Properties

Label 468.2.k.a.61.12
Level $468$
Weight $2$
Character 468.61
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,2,Mod(61,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.12
Character \(\chi\) \(=\) 468.61
Dual form 468.2.k.a.445.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36018 + 1.07234i) q^{3} +(1.62465 + 2.81398i) q^{5} +4.02812 q^{7} +(0.700171 + 2.91715i) q^{9} +O(q^{10})\) \(q+(1.36018 + 1.07234i) q^{3} +(1.62465 + 2.81398i) q^{5} +4.02812 q^{7} +(0.700171 + 2.91715i) q^{9} +(-2.72160 - 4.71395i) q^{11} +(-1.08718 + 3.43774i) q^{13} +(-0.807727 + 5.56969i) q^{15} +(-3.51592 - 6.08975i) q^{17} +(-3.02788 - 5.24444i) q^{19} +(5.47896 + 4.31952i) q^{21} +0.705898 q^{23} +(-2.77897 + 4.81332i) q^{25} +(-2.17582 + 4.71867i) q^{27} +(-1.32512 - 2.29517i) q^{29} +(2.87494 + 4.97955i) q^{31} +(1.35310 - 9.33031i) q^{33} +(6.54428 + 11.3350i) q^{35} +(0.965424 - 1.67216i) q^{37} +(-5.16519 + 3.51010i) q^{39} -4.07703 q^{41} +5.42909 q^{43} +(-7.07126 + 6.70961i) q^{45} +(1.62139 - 2.80833i) q^{47} +9.22575 q^{49} +(1.74801 - 12.0534i) q^{51} -0.0982107 q^{53} +(8.84330 - 15.3170i) q^{55} +(1.50537 - 10.3803i) q^{57} +(-3.47707 + 6.02246i) q^{59} -7.95204 q^{61} +(2.82037 + 11.7506i) q^{63} +(-11.4400 + 2.52581i) q^{65} -0.0908569 q^{67} +(0.960148 + 0.756964i) q^{69} +(2.62645 + 4.54914i) q^{71} +4.40666 q^{73} +(-8.94142 + 3.56697i) q^{75} +(-10.9629 - 18.9884i) q^{77} +(2.93814 - 5.08901i) q^{79} +(-8.01952 + 4.08500i) q^{81} +(-3.26489 + 5.65496i) q^{83} +(11.4243 - 19.7874i) q^{85} +(0.658808 - 4.54282i) q^{87} +(-3.12352 + 5.41009i) q^{89} +(-4.37930 + 13.8476i) q^{91} +(-1.42934 + 9.85600i) q^{93} +(9.83849 - 17.0408i) q^{95} +16.7145 q^{97} +(11.8457 - 11.2399i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43} - 38 q^{45} + 11 q^{47} + 24 q^{49} + 5 q^{51} + 52 q^{53} - q^{57} - 8 q^{59} + 14 q^{61} - 21 q^{63} + 38 q^{65} + 14 q^{67} - 21 q^{69} - 12 q^{71} + 14 q^{73} - 14 q^{75} - 28 q^{77} + 5 q^{79} + 10 q^{81} + 9 q^{83} + 18 q^{85} + 18 q^{87} - 11 q^{89} - q^{91} - 9 q^{93} + 28 q^{95} + 50 q^{97} - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.36018 + 1.07234i 0.785299 + 0.619116i
\(4\) 0 0
\(5\) 1.62465 + 2.81398i 0.726565 + 1.25845i 0.958326 + 0.285675i \(0.0922179\pi\)
−0.231761 + 0.972773i \(0.574449\pi\)
\(6\) 0 0
\(7\) 4.02812 1.52249 0.761243 0.648467i \(-0.224589\pi\)
0.761243 + 0.648467i \(0.224589\pi\)
\(8\) 0 0
\(9\) 0.700171 + 2.91715i 0.233390 + 0.972383i
\(10\) 0 0
\(11\) −2.72160 4.71395i −0.820594 1.42131i −0.905240 0.424900i \(-0.860309\pi\)
0.0846462 0.996411i \(-0.473024\pi\)
\(12\) 0 0
\(13\) −1.08718 + 3.43774i −0.301530 + 0.953457i
\(14\) 0 0
\(15\) −0.807727 + 5.56969i −0.208554 + 1.43809i
\(16\) 0 0
\(17\) −3.51592 6.08975i −0.852736 1.47698i −0.878730 0.477320i \(-0.841608\pi\)
0.0259935 0.999662i \(-0.491725\pi\)
\(18\) 0 0
\(19\) −3.02788 5.24444i −0.694643 1.20316i −0.970301 0.241901i \(-0.922229\pi\)
0.275658 0.961256i \(-0.411104\pi\)
\(20\) 0 0
\(21\) 5.47896 + 4.31952i 1.19561 + 0.942596i
\(22\) 0 0
\(23\) 0.705898 0.147190 0.0735950 0.997288i \(-0.476553\pi\)
0.0735950 + 0.997288i \(0.476553\pi\)
\(24\) 0 0
\(25\) −2.77897 + 4.81332i −0.555794 + 0.962664i
\(26\) 0 0
\(27\) −2.17582 + 4.71867i −0.418737 + 0.908108i
\(28\) 0 0
\(29\) −1.32512 2.29517i −0.246068 0.426202i 0.716363 0.697727i \(-0.245805\pi\)
−0.962431 + 0.271525i \(0.912472\pi\)
\(30\) 0 0
\(31\) 2.87494 + 4.97955i 0.516355 + 0.894353i 0.999820 + 0.0189895i \(0.00604491\pi\)
−0.483464 + 0.875364i \(0.660622\pi\)
\(32\) 0 0
\(33\) 1.35310 9.33031i 0.235544 1.62420i
\(34\) 0 0
\(35\) 6.54428 + 11.3350i 1.10619 + 1.91597i
\(36\) 0 0
\(37\) 0.965424 1.67216i 0.158715 0.274902i −0.775691 0.631113i \(-0.782598\pi\)
0.934405 + 0.356211i \(0.115932\pi\)
\(38\) 0 0
\(39\) −5.16519 + 3.51010i −0.827092 + 0.562067i
\(40\) 0 0
\(41\) −4.07703 −0.636725 −0.318363 0.947969i \(-0.603133\pi\)
−0.318363 + 0.947969i \(0.603133\pi\)
\(42\) 0 0
\(43\) 5.42909 0.827929 0.413965 0.910293i \(-0.364144\pi\)
0.413965 + 0.910293i \(0.364144\pi\)
\(44\) 0 0
\(45\) −7.07126 + 6.70961i −1.05412 + 1.00021i
\(46\) 0 0
\(47\) 1.62139 2.80833i 0.236504 0.409637i −0.723205 0.690634i \(-0.757332\pi\)
0.959709 + 0.280997i \(0.0906651\pi\)
\(48\) 0 0
\(49\) 9.22575 1.31796
\(50\) 0 0
\(51\) 1.74801 12.0534i 0.244771 1.68782i
\(52\) 0 0
\(53\) −0.0982107 −0.0134903 −0.00674514 0.999977i \(-0.502147\pi\)
−0.00674514 + 0.999977i \(0.502147\pi\)
\(54\) 0 0
\(55\) 8.84330 15.3170i 1.19243 2.06535i
\(56\) 0 0
