Properties

Label 4655.2.a.br.1.9
Level $4655$
Weight $2$
Character 4655.1
Self dual yes
Analytic conductor $37.170$
Analytic rank $0$
Dimension $26$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4655 = 5 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1703621409\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 4655.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.970750 q^{2} +1.67805 q^{3} -1.05764 q^{4} -1.00000 q^{5} -1.62896 q^{6} +2.96821 q^{8} -0.184157 q^{9} +0.970750 q^{10} -2.07210 q^{11} -1.77478 q^{12} +3.19041 q^{13} -1.67805 q^{15} -0.766099 q^{16} +6.41955 q^{17} +0.178770 q^{18} +1.00000 q^{19} +1.05764 q^{20} +2.01149 q^{22} -7.12724 q^{23} +4.98079 q^{24} +1.00000 q^{25} -3.09709 q^{26} -5.34317 q^{27} -7.42287 q^{29} +1.62896 q^{30} +4.12205 q^{31} -5.19273 q^{32} -3.47708 q^{33} -6.23178 q^{34} +0.194772 q^{36} +6.01740 q^{37} -0.970750 q^{38} +5.35366 q^{39} -2.96821 q^{40} +3.33345 q^{41} +10.7946 q^{43} +2.19155 q^{44} +0.184157 q^{45} +6.91877 q^{46} +2.74900 q^{47} -1.28555 q^{48} -0.970750 q^{50} +10.7723 q^{51} -3.37432 q^{52} -11.2500 q^{53} +5.18688 q^{54} +2.07210 q^{55} +1.67805 q^{57} +7.20575 q^{58} +2.95814 q^{59} +1.77478 q^{60} -8.10822 q^{61} -4.00148 q^{62} +6.57304 q^{64} -3.19041 q^{65} +3.37538 q^{66} +11.6881 q^{67} -6.78960 q^{68} -11.9598 q^{69} -7.73825 q^{71} -0.546615 q^{72} +13.5562 q^{73} -5.84139 q^{74} +1.67805 q^{75} -1.05764 q^{76} -5.19707 q^{78} -13.8798 q^{79} +0.766099 q^{80} -8.41362 q^{81} -3.23595 q^{82} +8.62082 q^{83} -6.41955 q^{85} -10.4788 q^{86} -12.4559 q^{87} -6.15043 q^{88} -14.2789 q^{89} -0.178770 q^{90} +7.53808 q^{92} +6.91699 q^{93} -2.66859 q^{94} -1.00000 q^{95} -8.71364 q^{96} +15.2038 q^{97} +0.381591 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 4 q^{2} - 6 q^{3} + 36 q^{4} - 26 q^{5} + 4 q^{6} + 12 q^{8} + 44 q^{9} - 4 q^{10} + 14 q^{11} - 20 q^{12} - 14 q^{13} + 6 q^{15} + 64 q^{16} - 18 q^{17} + 8 q^{18} + 26 q^{19} - 36 q^{20} + 36 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.970750 −0.686424 −0.343212 0.939258i \(-0.611515\pi\)
−0.343212 + 0.939258i \(0.611515\pi\)
\(3\) 1.67805 0.968821 0.484411 0.874841i \(-0.339034\pi\)
0.484411 + 0.874841i \(0.339034\pi\)
\(4\) −1.05764 −0.528822
\(5\) −1.00000 −0.447214
\(6\) −1.62896 −0.665022
\(7\) 0 0
\(8\) 2.96821 1.04942
\(9\) −0.184157 −0.0613855
\(10\) 0.970750 0.306978
\(11\) −2.07210 −0.624762 −0.312381 0.949957i \(-0.601127\pi\)
−0.312381 + 0.949957i \(0.601127\pi\)
\(12\) −1.77478 −0.512334
\(13\) 3.19041 0.884861 0.442430 0.896803i \(-0.354116\pi\)
0.442430 + 0.896803i \(0.354116\pi\)
\(14\) 0 0
\(15\) −1.67805 −0.433270
\(16\) −0.766099 −0.191525
\(17\) 6.41955 1.55697 0.778485 0.627663i \(-0.215988\pi\)
0.778485 + 0.627663i \(0.215988\pi\)
\(18\) 0.178770 0.0421365
\(19\) 1.00000 0.229416
\(20\) 1.05764 0.236496
\(21\) 0 0
\(22\) 2.01149 0.428852
\(23\) −7.12724 −1.48613 −0.743066 0.669218i \(-0.766629\pi\)
−0.743066 + 0.669218i \(0.766629\pi\)
\(24\) 4.98079 1.01670
\(25\) 1.00000 0.200000
\(26\) −3.09709 −0.607390
\(27\) −5.34317 −1.02829
\(28\) 0 0
\(29\) −7.42287 −1.37839 −0.689197 0.724574i \(-0.742036\pi\)
−0.689197 + 0.724574i \(0.742036\pi\)
\(30\) 1.62896 0.297407
\(31\) 4.12205 0.740341 0.370171 0.928964i \(-0.379299\pi\)
0.370171 + 0.928964i \(0.379299\pi\)
\(32\) −5.19273 −0.917953
\(33\) −3.47708 −0.605283
\(34\) −6.23178 −1.06874
\(35\) 0 0
\(36\) 0.194772 0.0324620
\(37\) 6.01740 0.989255 0.494627 0.869105i \(-0.335305\pi\)
0.494627 + 0.869105i \(0.335305\pi\)
\(38\) −0.970750 −0.157476
\(39\) 5.35366 0.857272
\(40\) −2.96821 −0.469315
\(41\) 3.33345 0.520598 0.260299 0.965528i \(-0.416179\pi\)
0.260299 + 0.965528i \(0.416179\pi\)
\(42\) 0 0
\(43\) 10.7946 1.64616 0.823078 0.567928i \(-0.192255\pi\)
0.823078 + 0.567928i \(0.192255\pi\)
\(44\) 2.19155 0.330388
\(45\) 0.184157 0.0274524
\(46\) 6.91877 1.02012
\(47\) 2.74900 0.400983 0.200491 0.979695i \(-0.435746\pi\)
0.200491 + 0.979695i \(0.435746\pi\)
\(48\) −1.28555 −0.185553
\(49\) 0 0
\(50\) −0.970750 −0.137285
\(51\) 10.7723 1.50843
\(52\) −3.37432 −0.467934
\(53\) −11.2500 −1.54531 −0.772656 0.634825i \(-0.781072\pi\)
−0.772656 + 0.634825i \(0.781072\pi\)
\(54\) 5.18688 0.705845
\(55\) 2.07210 0.279402
\(56\) 0 0
\(57\) 1.67805 0.222263
\(58\) 7.20575 0.946162
\(59\) 2.95814 0.385117 0.192558 0.981285i \(-0.438321\pi\)
0.192558 + 0.981285i \(0.438321\pi\)
\(60\) 1.77478 0.229123
\(61\) −8.10822 −1.03815 −0.519076 0.854728i \(-0.673724\pi\)
−0.519076 + 0.854728i \(0.673724\pi\)
\(62\) −4.00148 −0.508188
\(63\) 0 0
\(64\) 6.57304 0.821630
\(65\) −3.19041 −0.395722
\(66\) 3.37538 0.415481
\(67\) 11.6881 1.42792 0.713962 0.700184i \(-0.246899\pi\)
0.713962 + 0.700184i \(0.246899\pi\)
\(68\) −6.78960 −0.823360
\(69\) −11.9598 −1.43980
\(70\) 0 0
