Properties

Label 4655.2.a.br.1.8
Level $4655$
Weight $2$
Character 4655.1
Self dual yes
Analytic conductor $37.170$
Analytic rank $0$
Dimension $26$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4655 = 5 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1703621409\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 4655.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21870 q^{2} -2.59660 q^{3} -0.514774 q^{4} -1.00000 q^{5} +3.16448 q^{6} +3.06475 q^{8} +3.74235 q^{9} +1.21870 q^{10} +1.34660 q^{11} +1.33666 q^{12} -4.31575 q^{13} +2.59660 q^{15} -2.70546 q^{16} -6.29921 q^{17} -4.56080 q^{18} +1.00000 q^{19} +0.514774 q^{20} -1.64110 q^{22} +8.99673 q^{23} -7.95795 q^{24} +1.00000 q^{25} +5.25960 q^{26} -1.92760 q^{27} +6.18505 q^{29} -3.16448 q^{30} +3.48591 q^{31} -2.83236 q^{32} -3.49659 q^{33} +7.67684 q^{34} -1.92647 q^{36} -2.65974 q^{37} -1.21870 q^{38} +11.2063 q^{39} -3.06475 q^{40} -7.39767 q^{41} -4.40794 q^{43} -0.693194 q^{44} -3.74235 q^{45} -10.9643 q^{46} +9.10868 q^{47} +7.02501 q^{48} -1.21870 q^{50} +16.3566 q^{51} +2.22163 q^{52} -4.06456 q^{53} +2.34917 q^{54} -1.34660 q^{55} -2.59660 q^{57} -7.53772 q^{58} -0.439715 q^{59} -1.33666 q^{60} +11.4698 q^{61} -4.24827 q^{62} +8.86272 q^{64} +4.31575 q^{65} +4.26129 q^{66} -10.1027 q^{67} +3.24267 q^{68} -23.3609 q^{69} +7.65157 q^{71} +11.4694 q^{72} -11.0854 q^{73} +3.24142 q^{74} -2.59660 q^{75} -0.514774 q^{76} -13.6571 q^{78} -17.5813 q^{79} +2.70546 q^{80} -6.22185 q^{81} +9.01553 q^{82} +3.61540 q^{83} +6.29921 q^{85} +5.37195 q^{86} -16.0601 q^{87} +4.12699 q^{88} -2.45819 q^{89} +4.56080 q^{90} -4.63128 q^{92} -9.05153 q^{93} -11.1007 q^{94} -1.00000 q^{95} +7.35452 q^{96} +7.31121 q^{97} +5.03946 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 4 q^{2} - 6 q^{3} + 36 q^{4} - 26 q^{5} + 4 q^{6} + 12 q^{8} + 44 q^{9} - 4 q^{10} + 14 q^{11} - 20 q^{12} - 14 q^{13} + 6 q^{15} + 64 q^{16} - 18 q^{17} + 8 q^{18} + 26 q^{19} - 36 q^{20} + 36 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21870 −0.861750 −0.430875 0.902412i \(-0.641795\pi\)
−0.430875 + 0.902412i \(0.641795\pi\)
\(3\) −2.59660 −1.49915 −0.749575 0.661919i \(-0.769742\pi\)
−0.749575 + 0.661919i \(0.769742\pi\)
\(4\) −0.514774 −0.257387
\(5\) −1.00000 −0.447214
\(6\) 3.16448 1.29189
\(7\) 0 0
\(8\) 3.06475 1.08355
\(9\) 3.74235 1.24745
\(10\) 1.21870 0.385386
\(11\) 1.34660 0.406015 0.203008 0.979177i \(-0.434928\pi\)
0.203008 + 0.979177i \(0.434928\pi\)
\(12\) 1.33666 0.385861
\(13\) −4.31575 −1.19697 −0.598487 0.801133i \(-0.704231\pi\)
−0.598487 + 0.801133i \(0.704231\pi\)
\(14\) 0 0
\(15\) 2.59660 0.670440
\(16\) −2.70546 −0.676365
\(17\) −6.29921 −1.52778 −0.763891 0.645345i \(-0.776714\pi\)
−0.763891 + 0.645345i \(0.776714\pi\)
\(18\) −4.56080 −1.07499
\(19\) 1.00000 0.229416
\(20\) 0.514774 0.115107
\(21\) 0 0
\(22\) −1.64110 −0.349884
\(23\) 8.99673 1.87595 0.937974 0.346706i \(-0.112700\pi\)
0.937974 + 0.346706i \(0.112700\pi\)
\(24\) −7.95795 −1.62441
\(25\) 1.00000 0.200000
\(26\) 5.25960 1.03149
\(27\) −1.92760 −0.370967
\(28\) 0 0
\(29\) 6.18505 1.14854 0.574268 0.818668i \(-0.305287\pi\)
0.574268 + 0.818668i \(0.305287\pi\)
\(30\) −3.16448 −0.577752
\(31\) 3.48591 0.626088 0.313044 0.949739i \(-0.398651\pi\)
0.313044 + 0.949739i \(0.398651\pi\)
\(32\) −2.83236 −0.500695
\(33\) −3.49659 −0.608678
\(34\) 7.67684 1.31657
\(35\) 0 0
\(36\) −1.92647 −0.321078
\(37\) −2.65974 −0.437259 −0.218629 0.975808i \(-0.570159\pi\)
−0.218629 + 0.975808i \(0.570159\pi\)
\(38\) −1.21870 −0.197699
\(39\) 11.2063 1.79444
\(40\) −3.06475 −0.484580
\(41\) −7.39767 −1.15532 −0.577661 0.816277i \(-0.696034\pi\)
−0.577661 + 0.816277i \(0.696034\pi\)
\(42\) 0 0
\(43\) −4.40794 −0.672205 −0.336102 0.941825i \(-0.609109\pi\)
−0.336102 + 0.941825i \(0.609109\pi\)
\(44\) −0.693194 −0.104503
\(45\) −3.74235 −0.557877
\(46\) −10.9643 −1.61660
\(47\) 9.10868 1.32864 0.664319 0.747449i \(-0.268722\pi\)
0.664319 + 0.747449i \(0.268722\pi\)
\(48\) 7.02501 1.01397
\(49\) 0 0
\(50\) −1.21870 −0.172350
\(51\) 16.3566 2.29038
\(52\) 2.22163 0.308085
\(53\) −4.06456 −0.558310 −0.279155 0.960246i \(-0.590054\pi\)
−0.279155 + 0.960246i \(0.590054\pi\)
\(54\) 2.34917 0.319681
\(55\) −1.34660 −0.181576
\(56\) 0 0
\(57\) −2.59660 −0.343929
\(58\) −7.53772 −0.989751
\(59\) −0.439715 −0.0572460 −0.0286230 0.999590i \(-0.509112\pi\)
−0.0286230 + 0.999590i \(0.509112\pi\)
\(60\) −1.33666 −0.172562
\(61\) 11.4698 1.46855 0.734277 0.678850i \(-0.237521\pi\)
0.734277 + 0.678850i \(0.237521\pi\)
\(62\) −4.24827 −0.539531
\(63\) 0 0
\(64\) 8.86272 1.10784
\(65\) 4.31575 0.535303
\(66\) 4.26129 0.524528
\(67\) −10.1027 −1.23424 −0.617122 0.786868i \(-0.711701\pi\)
−0.617122 + 0.786868i \(0.711701\pi\)
\(68\) 3.24267 0.393231
\(69\) −23.3609 −2.81233
\(70\) 0 0