\(57\) 1.50537 10.3803i 0.199391 1.37490i
\(58\) 0 0
\(59\) −3.47707 + 6.02246i −0.452676 + 0.784058i −0.998551 0.0538087i \(-0.982864\pi\)
0.545875 + 0.837866i \(0.316197\pi\)
\(60\) 0 0
\(61\) −7.95204 −1.01815 −0.509077 0.860721i \(-0.670013\pi\)
−0.509077 + 0.860721i \(0.670013\pi\)
\(62\) 0 0
\(63\) 2.82037 + 11.7506i 0.355333 + 1.48044i
\(64\) 0 0
\(65\) −11.4400 + 2.52581i −1.41896 + 0.313288i
\(66\) 0 0
\(67\) −0.0908569 −0.0110999 −0.00554997 0.999985i \(-0.501767\pi\)
−0.00554997 + 0.999985i \(0.501767\pi\)
\(68\) 0 0
\(69\) 0.960148 + 0.756964i 0.115588 + 0.0911277i
\(70\) 0 0
\(71\) 2.62645 + 4.54914i 0.311702 + 0.539883i 0.978731 0.205148i \(-0.0657677\pi\)
−0.667029 + 0.745032i \(0.732434\pi\)
\(72\) 0 0
\(73\) 4.40666 0.515761 0.257880 0.966177i \(-0.416976\pi\)
0.257880 + 0.966177i \(0.416976\pi\)
\(74\) 0 0
\(75\) −8.94142 + 3.56697i −1.03247 + 0.411878i
\(76\) 0 0
\(77\) −10.9629 18.9884i −1.24934 2.16393i
\(78\) 0 0
\(79\) 2.93814 5.08901i 0.330567 0.572559i −0.652056 0.758171i \(-0.726093\pi\)
0.982623 + 0.185612i \(0.0594267\pi\)
\(80\) 0 0
\(81\) −8.01952 + 4.08500i −0.891058 + 0.453889i
\(82\) 0 0
\(83\) −3.26489 + 5.65496i −0.358368 + 0.620712i −0.987688 0.156434i \(-0.950000\pi\)
0.629320 + 0.777146i \(0.283333\pi\)
\(84\) 0 0
\(85\) 11.4243 19.7874i 1.23914 2.14625i
\(86\) 0 0
\(87\) 0.658808 4.54282i 0.0706317 0.487041i
\(88\) 0 0
\(89\) −3.12352 + 5.41009i −0.331092 + 0.573469i −0.982726 0.185065i \(-0.940751\pi\)
0.651634 + 0.758534i \(0.274084\pi\)
\(90\) 0 0
\(91\) −4.37930 + 13.8476i −0.459076 + 1.45162i
\(92\) 0 0
\(93\) −1.42934 + 9.85600i −0.148215 + 1.02202i
\(94\) 0 0
\(95\) 9.83849 17.0408i 1.00941 1.74834i
\(96\) 0 0
\(97\) 16.7145 1.69710 0.848552 0.529112i \(-0.177475\pi\)
0.848552 + 0.529112i \(0.177475\pi\)
\(98\) 0 0
\(99\) 11.8457 11.2399i 1.19054 1.12965i
\(100\) 0 0
\(101\) −1.97434 3.41965i −0.196454 0.340268i 0.750922 0.660391i \(-0.229609\pi\)
−0.947376 + 0.320122i \(0.896276\pi\)
\(102\) 0 0
\(103\) 1.89833 + 3.28800i 0.187048 + 0.323976i 0.944265 0.329187i \(-0.106775\pi\)
−0.757217 + 0.653164i \(0.773441\pi\)
\(104\) 0 0
\(105\) −3.25362 + 22.4354i −0.317521 + 2.18947i
\(106\) 0 0
\(107\) 4.36995 7.56898i 0.422459 0.731720i −0.573720 0.819051i \(-0.694500\pi\)
0.996179 + 0.0873308i \(0.0278337\pi\)
\(108\) 0 0
\(109\) −16.8174 −1.61082 −0.805408 0.592721i \(-0.798054\pi\)
−0.805408 + 0.592721i \(0.798054\pi\)
\(110\) 0 0
\(111\) 3.10628 1.23918i 0.294835 0.117617i
\(112\) 0 0
\(113\) −1.03438 + 1.79160i −0.0973064 + 0.168540i −0.910569 0.413357i \(-0.864356\pi\)
0.813262 + 0.581897i \(0.197689\pi\)
\(114\) 0 0
\(115\) 1.14684 + 1.98638i 0.106943 + 0.185231i
\(116\) 0 0
\(117\) −10.7896 0.764473i −0.997499 0.0706756i
\(118\) 0 0
\(119\) −14.1625 24.5303i −1.29828 2.24868i
\(120\) 0 0
\(121\) −9.31425 + 16.1327i −0.846750 + 1.46661i
\(122\) 0 0
\(123\) −5.54549 4.37196i −0.500020 0.394207i
\(124\) 0 0
\(125\) −1.81293 −0.162153
\(126\) 0 0
\(127\) −3.99454 + 6.91874i −0.354458 + 0.613939i −0.987025 0.160566i \(-0.948668\pi\)
0.632567 + 0.774506i \(0.282001\pi\)
\(128\) 0 0
\(129\) 7.38454 + 5.82184i 0.650172 + 0.512584i
\(130\) 0 0
\(131\) −7.71565 13.3639i −0.674120 1.16761i −0.976725 0.214494i \(-0.931190\pi\)
0.302606 0.953116i \(-0.402144\pi\)
\(132\) 0 0
\(133\) −12.1967 21.1252i −1.05758 1.83179i
\(134\) 0 0
\(135\) −16.8132 + 1.54347i −1.44705 + 0.132841i
\(136\) 0 0
\(137\) −3.16054 −0.270023 −0.135012 0.990844i \(-0.543107\pi\)
−0.135012 + 0.990844i \(0.543107\pi\)
\(138\) 0 0
\(139\) 9.57578 16.5857i 0.812207 1.40678i −0.0991091 0.995077i \(-0.531599\pi\)
0.911316 0.411707i \(-0.135067\pi\)
\(140\) 0 0
\(141\) 5.21686 2.08115i 0.439339 0.175264i
\(142\) 0 0
\(143\) 19.1642 4.23122i 1.60259 0.353833i
\(144\) 0 0
\(145\) 4.30570 7.45769i 0.357569 0.619327i
\(146\) 0 0
\(147\) 12.5487 + 9.89315i 1.03500 + 0.815973i
\(148\) 0 0
\(149\) −7.98355 + 13.8279i −0.654038 + 1.13283i 0.328096 + 0.944644i \(0.393593\pi\)
−0.982134 + 0.188182i \(0.939740\pi\)
\(150\) 0 0
\(151\) −5.36881 + 9.29905i −0.436908 + 0.756746i −0.997449 0.0713802i \(-0.977260\pi\)
0.560542 + 0.828126i \(0.310593\pi\)
\(152\) 0 0
\(153\) 15.3030 14.5203i 1.23717 1.17390i
\(154\) 0 0
\(155\) −9.34155 + 16.1800i −0.750332 + 1.29961i
\(156\) 0 0
\(157\) −8.93916 15.4831i −0.713423 1.23568i −0.963565 0.267476i \(-0.913811\pi\)
0.250142 0.968209i \(-0.419523\pi\)
\(158\) 0 0
\(159\) −0.133584 0.105315i −0.0105939 0.00835205i
\(160\) 0 0
\(161\) 2.84344 0.224095
\(162\) 0 0
\(163\) 4.38749 + 7.59936i 0.343655 + 0.595228i 0.985108 0.171934i \(-0.0550016\pi\)