\(71\) −7.73825 −0.918361 −0.459181 0.888343i \(-0.651857\pi\)
−0.459181 + 0.888343i \(0.651857\pi\)
\(72\) −0.546615 −0.0644192
\(73\) 13.5562 1.58663 0.793314 0.608813i \(-0.208354\pi\)
0.793314 + 0.608813i \(0.208354\pi\)
\(74\) −5.84139 −0.679048
\(75\) 1.67805 0.193764
\(76\) −1.05764 −0.121320
\(77\) 0 0
\(78\) −5.19707 −0.588452
\(79\) −13.8798 −1.56160 −0.780802 0.624778i \(-0.785189\pi\)
−0.780802 + 0.624778i \(0.785189\pi\)
\(80\) 0.766099 0.0856525
\(81\) −8.41362 −0.934846
\(82\) −3.23595 −0.357351
\(83\) 8.62082 0.946258 0.473129 0.880993i \(-0.343124\pi\)
0.473129 + 0.880993i \(0.343124\pi\)
\(84\) 0 0
\(85\) −6.41955 −0.696298
\(86\) −10.4788 −1.12996
\(87\) −12.4559 −1.33542
\(88\) −6.15043 −0.655638
\(89\) −14.2789 −1.51356 −0.756781 0.653669i \(-0.773229\pi\)
−0.756781 + 0.653669i \(0.773229\pi\)
\(90\) −0.178770 −0.0188440
\(91\) 0 0
\(92\) 7.53808 0.785900
\(93\) 6.91699 0.717258
\(94\) −2.66859 −0.275244
\(95\) −1.00000 −0.102598
\(96\) −8.71364 −0.889332
\(97\) 15.2038 1.54371 0.771856 0.635798i \(-0.219329\pi\)
0.771856 + 0.635798i \(0.219329\pi\)
\(98\) 0 0
\(99\) 0.381591 0.0383513
\(100\) −1.05764 −0.105764
\(101\) 6.04404 0.601404 0.300702 0.953718i \(-0.402779\pi\)
0.300702 + 0.953718i \(0.402779\pi\)
\(102\) −10.4572 −1.03542
\(103\) 2.03477 0.200492 0.100246 0.994963i \(-0.468037\pi\)
0.100246 + 0.994963i \(0.468037\pi\)
\(104\) 9.46980 0.928591
\(105\) 0 0
\(106\) 10.9210 1.06074
\(107\) 3.29869 0.318896 0.159448 0.987206i \(-0.449029\pi\)
0.159448 + 0.987206i \(0.449029\pi\)
\(108\) 5.65117 0.543784
\(109\) −10.4674 −1.00260 −0.501299 0.865274i \(-0.667144\pi\)
−0.501299 + 0.865274i \(0.667144\pi\)
\(110\) −2.01149 −0.191788
\(111\) 10.0975 0.958411
\(112\) 0 0
\(113\) 12.8634 1.21009 0.605044 0.796192i \(-0.293156\pi\)
0.605044 + 0.796192i \(0.293156\pi\)
\(114\) −1.62896 −0.152567
\(115\) 7.12724 0.664618
\(116\) 7.85076 0.728925
\(117\) −0.587535 −0.0543176
\(118\) −2.87161 −0.264353
\(119\) 0 0
\(120\) −4.98079 −0.454682
\(121\) −6.70640 −0.609672
\(122\) 7.87106 0.712612
\(123\) 5.59370 0.504367
\(124\) −4.35966 −0.391509
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −16.1581 −1.43380 −0.716901 0.697175i \(-0.754440\pi\)
−0.716901 + 0.697175i \(0.754440\pi\)
\(128\) 4.00468 0.353967
\(129\) 18.1138 1.59483
\(130\) 3.09709 0.271633
\(131\) 13.9199 1.21618 0.608092 0.793867i \(-0.291935\pi\)
0.608092 + 0.793867i \(0.291935\pi\)
\(132\) 3.67752 0.320087
\(133\) 0 0
\(134\) −11.3462 −0.980162
\(135\) 5.34317 0.459867
\(136\) 19.0546 1.63392
\(137\) 19.9430 1.70384 0.851922 0.523669i \(-0.175437\pi\)
0.851922 + 0.523669i \(0.175437\pi\)
\(138\) 11.6100 0.988310
\(139\) −8.29025 −0.703170 −0.351585 0.936156i \(-0.614357\pi\)
−0.351585 + 0.936156i \(0.614357\pi\)
\(140\) 0 0
\(141\) 4.61295 0.388481
\(142\) 7.51191 0.630385
\(143\) −6.61085 −0.552827
\(144\) 0.141082 0.0117569
\(145\) 7.42287 0.616436
\(146\) −13.1596 −1.08910
\(147\) 0 0
\(148\) −6.36427 −0.523140
\(149\) 5.87288 0.481125 0.240562 0.970634i \(-0.422668\pi\)
0.240562 + 0.970634i \(0.422668\pi\)
\(150\) −1.62896 −0.133004
\(151\) 21.2147 1.72643 0.863215 0.504836i \(-0.168447\pi\)
0.863215 + 0.504836i \(0.168447\pi\)
\(152\) 2.96821 0.240753
\(153\) −1.18220 −0.0955754
\(154\) 0 0
\(155\) −4.12205 −0.331091
\(156\) −5.66227 −0.453344
\(157\) −6.52574 −0.520810 −0.260405 0.965499i \(-0.583856\pi\)
−0.260405 + 0.965499i \(0.583856\pi\)
\(158\) 13.4739 1.07192
\(159\) −18.8781 −1.49713
\(160\) 5.19273 0.410521
\(161\) 0 0
\(162\) 8.16752 0.641701
\(163\) 5.51115 0.431666 0.215833 0.976430i \(-0.430753\pi\)
0.215833 + 0.976430i \(0.430753\pi\)
\(164\) −3.52561 −0.275304
\(165\) 3.47708 0.270691
\(166\) −8.36866 −0.649534
\(167\) 19.2401 1.48884 0.744421 0.667710i \(-0.232726\pi\)
0.744421 + 0.667710i \(0.232726\pi\)
\(168\) 0 0
\(169\) −2.82128 −0.217022
\(170\) 6.23178 0.477956
\(171\) −0.184157 −0.0140828
\(172\) −11.4168 −0.870524
\(173\) 24.3872 1.85413 0.927064 0.374904i \(-0.122324\pi\)
0.927064 + 0.374904i \(0.122324\pi\)
\(174\) 12.0916 0.916662
\(175\) 0 0
\(176\) 1.58744 0.119657
\(177\) 4.96390 0.373109
\(178\) 13.8613 1.03895
\(179\) −13.9786 −1.04481 −0.522404 0.852698i \(-0.674965\pi\)
−0.522404 + 0.852698i \(0.674965\pi\)
\(180\) −0.194772 −0.0145175
\(181\) −4.39177 −0.326438 −0.163219 0.986590i \(-0.552188\pi\)
−0.163219 + 0.986590i \(0.552188\pi\)
\(182\) 0 0
\(183\) −13.6060 −1.00578
\(184\) −21.1551 −1.55958
\(185\) −6.01740 −0.442408
\(186\) −6.71467 −0.492343
\(187\) −13.3020 −0.972736
\(188\) −2.90746 −0.212049
\(189\) 0 0
\(190\) 0.970750 0.0704256
\(191\) −2.80252 −0.202783 −0.101392 0.994847i \(-0.532330\pi\)
−0.101392 + 0.994847i \(0.532330\pi\)
\(192\) 11.0299 0.796012
\(193\) 18.5878 1.33798 0.668989 0.743272i \(-0.266727\pi\)
0.668989 + 0.743272i \(0.266727\pi\)
\(194\) −14.7591 −1.05964