\(71\) 7.65157 0.908075 0.454037 0.890983i \(-0.349983\pi\)
0.454037 + 0.890983i \(0.349983\pi\)
\(72\) 11.4694 1.35168
\(73\) −11.0854 −1.29745 −0.648725 0.761023i \(-0.724697\pi\)
−0.648725 + 0.761023i \(0.724697\pi\)
\(74\) 3.24142 0.376808
\(75\) −2.59660 −0.299830
\(76\) −0.514774 −0.0590486
\(77\) 0 0
\(78\) −13.6571 −1.54636
\(79\) −17.5813 −1.97805 −0.989025 0.147747i \(-0.952798\pi\)
−0.989025 + 0.147747i \(0.952798\pi\)
\(80\) 2.70546 0.302480
\(81\) −6.22185 −0.691316
\(82\) 9.01553 0.995599
\(83\) 3.61540 0.396842 0.198421 0.980117i \(-0.436419\pi\)
0.198421 + 0.980117i \(0.436419\pi\)
\(84\) 0 0
\(85\) 6.29921 0.683245
\(86\) 5.37195 0.579272
\(87\) −16.0601 −1.72183
\(88\) 4.12699 0.439939
\(89\) −2.45819 −0.260568 −0.130284 0.991477i \(-0.541589\pi\)
−0.130284 + 0.991477i \(0.541589\pi\)
\(90\) 4.56080 0.480751
\(91\) 0 0
\(92\) −4.63128 −0.482844
\(93\) −9.05153 −0.938600
\(94\) −11.1007 −1.14495
\(95\) −1.00000 −0.102598
\(96\) 7.35452 0.750618
\(97\) 7.31121 0.742341 0.371171 0.928565i \(-0.378956\pi\)
0.371171 + 0.928565i \(0.378956\pi\)
\(98\) 0 0
\(99\) 5.03946 0.506484
\(100\) −0.514774 −0.0514774
\(101\) −7.95595 −0.791647 −0.395824 0.918327i \(-0.629541\pi\)
−0.395824 + 0.918327i \(0.629541\pi\)
\(102\) −19.9337 −1.97373
\(103\) −0.476109 −0.0469124 −0.0234562 0.999725i \(-0.507467\pi\)
−0.0234562 + 0.999725i \(0.507467\pi\)
\(104\) −13.2267 −1.29698
\(105\) 0 0
\(106\) 4.95347 0.481124
\(107\) −5.19385 −0.502108 −0.251054 0.967973i \(-0.580777\pi\)
−0.251054 + 0.967973i \(0.580777\pi\)
\(108\) 0.992278 0.0954820
\(109\) 19.8446 1.90077 0.950386 0.311074i \(-0.100689\pi\)
0.950386 + 0.311074i \(0.100689\pi\)
\(110\) 1.64110 0.156473
\(111\) 6.90630 0.655517
\(112\) 0 0
\(113\) −3.33367 −0.313606 −0.156803 0.987630i \(-0.550119\pi\)
−0.156803 + 0.987630i \(0.550119\pi\)
\(114\) 3.16448 0.296381
\(115\) −8.99673 −0.838949
\(116\) −3.18390 −0.295618
\(117\) −16.1511 −1.49317
\(118\) 0.535880 0.0493317
\(119\) 0 0
\(120\) 7.95795 0.726458
\(121\) −9.18667 −0.835152
\(122\) −13.9782 −1.26553
\(123\) 19.2088 1.73200
\(124\) −1.79445 −0.161147
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −1.70529 −0.151320 −0.0756599 0.997134i \(-0.524106\pi\)
−0.0756599 + 0.997134i \(0.524106\pi\)
\(128\) −5.13626 −0.453985
\(129\) 11.4457 1.00774
\(130\) −5.25960 −0.461297
\(131\) −11.7277 −1.02466 −0.512329 0.858789i \(-0.671217\pi\)
−0.512329 + 0.858789i \(0.671217\pi\)
\(132\) 1.79995 0.156666
\(133\) 0 0
\(134\) 12.3122 1.06361
\(135\) 1.92760 0.165902
\(136\) −19.3055 −1.65543
\(137\) −7.43129 −0.634898 −0.317449 0.948275i \(-0.602826\pi\)
−0.317449 + 0.948275i \(0.602826\pi\)
\(138\) 28.4700 2.42352
\(139\) 6.05613 0.513674 0.256837 0.966455i \(-0.417320\pi\)
0.256837 + 0.966455i \(0.417320\pi\)
\(140\) 0 0
\(141\) −23.6516 −1.99183
\(142\) −9.32496 −0.782533
\(143\) −5.81159 −0.485989
\(144\) −10.1248 −0.843733
\(145\) −6.18505 −0.513641
\(146\) 13.5098 1.11808
\(147\) 0 0
\(148\) 1.36916 0.112545
\(149\) −3.91575 −0.320790 −0.160395 0.987053i \(-0.551277\pi\)
−0.160395 + 0.987053i \(0.551277\pi\)
\(150\) 3.16448 0.258379
\(151\) −16.1392 −1.31339 −0.656693 0.754158i \(-0.728045\pi\)
−0.656693 + 0.754158i \(0.728045\pi\)
\(152\) 3.06475 0.248584
\(153\) −23.5739 −1.90583
\(154\) 0 0
\(155\) −3.48591 −0.279995
\(156\) −5.76870 −0.461866
\(157\) −15.5675 −1.24242 −0.621211 0.783644i \(-0.713359\pi\)
−0.621211 + 0.783644i \(0.713359\pi\)
\(158\) 21.4263 1.70459
\(159\) 10.5540 0.836990
\(160\) 2.83236 0.223918
\(161\) 0 0
\(162\) 7.58255 0.595742
\(163\) −10.7167 −0.839398 −0.419699 0.907663i \(-0.637864\pi\)
−0.419699 + 0.907663i \(0.637864\pi\)
\(164\) 3.80812 0.297365
\(165\) 3.49659 0.272209
\(166\) −4.40609 −0.341979
\(167\) −15.8611 −1.22737 −0.613684 0.789552i \(-0.710313\pi\)
−0.613684 + 0.789552i \(0.710313\pi\)
\(168\) 0 0
\(169\) 5.62569 0.432745
\(170\) −7.67684 −0.588786
\(171\) 3.74235 0.286185
\(172\) 2.26909 0.173017
\(173\) 1.46256 0.111196 0.0555981 0.998453i \(-0.482293\pi\)
0.0555981 + 0.998453i \(0.482293\pi\)
\(174\) 19.5725 1.48378
\(175\) 0 0
\(176\) −3.64317 −0.274615
\(177\) 1.14176 0.0858203
\(178\) 2.99580 0.224544
\(179\) 9.52438 0.711886 0.355943 0.934508i \(-0.384160\pi\)
0.355943 + 0.934508i \(0.384160\pi\)
\(180\) 1.92647 0.143590
\(181\) −23.9915 −1.78327 −0.891635 0.452754i \(-0.850441\pi\)
−0.891635 + 0.452754i \(0.850441\pi\)
\(182\) 0 0
\(183\) −29.7825 −2.20158
\(184\) 27.5727 2.03269
\(185\) 2.65974 0.195548
\(186\) 11.0311 0.808839
\(187\) −8.48251 −0.620303
\(188\) −4.68891 −0.341974
\(189\) 0 0
\(190\) 1.21870 0.0884137
\(191\) 8.43884 0.610613 0.305306 0.952254i \(-0.401241\pi\)
0.305306 + 0.952254i \(0.401241\pi\)
\(192\) −23.0130 −1.66082
\(193\) 24.4605 1.76071 0.880354 0.474318i \(-0.157305\pi\)
0.880354 + 0.474318i \(0.157305\pi\)
