13166 q^{78} +1.62292 q^{79} -3.84209 q^{80} +33.5849 q^{81} -1.93676 q^{82} +3.98106 q^{83} -7.07631 q^{85} +1.98375 q^{86} -21.4819 q^{87} +0.277169 q^{88} +0.576435 q^{89} +1.33257 q^{90} -7.70059 q^{92} +9.12945 q^{93} -0.595236 q^{94} -1.00000 q^{95} +6.41368 q^{96} -12.6618 q^{97} +3.51615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 4 q^{2} - 6 q^{3} + 36 q^{4} - 26 q^{5} + 4 q^{6} + 12 q^{8} + 44 q^{9} - 4 q^{10} + 14 q^{11} - 20 q^{12} - 14 q^{13} + 6 q^{15} + 64 q^{16} - 18 q^{17} + 8 q^{18} + 26 q^{19} - 36 q^{20} + 36 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.162590 −0.114968 −0.0574841 0.998346i \(-0.518308\pi\)
−0.0574841 + 0.998346i \(0.518308\pi\)
\(3\) −3.34603 −1.93183 −0.965914 0.258862i \(-0.916653\pi\)
−0.965914 + 0.258862i \(0.916653\pi\)
\(4\) −1.97356 −0.986782
\(5\) −1.00000 −0.447214
\(6\) 0.544029 0.222099
\(7\) 0 0
\(8\) 0.646060 0.228417
\(9\) 8.19589 2.73196
\(10\) 0.162590 0.0514153
\(11\) 0.429014 0.129353 0.0646764 0.997906i \(-0.479398\pi\)
0.0646764 + 0.997906i \(0.479398\pi\)
\(12\) 6.60360 1.90629
\(13\) −5.75642 −1.59654 −0.798272 0.602297i \(-0.794252\pi\)
−0.798272 + 0.602297i \(0.794252\pi\)
\(14\) 0 0
\(15\) 3.34603 0.863940
\(16\) 3.84209 0.960522
\(17\) 7.07631 1.71626 0.858129 0.513435i \(-0.171627\pi\)
0.858129 + 0.513435i \(0.171627\pi\)
\(18\) −1.33257 −0.314089
\(19\) 1.00000 0.229416
\(20\) 1.97356 0.441302
\(21\) 0 0
\(22\) −0.0697533 −0.0148715
\(23\) 3.90187 0.813596 0.406798 0.913518i \(-0.366645\pi\)
0.406798 + 0.913518i \(0.366645\pi\)
\(24\) −2.16173 −0.441262
\(25\) 1.00000 0.200000
\(26\) 0.935934 0.183552
\(27\) −17.3856 −3.34586
\(28\) 0 0
\(29\) 6.42012 1.19219 0.596093 0.802915i \(-0.296719\pi\)
0.596093 + 0.802915i \(0.296719\pi\)
\(30\) −0.544029 −0.0993257
\(31\) −2.72845 −0.490043 −0.245022 0.969518i \(-0.578795\pi\)
−0.245022 + 0.969518i \(0.578795\pi\)
\(32\) −1.91680 −0.338846
\(33\) −1.43549 −0.249887
\(34\) −1.15053 −0.197315
\(35\) 0 0
\(36\) −16.1751 −2.69585
\(37\) 7.18753 1.18162 0.590812 0.806810i \(-0.298808\pi\)
0.590812 + 0.806810i \(0.298808\pi\)
\(38\) −0.162590 −0.0263755
\(39\) 19.2611 3.08425
\(40\) −0.646060 −0.102151
\(41\) 11.9120 1.86034 0.930169 0.367131i \(-0.119660\pi\)
0.930169 + 0.367131i \(0.119660\pi\)
\(42\) 0 0
\(43\) −12.2010 −1.86063 −0.930315 0.366761i \(-0.880467\pi\)
−0.930315 + 0.366761i \(0.880467\pi\)
\(44\) −0.846688 −0.127643
\(45\) −8.19589 −1.22177
\(46\) −0.634403 −0.0935377
\(47\) 3.66097 0.534007 0.267004 0.963696i \(-0.413966\pi\)
0.267004 + 0.963696i \(0.413966\pi\)
\(48\) −12.8557 −1.85556
\(49\) 0 0
\(50\) −0.162590 −0.0229936
\(51\) −23.6775 −3.31552
\(52\) 11.3607 1.57544
\(53\) −3.66806 −0.503847 −0.251923 0.967747i \(-0.581063\pi\)
−0.251923 + 0.967747i \(0.581063\pi\)
\(54\) 2.82671 0.384667
\(55\) −0.429014 −0.0578483
\(56\) 0 0
\(57\) −3.34603 −0.443192
\(58\) −1.04385 −0.137064
\(59\) −6.15976 −0.801933 −0.400967 0.916093i \(-0.631326\pi\)
−0.400967 + 0.916093i \(0.631326\pi\)
\(60\) −6.60360 −0.852521
\(61\) −7.90953 −1.01271 −0.506355 0.862325i \(-0.669008\pi\)
−0.506355 + 0.862325i \(0.669008\pi\)
\(62\) 0.443617 0.0563394
\(63\) 0 0
\(64\) −7.37252 −0.921565
\(65\) 5.75642 0.713996
\(66\) 0.233396 0.0287291
\(67\) 6.45590 0.788714 0.394357 0.918957i \(-0.370967\pi\)
0.394357 + 0.918957i \(0.370967\pi\)
\(68\) −13.9656 −1.69357
\(69\) −13.0558 −1.57173
\(70\) 0 0
\(71\) −2.64572 −0.313989 −0.156995 0.987599i \(-0.550180\pi\)
−0.156995 + 0.987599i \(0.550180\pi\)
\(72\) 5.29504 0.624026
\(73\) −6.62975 −0.775954 −0.387977 0.921669i \(-0.626826\pi\)
−0.387977 + 0.921669i \(0.626826\pi\)
\(74\) −1.16862 −0.135849
\(75\) −3.34603 −0.386366
\(76\) −1.97356 −0.226383
\(77\) 0 0
\(78\) −3.13166 −0.354591
\(79\) 1.62292 0.182593 0.0912963 0.995824i \(-0.470899\pi\)
0.0912963 + 0.995824i \(0.470899\pi\)
\(80\) −3.84209 −0.429558
\(81\) 33.5849 3.73166
\(82\) −1.93676 −0.213880
\(83\) 3.98106 0.436979 0.218489 0.975839i \(-0.429887\pi\)
0.218489 + 0.975839i \(0.429887\pi\)
\(84\) 0 0
\(85\) −7.07631 −0.767534
\(86\) 1.98375 0.213913
\(87\) −21.4819 −2.30310
\(88\) 0.277169 0.0295463
\(89\) 0.576435 0.0611020 0.0305510 0.999533i \(-0.490274\pi\)
0.0305510 + 0.999533i \(0.490274\pi\)
\(90\) 1.33257 0.140465
\(91\) 0 0
\(92\) −7.70059 −0.802842
\(93\) 9.12945 0.946680
\(94\) −0.595236 −0.0613939
\(95\) −1.00000 −0.102598
\(96\) 6.41368 0.654593
\(97\) −12.6618 −1.28562 −0.642808 0.766027i \(-0.722231\pi\)
−0.642808 + 0.766027i \(0.722231\pi\)
\(98\) 0 0
\(99\) 3.51615 0.353387
\(100\) −1.97356 −0.197356
\(101\) 14.1804 1.41100 0.705501 0.708708i \(-0.250722\pi\)
0.705501 + 0.708708i \(0.250722\pi\)