−0.641453 + 0.767162i \(0.721668\pi\)
\(164\) 0 0
\(165\) 28.4536 11.3509i 2.21511 0.883665i
\(166\) 0 0
\(167\) 21.7081 1.67982 0.839912 0.542723i \(-0.182607\pi\)
0.839912 + 0.542723i \(0.182607\pi\)
\(168\) 0 0
\(169\) −10.6361 7.47490i −0.818159 0.574992i
\(170\) 0 0
\(171\) 13.1788 12.5048i 1.00781 0.956264i
\(172\) 0 0
\(173\) 1.80542 0.137264 0.0686318 0.997642i \(-0.478137\pi\)
0.0686318 + 0.997642i \(0.478137\pi\)
\(174\) 0 0
\(175\) −11.1940 + 19.3886i −0.846189 + 1.46564i
\(176\) 0 0
\(177\) −11.1876 + 4.46302i −0.840909 + 0.335461i
\(178\) 0 0
\(179\) −0.722888 + 1.25208i −0.0540312 + 0.0935847i −0.891776 0.452477i \(-0.850540\pi\)
0.837745 + 0.546062i \(0.183874\pi\)
\(180\) 0 0
\(181\) 14.4828 1.07650 0.538250 0.842785i \(-0.319086\pi\)
0.538250 + 0.842785i \(0.319086\pi\)
\(182\) 0 0
\(183\) −10.8162 8.52729i −0.799556 0.630356i
\(184\) 0 0
\(185\) 6.27390 0.461266
\(186\) 0 0
\(187\) −19.1379 + 33.1478i −1.39950 + 2.42401i
\(188\) 0 0
\(189\) −8.76447 + 19.0073i −0.637521 + 1.38258i
\(190\) 0 0
\(191\) 18.0109 1.30322 0.651611 0.758553i \(-0.274094\pi\)
0.651611 + 0.758553i \(0.274094\pi\)
\(192\) 0 0
\(193\) −12.4334 −0.894973 −0.447487 0.894291i \(-0.647681\pi\)
−0.447487 + 0.894291i \(0.647681\pi\)
\(194\) 0 0
\(195\) −18.2690 8.83202i −1.30827 0.632474i
\(196\) 0 0
\(197\) −10.2982 + 17.8369i −0.733713 + 1.27083i 0.221572 + 0.975144i \(0.428881\pi\)
−0.955286 + 0.295685i \(0.904452\pi\)
\(198\) 0 0
\(199\) −2.70264 4.68111i −0.191585 0.331835i 0.754191 0.656656i \(-0.228029\pi\)
−0.945776 + 0.324820i \(0.894696\pi\)
\(200\) 0 0
\(201\) −0.123582 0.0974296i −0.00871677 0.00687215i
\(202\) 0 0
\(203\) −5.33773 9.24521i −0.374635 0.648887i
\(204\) 0 0
\(205\) −6.62374 11.4727i −0.462622 0.801285i
\(206\) 0 0
\(207\) 0.494249 + 2.05921i 0.0343527 + 0.143125i
\(208\) 0 0
\(209\) −16.4814 + 28.5466i −1.14004 + 1.97461i
\(210\) 0 0
\(211\) −8.39324 −0.577814 −0.288907 0.957357i \(-0.593292\pi\)
−0.288907 + 0.957357i \(0.593292\pi\)
\(212\) 0 0
\(213\) −1.30579 + 9.00408i −0.0894713 + 0.616950i
\(214\) 0 0
\(215\) 8.82038 + 15.2773i 0.601545 + 1.04191i
\(216\) 0 0
\(217\) 11.5806 + 20.0582i 0.786144 + 1.36164i
\(218\) 0 0
\(219\) 5.99385 + 4.72544i 0.405027 + 0.319316i
\(220\) 0 0
\(221\) 24.7574 5.46613i 1.66536 0.367692i
\(222\) 0 0
\(223\) 10.7663 + 18.6477i 0.720964 + 1.24875i 0.960614 + 0.277886i \(0.0896339\pi\)
−0.239650 + 0.970859i \(0.577033\pi\)
\(224\) 0 0
\(225\) −15.9869 4.73653i −1.06580 0.315769i
\(226\) 0 0
\(227\) 4.16383 0.276363 0.138181 0.990407i \(-0.455874\pi\)
0.138181 + 0.990407i \(0.455874\pi\)
\(228\) 0 0
\(229\) 1.09865 + 1.90291i 0.0726005 + 0.125748i 0.900040 0.435807i \(-0.143537\pi\)
−0.827440 + 0.561554i \(0.810204\pi\)
\(230\) 0 0
\(231\) 5.45045 37.5836i 0.358613 2.47282i
\(232\) 0 0
\(233\) 10.4375 0.683786 0.341893 0.939739i \(-0.388932\pi\)
0.341893 + 0.939739i \(0.388932\pi\)
\(234\) 0 0
\(235\) 10.5368 0.687342
\(236\) 0 0
\(237\) 9.45356 3.77128i 0.614074 0.244971i
\(238\) 0 0
\(239\) 4.61001 + 7.98476i 0.298197 + 0.516491i 0.975723 0.219007i \(-0.0702816\pi\)
−0.677527 + 0.735498i \(0.736948\pi\)
\(240\) 0 0
\(241\) 27.3211 1.75991 0.879954 0.475058i \(-0.157573\pi\)
0.879954 + 0.475058i \(0.157573\pi\)
\(242\) 0 0
\(243\) −15.2885 3.04333i −0.980758 0.195229i
\(244\) 0 0
\(245\) 14.9886 + 25.9610i 0.957587 + 1.65859i
\(246\) 0 0
\(247\) 21.3209 4.70738i 1.35661 0.299524i
\(248\) 0 0
\(249\) −10.5049 + 4.19067i −0.665719 + 0.265573i
\(250\) 0 0
\(251\) 9.33769 + 16.1734i 0.589390 + 1.02085i 0.994312 + 0.106502i \(0.0339652\pi\)
−0.404923 + 0.914351i \(0.632702\pi\)
\(252\) 0 0
\(253\) −1.92118 3.32757i −0.120783 0.209203i
\(254\) 0 0
\(255\) 36.7579 14.6637i 2.30187 0.918278i
\(256\) 0 0
\(257\) −14.5721 −0.908983 −0.454491 0.890751i \(-0.650179\pi\)
−0.454491 + 0.890751i \(0.650179\pi\)
\(258\) 0 0
\(259\) 3.88884 6.73567i 0.241641 0.418534i
\(260\) 0 0
\(261\) 5.76754 5.47257i 0.357002 0.338744i
\(262\) 0 0
\(263\) −11.7110 20.2841i −0.722132 1.25077i −0.960143 0.279508i \(-0.909829\pi\)
0.238011 0.971262i \(-0.423505\pi\)
\(264\) 0 0
\(265\) −0.159558 0.276362i −0.00980156 0.0169768i
\(266\) 0 0
\(267\) −10.0500 + 4.00922i −0.615051 + 0.245360i
\(268\) 0 0
\(269\) 2.43575 + 4.21884i 0.148510 + 0.257227i 0.930677 0.365842i \(-0.119219\pi\)
−0.782167 + 0.623069i \(0.785886\pi\)
\(270\) 0 0
\(271\) 7.35182 12.7337i 0.446592 0.773519i −0.551570 0.834129i \(-0.685971\pi\)
0.998162 + 0.0606094i \(0.0193044\pi\)
\(272\) 0 0