\(194\) −8.91017 −0.639713
\(195\) −11.2063 −0.802499
\(196\) 0 0
\(197\) −22.5738 −1.60832 −0.804158 0.594416i \(-0.797383\pi\)
−0.804158 + 0.594416i \(0.797383\pi\)
\(198\) −6.14158 −0.436463
\(199\) 8.25872 0.585445 0.292723 0.956197i \(-0.405439\pi\)
0.292723 + 0.956197i \(0.405439\pi\)
\(200\) 3.06475 0.216711
\(201\) 26.2328 1.85032
\(202\) 9.69591 0.682202
\(203\) 0 0
\(204\) −8.41992 −0.589512
\(205\) 7.39767 0.516676
\(206\) 0.580233 0.0404268
\(207\) 33.6689 2.34015
\(208\) 11.6761 0.809591
\(209\) 1.34660 0.0931463
\(210\) 0 0
\(211\) 8.12000 0.559004 0.279502 0.960145i \(-0.409831\pi\)
0.279502 + 0.960145i \(0.409831\pi\)
\(212\) 2.09233 0.143702
\(213\) −19.8681 −1.36134
\(214\) 6.32974 0.432692
\(215\) 4.40794 0.300619
\(216\) −5.90762 −0.401963
\(217\) 0 0
\(218\) −24.1846 −1.63799
\(219\) 28.7844 1.94507
\(220\) 0.693194 0.0467351
\(221\) 27.1858 1.82871
\(222\) −8.41669 −0.564891
\(223\) 22.6800 1.51876 0.759381 0.650646i \(-0.225502\pi\)
0.759381 + 0.650646i \(0.225502\pi\)
\(224\) 0 0
\(225\) 3.74235 0.249490
\(226\) 4.06274 0.270250
\(227\) −1.82891 −0.121389 −0.0606944 0.998156i \(-0.519332\pi\)
−0.0606944 + 0.998156i \(0.519332\pi\)
\(228\) 1.33666 0.0885227
\(229\) −0.187466 −0.0123881 −0.00619405 0.999981i \(-0.501972\pi\)
−0.00619405 + 0.999981i \(0.501972\pi\)
\(230\) 10.9643 0.722965
\(231\) 0 0
\(232\) 18.9556 1.24450
\(233\) −0.267637 −0.0175335 −0.00876675 0.999962i \(-0.502791\pi\)
−0.00876675 + 0.999962i \(0.502791\pi\)
\(234\) 19.6833 1.28674
\(235\) −9.10868 −0.594185
\(236\) 0.226353 0.0147344
\(237\) 45.6517 2.96539
\(238\) 0 0
\(239\) 19.1664 1.23977 0.619887 0.784691i \(-0.287178\pi\)
0.619887 + 0.784691i \(0.287178\pi\)
\(240\) −7.02501 −0.453463
\(241\) 5.42779 0.349635 0.174817 0.984601i \(-0.444066\pi\)
0.174817 + 0.984601i \(0.444066\pi\)
\(242\) 11.1958 0.719692
\(243\) 21.9385 1.40735
\(244\) −5.90434 −0.377986
\(245\) 0 0
\(246\) −23.4098 −1.49255
\(247\) −4.31575 −0.274605
\(248\) 10.6834 0.678400
\(249\) −9.38777 −0.594926
\(250\) 1.21870 0.0770773
\(251\) 13.5886 0.857703 0.428851 0.903375i \(-0.358918\pi\)
0.428851 + 0.903375i \(0.358918\pi\)
\(252\) 0 0
\(253\) 12.1150 0.761663
\(254\) 2.07823 0.130400
\(255\) −16.3566 −1.02429
\(256\) −11.4659 −0.716617
\(257\) −15.2880 −0.953638 −0.476819 0.879001i \(-0.658210\pi\)
−0.476819 + 0.879001i \(0.658210\pi\)
\(258\) −13.9488 −0.868416
\(259\) 0 0
\(260\) −2.22163 −0.137780
\(261\) 23.1467 1.43274
\(262\) 14.2926 0.882999
\(263\) 14.4321 0.889921 0.444960 0.895550i \(-0.353218\pi\)
0.444960 + 0.895550i \(0.353218\pi\)
\(264\) −10.7162 −0.659535
\(265\) 4.06456 0.249684
\(266\) 0 0
\(267\) 6.38296 0.390631
\(268\) 5.20061 0.317678
\(269\) 8.70066 0.530488 0.265244 0.964181i \(-0.414547\pi\)
0.265244 + 0.964181i \(0.414547\pi\)
\(270\) −2.34917 −0.142966
\(271\) 22.1555 1.34585 0.672924 0.739712i \(-0.265038\pi\)
0.672924 + 0.739712i \(0.265038\pi\)
\(272\) 17.0423 1.03334
\(273\) 0 0
\(274\) 9.05650 0.547123
\(275\) 1.34660 0.0812031
\(276\) 12.0256 0.723856
\(277\) 22.6124 1.35864 0.679322 0.733840i \(-0.262274\pi\)
0.679322 + 0.733840i \(0.262274\pi\)
\(278\) −7.38060 −0.442659
\(279\) 13.0455 0.781014
\(280\) 0 0
\(281\) 30.6197 1.82662 0.913308 0.407269i \(-0.133519\pi\)
0.913308 + 0.407269i \(0.133519\pi\)
\(282\) 28.8242 1.71646
\(283\) 14.3623 0.853751 0.426876 0.904310i \(-0.359614\pi\)
0.426876 + 0.904310i \(0.359614\pi\)
\(284\) −3.93883 −0.233726
\(285\) 2.59660 0.153810
\(286\) 7.08258 0.418801
\(287\) 0 0
\(288\) −10.5997 −0.624593
\(289\) 22.6800 1.33412
\(290\) 7.53772 0.442630
\(291\) −18.9843 −1.11288
\(292\) 5.70648 0.333946
\(293\) 14.0391 0.820171 0.410086 0.912047i \(-0.365499\pi\)
0.410086 + 0.912047i \(0.365499\pi\)
\(294\) 0 0
\(295\) 0.439715 0.0256012
\(296\) −8.15144 −0.473793
\(297\) −2.59571 −0.150618
\(298\) 4.77212 0.276441
\(299\) −38.8276 −2.24546
\(300\) 1.33666 0.0771723
\(301\) 0 0
\(302\) 19.6688 1.13181
\(303\) 20.6585 1.18680
\(304\) −2.70546 −0.155169
\(305\) −11.4698 −0.656757
\(306\) 28.7294 1.64235
\(307\) −30.7563 −1.75536 −0.877678 0.479251i \(-0.840908\pi\)
−0.877678 + 0.479251i \(0.840908\pi\)
\(308\) 0 0
\(309\) 1.23627 0.0703288
\(310\) 4.24827 0.241286
\(311\) 16.5154 0.936500 0.468250 0.883596i \(-0.344885\pi\)
0.468250 + 0.883596i \(0.344885\pi\)
\(312\) 34.3445 1.94437
\(313\) −11.0388 −0.623950 −0.311975 0.950090i \(-0.600991\pi\)
−0.311975 + 0.950090i \(0.600991\pi\)
\(314\) 18.9721 1.07066
\(315\) 0 0
\(316\) 9.05039 0.509124
\(317\) −23.5720 −1.32394 −0.661968 0.749532i \(-0.730279\pi\)
−0.661968 + 0.749532i \(0.730279\pi\)
\(318\) −12.8622 −0.721277
\(319\) 8.32879 0.466323
\(320\) −8.86272 −0.495441
\(321\) 13.4864 0.752736
\(322\) 0 0
\(323\) −6.29921 −0.350497
\(324\) 3.20284 0.177936
\(325\) −4.31575 −0.239395
\(326\) 13.0605 0.723352