\(102\) 3.84972 0.381179
\(103\) −15.9521 −1.57181 −0.785903 0.618350i \(-0.787802\pi\)
−0.785903 + 0.618350i \(0.787802\pi\)
\(104\) −3.71899 −0.364677
\(105\) 0 0
\(106\) 0.596389 0.0579264
\(107\) −6.46100 −0.624608 −0.312304 0.949982i \(-0.601101\pi\)
−0.312304 + 0.949982i \(0.601101\pi\)
\(108\) 34.3116 3.30163
\(109\) −5.10533 −0.489002 −0.244501 0.969649i \(-0.578624\pi\)
−0.244501 + 0.969649i \(0.578624\pi\)
\(110\) 0.0697533 0.00665072
\(111\) −24.0497 −2.28269
\(112\) 0 0
\(113\) −2.78712 −0.262190 −0.131095 0.991370i \(-0.541849\pi\)
−0.131095 + 0.991370i \(0.541849\pi\)
\(114\) 0.544029 0.0509530
\(115\) −3.90187 −0.363851
\(116\) −12.6705 −1.17643
\(117\) −47.1790 −4.36170
\(118\) 1.00151 0.0921968
\(119\) 0 0
\(120\) 2.16173 0.197338
\(121\) −10.8159 −0.983268
\(122\) 1.28601 0.116430
\(123\) −39.8578 −3.59386
\(124\) 5.38477 0.483566
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −1.78740 −0.158606 −0.0793029 0.996851i \(-0.525269\pi\)
−0.0793029 + 0.996851i \(0.525269\pi\)
\(128\) 5.03230 0.444797
\(129\) 40.8248 3.59442
\(130\) −0.935934 −0.0820868
\(131\) 11.6846 1.02089 0.510443 0.859912i \(-0.329482\pi\)
0.510443 + 0.859912i \(0.329482\pi\)
\(132\) 2.83304 0.246584
\(133\) 0 0
\(134\) −1.04966 −0.0906770
\(135\) 17.3856 1.49631
\(136\) 4.57172 0.392022
\(137\) 7.85588 0.671173 0.335587 0.942009i \(-0.391065\pi\)
0.335587 + 0.942009i \(0.391065\pi\)
\(138\) 2.12273 0.180699
\(139\) 8.34848 0.708109 0.354055 0.935225i \(-0.384803\pi\)
0.354055 + 0.935225i \(0.384803\pi\)
\(140\) 0 0
\(141\) −12.2497 −1.03161
\(142\) 0.430166 0.0360988
\(143\) −2.46959 −0.206517
\(144\) 31.4893 2.62411
\(145\) −6.42012 −0.533162
\(146\) 1.07793 0.0892100
\(147\) 0 0
\(148\) −14.1851 −1.16600
\(149\) 19.0334 1.55927 0.779637 0.626232i \(-0.215404\pi\)
0.779637 + 0.626232i \(0.215404\pi\)
\(150\) 0.544029 0.0444198
\(151\) 11.2945 0.919137 0.459569 0.888142i \(-0.348004\pi\)
0.459569 + 0.888142i \(0.348004\pi\)
\(152\) 0.646060 0.0524024
\(153\) 57.9967 4.68875
\(154\) 0 0
\(155\) 2.72845 0.219154
\(156\) −38.0131 −3.04348
\(157\) −9.39523 −0.749821 −0.374910 0.927061i \(-0.622327\pi\)
−0.374910 + 0.927061i \(0.622327\pi\)
\(158\) −0.263870 −0.0209924
\(159\) 12.2734 0.973346
\(160\) 1.91680 0.151537
\(161\) 0 0
\(162\) −5.46056 −0.429022
\(163\) 23.9250 1.87395 0.936976 0.349393i \(-0.113612\pi\)
0.936976 + 0.349393i \(0.113612\pi\)
\(164\) −23.5091 −1.83575
\(165\) 1.43549 0.111753
\(166\) −0.647280 −0.0502386
\(167\) 5.00493 0.387293 0.193646 0.981071i \(-0.437969\pi\)
0.193646 + 0.981071i \(0.437969\pi\)
\(168\) 0 0
\(169\) 20.1364 1.54895
\(170\) 1.15053 0.0882420
\(171\) 8.19589 0.626755
\(172\) 24.0794 1.83604
\(173\) 7.41087 0.563438 0.281719 0.959497i \(-0.409095\pi\)
0.281719 + 0.959497i \(0.409095\pi\)
\(174\) 3.49273 0.264783
\(175\) 0 0
\(176\) 1.64831 0.124246
\(177\) 20.6107 1.54920
\(178\) −0.0937223 −0.00702478
\(179\) −12.4608 −0.931360 −0.465680 0.884953i \(-0.654190\pi\)
−0.465680 + 0.884953i \(0.654190\pi\)
\(180\) 16.1751 1.20562
\(181\) 2.66274 0.197920 0.0989600 0.995091i \(-0.468448\pi\)
0.0989600 + 0.995091i \(0.468448\pi\)
\(182\) 0 0
\(183\) 26.4655 1.95638
\(184\) 2.52084 0.185839
\(185\) −7.18753 −0.528438
\(186\) −1.48435 −0.108838
\(187\) 3.03584 0.222003
\(188\) −7.22516 −0.526949
\(189\) 0 0
\(190\) 0.162590 0.0117955
\(191\) 10.4654 0.757247 0.378623 0.925551i \(-0.376398\pi\)
0.378623 + 0.925551i \(0.376398\pi\)
\(192\) 24.6686 1.78031
\(193\) −20.4799 −1.47417 −0.737086 0.675799i \(-0.763799\pi\)
−0.737086 + 0.675799i \(0.763799\pi\)
\(194\) 2.05868 0.147805
\(195\) −19.2611 −1.37932
\(196\) 0 0
\(197\) −8.24849 −0.587681 −0.293840 0.955855i \(-0.594933\pi\)
−0.293840 + 0.955855i \(0.594933\pi\)
\(198\) −0.571690 −0.0406283
\(199\) −21.2610 −1.50715 −0.753575 0.657362i \(-0.771672\pi\)
−0.753575 + 0.657362i \(0.771672\pi\)
\(200\) 0.646060 0.0456834
\(201\) −21.6016 −1.52366
\(202\) −2.30559 −0.162220
\(203\) 0 0
\(204\) 46.7291 3.27169
\(205\) −11.9120 −0.831969
\(206\) 2.59364 0.180708
\(207\) 31.9793 2.22271
\(208\) −22.1167 −1.53351
\(209\) 0.429014 0.0296756
\(210\) 0 0
\(211\) −13.6887 −0.942371 −0.471185 0.882034i \(-0.656174\pi\)
−0.471185 + 0.882034i \(0.656174\pi\)
\(212\) 7.23915 0.497187
\(213\) 8.85264 0.606573
\(214\) 1.05049 0.0718101
\(215\) 12.2010 0.832099
\(216\) −11.2321 −0.764250
\(217\) 0 0
\(218\) 0.830074 0.0562197
\(219\) 22.1833 1.49901
\(220\) 0.846688 0.0570837
\(221\) −40.7342 −2.74008
\(222\) 3.91023 0.262437
\(223\) 16.8583 1.12892 0.564458 0.825462i \(-0.309085\pi\)
0.564458 + 0.825462i \(0.309085\pi\)
\(224\) 0 0
\(225\) 8.19589 0.546393
\(226\) 0.453156 0.0301435