\(273\) −20.8060 + 14.1391i −1.25924 + 0.855739i
\(274\) 0 0
\(275\) 30.2530 1.82433
\(276\) 0 0
\(277\) −11.7453 −0.705709 −0.352855 0.935678i \(-0.614789\pi\)
−0.352855 + 0.935678i \(0.614789\pi\)
\(278\) 0 0
\(279\) −12.5131 + 11.8732i −0.749142 + 0.710828i
\(280\) 0 0
\(281\) 1.46853 2.54357i 0.0876052 0.151737i −0.818893 0.573946i \(-0.805412\pi\)
0.906498 + 0.422209i \(0.138745\pi\)
\(282\) 0 0
\(283\) −13.4171 −0.797564 −0.398782 0.917046i \(-0.630567\pi\)
−0.398782 + 0.917046i \(0.630567\pi\)
\(284\) 0 0
\(285\) 31.6556 12.6283i 1.87512 0.748034i
\(286\) 0 0
\(287\) −16.4228 −0.969405
\(288\) 0 0
\(289\) −16.2234 + 28.0997i −0.954318 + 1.65293i
\(290\) 0 0
\(291\) 22.7348 + 17.9237i 1.33274 + 1.05070i
\(292\) 0 0
\(293\) 2.80259 4.85422i 0.163729 0.283587i −0.772474 0.635046i \(-0.780981\pi\)
0.936203 + 0.351459i \(0.114314\pi\)
\(294\) 0 0
\(295\) −22.5961 −1.31559
\(296\) 0 0
\(297\) 28.1653 2.58561i 1.63432 0.150032i
\(298\) 0 0
\(299\) −0.767441 + 2.42669i −0.0443822 + 0.140339i
\(300\) 0 0
\(301\) 21.8690 1.26051
\(302\) 0 0
\(303\) 0.981582 6.76850i 0.0563904 0.388840i
\(304\) 0 0
\(305\) −12.9193 22.3768i −0.739755 1.28129i
\(306\) 0 0
\(307\) −18.2337 −1.04065 −0.520327 0.853967i \(-0.674190\pi\)
−0.520327 + 0.853967i \(0.674190\pi\)
\(308\) 0 0
\(309\) −0.943792 + 6.50792i −0.0536904 + 0.370223i
\(310\) 0 0
\(311\) 8.07146 + 13.9802i 0.457691 + 0.792743i 0.998838 0.0481840i \(-0.0153434\pi\)
−0.541148 + 0.840927i \(0.682010\pi\)
\(312\) 0 0
\(313\) 9.71308 16.8235i 0.549016 0.950923i −0.449327 0.893368i \(-0.648336\pi\)
0.998342 0.0575555i \(-0.0183306\pi\)
\(314\) 0 0
\(315\) −28.4839 + 27.0271i −1.60488 + 1.52280i
\(316\) 0 0
\(317\) −7.10482 + 12.3059i −0.399047 + 0.691169i −0.993609 0.112881i \(-0.963992\pi\)
0.594562 + 0.804050i \(0.297325\pi\)
\(318\) 0 0
\(319\) −7.21288 + 12.4931i −0.403844 + 0.699478i
\(320\) 0 0
\(321\) 14.0604 5.60908i 0.784777 0.313068i
\(322\) 0 0
\(323\) −21.2916 + 36.8781i −1.18469 + 2.05195i
\(324\) 0 0
\(325\) −13.5257 14.7863i −0.750270 0.820198i
\(326\) 0 0
\(327\) −22.8747 18.0340i −1.26497 0.997283i
\(328\) 0 0
\(329\) 6.53115 11.3123i 0.360074 0.623666i
\(330\) 0 0
\(331\) −7.90919 −0.434728 −0.217364 0.976091i \(-0.569746\pi\)
−0.217364 + 0.976091i \(0.569746\pi\)
\(332\) 0 0
\(333\) 5.55391 + 1.64549i 0.304353 + 0.0901721i
\(334\) 0 0
\(335\) −0.147611 0.255669i −0.00806483 0.0139687i
\(336\) 0 0
\(337\) −13.4689 23.3289i −0.733699 1.27080i −0.955292 0.295665i \(-0.904459\pi\)
0.221593 0.975139i \(-0.428874\pi\)
\(338\) 0 0
\(339\) −3.32815 + 1.32769i −0.180760 + 0.0721101i
\(340\) 0 0
\(341\) 15.6489 27.1047i 0.847436 1.46780i
\(342\) 0 0
\(343\) 8.96558 0.484096
\(344\) 0 0
\(345\) −0.570173 + 3.93163i −0.0306971 + 0.211672i
\(346\) 0 0
\(347\) 2.65856 4.60476i 0.142719 0.247196i −0.785801 0.618480i \(-0.787749\pi\)
0.928520 + 0.371284i \(0.121082\pi\)
\(348\) 0 0
\(349\) 13.8453 + 23.9808i 0.741122 + 1.28366i 0.951985 + 0.306145i \(0.0990392\pi\)
−0.210863 + 0.977516i \(0.567627\pi\)
\(350\) 0 0
\(351\) −13.8560 12.6100i −0.739579 0.673070i
\(352\) 0 0
\(353\) 3.58010 + 6.20091i 0.190549 + 0.330041i 0.945432 0.325818i \(-0.105640\pi\)
−0.754883 + 0.655859i \(0.772306\pi\)
\(354\) 0 0
\(355\) −8.53411 + 14.7815i −0.452943 + 0.784521i
\(356\) 0 0
\(357\) 7.04120 48.5526i 0.372660 2.56968i
\(358\) 0 0
\(359\) −32.7676 −1.72941 −0.864703 0.502284i \(-0.832493\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(360\) 0 0
\(361\) −8.83611 + 15.3046i −0.465058 + 0.805505i
\(362\) 0 0
\(363\) −29.9688 + 11.9554i −1.57296 + 0.627494i
\(364\) 0 0
\(365\) 7.15928 + 12.4002i 0.374734 + 0.649058i
\(366\) 0 0
\(367\) −7.37685 12.7771i −0.385068 0.666958i 0.606710 0.794923i \(-0.292489\pi\)
−0.991779 + 0.127965i \(0.959155\pi\)
\(368\) 0 0
\(369\) −2.85462 11.8933i −0.148605 0.619141i
\(370\) 0 0
\(371\) −0.395604 −0.0205388
\(372\) 0 0
\(373\) −11.4458 + 19.8247i −0.592642 + 1.02649i 0.401233 + 0.915976i \(0.368582\pi\)
−0.993875 + 0.110510i \(0.964752\pi\)
\(374\) 0 0
\(375\) −2.46591 1.94408i −0.127339 0.100392i
\(376\) 0 0
\(377\) 9.33083 2.06013i 0.480562 0.106102i
\(378\) 0 0
\(379\) −11.7486 + 20.3491i −0.603483 + 1.04526i 0.388807 + 0.921319i \(0.372887\pi\)
−0.992289 + 0.123943i \(0.960446\pi\)
\(380\) 0 0
\(381\) −12.8525 + 5.12722i −0.658455 + 0.262675i
\(382\) 0 0
\(383\) 1.43764 2.49007i 0.0734601 0.127237i −0.826955 0.562267i \(-0.809929\pi\)
0.900416 + 0.435031i \(0.143262\pi\)
\(384\) 0 0
\(385\) 35.6219 61.6989i 1.81546 3.14447i
\(386\) 0 0
\(387\) 3.80129 + 15.8375i 0.193231 + 0.805064i
