Properties

Label 468.2.a.b
Level $468$
Weight $2$
Character orbit 468.a
Self dual yes
Analytic conductor $3.737$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,2,Mod(1,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.73699881460\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{5} - 2 q^{7} + 2 q^{11} - q^{13} - 6 q^{17} - 6 q^{19} - 8 q^{23} - q^{25} - 2 q^{29} + 10 q^{31} + 4 q^{35} - 6 q^{37} + 6 q^{41} + 4 q^{43} + 2 q^{47} - 3 q^{49} - 6 q^{53} - 4 q^{55} + 10 q^{59}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −2.00000 0 −2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.2.a.b 1
3.b odd 2 1 52.2.a.a 1
4.b odd 2 1 1872.2.a.f 1
8.b even 2 1 7488.2.a.bn 1
8.d odd 2 1 7488.2.a.bw 1
9.c even 3 2 4212.2.i.i 2
9.d odd 6 2 4212.2.i.d 2
12.b even 2 1 208.2.a.c 1
13.b even 2 1 6084.2.a.m 1
13.d odd 4 2 6084.2.b.m 2
15.d odd 2 1 1300.2.a.d 1
15.e even 4 2 1300.2.c.c 2
21.c even 2 1 2548.2.a.e 1
21.g even 6 2 2548.2.j.f 2
21.h odd 6 2 2548.2.j.e 2
24.f even 2 1 832.2.a.f 1
24.h odd 2 1 832.2.a.e 1
33.d even 2 1 6292.2.a.g 1
39.d odd 2 1 676.2.a.c 1
39.f even 4 2 676.2.d.c 2
39.h odd 6 2 676.2.e.b 2
39.i odd 6 2 676.2.e.c 2
39.k even 12 4 676.2.h.c 4
48.i odd 4 2 3328.2.b.q 2
48.k even 4 2 3328.2.b.e 2
60.h even 2 1 5200.2.a.q 1
156.h even 2 1 2704.2.a.g 1
156.l odd 4 2 2704.2.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.a.a 1 3.b odd 2 1
208.2.a.c 1 12.b even 2 1
468.2.a.b 1 1.a even 1 1 trivial
676.2.a.c 1 39.d odd 2 1
676.2.d.c 2 39.f even 4 2
676.2.e.b 2 39.h odd 6 2
676.2.e.c 2 39.i odd 6 2
676.2.h.c 4 39.k even 12 4
832.2.a.e 1 24.h odd 2 1
832.2.a.f 1 24.f even 2 1
1300.2.a.d 1 15.d odd 2 1
1300.2.c.c 2 15.e even 4 2
1872.2.a.f 1 4.b odd 2 1
2548.2.a.e 1 21.c even 2 1
2548.2.j.e 2 21.h odd 6 2
2548.2.j.f 2 21.g even 6 2
2704.2.a.g 1 156.h even 2 1
2704.2.f.f 2 156.l odd 4 2
3328.2.b.e 2 48.k even 4 2
3328.2.b.q 2 48.i odd 4 2
4212.2.i.d 2 9.d odd 6 2
4212.2.i.i 2 9.c even 3 2
5200.2.a.q 1 60.h even 2 1
6084.2.a.m 1 13.b even 2 1
6084.2.b.m 2 13.d odd 4 2
6292.2.a.g 1 33.d even 2 1
7488.2.a.bn 1 8.b even 2 1
7488.2.a.bw 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(468))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T + 6 \) Copy content Toggle raw display
$23$ \( T + 8 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T - 10 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 2 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 10 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T - 10 \) Copy content Toggle raw display
$71$ \( T + 10 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less