\(327\) −51.5287 −2.84954
\(328\) −22.6720 −1.25185
\(329\) 0 0
\(330\) −4.26129 −0.234576
\(331\) −8.88565 −0.488400 −0.244200 0.969725i \(-0.578525\pi\)
−0.244200 + 0.969725i \(0.578525\pi\)
\(332\) −1.86111 −0.102142
\(333\) −9.95369 −0.545459
\(334\) 19.3299 1.05768
\(335\) 10.1027 0.551971
\(336\) 0 0
\(337\) 4.27124 0.232669 0.116335 0.993210i \(-0.462886\pi\)
0.116335 + 0.993210i \(0.462886\pi\)
\(338\) −6.85602 −0.372918
\(339\) 8.65623 0.470142
\(340\) −3.24267 −0.175858
\(341\) 4.69413 0.254201
\(342\) −4.56080 −0.246620
\(343\) 0 0
\(344\) −13.5092 −0.728370
\(345\) 23.3609 1.25771
\(346\) −1.78242 −0.0958233
\(347\) −33.7353 −1.81101 −0.905504 0.424339i \(-0.860507\pi\)
−0.905504 + 0.424339i \(0.860507\pi\)
\(348\) 8.26733 0.443176
\(349\) 35.8204 1.91742 0.958710 0.284386i \(-0.0917898\pi\)
0.958710 + 0.284386i \(0.0917898\pi\)
\(350\) 0 0
\(351\) 8.31904 0.444038
\(352\) −3.81406 −0.203290
\(353\) 4.81697 0.256382 0.128191 0.991750i \(-0.459083\pi\)
0.128191 + 0.991750i \(0.459083\pi\)
\(354\) −1.39147 −0.0739557
\(355\) −7.65157 −0.406103
\(356\) 1.26541 0.0670668
\(357\) 0 0
\(358\) −11.6074 −0.613468
\(359\) 31.0854 1.64062 0.820312 0.571917i \(-0.193800\pi\)
0.820312 + 0.571917i \(0.193800\pi\)
\(360\) −11.4694 −0.604490
\(361\) 1.00000 0.0526316
\(362\) 29.2383 1.53673
\(363\) 23.8541 1.25202
\(364\) 0 0
\(365\) 11.0854 0.580237
\(366\) 36.2959 1.89721
\(367\) 4.65599 0.243041 0.121520 0.992589i \(-0.461223\pi\)
0.121520 + 0.992589i \(0.461223\pi\)
\(368\) −24.3403 −1.26883
\(369\) −27.6847 −1.44121
\(370\) −3.24142 −0.168514
\(371\) 0 0
\(372\) 4.65949 0.241583
\(373\) −3.63513 −0.188220 −0.0941099 0.995562i \(-0.530001\pi\)
−0.0941099 + 0.995562i \(0.530001\pi\)
\(374\) 10.3376 0.534546
\(375\) 2.59660 0.134088
\(376\) 27.9158 1.43965
\(377\) −26.6931 −1.37477
\(378\) 0 0
\(379\) −13.9090 −0.714458 −0.357229 0.934017i \(-0.616279\pi\)
−0.357229 + 0.934017i \(0.616279\pi\)
\(380\) 0.514774 0.0264073
\(381\) 4.42796 0.226851
\(382\) −10.2844 −0.526196
\(383\) 14.0305 0.716927 0.358464 0.933544i \(-0.383301\pi\)
0.358464 + 0.933544i \(0.383301\pi\)
\(384\) 13.3368 0.680592
\(385\) 0 0
\(386\) −29.8100 −1.51729
\(387\) −16.4961 −0.838543
\(388\) −3.76362 −0.191069
\(389\) 36.4415 1.84766 0.923829 0.382806i \(-0.125042\pi\)
0.923829 + 0.382806i \(0.125042\pi\)
\(390\) 13.6571 0.691554
\(391\) −56.6723 −2.86604
\(392\) 0 0
\(393\) 30.4523 1.53612
\(394\) 27.5106 1.38597
\(395\) 17.5813 0.884611
\(396\) −2.59418 −0.130362
\(397\) 31.2870 1.57025 0.785125 0.619337i \(-0.212599\pi\)
0.785125 + 0.619337i \(0.212599\pi\)
\(398\) −10.0649 −0.504508
\(399\) 0 0
\(400\) −2.70546 −0.135273
\(401\) −26.8571 −1.34118 −0.670589 0.741829i \(-0.733959\pi\)
−0.670589 + 0.741829i \(0.733959\pi\)
\(402\) −31.9698 −1.59451
\(403\) −15.0443 −0.749411
\(404\) 4.09551 0.203759
\(405\) 6.22185 0.309166
\(406\) 0 0
\(407\) −3.58161 −0.177534
\(408\) 50.1288 2.48174
\(409\) −9.94796 −0.491895 −0.245947 0.969283i \(-0.579099\pi\)
−0.245947 + 0.969283i \(0.579099\pi\)
\(410\) −9.01553 −0.445245
\(411\) 19.2961 0.951807
\(412\) 0.245088 0.0120746
\(413\) 0 0
\(414\) −41.0323 −2.01663
\(415\) −3.61540 −0.177473
\(416\) 12.2238 0.599319
\(417\) −15.7254 −0.770075
\(418\) −1.64110 −0.0802688
\(419\) −13.6597 −0.667319 −0.333659 0.942694i \(-0.608284\pi\)
−0.333659 + 0.942694i \(0.608284\pi\)
\(420\) 0 0
\(421\) −10.0275 −0.488711 −0.244356 0.969686i \(-0.578576\pi\)
−0.244356 + 0.969686i \(0.578576\pi\)
\(422\) −9.89583 −0.481721
\(423\) 34.0879 1.65741
\(424\) −12.4569 −0.604958
\(425\) −6.29921 −0.305556
\(426\) 24.2132 1.17314
\(427\) 0 0
\(428\) 2.67366 0.129236
\(429\) 15.0904 0.728571
\(430\) −5.37195 −0.259059
\(431\) −20.7275 −0.998410 −0.499205 0.866484i \(-0.666375\pi\)
−0.499205 + 0.866484i \(0.666375\pi\)
\(432\) 5.21505 0.250909
\(433\) 25.2058 1.21131 0.605657 0.795726i \(-0.292910\pi\)
0.605657 + 0.795726i \(0.292910\pi\)
\(434\) 0 0
\(435\) 16.0601 0.770025
\(436\) −10.2155 −0.489233
\(437\) 8.99673 0.430372
\(438\) −35.0795 −1.67617
\(439\) 0.410047 0.0195705 0.00978525 0.999952i \(-0.496885\pi\)
0.00978525 + 0.999952i \(0.496885\pi\)
\(440\) −4.12699 −0.196747
\(441\) 0 0
\(442\) −33.1313 −1.57590
\(443\) −15.5041 −0.736622 −0.368311 0.929703i \(-0.620064\pi\)
−0.368311 + 0.929703i \(0.620064\pi\)
\(444\) −3.55518 −0.168721
\(445\) 2.45819 0.116530
\(446\) −27.6400 −1.30879
\(447\) 10.1676 0.480913
\(448\) 0 0
\(449\) 13.9261 0.657212 0.328606 0.944467i \(-0.393421\pi\)
0.328606 + 0.944467i \(0.393421\pi\)
\(450\) −4.56080 −0.214998
\(451\) −9.96170 −0.469078
\(452\) 1.71609 0.0807179
\(453\) 41.9070 1.96896
\(454\) 2.22889 0.104607
\(455\) 0 0
\(456\) −7.95795 −0.372665
\(457\) 32.8812 1.53812 0.769058 0.639179i \(-0.220726\pi\)
0.769058 + 0.639179i \(0.220726\pi\)
\(458\) 0.228464 0.0106754
