Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4655,2,Mod(1,4655)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4655.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4655 = 5 \cdot 7^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4655.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(37.1703621409\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.78329 | 3.28920 | 5.74672 | 1.00000 | −9.15481 | 0 | −10.4282 | 7.81883 | −2.78329 | ||||||||||||||||||
1.2 | −2.59964 | 0.401002 | 4.75812 | 1.00000 | −1.04246 | 0 | −7.17010 | −2.83920 | −2.59964 | ||||||||||||||||||
1.3 | −2.33490 | −0.464806 | 3.45176 | 1.00000 | 1.08528 | 0 | −3.38971 | −2.78396 | −2.33490 | ||||||||||||||||||
1.4 | −2.22756 | −1.74547 | 2.96202 | 1.00000 | 3.88813 | 0 | −2.14296 | 0.0466492 | −2.22756 | ||||||||||||||||||
1.5 | −2.18977 | 2.55255 | 2.79510 | 1.00000 | −5.58950 | 0 | −1.74110 | 3.51550 | −2.18977 | ||||||||||||||||||
1.6 | −1.87125 | 0.704568 | 1.50158 | 1.00000 | −1.31842 | 0 | 0.932671 | −2.50358 | −1.87125 | ||||||||||||||||||
1.7 | −1.68247 | −3.39985 | 0.830711 | 1.00000 | 5.72015 | 0 | 1.96730 | 8.55898 | −1.68247 | ||||||||||||||||||
1.8 | −1.21870 | 2.59660 | −0.514774 | 1.00000 | −3.16448 | 0 | 3.06475 | 3.74235 | −1.21870 | ||||||||||||||||||
1.9 | −0.970750 | −1.67805 | −1.05764 | 1.00000 | 1.62896 | 0 | 2.96821 | −0.184157 | −0.970750 | ||||||||||||||||||
1.10 | −0.237306 | −2.08918 | −1.94369 | 1.00000 | 0.495776 | 0 | 0.935862 | 1.36468 | −0.237306 | ||||||||||||||||||
1.11 | −0.208527 | 2.42003 | −1.95652 | 1.00000 | −0.504642 | 0 | 0.825039 | 2.85657 | −0.208527 | ||||||||||||||||||
1.12 | −0.162590 | 3.34603 | −1.97356 | 1.00000 | −0.544029 | 0 | 0.646060 | 8.19589 | −0.162590 | ||||||||||||||||||
1.13 | −0.148061 | −1.13846 | −1.97808 | 1.00000 | 0.168562 | 0 | 0.588998 | −1.70391 | −0.148061 | ||||||||||||||||||
1.14 | −0.0673534 | 0.195526 | −1.99546 | 1.00000 | −0.0131693 | 0 | 0.269108 | −2.96177 | −0.0673534 | ||||||||||||||||||
1.15 | 0.430405 | −3.01701 | −1.81475 | 1.00000 | −1.29854 | 0 | −1.64189 | 6.10233 | 0.430405 | ||||||||||||||||||
1.16 | 1.09706 | 0.170744 | −0.796456 | 1.00000 | 0.187316 | 0 | −3.06788 | −2.97085 | 1.09706 | ||||||||||||||||||
1.17 | 1.20641 | 2.57761 | −0.544574 | 1.00000 | 3.10966 | 0 | −3.06980 | 3.64407 | 1.20641 | ||||||||||||||||||
1.18 | 1.26806 | 1.15394 | −0.392024 | 1.00000 | 1.46327 | 0 | −3.03323 | −1.66842 | 1.26806 | ||||||||||||||||||
1.19 | 1.59222 | −1.71325 | 0.535154 | 1.00000 | −2.72786 | 0 | −2.33235 | −0.0647885 | 1.59222 | ||||||||||||||||||
1.20 | 1.89552 | −0.890414 | 1.59301 | 1.00000 | −1.68780 | 0 | −0.771462 | −2.20716 | 1.89552 | ||||||||||||||||||
See all 26 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(7\) | \( +1 \) |
\(19\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4655.2.a.bs | yes | 26 |
7.b | odd | 2 | 1 | 4655.2.a.br | ✓ | 26 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4655.2.a.br | ✓ | 26 | 7.b | odd | 2 | 1 | |
4655.2.a.bs | yes | 26 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4655))\):
\( T_{2}^{26} - 4 T_{2}^{25} - 36 T_{2}^{24} + 156 T_{2}^{23} + 542 T_{2}^{22} - 2628 T_{2}^{21} + \cdots + 14 \) |
\( T_{3}^{26} - 6 T_{3}^{25} - 43 T_{3}^{24} + 308 T_{3}^{23} + 704 T_{3}^{22} - 6760 T_{3}^{21} + \cdots - 19612 \) |
\( T_{11}^{26} - 14 T_{11}^{25} - 103 T_{11}^{24} + 2276 T_{11}^{23} + 536 T_{11}^{22} - 150792 T_{11}^{21} + \cdots - 32130496 \) |
\( T_{13}^{26} - 14 T_{13}^{25} - 121 T_{13}^{24} + 2368 T_{13}^{23} + 4328 T_{13}^{22} + \cdots - 3138774099712 \) |
\( T_{17}^{26} - 18 T_{17}^{25} - 129 T_{17}^{24} + 3896 T_{17}^{23} + 650 T_{17}^{22} + \cdots - 6892135972864 \) |