\(195\) −5.35366 −0.383384
\(196\) 0 0
\(197\) 22.3562 1.59282 0.796408 0.604760i \(-0.206731\pi\)
0.796408 + 0.604760i \(0.206731\pi\)
\(198\) −0.370430 −0.0263253
\(199\) 14.5247 1.02963 0.514813 0.857302i \(-0.327861\pi\)
0.514813 + 0.857302i \(0.327861\pi\)
\(200\) 2.96821 0.209884
\(201\) 19.6131 1.38340
\(202\) −5.86725 −0.412818
\(203\) 0 0
\(204\) −11.3933 −0.797689
\(205\) −3.33345 −0.232819
\(206\) −1.97526 −0.137623
\(207\) 1.31253 0.0912270
\(208\) −2.44417 −0.169473
\(209\) −2.07210 −0.143330
\(210\) 0 0
\(211\) 13.2163 0.909846 0.454923 0.890531i \(-0.349667\pi\)
0.454923 + 0.890531i \(0.349667\pi\)
\(212\) 11.8985 0.817195
\(213\) −12.9852 −0.889728
\(214\) −3.20220 −0.218898
\(215\) −10.7946 −0.736183
\(216\) −15.8596 −1.07911
\(217\) 0 0
\(218\) 10.1613 0.688207
\(219\) 22.7479 1.53716
\(220\) −2.19155 −0.147754
\(221\) 20.4810 1.37770
\(222\) −9.80214 −0.657876
\(223\) −4.30067 −0.287994 −0.143997 0.989578i \(-0.545996\pi\)
−0.143997 + 0.989578i \(0.545996\pi\)
\(224\) 0 0
\(225\) −0.184157 −0.0122771
\(226\) −12.4872 −0.830633
\(227\) −18.3520 −1.21807 −0.609034 0.793144i \(-0.708443\pi\)
−0.609034 + 0.793144i \(0.708443\pi\)
\(228\) −1.77478 −0.117538
\(229\) 15.3348 1.01335 0.506677 0.862136i \(-0.330874\pi\)
0.506677 + 0.862136i \(0.330874\pi\)
\(230\) −6.91877 −0.456210
\(231\) 0 0
\(232\) −22.0326 −1.44651
\(233\) 16.8166 1.10169 0.550845 0.834608i \(-0.314306\pi\)
0.550845 + 0.834608i \(0.314306\pi\)
\(234\) 0.570350 0.0372849
\(235\) −2.74900 −0.179325
\(236\) −3.12866 −0.203658
\(237\) −23.2910 −1.51292
\(238\) 0 0
\(239\) −3.41154 −0.220674 −0.110337 0.993894i \(-0.535193\pi\)
−0.110337 + 0.993894i \(0.535193\pi\)
\(240\) 1.28555 0.0829820
\(241\) 18.3852 1.18429 0.592146 0.805831i \(-0.298281\pi\)
0.592146 + 0.805831i \(0.298281\pi\)
\(242\) 6.51023 0.418494
\(243\) 1.91105 0.122594
\(244\) 8.57562 0.548997
\(245\) 0 0
\(246\) −5.43008 −0.346209
\(247\) 3.19041 0.203001
\(248\) 12.2351 0.776929
\(249\) 14.4661 0.916755
\(250\) 0.970750 0.0613956
\(251\) −0.157387 −0.00993418 −0.00496709 0.999988i \(-0.501581\pi\)
−0.00496709 + 0.999988i \(0.501581\pi\)
\(252\) 0 0
\(253\) 14.7684 0.928479
\(254\) 15.6855 0.984196
\(255\) −10.7723 −0.674588
\(256\) −17.0336 −1.06460
\(257\) −22.1753 −1.38326 −0.691628 0.722254i \(-0.743106\pi\)
−0.691628 + 0.722254i \(0.743106\pi\)
\(258\) −17.5840 −1.09473
\(259\) 0 0
\(260\) 3.37432 0.209266
\(261\) 1.36697 0.0846134
\(262\) −13.5127 −0.834817
\(263\) −18.8373 −1.16156 −0.580778 0.814062i \(-0.697251\pi\)
−0.580778 + 0.814062i \(0.697251\pi\)
\(264\) −10.3207 −0.635196
\(265\) 11.2500 0.691085
\(266\) 0 0
\(267\) −23.9607 −1.46637
\(268\) −12.3618 −0.755118
\(269\) −7.88556 −0.480791 −0.240396 0.970675i \(-0.577277\pi\)
−0.240396 + 0.970675i \(0.577277\pi\)
\(270\) −5.18688 −0.315663
\(271\) 24.4398 1.48461 0.742305 0.670062i \(-0.233733\pi\)
0.742305 + 0.670062i \(0.233733\pi\)
\(272\) −4.91802 −0.298198
\(273\) 0 0
\(274\) −19.3596 −1.16956
\(275\) −2.07210 −0.124952
\(276\) 12.6493 0.761396
\(277\) 7.32569 0.440158 0.220079 0.975482i \(-0.429369\pi\)
0.220079 + 0.975482i \(0.429369\pi\)
\(278\) 8.04776 0.482673
\(279\) −0.759102 −0.0454462
\(280\) 0 0
\(281\) 2.34019 0.139604 0.0698020 0.997561i \(-0.477763\pi\)
0.0698020 + 0.997561i \(0.477763\pi\)
\(282\) −4.47802 −0.266662
\(283\) 13.1857 0.783806 0.391903 0.920007i \(-0.371817\pi\)
0.391903 + 0.920007i \(0.371817\pi\)
\(284\) 8.18432 0.485650
\(285\) −1.67805 −0.0993990
\(286\) 6.41749 0.379474
\(287\) 0 0
\(288\) 0.956274 0.0563490
\(289\) 24.2107 1.42416
\(290\) −7.20575 −0.423137
\(291\) 25.5127 1.49558
\(292\) −14.3376 −0.839044
\(293\) 17.2826 1.00966 0.504831 0.863218i \(-0.331555\pi\)
0.504831 + 0.863218i \(0.331555\pi\)
\(294\) 0 0
\(295\) −2.95814 −0.172230
\(296\) 17.8609 1.03814
\(297\) 11.0716 0.642438
\(298\) −5.70110 −0.330256
\(299\) −22.7388 −1.31502
\(300\) −1.77478 −0.102467
\(301\) 0 0
\(302\) −20.5942 −1.18506
\(303\) 10.1422 0.582653
\(304\) −0.766099 −0.0439388
\(305\) 8.10822 0.464275
\(306\) 1.14762 0.0656053
\(307\) −20.6155 −1.17659 −0.588295 0.808646i \(-0.700201\pi\)
−0.588295 + 0.808646i \(0.700201\pi\)
\(308\) 0 0
\(309\) 3.41445 0.194241
\(310\) 4.00148 0.227269
\(311\) 4.84409 0.274683 0.137342 0.990524i \(-0.456144\pi\)
0.137342 + 0.990524i \(0.456144\pi\)
\(312\) 15.8908 0.899638
\(313\) −23.3798 −1.32151 −0.660753 0.750603i \(-0.729763\pi\)
−0.660753 + 0.750603i \(0.729763\pi\)
\(314\) 6.33486 0.357497
\(315\) 0 0
\(316\) 14.6799 0.825811
\(317\) 6.39331 0.359084 0.179542 0.983750i \(-0.442538\pi\)
0.179542 + 0.983750i \(0.442538\pi\)
\(318\) 18.3259 1.02767
\(319\) 15.3809 0.861168
\(320\) −6.57304 −0.367444
\(321\) 5.53536 0.308954
\(322\) 0 0
\(323\) 6.41955 0.357193
\(324\) 8.89861 0.494367
\(325\) 3.19041 0.176972
\(326\) −5.34995 −0.296306