\(388\) 0 0
\(389\) 8.62393 14.9371i 0.437251 0.757341i −0.560226 0.828340i \(-0.689286\pi\)
0.997476 + 0.0709995i \(0.0226189\pi\)
\(390\) 0 0
\(391\) −2.48188 4.29875i −0.125514 0.217397i
\(392\) 0 0
\(393\) 3.83599 26.4511i 0.193500 1.33428i
\(394\) 0 0
\(395\) 19.0938 0.960714
\(396\) 0 0
\(397\) 1.34311 + 2.32633i 0.0674086 + 0.116755i 0.897760 0.440485i \(-0.145194\pi\)
−0.830351 + 0.557240i \(0.811860\pi\)
\(398\) 0 0
\(399\) 6.06382 41.8131i 0.303571 2.09327i
\(400\) 0 0
\(401\) 12.0183 0.600168 0.300084 0.953913i \(-0.402985\pi\)
0.300084 + 0.953913i \(0.402985\pi\)
\(402\) 0 0
\(403\) −20.2440 + 4.46962i −1.00842 + 0.222648i
\(404\) 0 0
\(405\) −24.5240 15.9300i −1.21861 0.791570i
\(406\) 0 0
\(407\) −10.5100 −0.520962
\(408\) 0 0
\(409\) −3.11465 + 5.39473i −0.154009 + 0.266752i −0.932698 0.360659i \(-0.882552\pi\)
0.778689 + 0.627411i \(0.215885\pi\)
\(410\) 0 0
\(411\) −4.29890 3.38917i −0.212049 0.167176i
\(412\) 0 0
\(413\) −14.0061 + 24.2592i −0.689193 + 1.19372i
\(414\) 0 0
\(415\) −21.2172 −1.04151
\(416\) 0 0
\(417\) 30.8103 12.2911i 1.50879 0.601896i
\(418\) 0 0
\(419\) −3.65128 −0.178377 −0.0891883 0.996015i \(-0.528427\pi\)
−0.0891883 + 0.996015i \(0.528427\pi\)
\(420\) 0 0
\(421\) −0.290663 + 0.503443i −0.0141661 + 0.0245363i −0.873022 0.487682i \(-0.837843\pi\)
0.858855 + 0.512218i \(0.171176\pi\)
\(422\) 0 0
\(423\) 9.32756 + 2.76353i 0.453522 + 0.134367i
\(424\) 0 0
\(425\) 39.0826 1.89578
\(426\) 0 0
\(427\) −32.0318 −1.55013
\(428\) 0 0
\(429\) 30.6041 + 14.7954i 1.47758 + 0.714326i
\(430\) 0 0
\(431\) 18.4032 31.8752i 0.886450 1.53538i 0.0424070 0.999100i \(-0.486497\pi\)
0.844043 0.536276i \(-0.180169\pi\)
\(432\) 0 0
\(433\) −9.01403 15.6128i −0.433187 0.750301i 0.563959 0.825803i \(-0.309278\pi\)
−0.997146 + 0.0755015i \(0.975944\pi\)
\(434\) 0 0
\(435\) 13.8537 5.52661i 0.664234 0.264981i
\(436\) 0 0
\(437\) −2.13738 3.70204i −0.102245 0.177093i
\(438\) 0 0
\(439\) −7.60936 13.1798i −0.363175 0.629037i 0.625307 0.780379i \(-0.284974\pi\)
−0.988481 + 0.151342i \(0.951641\pi\)
\(440\) 0 0
\(441\) 6.45960 + 26.9129i 0.307600 + 1.28157i
\(442\) 0 0
\(443\) 6.86666 11.8934i 0.326245 0.565073i −0.655519 0.755179i \(-0.727550\pi\)
0.981763 + 0.190106i \(0.0608833\pi\)
\(444\) 0 0
\(445\) −20.2985 −0.962241
\(446\) 0 0
\(447\) −25.6873 + 10.2473i −1.21497 + 0.484683i
\(448\) 0 0
\(449\) −13.7788 23.8656i −0.650261 1.12629i −0.983059 0.183287i \(-0.941326\pi\)
0.332798 0.942998i \(-0.392007\pi\)
\(450\) 0 0
\(451\) 11.0961 + 19.2189i 0.522493 + 0.904984i
\(452\) 0 0
\(453\) −17.2743 + 6.89117i −0.811617 + 0.323776i
\(454\) 0 0
\(455\) −46.0817 + 10.1743i −2.16034 + 0.476977i
\(456\) 0 0
\(457\) 14.0293 + 24.2995i 0.656264 + 1.13668i 0.981575 + 0.191076i \(0.0611977\pi\)
−0.325311 + 0.945607i \(0.605469\pi\)
\(458\) 0 0
\(459\) 36.3855 3.34024i 1.69833 0.155909i
\(460\) 0 0
\(461\) −2.69132 −0.125347 −0.0626737 0.998034i \(-0.519963\pi\)
−0.0626737 + 0.998034i \(0.519963\pi\)
\(462\) 0 0
\(463\) −2.13932 3.70542i −0.0994228 0.172205i 0.812023 0.583625i \(-0.198366\pi\)
−0.911446 + 0.411420i \(0.865033\pi\)
\(464\) 0 0
\(465\) −30.0567 + 11.9904i −1.39385 + 0.556042i
\(466\) 0 0
\(467\) 23.7286 1.09803 0.549014 0.835813i \(-0.315004\pi\)
0.549014 + 0.835813i \(0.315004\pi\)
\(468\) 0 0
\(469\) −0.365983 −0.0168995
\(470\) 0 0
\(471\) 4.44429 30.6456i 0.204782 1.41207i
\(472\) 0 0
\(473\) −14.7758 25.5925i −0.679394 1.17674i
\(474\) 0 0
\(475\) 33.6576 1.54432
\(476\) 0 0
\(477\) −0.0687642 0.286495i −0.00314850 0.0131177i
\(478\) 0 0
\(479\) −14.1800 24.5605i −0.647902 1.12220i −0.983623 0.180237i \(-0.942313\pi\)
0.335721 0.941961i \(-0.391020\pi\)
\(480\) 0 0
\(481\) 4.69886 + 5.13682i 0.214250 + 0.234219i
\(482\) 0 0
\(483\) 3.86759 + 3.04914i 0.175981 + 0.138741i
\(484\) 0 0
\(485\) 27.1553 + 47.0343i 1.23306 + 2.13572i
\(486\) 0 0
\(487\) −18.4267 31.9159i −0.834992 1.44625i −0.894037 0.447993i \(-0.852139\pi\)
0.0590452 0.998255i \(-0.481194\pi\)
\(488\) 0 0
\(489\) −2.18133 + 15.0414i −0.0986432 + 0.680195i
\(490\) 0 0
\(491\) 16.3370 0.737277 0.368638 0.929573i \(-0.379824\pi\)
0.368638 + 0.929573i \(0.379824\pi\)
\(492\) 0 0
\(493\) −9.31801 + 16.1393i −0.419662 + 0.726876i
\(494\) 0 0
\(495\) 50.8739 + 15.0727i 2.28661 + 0.677467i
\(496\) 0 0
\(497\) 10.5796 + 18.3245i 0.474562 + 0.821965i
\(498\) 0 0
\(499\) 7.02133 + 12.1613i 0.314318 + 0.544415i 0.979292 0.202452i \(-0.0648909\pi\)
−0.664974 + 0.746866i \(0.731558\pi\)
\(500\) 0 0
\(501\) 29.5269 + 23.2785i 1.31916 + 1.04001i
\(502\) 0 0
