Properties

Label 4655.2.a.bs
Level 46554655
Weight 22
Character orbit 4655.a
Self dual yes
Analytic conductor 37.17037.170
Analytic rank 00
Dimension 2626
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4655=57219 4655 = 5 \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 37.170362140937.1703621409
Analytic rank: 00
Dimension: 2626
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 26q+4q2+6q3+36q4+26q54q6+12q8+44q9+4q10+14q11+20q12+14q13+6q15+64q16+18q17+8q1826q19+36q20+36q22++24q99+O(q100) 26 q + 4 q^{2} + 6 q^{3} + 36 q^{4} + 26 q^{5} - 4 q^{6} + 12 q^{8} + 44 q^{9} + 4 q^{10} + 14 q^{11} + 20 q^{12} + 14 q^{13} + 6 q^{15} + 64 q^{16} + 18 q^{17} + 8 q^{18} - 26 q^{19} + 36 q^{20} + 36 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.78329 3.28920 5.74672 1.00000 −9.15481 0 −10.4282 7.81883 −2.78329
1.2 −2.59964 0.401002 4.75812 1.00000 −1.04246 0 −7.17010 −2.83920 −2.59964
1.3 −2.33490 −0.464806 3.45176 1.00000 1.08528 0 −3.38971 −2.78396 −2.33490
1.4 −2.22756 −1.74547 2.96202 1.00000 3.88813 0 −2.14296 0.0466492 −2.22756
1.5 −2.18977 2.55255 2.79510 1.00000 −5.58950 0 −1.74110 3.51550 −2.18977
1.6 −1.87125 0.704568 1.50158 1.00000 −1.31842 0 0.932671 −2.50358 −1.87125
1.7 −1.68247 −3.39985 0.830711 1.00000 5.72015 0 1.96730 8.55898 −1.68247
1.8 −1.21870 2.59660 −0.514774 1.00000 −3.16448 0 3.06475 3.74235 −1.21870
1.9 −0.970750 −1.67805 −1.05764 1.00000 1.62896 0 2.96821 −0.184157 −0.970750
1.10 −0.237306 −2.08918 −1.94369 1.00000 0.495776 0 0.935862 1.36468 −0.237306
1.11 −0.208527 2.42003 −1.95652 1.00000 −0.504642 0 0.825039 2.85657 −0.208527
1.12 −0.162590 3.34603 −1.97356 1.00000 −0.544029 0 0.646060 8.19589 −0.162590
1.13 −0.148061 −1.13846 −1.97808 1.00000 0.168562 0 0.588998 −1.70391 −0.148061
1.14 −0.0673534 0.195526 −1.99546 1.00000 −0.0131693 0 0.269108 −2.96177 −0.0673534
1.15 0.430405 −3.01701 −1.81475 1.00000 −1.29854 0 −1.64189 6.10233 0.430405
1.16 1.09706 0.170744 −0.796456 1.00000 0.187316 0 −3.06788 −2.97085 1.09706
1.17 1.20641 2.57761 −0.544574 1.00000 3.10966 0 −3.06980 3.64407 1.20641
1.18 1.26806 1.15394 −0.392024 1.00000 1.46327 0 −3.03323 −1.66842 1.26806
1.19 1.59222 −1.71325 0.535154 1.00000 −2.72786 0 −2.33235 −0.0647885 1.59222
1.20 1.89552 −0.890414 1.59301 1.00000 −1.68780 0 −0.771462 −2.20716 1.89552
See all 26 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.26
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
77 +1 +1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4655.2.a.bs yes 26
7.b odd 2 1 4655.2.a.br 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4655.2.a.br 26 7.b odd 2 1
4655.2.a.bs yes 26 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4655))S_{2}^{\mathrm{new}}(\Gamma_0(4655)):

T2264T22536T224+156T223+542T2222628T221++14 T_{2}^{26} - 4 T_{2}^{25} - 36 T_{2}^{24} + 156 T_{2}^{23} + 542 T_{2}^{22} - 2628 T_{2}^{21} + \cdots + 14 Copy content Toggle raw display
T3266T32543T324+308T323+704T3226760T321+19612 T_{3}^{26} - 6 T_{3}^{25} - 43 T_{3}^{24} + 308 T_{3}^{23} + 704 T_{3}^{22} - 6760 T_{3}^{21} + \cdots - 19612 Copy content Toggle raw display
T112614T1125103T1124+2276T1123+536T1122150792T1121+32130496 T_{11}^{26} - 14 T_{11}^{25} - 103 T_{11}^{24} + 2276 T_{11}^{23} + 536 T_{11}^{22} - 150792 T_{11}^{21} + \cdots - 32130496 Copy content Toggle raw display
T132614T1325121T1324+2368T1323+4328T1322+3138774099712 T_{13}^{26} - 14 T_{13}^{25} - 121 T_{13}^{24} + 2368 T_{13}^{23} + 4328 T_{13}^{22} + \cdots - 3138774099712 Copy content Toggle raw display
T172618T1725129T1724+3896T1723+650T1722+6892135972864 T_{17}^{26} - 18 T_{17}^{25} - 129 T_{17}^{24} + 3896 T_{17}^{23} + 650 T_{17}^{22} + \cdots - 6892135972864 Copy content Toggle raw display