\(327\) −17.5649 −0.971338
\(328\) 9.89439 0.546326
\(329\) 0 0
\(330\) −3.37538 −0.185809
\(331\) 29.7538 1.63542 0.817710 0.575631i \(-0.195243\pi\)
0.817710 + 0.575631i \(0.195243\pi\)
\(332\) −9.11776 −0.500402
\(333\) −1.10814 −0.0607259
\(334\) −18.6773 −1.02198
\(335\) −11.6881 −0.638587
\(336\) 0 0
\(337\) 29.3188 1.59710 0.798548 0.601931i \(-0.205602\pi\)
0.798548 + 0.601931i \(0.205602\pi\)
\(338\) 2.73876 0.148969
\(339\) 21.5854 1.17236
\(340\) 6.78960 0.368218
\(341\) −8.54130 −0.462537
\(342\) 0.178770 0.00966677
\(343\) 0 0
\(344\) 32.0405 1.72751
\(345\) 11.9598 0.643896
\(346\) −23.6739 −1.27272
\(347\) 18.1167 0.972556 0.486278 0.873804i \(-0.338354\pi\)
0.486278 + 0.873804i \(0.338354\pi\)
\(348\) 13.1740 0.706198
\(349\) 13.0008 0.695917 0.347959 0.937510i \(-0.386875\pi\)
0.347959 + 0.937510i \(0.386875\pi\)
\(350\) 0 0
\(351\) −17.0469 −0.909896
\(352\) 10.7599 0.573502
\(353\) 6.34602 0.337765 0.168882 0.985636i \(-0.445984\pi\)
0.168882 + 0.985636i \(0.445984\pi\)
\(354\) −4.81870 −0.256111
\(355\) 7.73825 0.410704
\(356\) 15.1020 0.800405
\(357\) 0 0
\(358\) 13.5697 0.717181
\(359\) −30.1925 −1.59350 −0.796749 0.604310i \(-0.793449\pi\)
−0.796749 + 0.604310i \(0.793449\pi\)
\(360\) 0.546615 0.0288091
\(361\) 1.00000 0.0526316
\(362\) 4.26331 0.224075
\(363\) −11.2537 −0.590663
\(364\) 0 0
\(365\) −13.5562 −0.709561
\(366\) 13.2080 0.690394
\(367\) −5.39305 −0.281515 −0.140758 0.990044i \(-0.544954\pi\)
−0.140758 + 0.990044i \(0.544954\pi\)
\(368\) 5.46017 0.284631
\(369\) −0.613878 −0.0319572
\(370\) 5.84139 0.303680
\(371\) 0 0
\(372\) −7.31571 −0.379302
\(373\) 27.2735 1.41217 0.706084 0.708128i \(-0.250460\pi\)
0.706084 + 0.708128i \(0.250460\pi\)
\(374\) 12.9129 0.667709
\(375\) −1.67805 −0.0866540
\(376\) 8.15960 0.420799
\(377\) −23.6820 −1.21969
\(378\) 0 0
\(379\) 12.6077 0.647614 0.323807 0.946123i \(-0.395037\pi\)
0.323807 + 0.946123i \(0.395037\pi\)
\(380\) 1.05764 0.0542560
\(381\) −27.1141 −1.38910
\(382\) 2.72055 0.139195
\(383\) 5.22525 0.266998 0.133499 0.991049i \(-0.457379\pi\)
0.133499 + 0.991049i \(0.457379\pi\)
\(384\) 6.72004 0.342930
\(385\) 0 0
\(386\) −18.0441 −0.918420
\(387\) −1.98789 −0.101050
\(388\) −16.0802 −0.816349
\(389\) 5.70078 0.289041 0.144521 0.989502i \(-0.453836\pi\)
0.144521 + 0.989502i \(0.453836\pi\)
\(390\) 5.19707 0.263164
\(391\) −45.7537 −2.31386
\(392\) 0 0
\(393\) 23.3582 1.17826
\(394\) −21.7023 −1.09335
\(395\) 13.8798 0.698371
\(396\) −0.403588 −0.0202810
\(397\) −22.0844 −1.10838 −0.554191 0.832389i \(-0.686972\pi\)
−0.554191 + 0.832389i \(0.686972\pi\)
\(398\) −14.0998 −0.706760
\(399\) 0 0
\(400\) −0.766099 −0.0383050
\(401\) −8.48959 −0.423950 −0.211975 0.977275i \(-0.567990\pi\)
−0.211975 + 0.977275i \(0.567990\pi\)
\(402\) −19.0394 −0.949601
\(403\) 13.1510 0.655099
\(404\) −6.39244 −0.318036
\(405\) 8.41362 0.418076
\(406\) 0 0
\(407\) −12.4687 −0.618049
\(408\) 31.9745 1.58297
\(409\) 1.02862 0.0508618 0.0254309 0.999677i \(-0.491904\pi\)
0.0254309 + 0.999677i \(0.491904\pi\)
\(410\) 3.23595 0.159812
\(411\) 33.4653 1.65072
\(412\) −2.15207 −0.106025
\(413\) 0 0
\(414\) −1.27414 −0.0626204
\(415\) −8.62082 −0.423179
\(416\) −16.5669 −0.812260
\(417\) −13.9114 −0.681246
\(418\) 2.01149 0.0983853
\(419\) −17.3446 −0.847341 −0.423671 0.905816i \(-0.639259\pi\)
−0.423671 + 0.905816i \(0.639259\pi\)
\(420\) 0 0
\(421\) 2.42626 0.118249 0.0591243 0.998251i \(-0.481169\pi\)
0.0591243 + 0.998251i \(0.481169\pi\)
\(422\) −12.8297 −0.624540
\(423\) −0.506246 −0.0246145
\(424\) −33.3925 −1.62168
\(425\) 6.41955 0.311394
\(426\) 12.6053 0.610731
\(427\) 0 0
\(428\) −3.48884 −0.168639
\(429\) −11.0933 −0.535591
\(430\) 10.4788 0.505334
\(431\) −4.77955 −0.230223 −0.115112 0.993353i \(-0.536723\pi\)
−0.115112 + 0.993353i \(0.536723\pi\)
\(432\) 4.09340 0.196944
\(433\) −10.6077 −0.509774 −0.254887 0.966971i \(-0.582038\pi\)
−0.254887 + 0.966971i \(0.582038\pi\)
\(434\) 0 0
\(435\) 12.4559 0.597216
\(436\) 11.0708 0.530196
\(437\) −7.12724 −0.340942
\(438\) −22.0825 −1.05514
\(439\) −2.08988 −0.0997445 −0.0498722 0.998756i \(-0.515881\pi\)
−0.0498722 + 0.998756i \(0.515881\pi\)
\(440\) 6.15043 0.293210
\(441\) 0 0
\(442\) −19.8819 −0.945687
\(443\) −18.0451 −0.857347 −0.428674 0.903459i \(-0.641019\pi\)
−0.428674 + 0.903459i \(0.641019\pi\)
\(444\) −10.6796 −0.506829
\(445\) 14.2789 0.676885
\(446\) 4.17487 0.197686
\(447\) 9.85497 0.466124
\(448\) 0 0
\(449\) 4.44713 0.209873 0.104936 0.994479i \(-0.466536\pi\)
0.104936 + 0.994479i \(0.466536\pi\)
\(450\) 0.178770 0.00842730
\(451\) −6.90726 −0.325250
\(452\) −13.6049 −0.639921
\(453\) 35.5993 1.67260
\(454\) 17.8152 0.836111
\(455\) 0 0
\(456\) 4.98079 0.233247
\(457\) 27.9726 1.30850 0.654250 0.756278i \(-0.272984\pi\)
0.654250 + 0.756278i \(0.272984\pi\)
\(458\) −14.8863 −0.695591
