Properties

Label 2548.2.a.e
Level $2548$
Weight $2$
Character orbit 2548.a
Self dual yes
Analytic conductor $20.346$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(1,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{5} - 3 q^{9} - 2 q^{11} + q^{13} - 6 q^{17} + 6 q^{19} + 8 q^{23} - q^{25} + 2 q^{29} - 10 q^{31} - 6 q^{37} + 6 q^{41} + 4 q^{43} + 6 q^{45} + 2 q^{47} + 6 q^{53} + 4 q^{55} + 10 q^{59} + 2 q^{61}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −2.00000 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.a.e 1
7.b odd 2 1 52.2.a.a 1
7.c even 3 2 2548.2.j.f 2
7.d odd 6 2 2548.2.j.e 2
21.c even 2 1 468.2.a.b 1
28.d even 2 1 208.2.a.c 1
35.c odd 2 1 1300.2.a.d 1
35.f even 4 2 1300.2.c.c 2
56.e even 2 1 832.2.a.f 1
56.h odd 2 1 832.2.a.e 1
63.l odd 6 2 4212.2.i.d 2
63.o even 6 2 4212.2.i.i 2
77.b even 2 1 6292.2.a.g 1
84.h odd 2 1 1872.2.a.f 1
91.b odd 2 1 676.2.a.c 1
91.i even 4 2 676.2.d.c 2
91.n odd 6 2 676.2.e.c 2
91.t odd 6 2 676.2.e.b 2
91.bc even 12 4 676.2.h.c 4
112.j even 4 2 3328.2.b.e 2
112.l odd 4 2 3328.2.b.q 2
140.c even 2 1 5200.2.a.q 1
168.e odd 2 1 7488.2.a.bw 1
168.i even 2 1 7488.2.a.bn 1
273.g even 2 1 6084.2.a.m 1
273.o odd 4 2 6084.2.b.m 2
364.h even 2 1 2704.2.a.g 1
364.p odd 4 2 2704.2.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.a.a 1 7.b odd 2 1
208.2.a.c 1 28.d even 2 1
468.2.a.b 1 21.c even 2 1
676.2.a.c 1 91.b odd 2 1
676.2.d.c 2 91.i even 4 2
676.2.e.b 2 91.t odd 6 2
676.2.e.c 2 91.n odd 6 2
676.2.h.c 4 91.bc even 12 4
832.2.a.e 1 56.h odd 2 1
832.2.a.f 1 56.e even 2 1
1300.2.a.d 1 35.c odd 2 1
1300.2.c.c 2 35.f even 4 2
1872.2.a.f 1 84.h odd 2 1
2548.2.a.e 1 1.a even 1 1 trivial
2548.2.j.e 2 7.d odd 6 2
2548.2.j.f 2 7.c even 3 2
2704.2.a.g 1 364.h even 2 1
2704.2.f.f 2 364.p odd 4 2
3328.2.b.e 2 112.j even 4 2
3328.2.b.q 2 112.l odd 4 2
4212.2.i.d 2 63.l odd 6 2
4212.2.i.i 2 63.o even 6 2
5200.2.a.q 1 140.c even 2 1
6084.2.a.m 1 273.g even 2 1
6084.2.b.m 2 273.o odd 4 2
6292.2.a.g 1 77.b even 2 1
7488.2.a.bn 1 168.i even 2 1
7488.2.a.bw 1 168.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2548))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T - 8 \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T + 10 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 2 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 10 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 10 \) Copy content Toggle raw display
$71$ \( T - 10 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less