\(503\) 5.29736 + 9.17530i 0.236198 + 0.409107i 0.959620 0.281299i \(-0.0907653\pi\)
−0.723422 + 0.690406i \(0.757432\pi\)
\(504\) 0 0
\(505\) 6.41522 11.1115i 0.285473 0.494454i
\(506\) 0 0
\(507\) −6.45131 21.5727i −0.286513 0.958076i
\(508\) 0 0
\(509\) 2.10992 0.0935206 0.0467603 0.998906i \(-0.485110\pi\)
0.0467603 + 0.998906i \(0.485110\pi\)
\(510\) 0 0
\(511\) 17.7506 0.785239
\(512\) 0 0
\(513\) 31.3349 2.87658i 1.38347 0.127004i
\(514\) 0 0
\(515\) −6.16823 + 10.6837i −0.271805 + 0.470780i
\(516\) 0 0
\(517\) −17.6511 −0.776295
\(518\) 0 0
\(519\) 2.45569 + 1.93603i 0.107793 + 0.0849821i
\(520\) 0 0
\(521\) 1.56756 0.0686761 0.0343380 0.999410i \(-0.489068\pi\)
0.0343380 + 0.999410i \(0.489068\pi\)
\(522\) 0 0
\(523\) 5.77964 10.0106i 0.252726 0.437734i −0.711549 0.702636i \(-0.752006\pi\)
0.964275 + 0.264902i \(0.0853395\pi\)
\(524\) 0 0
\(525\) −36.0171 + 14.3682i −1.57192 + 0.627079i
\(526\) 0 0
\(527\) 20.2162 35.0154i 0.880629 1.52529i
\(528\) 0 0
\(529\) −22.5017 −0.978335
\(530\) 0 0
\(531\) −20.0030 5.92638i −0.868055 0.257183i
\(532\) 0 0
\(533\) 4.43248 14.0158i 0.191992 0.607090i
\(534\) 0 0
\(535\) 28.3985 1.22778
\(536\) 0 0
\(537\) −2.32591 + 0.927868i −0.100370 + 0.0400405i
\(538\) 0 0
\(539\) −25.1088 43.4898i −1.08151 1.87324i
\(540\) 0 0
\(541\) 0.625513 0.0268929 0.0134465 0.999910i \(-0.495720\pi\)
0.0134465 + 0.999910i \(0.495720\pi\)
\(542\) 0 0
\(543\) 19.6992 + 15.5305i 0.845374 + 0.666478i
\(544\) 0 0
\(545\) −27.3224 47.3238i −1.17036 2.02713i
\(546\) 0 0
\(547\) −13.9938 + 24.2381i −0.598334 + 1.03634i 0.394733 + 0.918796i \(0.370837\pi\)
−0.993067 + 0.117549i \(0.962496\pi\)
\(548\) 0 0
\(549\) −5.56778 23.1973i −0.237627 0.990036i
\(550\) 0 0
\(551\) −8.02458 + 13.8990i −0.341859 + 0.592117i
\(552\) 0 0
\(553\) 11.8352 20.4992i 0.503284 0.871713i
\(554\) 0 0
\(555\) 8.53363 + 6.72776i 0.362232 + 0.285578i
\(556\) 0 0
\(557\) −2.38269 + 4.12695i −0.100958 + 0.174864i −0.912080 0.410013i \(-0.865524\pi\)
0.811122 + 0.584878i \(0.198857\pi\)
\(558\) 0 0
\(559\) −5.90242 + 18.6638i −0.249646 + 0.789394i
\(560\) 0 0
\(561\) −61.5767 + 24.5646i −2.59977 + 1.03712i
\(562\) 0 0
\(563\) −15.2728 + 26.4532i −0.643670 + 1.11487i 0.340937 + 0.940086i \(0.389256\pi\)
−0.984607 + 0.174783i \(0.944077\pi\)
\(564\) 0 0
\(565\) −6.72203 −0.282798
\(566\) 0 0
\(567\) −32.3036 + 16.4549i −1.35662 + 0.691040i
\(568\) 0 0
\(569\) 5.32035 + 9.21512i 0.223041 + 0.386318i 0.955730 0.294246i \(-0.0950684\pi\)
−0.732689 + 0.680563i \(0.761735\pi\)
\(570\) 0 0
\(571\) −5.02689 8.70682i −0.210369 0.364369i 0.741461 0.670996i \(-0.234133\pi\)
−0.951830 + 0.306626i \(0.900800\pi\)
\(572\) 0 0
\(573\) 24.4980 + 19.3138i 1.02342 + 0.806846i
\(574\) 0 0
\(575\) −1.96167 + 3.39772i −0.0818074 + 0.141695i
\(576\) 0 0
\(577\) 12.1464 0.505661 0.252831 0.967511i \(-0.418638\pi\)
0.252831 + 0.967511i \(0.418638\pi\)
\(578\) 0 0
\(579\) −16.9116 13.3328i −0.702822 0.554092i
\(580\) 0 0
\(581\) −13.1514 + 22.7788i −0.545611 + 0.945025i
\(582\) 0 0
\(583\) 0.267290 + 0.462961i 0.0110700 + 0.0191739i
\(584\) 0 0
\(585\) −15.3781 31.6037i −0.635807 1.30665i
\(586\) 0 0
\(587\) −9.29123 16.0929i −0.383490 0.664224i 0.608068 0.793885i \(-0.291945\pi\)
−0.991558 + 0.129660i \(0.958611\pi\)
\(588\) 0 0
\(589\) 17.4100 30.1550i 0.717365 1.24251i
\(590\) 0 0
\(591\) −33.1346 + 13.2183i −1.36298 + 0.543727i
\(592\) 0 0
\(593\) −43.4076 −1.78253 −0.891267 0.453478i \(-0.850183\pi\)
−0.891267 + 0.453478i \(0.850183\pi\)
\(594\) 0 0
\(595\) 46.0184 79.7061i 1.88657 3.26763i
\(596\) 0 0
\(597\) 1.34367 9.26530i 0.0549929 0.379204i
\(598\) 0 0
\(599\) 20.6511 + 35.7688i 0.843781 + 1.46147i 0.886676 + 0.462392i \(0.153009\pi\)
−0.0428945 + 0.999080i \(0.513658\pi\)
\(600\) 0 0
\(601\) 21.6234 + 37.4528i 0.882036 + 1.52773i 0.849073 + 0.528275i \(0.177161\pi\)
0.0329627 + 0.999457i \(0.489506\pi\)
\(602\) 0 0
\(603\) −0.0636153 0.265043i −0.00259062 0.0107934i
\(604\) 0 0
\(605\) −60.5295 −2.46088
\(606\) 0 0
\(607\) 0.715469 1.23923i 0.0290400 0.0502988i −0.851140 0.524939i \(-0.824088\pi\)
0.880180 + 0.474640i \(0.157422\pi\)
\(608\) 0 0
\(609\) 2.65376 18.2990i 0.107536 0.741513i
\(610\) 0 0
\(611\) 7.89155 + 8.62708i 0.319258 + 0.349014i
\(612\) 0 0
\(613\) 13.8456 23.9813i 0.559219 0.968596i −0.438342 0.898808i \(-0.644434\pi\)
0.997562 0.0697884i \(-0.0222324\pi\)
\(614\) 0 0
\(615\) 3.29313 22.7078i 0.132792 0.915666i
\(616\) 0 0
\(617\) −19.1736 + 33.2096i −0.771900 + 1.33697i 0.164621 + 0.986357i \(0.447360\pi\)
−0.936521 + 0.350613i \(0.885973\pi\)