\(459\) −34.3007 −1.60102
\(460\) −7.53808 −0.351465
\(461\) −26.7944 −1.24794 −0.623970 0.781448i \(-0.714481\pi\)
−0.623970 + 0.781448i \(0.714481\pi\)
\(462\) 0 0
\(463\) −6.91134 −0.321197 −0.160599 0.987020i \(-0.551342\pi\)
−0.160599 + 0.987020i \(0.551342\pi\)
\(464\) 5.68666 0.263997
\(465\) −6.91699 −0.320768
\(466\) −16.3247 −0.756226
\(467\) 33.7690 1.56264 0.781322 0.624128i \(-0.214546\pi\)
0.781322 + 0.624128i \(0.214546\pi\)
\(468\) 0.621403 0.0287244
\(469\) 0 0
\(470\) 2.66859 0.123093
\(471\) −10.9505 −0.504572
\(472\) 8.78037 0.404149
\(473\) −22.3674 −1.02846
\(474\) 22.6098 1.03850
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 2.07177 0.0948598
\(478\) 3.31175 0.151476
\(479\) 16.9100 0.772638 0.386319 0.922365i \(-0.373746\pi\)
0.386319 + 0.922365i \(0.373746\pi\)
\(480\) 8.71364 0.397721
\(481\) 19.1980 0.875353
\(482\) −17.8474 −0.812926
\(483\) 0 0
\(484\) 7.09298 0.322408
\(485\) −15.2038 −0.690369
\(486\) −1.85515 −0.0841514
\(487\) −2.45737 −0.111354 −0.0556770 0.998449i \(-0.517732\pi\)
−0.0556770 + 0.998449i \(0.517732\pi\)
\(488\) −24.0669 −1.08946
\(489\) 9.24797 0.418208
\(490\) 0 0
\(491\) 24.1806 1.09126 0.545628 0.838027i \(-0.316291\pi\)
0.545628 + 0.838027i \(0.316291\pi\)
\(492\) −5.91614 −0.266720
\(493\) −47.6515 −2.14612
\(494\) −3.09709 −0.139345
\(495\) −0.381591 −0.0171512
\(496\) −3.15790 −0.141794
\(497\) 0 0
\(498\) −14.0430 −0.629282
\(499\) −28.4365 −1.27299 −0.636496 0.771280i \(-0.719617\pi\)
−0.636496 + 0.771280i \(0.719617\pi\)
\(500\) 1.05764 0.0472993
\(501\) 32.2858 1.44242
\(502\) 0.152783 0.00681906
\(503\) 20.8898 0.931430 0.465715 0.884935i \(-0.345797\pi\)
0.465715 + 0.884935i \(0.345797\pi\)
\(504\) 0 0
\(505\) −6.04404 −0.268956
\(506\) −14.3364 −0.637330
\(507\) −4.73424 −0.210255
\(508\) 17.0895 0.758226
\(509\) 21.0796 0.934337 0.467168 0.884168i \(-0.345274\pi\)
0.467168 + 0.884168i \(0.345274\pi\)
\(510\) 10.4572 0.463054
\(511\) 0 0
\(512\) 8.52603 0.376801
\(513\) −5.34317 −0.235907
\(514\) 21.5266 0.949500
\(515\) −2.03477 −0.0896628
\(516\) −19.1580 −0.843382
\(517\) −5.69620 −0.250519
\(518\) 0 0
\(519\) 40.9229 1.79632
\(520\) −9.46980 −0.415278
\(521\) −29.0965 −1.27474 −0.637370 0.770558i \(-0.719978\pi\)
−0.637370 + 0.770558i \(0.719978\pi\)
\(522\) −1.32699 −0.0580806
\(523\) −11.2109 −0.490219 −0.245109 0.969495i \(-0.578824\pi\)
−0.245109 + 0.969495i \(0.578824\pi\)
\(524\) −14.7223 −0.643145
\(525\) 0 0
\(526\) 18.2863 0.797319
\(527\) 26.4617 1.15269
\(528\) 2.66379 0.115927
\(529\) 27.7975 1.20859
\(530\) −10.9210 −0.474377
\(531\) −0.544761 −0.0236406
\(532\) 0 0
\(533\) 10.6351 0.460657
\(534\) 23.2598 1.00655
\(535\) −3.29869 −0.142615
\(536\) 34.6926 1.49849
\(537\) −23.4567 −1.01223
\(538\) 7.65491 0.330027
\(539\) 0 0
\(540\) −5.65117 −0.243188
\(541\) −45.7953 −1.96890 −0.984448 0.175677i \(-0.943788\pi\)
−0.984448 + 0.175677i \(0.943788\pi\)
\(542\) −23.7249 −1.01907
\(543\) −7.36960 −0.316260
\(544\) −33.3350 −1.42923
\(545\) 10.4674 0.448376
\(546\) 0 0
\(547\) −10.3490 −0.442490 −0.221245 0.975218i \(-0.571012\pi\)
−0.221245 + 0.975218i \(0.571012\pi\)
\(548\) −21.0926 −0.901030
\(549\) 1.49318 0.0637275
\(550\) 2.01149 0.0857703
\(551\) −7.42287 −0.316225
\(552\) −35.4993 −1.51095
\(553\) 0 0
\(554\) −7.11141 −0.302135
\(555\) −10.0975 −0.428615
\(556\) 8.76814 0.371852
\(557\) 4.06046 0.172047 0.0860236 0.996293i \(-0.472584\pi\)
0.0860236 + 0.996293i \(0.472584\pi\)
\(558\) 0.736898 0.0311954
\(559\) 34.4391 1.45662
\(560\) 0 0
\(561\) −22.3213 −0.942407
\(562\) −2.27174 −0.0958275
\(563\) −17.9643 −0.757106 −0.378553 0.925580i \(-0.623578\pi\)
−0.378553 + 0.925580i \(0.623578\pi\)
\(564\) −4.87886 −0.205437
\(565\) −12.8634 −0.541168
\(566\) −12.8000 −0.538023
\(567\) 0 0
\(568\) −22.9687 −0.963747
\(569\) −13.3362 −0.559084 −0.279542 0.960133i \(-0.590183\pi\)
−0.279542 + 0.960133i \(0.590183\pi\)
\(570\) 1.62896 0.0682298
\(571\) 26.4036 1.10496 0.552478 0.833527i \(-0.313682\pi\)
0.552478 + 0.833527i \(0.313682\pi\)
\(572\) 6.99193 0.292347
\(573\) −4.70277 −0.196461
\(574\) 0 0
\(575\) −7.12724 −0.297226
\(576\) −1.21047 −0.0504362
\(577\) −33.9485 −1.41329 −0.706647 0.707566i \(-0.749793\pi\)
−0.706647 + 0.707566i \(0.749793\pi\)
\(578\) −23.5025 −0.977575
\(579\) 31.1912 1.29626
\(580\) −7.85076 −0.325985
\(581\) 0 0
\(582\) −24.7664 −1.02660
\(583\) 23.3112 0.965452
\(584\) 40.2375 1.66504
\(585\) 0.587535 0.0242916
\(586\) −16.7771 −0.693056
\(587\) −41.2791 −1.70377 −0.851886 0.523727i \(-0.824541\pi\)
−0.851886 + 0.523727i \(0.824541\pi\)
\(588\) 0 0
\(589\) 4.12205 0.169846
\(590\) 2.87161 0.118222
\(591\) 37.5148 1.54315
\(592\) −4.60993 −0.189467
\(593\) 19.7086 0.809336 0.404668 0.914464i \(-0.367387\pi\)
0.404668 + 0.914464i \(0.367387\pi\)
\(594\) −10.7477 −0.440985
\(595\) 0 0
