Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2548,2,Mod(1,2548)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2548.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2548.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 52) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2548.2.a.e | 1 | |
7.b | odd | 2 | 1 | 52.2.a.a | ✓ | 1 | |
7.c | even | 3 | 2 | 2548.2.j.f | 2 | ||
7.d | odd | 6 | 2 | 2548.2.j.e | 2 | ||
21.c | even | 2 | 1 | 468.2.a.b | 1 | ||
28.d | even | 2 | 1 | 208.2.a.c | 1 | ||
35.c | odd | 2 | 1 | 1300.2.a.d | 1 | ||
35.f | even | 4 | 2 | 1300.2.c.c | 2 | ||
56.e | even | 2 | 1 | 832.2.a.f | 1 | ||
56.h | odd | 2 | 1 | 832.2.a.e | 1 | ||
63.l | odd | 6 | 2 | 4212.2.i.d | 2 | ||
63.o | even | 6 | 2 | 4212.2.i.i | 2 | ||
77.b | even | 2 | 1 | 6292.2.a.g | 1 | ||
84.h | odd | 2 | 1 | 1872.2.a.f | 1 | ||
91.b | odd | 2 | 1 | 676.2.a.c | 1 | ||
91.i | even | 4 | 2 | 676.2.d.c | 2 | ||
91.n | odd | 6 | 2 | 676.2.e.c | 2 | ||
91.t | odd | 6 | 2 | 676.2.e.b | 2 | ||
91.bc | even | 12 | 4 | 676.2.h.c | 4 | ||
112.j | even | 4 | 2 | 3328.2.b.e | 2 | ||
112.l | odd | 4 | 2 | 3328.2.b.q | 2 | ||
140.c | even | 2 | 1 | 5200.2.a.q | 1 | ||
168.e | odd | 2 | 1 | 7488.2.a.bw | 1 | ||
168.i | even | 2 | 1 | 7488.2.a.bn | 1 | ||
273.g | even | 2 | 1 | 6084.2.a.m | 1 | ||
273.o | odd | 4 | 2 | 6084.2.b.m | 2 | ||
364.h | even | 2 | 1 | 2704.2.a.g | 1 | ||
364.p | odd | 4 | 2 | 2704.2.f.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
52.2.a.a | ✓ | 1 | 7.b | odd | 2 | 1 | |
208.2.a.c | 1 | 28.d | even | 2 | 1 | ||
468.2.a.b | 1 | 21.c | even | 2 | 1 | ||
676.2.a.c | 1 | 91.b | odd | 2 | 1 | ||
676.2.d.c | 2 | 91.i | even | 4 | 2 | ||
676.2.e.b | 2 | 91.t | odd | 6 | 2 | ||
676.2.e.c | 2 | 91.n | odd | 6 | 2 | ||
676.2.h.c | 4 | 91.bc | even | 12 | 4 | ||
832.2.a.e | 1 | 56.h | odd | 2 | 1 | ||
832.2.a.f | 1 | 56.e | even | 2 | 1 | ||
1300.2.a.d | 1 | 35.c | odd | 2 | 1 | ||
1300.2.c.c | 2 | 35.f | even | 4 | 2 | ||
1872.2.a.f | 1 | 84.h | odd | 2 | 1 | ||
2548.2.a.e | 1 | 1.a | even | 1 | 1 | trivial | |
2548.2.j.e | 2 | 7.d | odd | 6 | 2 | ||
2548.2.j.f | 2 | 7.c | even | 3 | 2 | ||
2704.2.a.g | 1 | 364.h | even | 2 | 1 | ||
2704.2.f.f | 2 | 364.p | odd | 4 | 2 | ||
3328.2.b.e | 2 | 112.j | even | 4 | 2 | ||
3328.2.b.q | 2 | 112.l | odd | 4 | 2 | ||
4212.2.i.d | 2 | 63.l | odd | 6 | 2 | ||
4212.2.i.i | 2 | 63.o | even | 6 | 2 | ||
5200.2.a.q | 1 | 140.c | even | 2 | 1 | ||
6084.2.a.m | 1 | 273.g | even | 2 | 1 | ||
6084.2.b.m | 2 | 273.o | odd | 4 | 2 | ||
6292.2.a.g | 1 | 77.b | even | 2 | 1 | ||
7488.2.a.bn | 1 | 168.i | even | 2 | 1 | ||
7488.2.a.bw | 1 | 168.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|