\(227\) 3.95193 0.262299 0.131149 0.991363i \(-0.458133\pi\)
0.131149 + 0.991363i \(0.458133\pi\)
\(228\) 6.60360 0.437334
\(229\) 17.1650 1.13429 0.567147 0.823617i \(-0.308047\pi\)
0.567147 + 0.823617i \(0.308047\pi\)
\(230\) 0.634403 0.0418313
\(231\) 0 0
\(232\) 4.14779 0.272315
\(233\) 22.2536 1.45788 0.728942 0.684576i \(-0.240013\pi\)
0.728942 + 0.684576i \(0.240013\pi\)
\(234\) 7.67081 0.501457
\(235\) −3.66097 −0.238815
\(236\) 12.1567 0.791333
\(237\) −5.43033 −0.352738
\(238\) 0 0
\(239\) 17.4276 1.12730 0.563648 0.826015i \(-0.309397\pi\)
0.563648 + 0.826015i \(0.309397\pi\)
\(240\) 12.8557 0.829833
\(241\) −7.08256 −0.456228 −0.228114 0.973634i \(-0.573256\pi\)
−0.228114 + 0.973634i \(0.573256\pi\)
\(242\) 1.75856 0.113045
\(243\) −60.2193 −3.86307
\(244\) 15.6100 0.999325
\(245\) 0 0
\(246\) 6.48046 0.413179
\(247\) −5.75642 −0.366272
\(248\) −1.76274 −0.111934
\(249\) −13.3207 −0.844168
\(250\) 0.162590 0.0102831
\(251\) −10.6832 −0.674318 −0.337159 0.941448i \(-0.609466\pi\)
−0.337159 + 0.941448i \(0.609466\pi\)
\(252\) 0 0
\(253\) 1.67396 0.105241
\(254\) 0.290612 0.0182346
\(255\) 23.6775 1.48274
\(256\) 13.9268 0.870428
\(257\) 17.5873 1.09707 0.548533 0.836129i \(-0.315186\pi\)
0.548533 + 0.836129i \(0.315186\pi\)
\(258\) −6.63768 −0.413244
\(259\) 0 0
\(260\) −11.3607 −0.704559
\(261\) 52.6186 3.25701
\(262\) −1.89979 −0.117369
\(263\) −10.8490 −0.668980 −0.334490 0.942399i \(-0.608564\pi\)
−0.334490 + 0.942399i \(0.608564\pi\)
\(264\) −0.927415 −0.0570785
\(265\) 3.66806 0.225327
\(266\) 0 0
\(267\) −1.92877 −0.118039
\(268\) −12.7411 −0.778289
\(269\) −0.815536 −0.0497241 −0.0248621 0.999691i \(-0.507915\pi\)
−0.0248621 + 0.999691i \(0.507915\pi\)
\(270\) −2.82671 −0.172028
\(271\) −2.68008 −0.162803 −0.0814016 0.996681i \(-0.525940\pi\)
−0.0814016 + 0.996681i \(0.525940\pi\)
\(272\) 27.1878 1.64850
\(273\) 0 0
\(274\) −1.27728 −0.0771636
\(275\) 0.429014 0.0258705
\(276\) 25.7664 1.55095
\(277\) −29.7471 −1.78733 −0.893665 0.448735i \(-0.851875\pi\)
−0.893665 + 0.448735i \(0.851875\pi\)
\(278\) −1.35738 −0.0814100
\(279\) −22.3620 −1.33878
\(280\) 0 0
\(281\) 13.9492 0.832142 0.416071 0.909332i \(-0.363407\pi\)
0.416071 + 0.909332i \(0.363407\pi\)
\(282\) 1.99167 0.118602
\(283\) 4.27910 0.254366 0.127183 0.991879i \(-0.459406\pi\)
0.127183 + 0.991879i \(0.459406\pi\)
\(284\) 5.22150 0.309839
\(285\) 3.34603 0.198201
\(286\) 0.401529 0.0237429
\(287\) 0 0
\(288\) −15.7099 −0.925715
\(289\) 33.0742 1.94554
\(290\) 1.04385 0.0612967
\(291\) 42.3669 2.48359
\(292\) 13.0842 0.765697
\(293\) −24.1403 −1.41029 −0.705146 0.709062i \(-0.749119\pi\)
−0.705146 + 0.709062i \(0.749119\pi\)
\(294\) 0 0
\(295\) 6.15976 0.358635
\(296\) 4.64358 0.269903
\(297\) −7.45866 −0.432796
\(298\) −3.09463 −0.179267
\(299\) −22.4608 −1.29894
\(300\) 6.60360 0.381259
\(301\) 0 0
\(302\) −1.83638 −0.105672
\(303\) −47.4480 −2.72582
\(304\) 3.84209 0.220359
\(305\) 7.90953 0.452898
\(306\) −9.42965 −0.539057
\(307\) 14.0955 0.804475 0.402238 0.915535i \(-0.368233\pi\)
0.402238 + 0.915535i \(0.368233\pi\)
\(308\) 0 0
\(309\) 53.3761 3.03646
\(310\) −0.443617 −0.0251958
\(311\) 0.781255 0.0443009 0.0221504 0.999755i \(-0.492949\pi\)
0.0221504 + 0.999755i \(0.492949\pi\)
\(312\) 12.4439 0.704494
\(313\) 7.61271 0.430296 0.215148 0.976581i \(-0.430977\pi\)
0.215148 + 0.976581i \(0.430977\pi\)
\(314\) 1.52757 0.0862056
\(315\) 0 0
\(316\) −3.20294 −0.180179
\(317\) −5.63539 −0.316515 −0.158258 0.987398i \(-0.550588\pi\)
−0.158258 + 0.987398i \(0.550588\pi\)
\(318\) −1.99553 −0.111904
\(319\) 2.75433 0.154213
\(320\) 7.37252 0.412136
\(321\) 21.6187 1.20664
\(322\) 0 0
\(323\) 7.07631 0.393736
\(324\) −66.2820 −3.68233
\(325\) −5.75642 −0.319309
\(326\) −3.88996 −0.215445
\(327\) 17.0826 0.944668
\(328\) 7.69586 0.424933
\(329\) 0 0
\(330\) −0.233396 −0.0128480
\(331\) −3.71669 −0.204288 −0.102144 0.994770i \(-0.532570\pi\)
−0.102144 + 0.994770i \(0.532570\pi\)
\(332\) −7.85689 −0.431203
\(333\) 58.9082 3.22815
\(334\) −0.813749 −0.0445264
\(335\) −6.45590 −0.352724
\(336\) 0 0
\(337\) 10.5696 0.575762 0.287881 0.957666i \(-0.407049\pi\)
0.287881 + 0.957666i \(0.407049\pi\)
\(338\) −3.27396 −0.178080
\(339\) 9.32577 0.506506
\(340\) 13.9656 0.757389
\(341\) −1.17054 −0.0633885
\(342\) −1.33257 −0.0720569
\(343\) 0 0
\(344\) −7.88256 −0.424999
\(345\) 13.0558 0.702898
\(346\) −1.20493 −0.0647775
\(347\) −26.0140 −1.39650 −0.698251 0.715853i \(-0.746038\pi\)
−0.698251 + 0.715853i \(0.746038\pi\)
\(348\) 42.3959 2.27266
\(349\) −4.54860 −0.243481 −0.121741 0.992562i \(-0.538848\pi\)
−0.121741 + 0.992562i \(0.538848\pi\)
\(350\) 0 0
\(351\) 100.079 5.34180