\(596\) −6.21142 −0.254430
\(597\) 24.3731 0.997524
\(598\) 22.0737 0.902661
\(599\) −9.79613 −0.400259 −0.200129 0.979769i \(-0.564136\pi\)
−0.200129 + 0.979769i \(0.564136\pi\)
\(600\) 4.98079 0.203340
\(601\) 8.29915 0.338530 0.169265 0.985571i \(-0.445861\pi\)
0.169265 + 0.985571i \(0.445861\pi\)
\(602\) 0 0
\(603\) −2.15243 −0.0876539
\(604\) −22.4376 −0.912975
\(605\) 6.70640 0.272654
\(606\) −9.84552 −0.399947
\(607\) 41.2778 1.67542 0.837708 0.546119i \(-0.183895\pi\)
0.837708 + 0.546119i \(0.183895\pi\)
\(608\) −5.19273 −0.210593
\(609\) 0 0
\(610\) −7.87106 −0.318690
\(611\) 8.77043 0.354814
\(612\) 1.25035 0.0505424
\(613\) 19.3399 0.781132 0.390566 0.920575i \(-0.372279\pi\)
0.390566 + 0.920575i \(0.372279\pi\)
\(614\) 20.0125 0.807640
\(615\) −5.59370 −0.225560
\(616\) 0 0
\(617\) 47.9842 1.93177 0.965886 0.258968i \(-0.0833824\pi\)
0.965886 + 0.258968i \(0.0833824\pi\)
\(618\) −3.31457 −0.133332
\(619\) −16.5649 −0.665800 −0.332900 0.942962i \(-0.608027\pi\)
−0.332900 + 0.942962i \(0.608027\pi\)
\(620\) 4.35966 0.175088
\(621\) 38.0820 1.52818
\(622\) −4.70240 −0.188549
\(623\) 0 0
\(624\) −4.10144 −0.164189
\(625\) 1.00000 0.0400000
\(626\) 22.6960 0.907114
\(627\) −3.47708 −0.138861
\(628\) 6.90191 0.275416
\(629\) 38.6290 1.54024
\(630\) 0 0
\(631\) −17.7855 −0.708028 −0.354014 0.935240i \(-0.615184\pi\)
−0.354014 + 0.935240i \(0.615184\pi\)
\(632\) −41.1983 −1.63878
\(633\) 22.1775 0.881478
\(634\) −6.20631 −0.246484
\(635\) 16.1581 0.641215
\(636\) 19.9663 0.791716
\(637\) 0 0
\(638\) −14.9311 −0.591126
\(639\) 1.42505 0.0563741
\(640\) −4.00468 −0.158299
\(641\) −8.84041 −0.349175 −0.174588 0.984642i \(-0.555859\pi\)
−0.174588 + 0.984642i \(0.555859\pi\)
\(642\) −5.37345 −0.212073
\(643\) −19.7442 −0.778634 −0.389317 0.921104i \(-0.627289\pi\)
−0.389317 + 0.921104i \(0.627289\pi\)
\(644\) 0 0
\(645\) −18.1138 −0.713230
\(646\) −6.23178 −0.245186
\(647\) −13.0319 −0.512335 −0.256168 0.966632i \(-0.582460\pi\)
−0.256168 + 0.966632i \(0.582460\pi\)
\(648\) −24.9734 −0.981047
\(649\) −6.12957 −0.240606
\(650\) −3.09709 −0.121478
\(651\) 0 0
\(652\) −5.82883 −0.228275
\(653\) −28.5153 −1.11589 −0.557944 0.829878i \(-0.688410\pi\)
−0.557944 + 0.829878i \(0.688410\pi\)
\(654\) 17.0511 0.666750
\(655\) −13.9199 −0.543894
\(656\) −2.55376 −0.0997075
\(657\) −2.49645 −0.0973960
\(658\) 0 0
\(659\) 46.3775 1.80661 0.903305 0.429000i \(-0.141134\pi\)
0.903305 + 0.429000i \(0.141134\pi\)
\(660\) −3.67752 −0.143147
\(661\) −0.769470 −0.0299289 −0.0149645 0.999888i \(-0.504764\pi\)
−0.0149645 + 0.999888i \(0.504764\pi\)
\(662\) −28.8835 −1.12259
\(663\) 34.3681 1.33475
\(664\) 25.5884 0.993022
\(665\) 0 0
\(666\) 1.07573 0.0416837
\(667\) 52.9046 2.04847
\(668\) −20.3492 −0.787333
\(669\) −7.21673 −0.279015
\(670\) 11.3462 0.438342
\(671\) 16.8011 0.648598
\(672\) 0 0
\(673\) 13.7171 0.528754 0.264377 0.964419i \(-0.414834\pi\)
0.264377 + 0.964419i \(0.414834\pi\)
\(674\) −28.4612 −1.09629
\(675\) −5.34317 −0.205659
\(676\) 2.98391 0.114766
\(677\) −10.3540 −0.397936 −0.198968 0.980006i \(-0.563759\pi\)
−0.198968 + 0.980006i \(0.563759\pi\)
\(678\) −20.9540 −0.804735
\(679\) 0 0
\(680\) −19.0546 −0.730709
\(681\) −30.7956 −1.18009
\(682\) 8.29146 0.317497
\(683\) −28.7565 −1.10034 −0.550169 0.835054i \(-0.685437\pi\)
−0.550169 + 0.835054i \(0.685437\pi\)
\(684\) 0.194772 0.00744730
\(685\) −19.9430 −0.761982
\(686\) 0 0
\(687\) 25.7326 0.981759
\(688\) −8.26971 −0.315280
\(689\) −35.8923 −1.36739
\(690\) −11.6100 −0.441986
\(691\) −0.561446 −0.0213584 −0.0106792 0.999943i \(-0.503399\pi\)
−0.0106792 + 0.999943i \(0.503399\pi\)
\(692\) −25.7930 −0.980504
\(693\) 0 0
\(694\) −17.5868 −0.667586
\(695\) 8.29025 0.314467
\(696\) −36.9718 −1.40141
\(697\) 21.3993 0.810556
\(698\) −12.6205 −0.477694
\(699\) 28.2190 1.06734
\(700\) 0 0
\(701\) −16.2803 −0.614898 −0.307449 0.951565i \(-0.599475\pi\)
−0.307449 + 0.951565i \(0.599475\pi\)
\(702\) 16.5483 0.624574
\(703\) 6.01740 0.226951
\(704\) −13.6200 −0.513323
\(705\) −4.61295 −0.173734
\(706\) −6.16040 −0.231850
\(707\) 0 0
\(708\) −5.25004 −0.197309
\(709\) −10.5550 −0.396400 −0.198200 0.980162i \(-0.563509\pi\)
−0.198200 + 0.980162i \(0.563509\pi\)
\(710\) −7.51191 −0.281917
\(711\) 2.55606 0.0958599
\(712\) −42.3828 −1.58836
\(713\) −29.3788 −1.10024
\(714\) 0 0
\(715\) 6.61085 0.247232
\(716\) 14.7844 0.552518
\(717\) −5.72473 −0.213794
\(718\) 29.3093 1.09382
\(719\) 23.8110 0.888000 0.444000 0.896027i \(-0.353559\pi\)
0.444000 + 0.896027i \(0.353559\pi\)
\(720\) −0.141082 −0.00525782
\(721\) 0 0
\(722\) −0.970750 −0.0361276
\(723\) 30.8512 1.14737
\(724\) 4.64493 0.172627
\(725\) −7.42287 −0.275679
\(726\) 10.9245 0.405446
\(727\) 19.2047 0.712265 0.356132 0.934436i \(-0.384095\pi\)
0.356132 + 0.934436i \(0.384095\pi\)
\(728\) 0 0
\(729\) 28.4477 1.05362