\(459\) 12.1424 0.566757
\(460\) 4.63128 0.215934
\(461\) 21.2325 0.988896 0.494448 0.869207i \(-0.335370\pi\)
0.494448 + 0.869207i \(0.335370\pi\)
\(462\) 0 0
\(463\) −5.41515 −0.251663 −0.125832 0.992052i \(-0.540160\pi\)
−0.125832 + 0.992052i \(0.540160\pi\)
\(464\) −16.7334 −0.776830
\(465\) 9.05153 0.419755
\(466\) 0.326169 0.0151095
\(467\) −26.5030 −1.22641 −0.613206 0.789923i \(-0.710120\pi\)
−0.613206 + 0.789923i \(0.710120\pi\)
\(468\) 8.31414 0.384321
\(469\) 0 0
\(470\) 11.1007 0.512039
\(471\) 40.4226 1.86258
\(472\) −1.34762 −0.0620291
\(473\) −5.93573 −0.272925
\(474\) −55.6356 −2.55543
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −15.2110 −0.696465
\(478\) −23.3581 −1.06838
\(479\) 14.9268 0.682021 0.341011 0.940059i \(-0.389231\pi\)
0.341011 + 0.940059i \(0.389231\pi\)
\(480\) −7.35452 −0.335686
\(481\) 11.4788 0.523387
\(482\) −6.61484 −0.301298
\(483\) 0 0
\(484\) 4.72905 0.214957
\(485\) −7.31121 −0.331985
\(486\) −26.7364 −1.21279
\(487\) 11.1025 0.503101 0.251550 0.967844i \(-0.419060\pi\)
0.251550 + 0.967844i \(0.419060\pi\)
\(488\) 35.1520 1.59126
\(489\) 27.8271 1.25838
\(490\) 0 0
\(491\) −20.3610 −0.918880 −0.459440 0.888209i \(-0.651950\pi\)
−0.459440 + 0.888209i \(0.651950\pi\)
\(492\) −9.88819 −0.445794
\(493\) −38.9609 −1.75471
\(494\) 5.25960 0.236640
\(495\) −5.03946 −0.226507
\(496\) −9.43099 −0.423464
\(497\) 0 0
\(498\) 11.4409 0.512677
\(499\) −19.3442 −0.865967 −0.432984 0.901402i \(-0.642539\pi\)
−0.432984 + 0.901402i \(0.642539\pi\)
\(500\) 0.514774 0.0230214
\(501\) 41.1850 1.84001
\(502\) −16.5604 −0.739125
\(503\) −25.7994 −1.15034 −0.575170 0.818034i \(-0.695064\pi\)
−0.575170 + 0.818034i \(0.695064\pi\)
\(504\) 0 0
\(505\) 7.95595 0.354035
\(506\) −14.7645 −0.656363
\(507\) −14.6077 −0.648750
\(508\) 0.877837 0.0389477
\(509\) −19.0053 −0.842396 −0.421198 0.906969i \(-0.638390\pi\)
−0.421198 + 0.906969i \(0.638390\pi\)
\(510\) 19.9337 0.882679
\(511\) 0 0
\(512\) 24.2460 1.07153
\(513\) −1.92760 −0.0851057
\(514\) 18.6314 0.821798
\(515\) 0.476109 0.0209799
\(516\) −5.89193 −0.259378
\(517\) 12.2658 0.539447
\(518\) 0 0
\(519\) −3.79768 −0.166700
\(520\) 13.2267 0.580029
\(521\) −27.7992 −1.21791 −0.608953 0.793206i \(-0.708410\pi\)
−0.608953 + 0.793206i \(0.708410\pi\)
\(522\) −28.2088 −1.23467
\(523\) 2.83110 0.123796 0.0618978 0.998082i \(-0.480285\pi\)
0.0618978 + 0.998082i \(0.480285\pi\)
\(524\) 6.03713 0.263733
\(525\) 0 0
\(526\) −17.5884 −0.766889
\(527\) −21.9585 −0.956526
\(528\) 9.45988 0.411689
\(529\) 57.9411 2.51918
\(530\) −4.95347 −0.215165
\(531\) −1.64557 −0.0714116
\(532\) 0 0
\(533\) 31.9265 1.38289
\(534\) −7.77890 −0.336626
\(535\) 5.19385 0.224550
\(536\) −30.9623 −1.33737
\(537\) −24.7311 −1.06722
\(538\) −10.6035 −0.457149
\(539\) 0 0
\(540\) −0.992278 −0.0427009
\(541\) 14.5758 0.626663 0.313331 0.949644i \(-0.398555\pi\)
0.313331 + 0.949644i \(0.398555\pi\)
\(542\) −27.0008 −1.15978
\(543\) 62.2963 2.67339
\(544\) 17.8416 0.764953
\(545\) −19.8446 −0.850051
\(546\) 0 0
\(547\) −1.26617 −0.0541377 −0.0270688 0.999634i \(-0.508617\pi\)
−0.0270688 + 0.999634i \(0.508617\pi\)
\(548\) 3.82543 0.163414
\(549\) 42.9240 1.83195
\(550\) −1.64110 −0.0699767
\(551\) 6.18505 0.263492
\(552\) −71.5955 −3.04731
\(553\) 0 0
\(554\) −27.5577 −1.17081
\(555\) −6.90630 −0.293156
\(556\) −3.11753 −0.132213
\(557\) −28.0971 −1.19051 −0.595255 0.803537i \(-0.702949\pi\)
−0.595255 + 0.803537i \(0.702949\pi\)
\(558\) −15.8985 −0.673039
\(559\) 19.0236 0.804611
\(560\) 0 0
\(561\) 22.0257 0.929927
\(562\) −37.3162 −1.57409
\(563\) 21.3119 0.898191 0.449096 0.893484i \(-0.351746\pi\)
0.449096 + 0.893484i \(0.351746\pi\)
\(564\) 12.1752 0.512670
\(565\) 3.33367 0.140249
\(566\) −17.5033 −0.735720
\(567\) 0 0
\(568\) 23.4502 0.983947
\(569\) −31.8597 −1.33563 −0.667815 0.744327i \(-0.732770\pi\)
−0.667815 + 0.744327i \(0.732770\pi\)
\(570\) −3.16448 −0.132545
\(571\) 22.6689 0.948666 0.474333 0.880346i \(-0.342689\pi\)
0.474333 + 0.880346i \(0.342689\pi\)
\(572\) 2.99165 0.125087
\(573\) −21.9123 −0.915401
\(574\) 0 0
\(575\) 8.99673 0.375189
\(576\) 33.1674 1.38198
\(577\) 23.6964 0.986492 0.493246 0.869890i \(-0.335810\pi\)
0.493246 + 0.869890i \(0.335810\pi\)
\(578\) −27.6401 −1.14968
\(579\) −63.5143 −2.63956
\(580\) 3.18390 0.132204
\(581\) 0 0
\(582\) 23.1362 0.959025
\(583\) −5.47333 −0.226682
\(584\) −33.9740 −1.40586
\(585\) 16.1511 0.667764
\(586\) −17.1094 −0.706783
\(587\) −2.44246 −0.100811 −0.0504055 0.998729i \(-0.516051\pi\)
−0.0504055 + 0.998729i \(0.516051\pi\)
\(588\) 0 0
\(589\) 3.48591 0.143634
\(590\) −0.535880 −0.0220618
\(591\) 58.6152 2.41111
\(592\) 7.19583 0.295747
\(593\) −8.05391 −0.330734 −0.165367 0.986232i \(-0.552881\pi\)
−0.165367 + 0.986232i \(0.552881\pi\)
\(594\) 3.16339 0.129795
\(595\) 0 0