\(352\) −0.822337 −0.0438307
\(353\) 9.75866 0.519401 0.259701 0.965689i \(-0.416376\pi\)
0.259701 + 0.965689i \(0.416376\pi\)
\(354\) −3.35109 −0.178108
\(355\) 2.64572 0.140420
\(356\) −1.13763 −0.0602943
\(357\) 0 0
\(358\) 2.02599 0.107077
\(359\) −11.7831 −0.621888 −0.310944 0.950428i \(-0.600645\pi\)
−0.310944 + 0.950428i \(0.600645\pi\)
\(360\) −5.29504 −0.279073
\(361\) 1.00000 0.0526316
\(362\) −0.432934 −0.0227545
\(363\) 36.1904 1.89951
\(364\) 0 0
\(365\) 6.62975 0.347017
\(366\) −4.30301 −0.224922
\(367\) 28.7505 1.50076 0.750382 0.661004i \(-0.229869\pi\)
0.750382 + 0.661004i \(0.229869\pi\)
\(368\) 14.9913 0.781476
\(369\) 97.6293 5.08238
\(370\) 1.16862 0.0607536
\(371\) 0 0
\(372\) −18.0176 −0.934167
\(373\) 31.9527 1.65445 0.827223 0.561874i \(-0.189919\pi\)
0.827223 + 0.561874i \(0.189919\pi\)
\(374\) −0.493596 −0.0255232
\(375\) 3.34603 0.172788
\(376\) 2.36521 0.121976
\(377\) −36.9569 −1.90338
\(378\) 0 0
\(379\) −12.8469 −0.659901 −0.329951 0.943998i \(-0.607032\pi\)
−0.329951 + 0.943998i \(0.607032\pi\)
\(380\) 1.97356 0.101242
\(381\) 5.98068 0.306399
\(382\) −1.70156 −0.0870593
\(383\) 2.36576 0.120885 0.0604423 0.998172i \(-0.480749\pi\)
0.0604423 + 0.998172i \(0.480749\pi\)
\(384\) −16.8382 −0.859272
\(385\) 0 0
\(386\) 3.32981 0.169483
\(387\) −99.9978 −5.08317
\(388\) 24.9890 1.26862
\(389\) 13.4160 0.680219 0.340110 0.940386i \(-0.389536\pi\)
0.340110 + 0.940386i \(0.389536\pi\)
\(390\) 3.13166 0.158578
\(391\) 27.6108 1.39634
\(392\) 0 0
\(393\) −39.0969 −1.97218
\(394\) 1.34112 0.0675646
\(395\) −1.62292 −0.0816579
\(396\) −6.93936 −0.348716
\(397\) −17.9615 −0.901461 −0.450730 0.892660i \(-0.648836\pi\)
−0.450730 + 0.892660i \(0.648836\pi\)
\(398\) 3.45681 0.173274
\(399\) 0 0
\(400\) 3.84209 0.192104
\(401\) −15.8829 −0.793152 −0.396576 0.918002i \(-0.629802\pi\)
−0.396576 + 0.918002i \(0.629802\pi\)
\(402\) 3.51220 0.175172
\(403\) 15.7061 0.782376
\(404\) −27.9859 −1.39235
\(405\) −33.5849 −1.66885
\(406\) 0 0
\(407\) 3.08356 0.152846
\(408\) −15.2971 −0.757320
\(409\) 13.4731 0.666201 0.333101 0.942891i \(-0.391905\pi\)
0.333101 + 0.942891i \(0.391905\pi\)
\(410\) 1.93676 0.0956500
\(411\) −26.2860 −1.29659
\(412\) 31.4825 1.55103
\(413\) 0 0
\(414\) −5.19950 −0.255541
\(415\) −3.98106 −0.195423
\(416\) 11.0339 0.540983
\(417\) −27.9342 −1.36795
\(418\) −0.0697533 −0.00341175
\(419\) −10.0858 −0.492723 −0.246362 0.969178i \(-0.579235\pi\)
−0.246362 + 0.969178i \(0.579235\pi\)
\(420\) 0 0
\(421\) −25.0368 −1.22022 −0.610110 0.792317i \(-0.708875\pi\)
−0.610110 + 0.792317i \(0.708875\pi\)
\(422\) 2.22564 0.108343
\(423\) 30.0049 1.45889
\(424\) −2.36979 −0.115087
\(425\) 7.07631 0.343251
\(426\) −1.43935 −0.0697366
\(427\) 0 0
\(428\) 12.7512 0.616352
\(429\) 8.26330 0.398956
\(430\) −1.98375 −0.0956650
\(431\) 14.4877 0.697848 0.348924 0.937151i \(-0.386547\pi\)
0.348924 + 0.937151i \(0.386547\pi\)
\(432\) −66.7969 −3.21377
\(433\) 13.1763 0.633211 0.316605 0.948557i \(-0.397457\pi\)
0.316605 + 0.948557i \(0.397457\pi\)
\(434\) 0 0
\(435\) 21.4819 1.02998
\(436\) 10.0757 0.482538
\(437\) 3.90187 0.186652
\(438\) −3.60678 −0.172338
\(439\) 1.46559 0.0699488 0.0349744 0.999388i \(-0.488865\pi\)
0.0349744 + 0.999388i \(0.488865\pi\)
\(440\) −0.277169 −0.0132135
\(441\) 0 0
\(442\) 6.62296 0.315022
\(443\) −28.0706 −1.33367 −0.666837 0.745204i \(-0.732352\pi\)
−0.666837 + 0.745204i \(0.732352\pi\)
\(444\) 47.4636 2.25252
\(445\) −0.576435 −0.0273256
\(446\) −2.74098 −0.129789
\(447\) −63.6861 −3.01225
\(448\) 0 0
\(449\) 21.9342 1.03514 0.517569 0.855642i \(-0.326837\pi\)
0.517569 + 0.855642i \(0.326837\pi\)
\(450\) −1.33257 −0.0628178
\(451\) 5.11041 0.240640
\(452\) 5.50056 0.258724
\(453\) −37.7918 −1.77562
\(454\) −0.642542 −0.0301560
\(455\) 0 0
\(456\) −2.16173 −0.101232
\(457\) −4.81613 −0.225289 −0.112645 0.993635i \(-0.535932\pi\)
−0.112645 + 0.993635i \(0.535932\pi\)
\(458\) −2.79085 −0.130408
\(459\) −123.026 −5.74235
\(460\) 7.70059 0.359042
\(461\) 38.2152 1.77986 0.889930 0.456098i \(-0.150753\pi\)
0.889930 + 0.456098i \(0.150753\pi\)
\(462\) 0 0
\(463\) −15.7283 −0.730958 −0.365479 0.930820i \(-0.619095\pi\)
−0.365479 + 0.930820i \(0.619095\pi\)
\(464\) 24.6667 1.14512
\(465\) −9.12945 −0.423368
\(466\) −3.61821 −0.167610
\(467\) −24.2986 −1.12441 −0.562203 0.826999i \(-0.690046\pi\)
−0.562203 + 0.826999i \(0.690046\pi\)
\(468\) 93.1108 4.30405
\(469\) 0 0
\(470\) 0.595236 0.0274562
\(471\) 31.4367 1.44853
\(472\) −3.97958 −0.183175
\(473\) −5.23439 −0.240678
\(474\) 0.882915 0.0405536
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −30.0630 −1.37649
\(478\) −2.83354 −0.129603