\(730\) 13.1596 0.487060
\(731\) 69.2963 2.56302
\(732\) 14.3903 0.531880
\(733\) 13.1013 0.483908 0.241954 0.970288i \(-0.422212\pi\)
0.241954 + 0.970288i \(0.422212\pi\)
\(734\) 5.23531 0.193239
\(735\) 0 0
\(736\) 37.0098 1.36420
\(737\) −24.2189 −0.892113
\(738\) 0.595922 0.0219362
\(739\) −45.2125 −1.66317 −0.831585 0.555397i \(-0.812566\pi\)
−0.831585 + 0.555397i \(0.812566\pi\)
\(740\) 6.36427 0.233955
\(741\) 5.35366 0.196672
\(742\) 0 0
\(743\) 41.4986 1.52244 0.761218 0.648496i \(-0.224602\pi\)
0.761218 + 0.648496i \(0.224602\pi\)
\(744\) 20.5311 0.752705
\(745\) −5.87288 −0.215166
\(746\) −26.4757 −0.969345
\(747\) −1.58758 −0.0580865
\(748\) 14.0687 0.514404
\(749\) 0 0
\(750\) 1.62896 0.0594814
\(751\) 10.9707 0.400325 0.200163 0.979763i \(-0.435853\pi\)
0.200163 + 0.979763i \(0.435853\pi\)
\(752\) −2.10601 −0.0767981
\(753\) −0.264103 −0.00962444
\(754\) 22.9893 0.837222
\(755\) −21.2147 −0.772083
\(756\) 0 0
\(757\) −30.2169 −1.09825 −0.549126 0.835739i \(-0.685039\pi\)
−0.549126 + 0.835739i \(0.685039\pi\)
\(758\) −12.2389 −0.444538
\(759\) 24.7820 0.899530
\(760\) −2.96821 −0.107668
\(761\) 27.3668 0.992045 0.496022 0.868310i \(-0.334793\pi\)
0.496022 + 0.868310i \(0.334793\pi\)
\(762\) 26.3210 0.953509
\(763\) 0 0
\(764\) 2.96407 0.107236
\(765\) 1.18220 0.0427426
\(766\) −5.07241 −0.183274
\(767\) 9.43768 0.340775
\(768\) −28.5832 −1.03141
\(769\) 39.1499 1.41178 0.705890 0.708321i \(-0.250547\pi\)
0.705890 + 0.708321i \(0.250547\pi\)
\(770\) 0 0
\(771\) −37.2112 −1.34013
\(772\) −19.6593 −0.707552
\(773\) −4.93336 −0.177441 −0.0887204 0.996057i \(-0.528278\pi\)
−0.0887204 + 0.996057i \(0.528278\pi\)
\(774\) 1.92974 0.0693632
\(775\) 4.12205 0.148068
\(776\) 45.1280 1.62000
\(777\) 0 0
\(778\) −5.53403 −0.198405
\(779\) 3.33345 0.119433
\(780\) 5.66227 0.202742
\(781\) 16.0344 0.573757
\(782\) 44.4154 1.58829
\(783\) 39.6616 1.41739
\(784\) 0 0
\(785\) 6.52574 0.232914
\(786\) −22.6749 −0.808789
\(787\) −12.4757 −0.444710 −0.222355 0.974966i \(-0.571374\pi\)
−0.222355 + 0.974966i \(0.571374\pi\)
\(788\) −23.6450 −0.842317
\(789\) −31.6098 −1.12534
\(790\) −13.4739 −0.479378
\(791\) 0 0
\(792\) 1.13264 0.0402467
\(793\) −25.8686 −0.918619
\(794\) 21.4384 0.760820
\(795\) 18.8781 0.669537
\(796\) −15.3619 −0.544489
\(797\) −15.2294 −0.539452 −0.269726 0.962937i \(-0.586933\pi\)
−0.269726 + 0.962937i \(0.586933\pi\)
\(798\) 0 0
\(799\) 17.6473 0.624318
\(800\) −5.19273 −0.183591
\(801\) 2.62956 0.0929108
\(802\) 8.24127 0.291010
\(803\) −28.0897 −0.991265
\(804\) −20.7437 −0.731575
\(805\) 0 0
\(806\) −12.7663 −0.449675
\(807\) −13.2324 −0.465801
\(808\) 17.9400 0.631126
\(809\) −31.3685 −1.10286 −0.551428 0.834222i \(-0.685917\pi\)
−0.551428 + 0.834222i \(0.685917\pi\)
\(810\) −8.16752 −0.286977
\(811\) 13.2401 0.464924 0.232462 0.972605i \(-0.425322\pi\)
0.232462 + 0.972605i \(0.425322\pi\)
\(812\) 0 0
\(813\) 41.0111 1.43832
\(814\) 12.1040 0.424244
\(815\) −5.51115 −0.193047
\(816\) −8.25266 −0.288901
\(817\) 10.7946 0.377654
\(818\) −0.998530 −0.0349128
\(819\) 0 0
\(820\) 3.52561 0.123120
\(821\) −32.5297 −1.13529 −0.567647 0.823272i \(-0.692146\pi\)
−0.567647 + 0.823272i \(0.692146\pi\)
\(822\) −32.4864 −1.13309
\(823\) 46.4191 1.61807 0.809034 0.587762i \(-0.199991\pi\)
0.809034 + 0.587762i \(0.199991\pi\)
\(824\) 6.03963 0.210400
\(825\) −3.47708 −0.121057
\(826\) 0 0
\(827\) −24.7524 −0.860725 −0.430363 0.902656i \(-0.641614\pi\)
−0.430363 + 0.902656i \(0.641614\pi\)
\(828\) −1.38819 −0.0482428
\(829\) 15.1949 0.527740 0.263870 0.964558i \(-0.415001\pi\)
0.263870 + 0.964558i \(0.415001\pi\)
\(830\) 8.36866 0.290480
\(831\) 12.2929 0.426434
\(832\) 20.9707 0.727028
\(833\) 0 0
\(834\) 13.5045 0.467624
\(835\) −19.2401 −0.665831
\(836\) 2.19155 0.0757962
\(837\) −22.0248 −0.761287
\(838\) 16.8373 0.581635
\(839\) −34.7991 −1.20140 −0.600699 0.799475i \(-0.705111\pi\)
−0.600699 + 0.799475i \(0.705111\pi\)
\(840\) 0 0
\(841\) 26.0991 0.899968
\(842\) −2.35529 −0.0811686
\(843\) 3.92695 0.135251
\(844\) −13.9781 −0.481147
\(845\) 2.82128 0.0970550
\(846\) 0.491438 0.0168960
\(847\) 0 0
\(848\) 8.61865 0.295966
\(849\) 22.1262 0.759368
\(850\) −6.23178 −0.213748
\(851\) −42.8875 −1.47016
\(852\) 13.7337 0.470508
\(853\) 46.2090 1.58217 0.791084 0.611708i \(-0.209517\pi\)
0.791084 + 0.611708i \(0.209517\pi\)
\(854\) 0 0
\(855\) 0.184157 0.00629802
\(856\) 9.79120 0.334656
\(857\) −43.9194 −1.50026 −0.750129 0.661292i \(-0.770009\pi\)
−0.750129 + 0.661292i \(0.770009\pi\)
\(858\) 10.7688 0.367642
\(859\) 30.1182 1.02762 0.513810 0.857904i \(-0.328234\pi\)
0.513810 + 0.857904i \(0.328234\pi\)
\(860\) 11.4168 0.389310
\(861\) 0 0
\(862\) 4.63975 0.158031
\(863\) 3.94149 0.134170 0.0670849 0.997747i \(-0.478630\pi\)
0.0670849 + 0.997747i \(0.478630\pi\)
\(864\) 27.7456 0.943924
\(865\) −24.3872 −0.829191