\(618\) 0 0
\(619\) 16.5499 28.6652i 0.665196 1.15215i −0.314036 0.949411i \(-0.601681\pi\)
0.979232 0.202742i \(-0.0649853\pi\)
\(620\) 0 0
\(621\) −1.53591 + 3.33090i −0.0616339 + 0.133664i
\(622\) 0 0
\(623\) −12.5819 + 21.7925i −0.504084 + 0.873098i
\(624\) 0 0
\(625\) 10.9495 + 18.9651i 0.437979 + 0.758603i
\(626\) 0 0
\(627\) −53.0293 + 21.1548i −2.11778 + 0.844841i
\(628\) 0 0
\(629\) −13.5774 −0.541367
\(630\) 0 0
\(631\) 12.0434 + 20.8597i 0.479439 + 0.830412i 0.999722 0.0235818i \(-0.00750702\pi\)
−0.520283 + 0.853994i \(0.674174\pi\)
\(632\) 0 0
\(633\) −11.4163 9.00041i −0.453757 0.357734i
\(634\) 0 0
\(635\) −25.9589 −1.03015
\(636\) 0 0
\(637\) −10.0301 + 31.7157i −0.397406 + 1.25662i
\(638\) 0 0
\(639\) −11.4316 + 10.8469i −0.452225 + 0.429097i
\(640\) 0 0
\(641\) −2.65545 −0.104884 −0.0524419 0.998624i \(-0.516700\pi\)
−0.0524419 + 0.998624i \(0.516700\pi\)
\(642\) 0 0
\(643\) 11.3475 19.6544i 0.447500 0.775092i −0.550723 0.834688i \(-0.685648\pi\)
0.998223 + 0.0595958i \(0.0189812\pi\)
\(644\) 0 0
\(645\) −4.38523 + 30.2384i −0.172668 + 1.19063i
\(646\) 0 0
\(647\) −1.50565 + 2.60785i −0.0591930 + 0.102525i −0.894103 0.447861i \(-0.852186\pi\)
0.834910 + 0.550386i \(0.185519\pi\)
\(648\) 0 0
\(649\) 37.8528 1.48585
\(650\) 0 0
\(651\) −5.75754 + 39.7011i −0.225656 + 1.55601i
\(652\) 0 0
\(653\) −34.4444 −1.34791 −0.673957 0.738770i \(-0.735407\pi\)
−0.673957 + 0.738770i \(0.735407\pi\)
\(654\) 0 0
\(655\) 25.0705 43.4233i 0.979584 1.69669i
\(656\) 0 0
\(657\) 3.08542 + 12.8549i 0.120374 + 0.501517i
\(658\) 0 0
\(659\) 49.7199 1.93681 0.968406 0.249380i \(-0.0802270\pi\)
0.968406 + 0.249380i \(0.0802270\pi\)
\(660\) 0 0
\(661\) 2.92718 0.113854 0.0569271 0.998378i \(-0.481870\pi\)
0.0569271 + 0.998378i \(0.481870\pi\)
\(662\) 0 0
\(663\) 39.5361 + 19.1135i 1.53545 + 0.742306i
\(664\) 0 0
\(665\) 39.6306 68.6422i 1.53681 2.66183i
\(666\) 0 0
\(667\) −0.935397 1.62016i −0.0362187 0.0627327i
\(668\) 0 0
\(669\) −5.35268 + 36.9094i −0.206946 + 1.42700i
\(670\) 0 0
\(671\) 21.6423 + 37.4855i 0.835491 + 1.44711i
\(672\) 0 0
\(673\) 22.1916 + 38.4370i 0.855425 + 1.48164i 0.876250 + 0.481856i \(0.160037\pi\)
−0.0208257 + 0.999783i \(0.506630\pi\)
\(674\) 0 0
\(675\) −16.6659 23.5860i −0.641471 0.907824i
\(676\) 0 0
\(677\) −16.3241 + 28.2742i −0.627388 + 1.08667i 0.360686 + 0.932687i \(0.382543\pi\)
−0.988074 + 0.153980i \(0.950791\pi\)
\(678\) 0 0
\(679\) 67.3282 2.58382
\(680\) 0 0
\(681\) 5.66355 + 4.46504i 0.217028 + 0.171101i
\(682\) 0 0
\(683\) −11.0403 19.1223i −0.422443 0.731694i 0.573734 0.819041i \(-0.305494\pi\)
−0.996178 + 0.0873478i \(0.972161\pi\)
\(684\) 0 0
\(685\) −5.13477 8.89368i −0.196189 0.339810i
\(686\) 0 0
\(687\) −0.546214 + 3.76642i −0.0208394 + 0.143698i
\(688\) 0 0
\(689\) 0.106773 0.337622i 0.00406773 0.0128624i
\(690\) 0 0
\(691\) 2.16761 + 3.75441i 0.0824597 + 0.142824i 0.904306 0.426885i \(-0.140389\pi\)
−0.821846 + 0.569709i \(0.807056\pi\)
\(692\) 0 0
\(693\) 47.7160 45.2756i 1.81258 1.71988i
\(694\) 0 0
\(695\) 62.2291 2.36049
\(696\) 0 0
\(697\) 14.3345 + 24.8281i 0.542958 + 0.940431i
\(698\) 0 0
\(699\) 14.1969 + 11.1926i 0.536976 + 0.423343i
\(700\) 0 0
\(701\) 35.4162 1.33765 0.668826 0.743419i \(-0.266797\pi\)
0.668826 + 0.743419i \(0.266797\pi\)
\(702\) 0 0
\(703\) −11.6927 −0.441000
\(704\) 0 0
\(705\) 14.3319 + 11.2990i 0.539769 + 0.425545i
\(706\) 0 0
\(707\) −7.95287 13.7748i −0.299098 0.518054i
\(708\) 0 0
\(709\) −40.5386 −1.52246 −0.761230 0.648483i \(-0.775404\pi\)
−0.761230 + 0.648483i \(0.775404\pi\)
\(710\) 0 0
\(711\) 16.9026 + 5.00783i 0.633898 + 0.187808i
\(712\) 0 0
\(713\) 2.02942 + 3.51506i 0.0760023 + 0.131640i
\(714\) 0 0
\(715\) 43.0417 + 47.0534i 1.60967 + 1.75970i
\(716\) 0 0
\(717\) −2.29196 + 15.8042i −0.0855947 + 0.590219i
\(718\) 0 0
\(719\) 0.807119 + 1.39797i 0.0301005 + 0.0521355i 0.880683 0.473706i \(-0.157084\pi\)
−0.850583 + 0.525841i \(0.823751\pi\)
\(720\) 0 0
\(721\) 7.64669 + 13.2445i 0.284778 + 0.493249i
\(722\) 0 0
\(723\) 37.1616 + 29.2976i 1.38206 + 1.08959i
\(724\) 0 0
\(725\) 14.7298 0.547053
\(726\) 0 0
\(727\) 15.9573 27.6388i 0.591823 1.02507i −0.402164 0.915568i \(-0.631742\pi\)
0.993987 0.109499i \(-0.0349247\pi\)
\(728\) 0 0
\(729\) −17.5316 20.5339i −0.649319 0.760516i
\(730\) 0 0
\(731\) −19.0883 33.0618i −0.706005 1.22284i
\(732\) 0 0
\(733\) 12.2816 + 21.2723i 0.453630 + 0.785710i 0.998608 0.0527400i \(-0.0167955\pi\)
−0.544978 + 0.838450i \(0.683462\pi\)
\(734\) 0 0
\(735\) −7.45189 + 51.3845i −0.274867 + 1.89535i