\(479\) 30.0503 1.37303 0.686517 0.727113i \(-0.259139\pi\)
0.686517 + 0.727113i \(0.259139\pi\)
\(480\) −6.41368 −0.292743
\(481\) −41.3745 −1.88651
\(482\) 1.15155 0.0524517
\(483\) 0 0
\(484\) 21.3460 0.970271
\(485\) 12.6618 0.574945
\(486\) 9.79103 0.444130
\(487\) −35.9313 −1.62820 −0.814101 0.580723i \(-0.802770\pi\)
−0.814101 + 0.580723i \(0.802770\pi\)
\(488\) −5.11003 −0.231320
\(489\) −80.0537 −3.62016
\(490\) 0 0
\(491\) 31.0852 1.40286 0.701428 0.712740i \(-0.252546\pi\)
0.701428 + 0.712740i \(0.252546\pi\)
\(492\) 78.6619 3.54635
\(493\) 45.4308 2.04610
\(494\) 0.935934 0.0421097
\(495\) −3.51615 −0.158039
\(496\) −10.4829 −0.470697
\(497\) 0 0
\(498\) 2.16581 0.0970525
\(499\) −17.1058 −0.765762 −0.382881 0.923798i \(-0.625068\pi\)
−0.382881 + 0.923798i \(0.625068\pi\)
\(500\) 1.97356 0.0882605
\(501\) −16.7466 −0.748183
\(502\) 1.73698 0.0775251
\(503\) 1.78210 0.0794601 0.0397301 0.999210i \(-0.487350\pi\)
0.0397301 + 0.999210i \(0.487350\pi\)
\(504\) 0 0
\(505\) −14.1804 −0.631020
\(506\) −0.272168 −0.0120994
\(507\) −67.3768 −2.99231
\(508\) 3.52754 0.156509
\(509\) 13.0626 0.578990 0.289495 0.957179i \(-0.406513\pi\)
0.289495 + 0.957179i \(0.406513\pi\)
\(510\) −3.84972 −0.170468
\(511\) 0 0
\(512\) −12.3290 −0.544868
\(513\) −17.3856 −0.767592
\(514\) −2.85951 −0.126128
\(515\) 15.9521 0.702933
\(516\) −80.5703 −3.54691
\(517\) 1.57061 0.0690753
\(518\) 0 0
\(519\) −24.7970 −1.08847
\(520\) 3.71899 0.163089
\(521\) −18.0147 −0.789238 −0.394619 0.918845i \(-0.629123\pi\)
−0.394619 + 0.918845i \(0.629123\pi\)
\(522\) −8.55524 −0.374453
\(523\) 3.60602 0.157680 0.0788401 0.996887i \(-0.474878\pi\)
0.0788401 + 0.996887i \(0.474878\pi\)
\(524\) −23.0602 −1.00739
\(525\) 0 0
\(526\) 1.76394 0.0769115
\(527\) −19.3073 −0.841041
\(528\) −5.51529 −0.240022
\(529\) −7.77542 −0.338062
\(530\) −0.596389 −0.0259055
\(531\) −50.4847 −2.19085
\(532\) 0 0
\(533\) −68.5704 −2.97011
\(534\) 0.313597 0.0135707
\(535\) 6.46100 0.279333
\(536\) 4.17090 0.180156
\(537\) 41.6940 1.79923
\(538\) 0.132598 0.00571669
\(539\) 0 0
\(540\) −34.3116 −1.47653
\(541\) 10.2231 0.439526 0.219763 0.975553i \(-0.429472\pi\)
0.219763 + 0.975553i \(0.429472\pi\)
\(542\) 0.435753 0.0187172
\(543\) −8.90960 −0.382347
\(544\) −13.5639 −0.581547
\(545\) 5.10533 0.218688
\(546\) 0 0
\(547\) 8.44524 0.361092 0.180546 0.983567i \(-0.442213\pi\)
0.180546 + 0.983567i \(0.442213\pi\)
\(548\) −15.5041 −0.662302
\(549\) −64.8256 −2.76669
\(550\) −0.0697533 −0.00297429
\(551\) 6.42012 0.273506
\(552\) −8.43480 −0.359009
\(553\) 0 0
\(554\) 4.83657 0.205486
\(555\) 24.0497 1.02085
\(556\) −16.4763 −0.698749
\(557\) 7.84656 0.332469 0.166235 0.986086i \(-0.446839\pi\)
0.166235 + 0.986086i \(0.446839\pi\)
\(558\) 3.63584 0.153917
\(559\) 70.2339 2.97058
\(560\) 0 0
\(561\) −10.1580 −0.428871
\(562\) −2.26800 −0.0956699
\(563\) −29.1855 −1.23002 −0.615012 0.788518i \(-0.710849\pi\)
−0.615012 + 0.788518i \(0.710849\pi\)
\(564\) 24.1756 1.01798
\(565\) 2.78712 0.117255
\(566\) −0.695737 −0.0292440
\(567\) 0 0
\(568\) −1.70929 −0.0717204
\(569\) 26.6848 1.11869 0.559343 0.828936i \(-0.311053\pi\)
0.559343 + 0.828936i \(0.311053\pi\)
\(570\) −0.544029 −0.0227869
\(571\) −4.24457 −0.177630 −0.0888148 0.996048i \(-0.528308\pi\)
−0.0888148 + 0.996048i \(0.528308\pi\)
\(572\) 4.87389 0.203788
\(573\) −35.0174 −1.46287
\(574\) 0 0
\(575\) 3.90187 0.162719
\(576\) −60.4244 −2.51768
\(577\) −38.4331 −1.59999 −0.799995 0.600006i \(-0.795165\pi\)
−0.799995 + 0.600006i \(0.795165\pi\)
\(578\) −5.37752 −0.223675
\(579\) 68.5261 2.84785
\(580\) 12.6705 0.526115
\(581\) 0 0
\(582\) −6.88841 −0.285534
\(583\) −1.57365 −0.0651740
\(584\) −4.28322 −0.177241
\(585\) 47.1790 1.95061
\(586\) 3.92497 0.162139
\(587\) 33.0878 1.36568 0.682841 0.730567i \(-0.260744\pi\)
0.682841 + 0.730567i \(0.260744\pi\)
\(588\) 0 0
\(589\) −2.72845 −0.112424
\(590\) −1.00151 −0.0412317
\(591\) 27.5997 1.13530
\(592\) 27.6151 1.13497
\(593\) 38.8212 1.59420 0.797098 0.603850i \(-0.206367\pi\)
0.797098 + 0.603850i \(0.206367\pi\)
\(594\) 1.21270 0.0497577
\(595\) 0 0
\(596\) −37.5636 −1.53866
\(597\) 71.1397 2.91155
\(598\) 3.65189 0.149337
\(599\) −1.94592 −0.0795083 −0.0397541 0.999209i \(-0.512657\pi\)
−0.0397541 + 0.999209i \(0.512657\pi\)
\(600\) −2.16173 −0.0882524
\(601\) 10.5788 0.431518 0.215759 0.976447i \(-0.430777\pi\)
0.215759 + 0.976447i \(0.430777\pi\)
\(602\) 0 0
\(603\) 52.9118 2.15474
\(604\) −22.2905 −0.906988
\(605\) 10.8159 0.439731
\(606\) 7.71455 0.313382
\(607\) −7.81398 −0.317160 −0.158580 0.987346i \(-0.550692\pi\)
−0.158580 + 0.987346i \(0.550692\pi\)
\(608\) −1.91680 −0.0777367
\(609\) 0 0
\(610\) −1.28601 −0.0520689