\(866\) 10.2974 0.349921
\(867\) 40.6266 1.37975
\(868\) 0 0
\(869\) 28.7604 0.975631
\(870\) −12.0916 −0.409944
\(871\) 37.2897 1.26351
\(872\) −31.0695 −1.05215
\(873\) −2.79988 −0.0947615
\(874\) 6.91877 0.234031
\(875\) 0 0
\(876\) −24.0592 −0.812884
\(877\) 24.0531 0.812216 0.406108 0.913825i \(-0.366886\pi\)
0.406108 + 0.913825i \(0.366886\pi\)
\(878\) 2.02875 0.0684670
\(879\) 29.0011 0.978182
\(880\) −1.58744 −0.0535124
\(881\) 6.22719 0.209799 0.104900 0.994483i \(-0.466548\pi\)
0.104900 + 0.994483i \(0.466548\pi\)
\(882\) 0 0
\(883\) −17.6958 −0.595512 −0.297756 0.954642i \(-0.596238\pi\)
−0.297756 + 0.954642i \(0.596238\pi\)
\(884\) −21.6616 −0.728559
\(885\) −4.96390 −0.166860
\(886\) 17.5172 0.588503
\(887\) 33.5325 1.12591 0.562955 0.826487i \(-0.309664\pi\)
0.562955 + 0.826487i \(0.309664\pi\)
\(888\) 29.9714 1.00578
\(889\) 0 0
\(890\) −13.8613 −0.464630
\(891\) 17.4339 0.584057
\(892\) 4.54858 0.152298
\(893\) 2.74900 0.0919917
\(894\) −9.56671 −0.319959
\(895\) 13.9786 0.467252
\(896\) 0 0
\(897\) −38.1568 −1.27402
\(898\) −4.31705 −0.144062
\(899\) −30.5974 −1.02048
\(900\) 0.194772 0.00649240
\(901\) −72.2202 −2.40600
\(902\) 6.70522 0.223259
\(903\) 0 0
\(904\) 38.1813 1.26989
\(905\) 4.39177 0.145987
\(906\) −34.5581 −1.14811
\(907\) −21.7627 −0.722618 −0.361309 0.932446i \(-0.617670\pi\)
−0.361309 + 0.932446i \(0.617670\pi\)
\(908\) 19.4099 0.644141
\(909\) −1.11305 −0.0369175
\(910\) 0 0
\(911\) 21.7326 0.720032 0.360016 0.932946i \(-0.382771\pi\)
0.360016 + 0.932946i \(0.382771\pi\)
\(912\) −1.28555 −0.0425689
\(913\) −17.8632 −0.591186
\(914\) −27.1544 −0.898186
\(915\) 13.6060 0.449800
\(916\) −16.2188 −0.535884
\(917\) 0 0
\(918\) 33.2974 1.09898
\(919\) −14.5786 −0.480902 −0.240451 0.970661i \(-0.577295\pi\)
−0.240451 + 0.970661i \(0.577295\pi\)
\(920\) 21.1551 0.697464
\(921\) −34.5938 −1.13991
\(922\) 26.0107 0.856616
\(923\) −24.6882 −0.812622
\(924\) 0 0
\(925\) 6.01740 0.197851
\(926\) 6.70918 0.220477
\(927\) −0.374717 −0.0123073
\(928\) 38.5449 1.26530
\(929\) −57.4955 −1.88637 −0.943183 0.332273i \(-0.892184\pi\)
−0.943183 + 0.332273i \(0.892184\pi\)
\(930\) 6.71467 0.220183
\(931\) 0 0
\(932\) −17.7859 −0.582598
\(933\) 8.12861 0.266119
\(934\) −32.7813 −1.07264
\(935\) 13.3020 0.435021
\(936\) −1.74393 −0.0570020
\(937\) −15.9686 −0.521673 −0.260836 0.965383i \(-0.583998\pi\)
−0.260836 + 0.965383i \(0.583998\pi\)
\(938\) 0 0
\(939\) −39.2325 −1.28030
\(940\) 2.90746 0.0948310
\(941\) −6.87171 −0.224011 −0.112006 0.993708i \(-0.535727\pi\)
−0.112006 + 0.993708i \(0.535727\pi\)
\(942\) 10.6302 0.346350
\(943\) −23.7583 −0.773678
\(944\) −2.26623 −0.0737595
\(945\) 0 0
\(946\) 21.7132 0.705957
\(947\) 19.2726 0.626275 0.313137 0.949708i \(-0.398620\pi\)
0.313137 + 0.949708i \(0.398620\pi\)
\(948\) 24.6336 0.800063
\(949\) 43.2497 1.40394
\(950\) −0.970750 −0.0314953
\(951\) 10.7283 0.347888
\(952\) 0 0
\(953\) 22.5654 0.730964 0.365482 0.930818i \(-0.380904\pi\)
0.365482 + 0.930818i \(0.380904\pi\)
\(954\) −2.01117 −0.0651140
\(955\) 2.80252 0.0906875
\(956\) 3.60820 0.116697
\(957\) 25.8100 0.834318
\(958\) −16.4154 −0.530357
\(959\) 0 0
\(960\) −11.0299 −0.355987
\(961\) −14.0087 −0.451895
\(962\) −18.6364 −0.600863
\(963\) −0.607475 −0.0195756
\(964\) −19.4450 −0.626280
\(965\) −18.5878 −0.598362
\(966\) 0 0
\(967\) −13.5956 −0.437207 −0.218603 0.975814i \(-0.570150\pi\)
−0.218603 + 0.975814i \(0.570150\pi\)
\(968\) −19.9060 −0.639802
\(969\) 10.7723 0.346057
\(970\) 14.7591 0.473886
\(971\) 14.6314 0.469545 0.234772 0.972050i \(-0.424565\pi\)
0.234772 + 0.972050i \(0.424565\pi\)
\(972\) −2.02121 −0.0648304
\(973\) 0 0
\(974\) 2.38549 0.0764361
\(975\) 5.35366 0.171454
\(976\) 6.21170 0.198832
\(977\) −15.2720 −0.488596 −0.244298 0.969700i \(-0.578557\pi\)
−0.244298 + 0.969700i \(0.578557\pi\)
\(978\) −8.97746 −0.287068
\(979\) 29.5874 0.945616
\(980\) 0 0
\(981\) 1.92765 0.0615450
\(982\) −23.4733 −0.749065
\(983\) −57.1459 −1.82267 −0.911335 0.411665i \(-0.864948\pi\)
−0.911335 + 0.411665i \(0.864948\pi\)
\(984\) 16.6033 0.529292
\(985\) −22.3562 −0.712329
\(986\) 46.2577 1.47315
\(987\) 0 0
\(988\) −3.37432 −0.107351
\(989\) −76.9354 −2.44640
\(990\) 0.370430 0.0117730
\(991\) −23.1236 −0.734544 −0.367272 0.930114i \(-0.619708\pi\)
−0.367272 + 0.930114i \(0.619708\pi\)
\(992\) −21.4046 −0.679598
\(993\) 49.9284 1.58443
\(994\) 0 0
\(995\) −14.5247 −0.460463
\(996\) −15.3000 −0.484800
\(997\) −25.4850 −0.807119 −0.403560 0.914953i \(-0.632227\pi\)
−0.403560 + 0.914953i \(0.632227\pi\)
\(998\) 27.6047 0.873812
\(999\) −32.1520 −1.01724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4655.2.a.br.1.9 26
7.6 odd 2 4655.2.a.bs.1.9 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4655.2.a.br.1.9 26 1.1 even 1 trivial
4655.2.a.bs.1.9 yes 26 7.6 odd 2