Properties

Label 4655.2.a.br
Level $4655$
Weight $2$
Character orbit 4655.a
Self dual yes
Analytic conductor $37.170$
Analytic rank $0$
Dimension $26$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4655 = 5 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1703621409\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 26 q + 4 q^{2} - 6 q^{3} + 36 q^{4} - 26 q^{5} + 4 q^{6} + 12 q^{8} + 44 q^{9} - 4 q^{10} + 14 q^{11} - 20 q^{12} - 14 q^{13} + 6 q^{15} + 64 q^{16} - 18 q^{17} + 8 q^{18} + 26 q^{19} - 36 q^{20} + 36 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.78329 −3.28920 5.74672 −1.00000 9.15481 0 −10.4282 7.81883 2.78329
1.2 −2.59964 −0.401002 4.75812 −1.00000 1.04246 0 −7.17010 −2.83920 2.59964
1.3 −2.33490 0.464806 3.45176 −1.00000 −1.08528 0 −3.38971 −2.78396 2.33490
1.4 −2.22756 1.74547 2.96202 −1.00000 −3.88813 0 −2.14296 0.0466492 2.22756
1.5 −2.18977 −2.55255 2.79510 −1.00000 5.58950 0 −1.74110 3.51550 2.18977
1.6 −1.87125 −0.704568 1.50158 −1.00000 1.31842 0 0.932671 −2.50358 1.87125
1.7 −1.68247 3.39985 0.830711 −1.00000 −5.72015 0 1.96730 8.55898 1.68247
1.8 −1.21870 −2.59660 −0.514774 −1.00000 3.16448 0 3.06475 3.74235 1.21870
1.9 −0.970750 1.67805 −1.05764 −1.00000 −1.62896 0 2.96821 −0.184157 0.970750
1.10 −0.237306 2.08918 −1.94369 −1.00000 −0.495776 0 0.935862 1.36468 0.237306
1.11 −0.208527 −2.42003 −1.95652 −1.00000 0.504642 0 0.825039 2.85657 0.208527
1.12 −0.162590 −3.34603 −1.97356 −1.00000 0.544029 0 0.646060 8.19589 0.162590
1.13 −0.148061 1.13846 −1.97808 −1.00000 −0.168562 0 0.588998 −1.70391 0.148061
1.14 −0.0673534 −0.195526 −1.99546 −1.00000 0.0131693 0 0.269108 −2.96177 0.0673534
1.15 0.430405 3.01701 −1.81475 −1.00000 1.29854 0 −1.64189 6.10233 −0.430405
1.16 1.09706 −0.170744 −0.796456 −1.00000 −0.187316 0 −3.06788 −2.97085 −1.09706
1.17 1.20641 −2.57761 −0.544574 −1.00000 −3.10966 0 −3.06980 3.64407 −1.20641
1.18 1.26806 −1.15394 −0.392024 −1.00000 −1.46327 0 −3.03323 −1.66842 −1.26806
1.19 1.59222 1.71325 0.535154 −1.00000 2.72786 0 −2.33235 −0.0647885 −1.59222
1.20 1.89552 0.890414 1.59301 −1.00000 1.68780 0 −0.771462 −2.20716 −1.89552
See all 26 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.26
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4655.2.a.br 26
7.b odd 2 1 4655.2.a.bs yes 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4655.2.a.br 26 1.a even 1 1 trivial
4655.2.a.bs yes 26 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4655))\):

\( T_{2}^{26} - 4 T_{2}^{25} - 36 T_{2}^{24} + 156 T_{2}^{23} + 542 T_{2}^{22} - 2628 T_{2}^{21} + \cdots + 14 \) Copy content Toggle raw display
\( T_{3}^{26} + 6 T_{3}^{25} - 43 T_{3}^{24} - 308 T_{3}^{23} + 704 T_{3}^{22} + 6760 T_{3}^{21} + \cdots - 19612 \) Copy content Toggle raw display
\( T_{11}^{26} - 14 T_{11}^{25} - 103 T_{11}^{24} + 2276 T_{11}^{23} + 536 T_{11}^{22} - 150792 T_{11}^{21} + \cdots - 32130496 \) Copy content Toggle raw display
\( T_{13}^{26} + 14 T_{13}^{25} - 121 T_{13}^{24} - 2368 T_{13}^{23} + 4328 T_{13}^{22} + \cdots - 3138774099712 \) Copy content Toggle raw display
\( T_{17}^{26} + 18 T_{17}^{25} - 129 T_{17}^{24} - 3896 T_{17}^{23} + 650 T_{17}^{22} + \cdots - 6892135972864 \) Copy content Toggle raw display