\(596\) 2.01572 0.0825672
\(597\) −21.4446 −0.877671
\(598\) 47.3192 1.93502
\(599\) −14.0509 −0.574106 −0.287053 0.957915i \(-0.592676\pi\)
−0.287053 + 0.957915i \(0.592676\pi\)
\(600\) −7.95795 −0.324882
\(601\) 12.3953 0.505615 0.252807 0.967517i \(-0.418646\pi\)
0.252807 + 0.967517i \(0.418646\pi\)
\(602\) 0 0
\(603\) −37.8080 −1.53966
\(604\) 8.30801 0.338048
\(605\) 9.18667 0.373491
\(606\) −25.1764 −1.02272
\(607\) −9.54948 −0.387602 −0.193801 0.981041i \(-0.562082\pi\)
−0.193801 + 0.981041i \(0.562082\pi\)
\(608\) −2.83236 −0.114867
\(609\) 0 0
\(610\) 13.9782 0.565961
\(611\) −39.3108 −1.59034
\(612\) 12.1352 0.490537
\(613\) 10.0870 0.407409 0.203705 0.979032i \(-0.434702\pi\)
0.203705 + 0.979032i \(0.434702\pi\)
\(614\) 37.4827 1.51268
\(615\) −19.2088 −0.774574
\(616\) 0 0
\(617\) 44.2405 1.78106 0.890529 0.454927i \(-0.150335\pi\)
0.890529 + 0.454927i \(0.150335\pi\)
\(618\) −1.50664 −0.0606058
\(619\) −28.3095 −1.13786 −0.568928 0.822388i \(-0.692642\pi\)
−0.568928 + 0.822388i \(0.692642\pi\)
\(620\) 1.79445 0.0720670
\(621\) −17.3421 −0.695915
\(622\) −20.1273 −0.807029
\(623\) 0 0
\(624\) −30.3182 −1.21370
\(625\) 1.00000 0.0400000
\(626\) 13.4530 0.537689
\(627\) −3.49659 −0.139640
\(628\) 8.01374 0.319783
\(629\) 16.7543 0.668036
\(630\) 0 0
\(631\) 20.8647 0.830610 0.415305 0.909682i \(-0.363675\pi\)
0.415305 + 0.909682i \(0.363675\pi\)
\(632\) −53.8823 −2.14332
\(633\) −21.0844 −0.838031
\(634\) 28.7272 1.14090
\(635\) 1.70529 0.0676723
\(636\) −5.43294 −0.215430
\(637\) 0 0
\(638\) −10.1503 −0.401854
\(639\) 28.6349 1.13278
\(640\) 5.13626 0.203028
\(641\) −4.61134 −0.182137 −0.0910686 0.995845i \(-0.529028\pi\)
−0.0910686 + 0.995845i \(0.529028\pi\)
\(642\) −16.4358 −0.648670
\(643\) 9.85158 0.388508 0.194254 0.980951i \(-0.437771\pi\)
0.194254 + 0.980951i \(0.437771\pi\)
\(644\) 0 0
\(645\) −11.4457 −0.450673
\(646\) 7.67684 0.302041
\(647\) −12.3295 −0.484723 −0.242362 0.970186i \(-0.577922\pi\)
−0.242362 + 0.970186i \(0.577922\pi\)
\(648\) −19.0684 −0.749078
\(649\) −0.592120 −0.0232427
\(650\) 5.25960 0.206298
\(651\) 0 0
\(652\) 5.51668 0.216050
\(653\) 24.9967 0.978197 0.489098 0.872229i \(-0.337326\pi\)
0.489098 + 0.872229i \(0.337326\pi\)
\(654\) 62.7979 2.45559
\(655\) 11.7277 0.458241
\(656\) 20.0141 0.781420
\(657\) −41.4855 −1.61851
\(658\) 0 0
\(659\) −10.3506 −0.403201 −0.201600 0.979468i \(-0.564614\pi\)
−0.201600 + 0.979468i \(0.564614\pi\)
\(660\) −1.79995 −0.0700630
\(661\) 12.2629 0.476973 0.238486 0.971146i \(-0.423349\pi\)
0.238486 + 0.971146i \(0.423349\pi\)
\(662\) 10.8289 0.420878
\(663\) −70.5908 −2.74152
\(664\) 11.0803 0.429999
\(665\) 0 0
\(666\) 12.1306 0.470049
\(667\) 55.6452 2.15459
\(668\) 8.16487 0.315908
\(669\) −58.8909 −2.27685
\(670\) −12.3122 −0.475661
\(671\) 15.4452 0.596255
\(672\) 0 0
\(673\) 18.7370 0.722258 0.361129 0.932516i \(-0.382391\pi\)
0.361129 + 0.932516i \(0.382391\pi\)
\(674\) −5.20535 −0.200503
\(675\) −1.92760 −0.0741934
\(676\) −2.89596 −0.111383
\(677\) −38.3777 −1.47498 −0.737488 0.675360i \(-0.763988\pi\)
−0.737488 + 0.675360i \(0.763988\pi\)
\(678\) −10.5493 −0.405145
\(679\) 0 0
\(680\) 19.3055 0.740332
\(681\) 4.74895 0.181980
\(682\) −5.72073 −0.219058
\(683\) −7.86791 −0.301057 −0.150529 0.988606i \(-0.548098\pi\)
−0.150529 + 0.988606i \(0.548098\pi\)
\(684\) −1.92647 −0.0736602
\(685\) 7.43129 0.283935
\(686\) 0 0
\(687\) 0.486775 0.0185716
\(688\) 11.9255 0.454656
\(689\) 17.5416 0.668282
\(690\) −28.4700 −1.08383
\(691\) −41.4312 −1.57612 −0.788059 0.615600i \(-0.788914\pi\)
−0.788059 + 0.615600i \(0.788914\pi\)
\(692\) −0.752886 −0.0286204
\(693\) 0 0
\(694\) 41.1132 1.56064
\(695\) −6.05613 −0.229722
\(696\) −49.2203 −1.86569
\(697\) 46.5995 1.76508
\(698\) −43.6542 −1.65234
\(699\) 0.694948 0.0262853
\(700\) 0 0
\(701\) 18.4630 0.697337 0.348668 0.937246i \(-0.386634\pi\)
0.348668 + 0.937246i \(0.386634\pi\)
\(702\) −10.1384 −0.382650
\(703\) −2.65974 −0.100314
\(704\) 11.9345 0.449800
\(705\) 23.6516 0.890772
\(706\) −5.87044 −0.220937
\(707\) 0 0
\(708\) −0.587750 −0.0220890
\(709\) −9.71093 −0.364701 −0.182351 0.983234i \(-0.558371\pi\)
−0.182351 + 0.983234i \(0.558371\pi\)
\(710\) 9.32496 0.349960
\(711\) −65.7954 −2.46752
\(712\) −7.53375 −0.282339
\(713\) 31.3618 1.17451
\(714\) 0 0
\(715\) 5.81159 0.217341
\(716\) −4.90290 −0.183230
\(717\) −49.7677 −1.85861
\(718\) −37.8837 −1.41381
\(719\) 3.88966 0.145060 0.0725299 0.997366i \(-0.476893\pi\)
0.0725299 + 0.997366i \(0.476893\pi\)
\(720\) 10.1248 0.377329
\(721\) 0 0
\(722\) −1.21870 −0.0453553
\(723\) −14.0938 −0.524155
\(724\) 12.3502 0.458990
\(725\) 6.18505 0.229707
\(726\) −29.0710 −1.07893
\(727\) 43.9305 1.62929 0.814646 0.579958i \(-0.196931\pi\)
0.814646 + 0.579958i \(0.196931\pi\)
\(728\) 0 0
\(729\) −38.3000 −1.41852
\(730\) −13.5098 −0.500019