\(611\) −21.0741 −0.852566
\(612\) −114.460 −4.62678
\(613\) −7.61718 −0.307655 −0.153827 0.988098i \(-0.549160\pi\)
−0.153827 + 0.988098i \(0.549160\pi\)
\(614\) −2.29179 −0.0924891
\(615\) 39.8578 1.60722
\(616\) 0 0
\(617\) −5.97061 −0.240368 −0.120184 0.992752i \(-0.538348\pi\)
−0.120184 + 0.992752i \(0.538348\pi\)
\(618\) −8.67840 −0.349097
\(619\) −13.6068 −0.546904 −0.273452 0.961886i \(-0.588165\pi\)
−0.273452 + 0.961886i \(0.588165\pi\)
\(620\) −5.38477 −0.216257
\(621\) −67.8362 −2.72217
\(622\) −0.127024 −0.00509319
\(623\) 0 0
\(624\) 74.0029 2.96249
\(625\) 1.00000 0.0400000
\(626\) −1.23775 −0.0494703
\(627\) −1.43549 −0.0573281
\(628\) 18.5421 0.739910
\(629\) 50.8612 2.02797
\(630\) 0 0
\(631\) −32.1031 −1.27801 −0.639003 0.769204i \(-0.720653\pi\)
−0.639003 + 0.769204i \(0.720653\pi\)
\(632\) 1.04850 0.0417072
\(633\) 45.8028 1.82050
\(634\) 0.916257 0.0363892
\(635\) 1.78740 0.0709307
\(636\) −24.2224 −0.960481
\(637\) 0 0
\(638\) −0.447825 −0.0177295
\(639\) −21.6840 −0.857806
\(640\) −5.03230 −0.198919
\(641\) −27.3440 −1.08002 −0.540012 0.841657i \(-0.681580\pi\)
−0.540012 + 0.841657i \(0.681580\pi\)
\(642\) −3.51497 −0.138725
\(643\) 8.25125 0.325397 0.162699 0.986676i \(-0.447980\pi\)
0.162699 + 0.986676i \(0.447980\pi\)
\(644\) 0 0
\(645\) −40.8248 −1.60747
\(646\) −1.15053 −0.0452672
\(647\) 33.9053 1.33295 0.666476 0.745526i \(-0.267802\pi\)
0.666476 + 0.745526i \(0.267802\pi\)
\(648\) 21.6979 0.852374
\(649\) −2.64263 −0.103732
\(650\) 0.935934 0.0367104
\(651\) 0 0
\(652\) −47.2176 −1.84918
\(653\) 5.26328 0.205968 0.102984 0.994683i \(-0.467161\pi\)
0.102984 + 0.994683i \(0.467161\pi\)
\(654\) −2.77745 −0.108607
\(655\) −11.6846 −0.456554
\(656\) 45.7669 1.78690
\(657\) −54.3367 −2.11988
\(658\) 0 0
\(659\) −27.0002 −1.05178 −0.525890 0.850553i \(-0.676268\pi\)
−0.525890 + 0.850553i \(0.676268\pi\)
\(660\) −2.83304 −0.110276
\(661\) 38.0408 1.47962 0.739808 0.672818i \(-0.234916\pi\)
0.739808 + 0.672818i \(0.234916\pi\)
\(662\) 0.604295 0.0234866
\(663\) 136.298 5.29336
\(664\) 2.57201 0.0998133
\(665\) 0 0
\(666\) −9.57787 −0.371135
\(667\) 25.0505 0.969958
\(668\) −9.87754 −0.382174
\(669\) −56.4083 −2.18087
\(670\) 1.04966 0.0405520
\(671\) −3.39330 −0.130997
\(672\) 0 0
\(673\) −1.52284 −0.0587011 −0.0293505 0.999569i \(-0.509344\pi\)
−0.0293505 + 0.999569i \(0.509344\pi\)
\(674\) −1.71850 −0.0661943
\(675\) −17.3856 −0.669171
\(676\) −39.7404 −1.52848
\(677\) −3.81536 −0.146636 −0.0733182 0.997309i \(-0.523359\pi\)
−0.0733182 + 0.997309i \(0.523359\pi\)
\(678\) −1.51627 −0.0582321
\(679\) 0 0
\(680\) −4.57172 −0.175318
\(681\) −13.2232 −0.506716
\(682\) 0.190318 0.00728766
\(683\) −37.8095 −1.44674 −0.723370 0.690460i \(-0.757408\pi\)
−0.723370 + 0.690460i \(0.757408\pi\)
\(684\) −16.1751 −0.618471
\(685\) −7.85588 −0.300158
\(686\) 0 0
\(687\) −57.4344 −2.19126
\(688\) −46.8772 −1.78718
\(689\) 21.1149 0.804414
\(690\) −2.12273 −0.0808109
\(691\) −9.57018 −0.364067 −0.182033 0.983292i \(-0.558268\pi\)
−0.182033 + 0.983292i \(0.558268\pi\)
\(692\) −14.6258 −0.555991
\(693\) 0 0
\(694\) 4.22960 0.160553
\(695\) −8.34848 −0.316676
\(696\) −13.8786 −0.526067
\(697\) 84.2929 3.19282
\(698\) 0.739555 0.0279926
\(699\) −74.4612 −2.81638
\(700\) 0 0
\(701\) −2.19668 −0.0829676 −0.0414838 0.999139i \(-0.513208\pi\)
−0.0414838 + 0.999139i \(0.513208\pi\)
\(702\) −16.2718 −0.614138
\(703\) 7.18753 0.271083
\(704\) −3.16292 −0.119207
\(705\) 12.2497 0.461350
\(706\) −1.58666 −0.0597146
\(707\) 0 0
\(708\) −40.6766 −1.52872
\(709\) 10.6911 0.401514 0.200757 0.979641i \(-0.435660\pi\)
0.200757 + 0.979641i \(0.435660\pi\)
\(710\) −0.430166 −0.0161439
\(711\) 13.3013 0.498836
\(712\) 0.372412 0.0139567
\(713\) −10.6460 −0.398697
\(714\) 0 0
\(715\) 2.46959 0.0923573
\(716\) 24.5921 0.919050
\(717\) −58.3131 −2.17774
\(718\) 1.91581 0.0714973
\(719\) −29.7949 −1.11116 −0.555580 0.831463i \(-0.687504\pi\)
−0.555580 + 0.831463i \(0.687504\pi\)
\(720\) −31.4893 −1.17354
\(721\) 0 0
\(722\) −0.162590 −0.00605096
\(723\) 23.6984 0.881354
\(724\) −5.25509 −0.195304
\(725\) 6.42012 0.238437
\(726\) −5.88419 −0.218383
\(727\) −5.53987 −0.205463 −0.102731 0.994709i \(-0.532758\pi\)
−0.102731 + 0.994709i \(0.532758\pi\)
\(728\) 0 0
\(729\) 100.741 3.73113
\(730\) −1.07793 −0.0398959
\(731\) −86.3379 −3.19332
\(732\) −52.2313 −1.93053
\(733\) −17.2838 −0.638390 −0.319195 0.947689i \(-0.603412\pi\)
−0.319195 + 0.947689i \(0.603412\pi\)
\(734\) −4.67453 −0.172540
\(735\) 0 0
\(736\) −7.47912 −0.275684
\(737\) 2.76967 0.102022
\(738\) −15.8735 −0.584312
\(739\) 28.0267 1.03098 0.515489 0.856896i \(-0.327610\pi\)
0.515489 + 0.856896i \(0.327610\pi\)
\(740\) 14.1851 0.521453
\(741\) 19.2611 0.707575
\(742\) 0 0
\(743\) 2.52819 0.0927503 0.0463752 0.998924i \(-0.485233\pi\)
0.0463752 + 0.998924i \(0.485233\pi\)
\(744\) 5.89818 0.216238
\(745\) −19.0334 −0.697329
\(746\) −5.19517 −0.190209
\(747\) 32.6284 1.19381
\(748\) −5.99143 −0.219068
\(749\) 0 0
\(750\) −0.544029 −0.0198651
\(751\) −20.9658 −0.765054 −0.382527 0.923944i \(-0.624946\pi\)
−0.382527 + 0.923944i \(0.624946\pi\)
\(752\) 14.0658 0.512926
\(753\) 35.7463 1.30267
\(754\) 6.00881 0.218828
\(755\) −11.2945 −0.411051
\(756\) 0 0
\(757\) 23.2438 0.844812 0.422406 0.906407i \(-0.361186\pi\)
0.422406 + 0.906407i \(0.361186\pi\)
\(758\) 2.08877 0.0758676
\(759\) −5.60111 −0.203307
\(760\) −0.646060 −0.0234351
\(761\) 38.8082 1.40680 0.703398 0.710796i \(-0.251665\pi\)
0.703398 + 0.710796i \(0.251665\pi\)
\(762\) −0.972396 −0.0352262
\(763\) 0 0
\(764\) −20.6541 −0.747238
\(765\) −57.9967 −2.09687
\(766\) −0.384648 −0.0138979
\(767\) 35.4582 1.28032
\(768\) −46.5996 −1.68152
\(769\) 41.2415 1.48721 0.743603 0.668622i \(-0.233116\pi\)
0.743603 + 0.668622i \(0.233116\pi\)
\(770\) 0 0
\(771\) −58.8476 −2.11934
\(772\) 40.4183 1.45469
\(773\) −3.23499 −0.116355 −0.0581773 0.998306i \(-0.518529\pi\)
−0.0581773 + 0.998306i \(0.518529\pi\)
\(774\) 16.2586 0.584403
\(775\) −2.72845 −0.0980087
\(776\) −8.18032 −0.293656
\(777\) 0 0
\(778\) −2.18131 −0.0782036
\(779\) 11.9120 0.426791
\(780\) 38.0131 1.36109
\(781\) −1.13505 −0.0406153
\(782\) −4.48923 −0.160535
\(783\) −111.618 −3.98888
\(784\) 0 0
\(785\) 9.39523 0.335330
\(786\) 6.35674 0.226738
\(787\) 21.6620 0.772167 0.386083 0.922464i \(-0.373828\pi\)
0.386083 + 0.922464i \(0.373828\pi\)
\(788\) 16.2789 0.579913
\(789\) 36.3012 1.29236
\(790\) 0.263870 0.00938806
\(791\) 0 0
\(792\) 2.27165 0.0807195
\(793\) 45.5305 1.61684
\(794\) 2.92035 0.103639
\(795\) −12.2734 −0.435294
\(796\) 41.9599 1.48723
\(797\) −9.77694 −0.346317 −0.173159 0.984894i \(-0.555397\pi\)
−0.173159 + 0.984894i \(0.555397\pi\)
\(798\) 0 0
\(799\) 25.9062 0.916494
\(800\) −1.91680 −0.0677693
\(801\) 4.72440 0.166928
\(802\) 2.58239 0.0911872
\(803\) −2.84426 −0.100372
\(804\) 42.6322 1.50352
\(805\) 0 0
\(806\) −2.55365 −0.0899483
\(807\) 2.72880 0.0960585
\(808\) 9.16140 0.322297
\(809\) 5.43414 0.191054 0.0955272 0.995427i \(-0.469546\pi\)
0.0955272 + 0.995427i \(0.469546\pi\)
\(810\) 5.46056 0.191865
\(811\) 7.75425 0.272289 0.136144 0.990689i \(-0.456529\pi\)
0.136144 + 0.990689i \(0.456529\pi\)
\(812\) 0 0
\(813\) 8.96761 0.314508
\(814\) −0.501354 −0.0175725
\(815\) −23.9250 −0.838057
\(816\) −90.9711 −3.18462
\(817\) −12.2010 −0.426858
\(818\) −2.19058 −0.0765919
\(819\) 0 0
\(820\) 23.5091 0.820972
\(821\) 53.8309 1.87871 0.939356 0.342944i \(-0.111424\pi\)
0.939356 + 0.342944i \(0.111424\pi\)
\(822\) 4.27383 0.149067
\(823\) 26.2581 0.915301 0.457650 0.889132i \(-0.348691\pi\)
0.457650 + 0.889132i \(0.348691\pi\)
\(824\) −10.3060 −0.359027
\(825\) −1.43549 −0.0499775
\(826\) 0 0
\(827\) 8.54688 0.297204 0.148602 0.988897i \(-0.452523\pi\)
0.148602 + 0.988897i \(0.452523\pi\)
\(828\) −63.1132 −2.19333
\(829\) −38.6838 −1.34354 −0.671772 0.740758i \(-0.734467\pi\)
−0.671772 + 0.740758i \(0.734467\pi\)
\(830\) 0.647280 0.0224674
\(831\) 99.5346 3.45282
\(832\) 42.4393 1.47132
\(833\) 0 0
\(834\) 4.54182 0.157270
\(835\) −5.00493 −0.173203
\(836\) −0.846688 −0.0292833
\(837\) 47.4356 1.63961
\(838\) 1.63985 0.0566475
\(839\) 39.7958 1.37390 0.686951 0.726704i \(-0.258949\pi\)
0.686951 + 0.726704i \(0.258949\pi\)
\(840\) 0 0
\(841\) 12.2180 0.421309
\(842\) 4.07072 0.140286
\(843\) −46.6745 −1.60756
\(844\) 27.0156 0.929915
\(845\) −20.1364 −0.692712
\(846\) −4.87849 −0.167726
\(847\) 0 0
\(848\) −14.0930 −0.483956
\(849\) −14.3180 −0.491392
\(850\) −1.15053 −0.0394630
\(851\) 28.0448 0.961364
\(852\) −17.4713 −0.598556
\(853\) 16.5832 0.567796 0.283898 0.958854i \(-0.408372\pi\)
0.283898 + 0.958854i \(0.408372\pi\)
\(854\) 0 0
\(855\) −8.19589 −0.280293
\(856\) −4.17419 −0.142671
\(857\) 14.6297 0.499740 0.249870 0.968279i \(-0.419612\pi\)
0.249870 + 0.968279i \(0.419612\pi\)
\(858\) −1.34353 −0.0458673
\(859\) 55.3776 1.88946 0.944729 0.327852i \(-0.106325\pi\)
0.944729 + 0.327852i \(0.106325\pi\)
\(860\) −24.0794 −0.821101
\(861\) 0 0
\(862\) −2.35555 −0.0802303
\(863\) −49.6705 −1.69080 −0.845401 0.534132i \(-0.820638\pi\)
−0.845401 + 0.534132i \(0.820638\pi\)
\(864\) 33.3247 1.13373
\(865\) −7.41087 −0.251977
\(866\) −2.14232 −0.0727991
\(867\) −110.667 −3.75845
\(868\) 0 0
\(869\) 0.696256 0.0236189
\(870\) −3.49273 −0.118415
\(871\) −37.1629 −1.25922
\(872\) −3.29835 −0.111696