\(731\) 27.7665 1.02698
\(732\) 15.3312 0.566658
\(733\) 30.0305 1.10920 0.554601 0.832116i \(-0.312871\pi\)
0.554601 + 0.832116i \(0.312871\pi\)
\(734\) −5.67425 −0.209441
\(735\) 0 0
\(736\) −25.4820 −0.939278
\(737\) −13.6043 −0.501122
\(738\) 33.7393 1.24196
\(739\) −26.1955 −0.963617 −0.481808 0.876277i \(-0.660020\pi\)
−0.481808 + 0.876277i \(0.660020\pi\)
\(740\) −1.36916 −0.0503315
\(741\) 11.2063 0.411673
\(742\) 0 0
\(743\) −7.24377 −0.265748 −0.132874 0.991133i \(-0.542421\pi\)
−0.132874 + 0.991133i \(0.542421\pi\)
\(744\) −27.7407 −1.01702
\(745\) 3.91575 0.143462
\(746\) 4.43013 0.162198
\(747\) 13.5301 0.495041
\(748\) 4.36657 0.159658
\(749\) 0 0
\(750\) −3.16448 −0.115550
\(751\) 33.7313 1.23087 0.615436 0.788187i \(-0.288980\pi\)
0.615436 + 0.788187i \(0.288980\pi\)
\(752\) −24.6432 −0.898644
\(753\) −35.2841 −1.28582
\(754\) 32.5309 1.18471
\(755\) 16.1392 0.587364
\(756\) 0 0
\(757\) 40.4892 1.47160 0.735802 0.677196i \(-0.236805\pi\)
0.735802 + 0.677196i \(0.236805\pi\)
\(758\) 16.9509 0.615685
\(759\) −31.4579 −1.14185
\(760\) −3.06475 −0.111170
\(761\) 12.1473 0.440341 0.220170 0.975461i \(-0.429339\pi\)
0.220170 + 0.975461i \(0.429339\pi\)
\(762\) −5.39635 −0.195489
\(763\) 0 0
\(764\) −4.34409 −0.157164
\(765\) 23.5739 0.852315
\(766\) −17.0990 −0.617812
\(767\) 1.89770 0.0685219
\(768\) 29.7724 1.07432
\(769\) 26.4500 0.953811 0.476906 0.878954i \(-0.341758\pi\)
0.476906 + 0.878954i \(0.341758\pi\)
\(770\) 0 0
\(771\) 39.6969 1.42965
\(772\) −12.5916 −0.453183
\(773\) −22.4933 −0.809028 −0.404514 0.914532i \(-0.632559\pi\)
−0.404514 + 0.914532i \(0.632559\pi\)
\(774\) 20.1037 0.722614
\(775\) 3.48591 0.125218
\(776\) 22.4071 0.804366
\(777\) 0 0
\(778\) −44.4112 −1.59222
\(779\) −7.39767 −0.265049
\(780\) 5.76870 0.206553
\(781\) 10.3036 0.368692
\(782\) 69.0664 2.46981
\(783\) −11.9223 −0.426069
\(784\) 0 0
\(785\) 15.5675 0.555628
\(786\) −37.1122 −1.32375
\(787\) −11.1505 −0.397472 −0.198736 0.980053i \(-0.563684\pi\)
−0.198736 + 0.980053i \(0.563684\pi\)
\(788\) 11.6204 0.413959
\(789\) −37.4744 −1.33412
\(790\) −21.4263 −0.762314
\(791\) 0 0
\(792\) 15.4447 0.548803
\(793\) −49.5007 −1.75782
\(794\) −38.1295 −1.35316
\(795\) −10.5540 −0.374313
\(796\) −4.25137 −0.150686
\(797\) −2.00143 −0.0708944 −0.0354472 0.999372i \(-0.511286\pi\)
−0.0354472 + 0.999372i \(0.511286\pi\)
\(798\) 0 0
\(799\) −57.3775 −2.02987
\(800\) −2.83236 −0.100139
\(801\) −9.19943 −0.325046
\(802\) 32.7307 1.15576
\(803\) −14.9276 −0.526784
\(804\) −13.5039 −0.476247
\(805\) 0 0
\(806\) 18.3345 0.645805
\(807\) −22.5922 −0.795282
\(808\) −24.3830 −0.857792
\(809\) 27.3887 0.962934 0.481467 0.876464i \(-0.340104\pi\)
0.481467 + 0.876464i \(0.340104\pi\)
\(810\) −7.58255 −0.266424
\(811\) −49.9883 −1.75533 −0.877664 0.479277i \(-0.840899\pi\)
−0.877664 + 0.479277i \(0.840899\pi\)
\(812\) 0 0
\(813\) −57.5289 −2.01763
\(814\) 4.36490 0.152990
\(815\) 10.7167 0.375390
\(816\) −44.2520 −1.54913
\(817\) −4.40794 −0.154214
\(818\) 12.1236 0.423890
\(819\) 0 0
\(820\) −3.80812 −0.132985
\(821\) −33.4012 −1.16571 −0.582855 0.812576i \(-0.698064\pi\)
−0.582855 + 0.812576i \(0.698064\pi\)
\(822\) −23.5161 −0.820220
\(823\) 4.64616 0.161955 0.0809775 0.996716i \(-0.474196\pi\)
0.0809775 + 0.996716i \(0.474196\pi\)
\(824\) −1.45916 −0.0508321
\(825\) −3.49659 −0.121736
\(826\) 0 0
\(827\) 5.64229 0.196201 0.0981007 0.995176i \(-0.468723\pi\)
0.0981007 + 0.995176i \(0.468723\pi\)
\(828\) −17.3319 −0.602325
\(829\) 39.9143 1.38628 0.693141 0.720802i \(-0.256226\pi\)
0.693141 + 0.720802i \(0.256226\pi\)
\(830\) 4.40609 0.152937
\(831\) −58.7154 −2.03681
\(832\) −38.2493 −1.32605
\(833\) 0 0
\(834\) 19.1645 0.663612
\(835\) 15.8611 0.548896
\(836\) −0.693194 −0.0239746
\(837\) −6.71945 −0.232258
\(838\) 16.6470 0.575062
\(839\) 23.4423 0.809317 0.404659 0.914468i \(-0.367390\pi\)
0.404659 + 0.914468i \(0.367390\pi\)
\(840\) 0 0
\(841\) 9.25488 0.319134
\(842\) 12.2205 0.421147
\(843\) −79.5072 −2.73837
\(844\) −4.17996 −0.143880
\(845\) −5.62569 −0.193530
\(846\) −41.5429 −1.42827
\(847\) 0 0
\(848\) 10.9965 0.377621
\(849\) −37.2933 −1.27990
\(850\) 7.67684 0.263313
\(851\) −23.9290 −0.820274
\(852\) 10.2276 0.350391
\(853\) −23.1897 −0.793999 −0.396999 0.917819i \(-0.629949\pi\)
−0.396999 + 0.917819i \(0.629949\pi\)
\(854\) 0 0
\(855\) −3.74235 −0.127986
\(856\) −15.9179 −0.544061
\(857\) −14.1698 −0.484033 −0.242016 0.970272i \(-0.577809\pi\)
−0.242016 + 0.970272i \(0.577809\pi\)
\(858\) −18.3906 −0.627846
\(859\) 28.2375 0.963451 0.481726 0.876322i \(-0.340010\pi\)
0.481726 + 0.876322i \(0.340010\pi\)
\(860\) −2.26909 −0.0773754
\(861\) 0 0
\(862\) 25.2606 0.860380
\(863\) 43.0648 1.46594 0.732972 0.680259i \(-0.238133\pi\)
0.732972 + 0.680259i \(0.238133\pi\)
\(864\) 5.45966 0.185741