\(873\) −103.775 −3.51225
\(874\) −0.634403 −0.0214590
\(875\) 0 0
\(876\) −43.7802 −1.47920
\(877\) 8.24405 0.278382 0.139191 0.990266i \(-0.455550\pi\)
0.139191 + 0.990266i \(0.455550\pi\)
\(878\) −0.238290 −0.00804189
\(879\) 80.7741 2.72444
\(880\) −1.64831 −0.0555645
\(881\) −31.3524 −1.05629 −0.528145 0.849154i \(-0.677112\pi\)
−0.528145 + 0.849154i \(0.677112\pi\)
\(882\) 0 0
\(883\) 24.0326 0.808761 0.404381 0.914591i \(-0.367487\pi\)
0.404381 + 0.914591i \(0.367487\pi\)
\(884\) 80.3916 2.70386
\(885\) −20.6107 −0.692822
\(886\) 4.56398 0.153330
\(887\) −9.30530 −0.312441 −0.156221 0.987722i \(-0.549931\pi\)
−0.156221 + 0.987722i \(0.549931\pi\)
\(888\) −15.5375 −0.521406
\(889\) 0 0
\(890\) 0.0937223 0.00314158
\(891\) 14.4084 0.482700
\(892\) −33.2709 −1.11399
\(893\) 3.66097 0.122510
\(894\) 10.3547 0.346313
\(895\) 12.4608 0.416517
\(896\) 0 0
\(897\) 75.1544 2.50933
\(898\) −3.56627 −0.119008
\(899\) −17.5170 −0.584223
\(900\) −16.1751 −0.539171
\(901\) −25.9563 −0.864731
\(902\) −0.830900 −0.0276659
\(903\) 0 0
\(904\) −1.80065 −0.0598886
\(905\) −2.66274 −0.0885125
\(906\) 6.14456 0.204139
\(907\) −43.8256 −1.45521 −0.727603 0.685999i \(-0.759365\pi\)
−0.727603 + 0.685999i \(0.759365\pi\)
\(908\) −7.79938 −0.258832
\(909\) 116.221 3.85481
\(910\) 0 0
\(911\) 38.8428 1.28692 0.643459 0.765480i \(-0.277499\pi\)
0.643459 + 0.765480i \(0.277499\pi\)
\(912\) −12.8557 −0.425695
\(913\) 1.70793 0.0565244
\(914\) 0.783053 0.0259011
\(915\) −26.4655 −0.874922
\(916\) −33.8762 −1.11930
\(917\) 0 0
\(918\) 20.0027 0.660188
\(919\) −46.0432 −1.51882 −0.759412 0.650610i \(-0.774513\pi\)
−0.759412 + 0.650610i \(0.774513\pi\)
\(920\) −2.52084 −0.0831097
\(921\) −47.1641 −1.55411
\(922\) −6.21339 −0.204627
\(923\) 15.2299 0.501297
\(924\) 0 0
\(925\) 7.18753 0.236325
\(926\) 2.55727 0.0840369
\(927\) −130.742 −4.29412
\(928\) −12.3061 −0.403968
\(929\) 33.7831 1.10839 0.554193 0.832388i \(-0.313027\pi\)
0.554193 + 0.832388i \(0.313027\pi\)
\(930\) 1.48435 0.0486739
\(931\) 0 0
\(932\) −43.9190 −1.43861
\(933\) −2.61410 −0.0855817
\(934\) 3.95070 0.129271
\(935\) −3.03584 −0.0992826
\(936\) −30.4805 −0.996285
\(937\) −8.10845 −0.264891 −0.132446 0.991190i \(-0.542283\pi\)
−0.132446 + 0.991190i \(0.542283\pi\)
\(938\) 0 0
\(939\) −25.4723 −0.831257
\(940\) 7.22516 0.235659
\(941\) −19.6784 −0.641498 −0.320749 0.947164i \(-0.603935\pi\)
−0.320749 + 0.947164i \(0.603935\pi\)
\(942\) −5.11128 −0.166534
\(943\) 46.4790 1.51356
\(944\) −23.6663 −0.770274
\(945\) 0 0
\(946\) 0.851058 0.0276703
\(947\) 45.6312 1.48282 0.741408 0.671055i \(-0.234159\pi\)
0.741408 + 0.671055i \(0.234159\pi\)
\(948\) 10.7171 0.348075
\(949\) 38.1636 1.23884
\(950\) −0.162590 −0.00527510
\(951\) 18.8562 0.611453
\(952\) 0 0
\(953\) −21.0135 −0.680696 −0.340348 0.940300i \(-0.610545\pi\)
−0.340348 + 0.940300i \(0.610545\pi\)
\(954\) 4.88793 0.158253
\(955\) −10.4654 −0.338651
\(956\) −34.3944 −1.11240
\(957\) −9.21604 −0.297912
\(958\) −4.88587 −0.157855
\(959\) 0 0
\(960\) −24.6686 −0.796177
\(961\) −23.5556 −0.759857
\(962\) 6.72706 0.216889
\(963\) −52.9536 −1.70641
\(964\) 13.9779 0.450197
\(965\) 20.4799 0.659270
\(966\) 0 0
\(967\) 28.6328 0.920769 0.460384 0.887720i \(-0.347712\pi\)
0.460384 + 0.887720i \(0.347712\pi\)
\(968\) −6.98775 −0.224595
\(969\) −23.6775 −0.760631
\(970\) −2.05868 −0.0661004
\(971\) 16.3552 0.524864 0.262432 0.964950i \(-0.415475\pi\)
0.262432 + 0.964950i \(0.415475\pi\)
\(972\) 118.847 3.81201
\(973\) 0 0
\(974\) 5.84206 0.187192
\(975\) 19.2611 0.616850
\(976\) −30.3891 −0.972731
\(977\) −3.83078 −0.122558 −0.0612788 0.998121i \(-0.519518\pi\)
−0.0612788 + 0.998121i \(0.519518\pi\)
\(978\) 13.0159 0.416203
\(979\) 0.247299 0.00790371
\(980\) 0 0
\(981\) −41.8427 −1.33593
\(982\) −5.05413 −0.161284
\(983\) 52.3305 1.66908 0.834542 0.550945i \(-0.185733\pi\)
0.834542 + 0.550945i \(0.185733\pi\)
\(984\) −25.7505 −0.820897
\(985\) 8.24849 0.262819
\(986\) −7.38657 −0.235236
\(987\) 0 0
\(988\) 11.3607 0.361431
\(989\) −47.6066 −1.51380
\(990\) 0.571690 0.0181695
\(991\) 0.0540071 0.00171559 0.000857795 1.00000i \(-0.499727\pi\)
0.000857795 1.00000i \(0.499727\pi\)
\(992\) 5.22990 0.166049
\(993\) 12.4361 0.394649
\(994\) 0 0
\(995\) 21.2610 0.674018
\(996\) 26.2893 0.833010
\(997\) 41.5667 1.31643 0.658215 0.752830i \(-0.271312\pi\)
0.658215 + 0.752830i \(0.271312\pi\)
\(998\) 2.78123 0.0880383
\(999\) −124.959 −3.95354
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4655.2.a.br.1.12 26
7.6 odd 2 4655.2.a.bs.1.12 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4655.2.a.br.1.12 26 1.1 even 1 trivial
4655.2.a.bs.1.12 yes 26 7.6 odd 2