\(865\) −1.46256 −0.0497284
\(866\) −30.7183 −1.04385
\(867\) −58.8910 −2.00004
\(868\) 0 0
\(869\) −23.6750 −0.803119
\(870\) −19.5725 −0.663569
\(871\) 43.6008 1.47736
\(872\) 60.8189 2.05959
\(873\) 27.3612 0.926035
\(874\) −10.9643 −0.370873
\(875\) 0 0
\(876\) −14.8175 −0.500636
\(877\) −40.9748 −1.38362 −0.691810 0.722080i \(-0.743186\pi\)
−0.691810 + 0.722080i \(0.743186\pi\)
\(878\) −0.499724 −0.0168649
\(879\) −36.4539 −1.22956
\(880\) 3.64317 0.122811
\(881\) 8.65739 0.291675 0.145837 0.989309i \(-0.453412\pi\)
0.145837 + 0.989309i \(0.453412\pi\)
\(882\) 0 0
\(883\) 43.8087 1.47428 0.737140 0.675740i \(-0.236176\pi\)
0.737140 + 0.675740i \(0.236176\pi\)
\(884\) −13.9945 −0.470687
\(885\) −1.14176 −0.0383800
\(886\) 18.8948 0.634784
\(887\) 30.6402 1.02880 0.514398 0.857552i \(-0.328015\pi\)
0.514398 + 0.857552i \(0.328015\pi\)
\(888\) 21.1661 0.710287
\(889\) 0 0
\(890\) −2.99580 −0.100419
\(891\) −8.37834 −0.280685
\(892\) −11.6750 −0.390909
\(893\) 9.10868 0.304810
\(894\) −12.3913 −0.414427
\(895\) −9.52438 −0.318365
\(896\) 0 0
\(897\) 100.820 3.36628
\(898\) −16.9717 −0.566353
\(899\) 21.5605 0.719084
\(900\) −1.92647 −0.0642155
\(901\) 25.6035 0.852976
\(902\) 12.1403 0.404228
\(903\) 0 0
\(904\) −10.2169 −0.339808
\(905\) 23.9915 0.797503
\(906\) −51.0720 −1.69675
\(907\) −18.7440 −0.622386 −0.311193 0.950347i \(-0.600729\pi\)
−0.311193 + 0.950347i \(0.600729\pi\)
\(908\) 0.941473 0.0312439
\(909\) −29.7740 −0.987541
\(910\) 0 0
\(911\) 41.6954 1.38143 0.690715 0.723127i \(-0.257296\pi\)
0.690715 + 0.723127i \(0.257296\pi\)
\(912\) 7.02501 0.232621
\(913\) 4.86850 0.161124
\(914\) −40.0722 −1.32547
\(915\) 29.7825 0.984578
\(916\) 0.0965025 0.00318853
\(917\) 0 0
\(918\) −14.7979 −0.488403
\(919\) 48.1289 1.58763 0.793813 0.608162i \(-0.208093\pi\)
0.793813 + 0.608162i \(0.208093\pi\)
\(920\) −27.5727 −0.909046
\(921\) 79.8620 2.63154
\(922\) −25.8760 −0.852181
\(923\) −33.0223 −1.08694
\(924\) 0 0
\(925\) −2.65974 −0.0874518
\(926\) 6.59944 0.216871
\(927\) −1.78177 −0.0585210
\(928\) −17.5183 −0.575066
\(929\) −14.5530 −0.477470 −0.238735 0.971085i \(-0.576733\pi\)
−0.238735 + 0.971085i \(0.576733\pi\)
\(930\) −11.0311 −0.361724
\(931\) 0 0
\(932\) 0.137773 0.00451289
\(933\) −42.8839 −1.40395
\(934\) 32.2992 1.05686
\(935\) 8.48251 0.277408
\(936\) −49.4990 −1.61793
\(937\) −30.5187 −0.997002 −0.498501 0.866889i \(-0.666116\pi\)
−0.498501 + 0.866889i \(0.666116\pi\)
\(938\) 0 0
\(939\) 28.6634 0.935395
\(940\) 4.68891 0.152935
\(941\) 47.1839 1.53815 0.769076 0.639157i \(-0.220717\pi\)
0.769076 + 0.639157i \(0.220717\pi\)
\(942\) −49.2630 −1.60508
\(943\) −66.5548 −2.16732
\(944\) 1.18963 0.0387192
\(945\) 0 0
\(946\) 7.23387 0.235193
\(947\) 29.9827 0.974308 0.487154 0.873316i \(-0.338035\pi\)
0.487154 + 0.873316i \(0.338035\pi\)
\(948\) −23.5003 −0.763253
\(949\) 47.8419 1.55301
\(950\) −1.21870 −0.0395398
\(951\) 61.2072 1.98478
\(952\) 0 0
\(953\) −29.4974 −0.955515 −0.477757 0.878492i \(-0.658550\pi\)
−0.477757 + 0.878492i \(0.658550\pi\)
\(954\) 18.5376 0.600178
\(955\) −8.43884 −0.273074
\(956\) −9.86638 −0.319101
\(957\) −21.6266 −0.699088
\(958\) −18.1912 −0.587732
\(959\) 0 0
\(960\) 23.0130 0.742740
\(961\) −18.8484 −0.608014
\(962\) −13.9892 −0.451029
\(963\) −19.4372 −0.626356
\(964\) −2.79408 −0.0899914
\(965\) −24.4605 −0.787412
\(966\) 0 0
\(967\) 49.4422 1.58996 0.794978 0.606639i \(-0.207483\pi\)
0.794978 + 0.606639i \(0.207483\pi\)
\(968\) −28.1549 −0.904931
\(969\) 16.3566 0.525448
\(970\) 8.91017 0.286088
\(971\) 21.0324 0.674961 0.337481 0.941333i \(-0.390425\pi\)
0.337481 + 0.941333i \(0.390425\pi\)
\(972\) −11.2933 −0.362234
\(973\) 0 0
\(974\) −13.5306 −0.433547
\(975\) 11.2063 0.358889
\(976\) −31.0310 −0.993279
\(977\) −7.12218 −0.227859 −0.113929 0.993489i \(-0.536344\pi\)
−0.113929 + 0.993489i \(0.536344\pi\)
\(978\) −33.9128 −1.08441
\(979\) −3.31020 −0.105795
\(980\) 0 0
\(981\) 74.2657 2.37112
\(982\) 24.8140 0.791845
\(983\) 35.4689 1.13128 0.565641 0.824652i \(-0.308629\pi\)
0.565641 + 0.824652i \(0.308629\pi\)
\(984\) 58.8703 1.87672
\(985\) 22.5738 0.719260
\(986\) 47.4816 1.51212
\(987\) 0 0
\(988\) 2.22163 0.0706796
\(989\) −39.6570 −1.26102
\(990\) 6.14158 0.195192
\(991\) −35.0928 −1.11476 −0.557380 0.830258i \(-0.688193\pi\)
−0.557380 + 0.830258i \(0.688193\pi\)
\(992\) −9.87335 −0.313479
\(993\) 23.0725 0.732184
\(994\) 0 0
\(995\) −8.25872 −0.261819
\(996\) 4.83258 0.153126
\(997\) 51.0328 1.61622 0.808112 0.589029i \(-0.200490\pi\)
0.808112 + 0.589029i \(0.200490\pi\)
\(998\) 23.5748 0.746247
\(999\) 5.12692 0.162209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4655.2.a.br.1.8 26
7.6 odd 2 4655.2.a.bs.1.8 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4655.2.a.br.1.8 26 1.1 even 1 trivial
4655.2.a.bs.1.8 yes 26 7.6 odd 2