\(736\) 0 0
\(737\) 0.247276 + 0.428295i 0.00910855 + 0.0157765i
\(738\) 0 0
\(739\) −24.5720 + 42.5599i −0.903895 + 1.56559i −0.0815009 + 0.996673i \(0.525971\pi\)
−0.822394 + 0.568918i \(0.807362\pi\)
\(740\) 0 0
\(741\) 34.0481 + 16.4604i 1.25079 + 0.604686i
\(742\) 0 0
\(743\) −4.29312 −0.157499 −0.0787496 0.996894i \(-0.525093\pi\)
−0.0787496 + 0.996894i \(0.525093\pi\)
\(744\) 0 0
\(745\) −51.8819 −1.90080
\(746\) 0 0
\(747\) −18.7823 5.56474i −0.687210 0.203603i
\(748\) 0 0
\(749\) 17.6027 30.4887i 0.643188 1.11403i
\(750\) 0 0
\(751\) −20.9211 −0.763421 −0.381711 0.924282i \(-0.624665\pi\)
−0.381711 + 0.924282i \(0.624665\pi\)
\(752\) 0 0
\(753\) −4.64242 + 32.0118i −0.169179 + 1.16658i
\(754\) 0 0
\(755\) −34.8897 −1.26977
\(756\) 0 0
\(757\) −12.0256 + 20.8289i −0.437077 + 0.757040i −0.997463 0.0711917i \(-0.977320\pi\)
0.560385 + 0.828232i \(0.310653\pi\)
\(758\) 0 0
\(759\) 0.955151 6.58625i 0.0346698 0.239066i
\(760\) 0 0
\(761\) 6.95555 12.0474i 0.252138 0.436717i −0.711976 0.702204i \(-0.752199\pi\)
0.964114 + 0.265487i \(0.0855328\pi\)
\(762\) 0 0
\(763\) −67.7426 −2.45245
\(764\) 0 0
\(765\) 65.7218 + 19.4718i 2.37618 + 0.704003i
\(766\) 0 0
\(767\) −16.9234 18.5008i −0.611069 0.668024i
\(768\) 0 0
\(769\) −25.5903 −0.922808 −0.461404 0.887190i \(-0.652654\pi\)
−0.461404 + 0.887190i \(0.652654\pi\)
\(770\) 0 0
\(771\) −19.8207 15.6263i −0.713823 0.562766i
\(772\) 0 0
\(773\) 15.7133 + 27.2162i 0.565168 + 0.978899i 0.997034 + 0.0769618i \(0.0245219\pi\)
−0.431866 + 0.901938i \(0.642145\pi\)
\(774\) 0 0
\(775\) −31.9576 −1.14795
\(776\) 0 0
\(777\) 12.5125 4.99155i 0.448882 0.179071i
\(778\) 0 0
\(779\) 12.3448 + 21.3817i 0.442297 + 0.766080i
\(780\) 0 0
\(781\) 14.2963 24.7619i 0.511561 0.886050i
\(782\) 0 0
\(783\) 13.7133 1.25890i 0.490075 0.0449895i
\(784\) 0 0
\(785\) 29.0460 50.3092i 1.03670 1.79561i
\(786\) 0 0
\(787\) 8.09761 14.0255i 0.288648 0.499954i −0.684839 0.728694i \(-0.740127\pi\)
0.973487 + 0.228741i \(0.0734608\pi\)
\(788\) 0 0
\(789\) 5.82237 40.1482i 0.207282 1.42931i
\(790\) 0 0
\(791\) −4.16661 + 7.21678i −0.148148 + 0.256599i
\(792\) 0 0
\(793\) 8.64532 27.3370i 0.307004 0.970766i
\(794\) 0 0
\(795\) 0.0793274 0.547003i 0.00281345 0.0194002i
\(796\) 0 0
\(797\) −27.0121 + 46.7864i −0.956819 + 1.65726i −0.226670 + 0.973972i \(0.572784\pi\)
−0.730149 + 0.683288i \(0.760549\pi\)
\(798\) 0 0
\(799\) −22.8027 −0.806702
\(800\) 0 0
\(801\) −17.9691 5.32378i −0.634905 0.188107i
\(802\) 0 0
\(803\) −11.9932 20.7728i −0.423230 0.733056i
\(804\) 0 0
\(805\) 4.61960 + 8.00138i 0.162819 + 0.282012i
\(806\) 0 0
\(807\) −1.21098 + 8.35034i −0.0426286 + 0.293946i
\(808\) 0 0
\(809\) −23.0258 + 39.8818i −0.809542 + 1.40217i 0.103639 + 0.994615i \(0.466951\pi\)
−0.913181 + 0.407553i \(0.866382\pi\)
\(810\) 0 0
\(811\) 19.0000 0.667180 0.333590 0.942718i \(-0.391740\pi\)
0.333590 + 0.942718i \(0.391740\pi\)
\(812\) 0 0
\(813\) 23.6547 9.43649i 0.829606 0.330952i
\(814\) 0 0
\(815\) −14.2563 + 24.6926i −0.499376 + 0.864944i
\(816\) 0 0
\(817\) −16.4386 28.4726i −0.575115 0.996129i
\(818\) 0 0
\(819\) −43.4618 3.07939i −1.51868 0.107603i
\(820\) 0 0
\(821\) −12.4001 21.4776i −0.432767 0.749575i 0.564343 0.825540i \(-0.309129\pi\)
−0.997110 + 0.0759655i \(0.975796\pi\)
\(822\) 0 0
\(823\) 8.54471 14.7999i 0.297850 0.515891i −0.677794 0.735252i \(-0.737064\pi\)
0.975644 + 0.219361i \(0.0703972\pi\)
\(824\) 0 0
\(825\) 41.1495 + 32.4416i 1.43264 + 1.12947i
\(826\) 0 0
\(827\) 37.9512 1.31969 0.659846 0.751401i \(-0.270622\pi\)
0.659846 + 0.751401i \(0.270622\pi\)
\(828\) 0 0
\(829\) 11.7837 20.4099i 0.409263 0.708865i −0.585544 0.810640i \(-0.699119\pi\)
0.994807 + 0.101776i \(0.0324525\pi\)
\(830\) 0 0
\(831\) −15.9758 12.5950i −0.554193 0.436916i
\(832\) 0 0
\(833\) −32.4370 56.1825i −1.12388 1.94661i
\(834\) 0 0
\(835\) 35.2681 + 61.0861i 1.22050 + 2.11397i
\(836\) 0 0
\(837\) −29.7522 + 2.73129i −1.02839 + 0.0944072i
\(838\) 0 0
\(839\) 29.0685 1.00356 0.501778 0.864996i \(-0.332679\pi\)
0.501778 + 0.864996i \(0.332679\pi\)
\(840\) 0 0
\(841\) 10.9881 19.0320i 0.378901 0.656276i
\(842\) 0 0
\(843\) 4.72504 1.88494i 0.162739 0.0649209i
\(844\) 0 0
\(845\) 3.75430 42.0737i 0.129152 1.44738i
\(846\) 0 0
\(847\) −37.5189 + 64.9846i −1.28916 + 2.23290i
\(848\) 0 0
\(849\) −18.2497 14.3877i −0.626327 0.493785i
\(850\) 0 0
\(851\) 0.681491 1.18038i 0.0233612 0.0404628i
\(852\) 0 0
\(853\) 13.6037 23.5624i 0.465783 0.806760i −0.533453 0.845830i \(-0.679106\pi\)
0.999237 + 0.0390692i \(0.0124393\pi\)
\(854\) 0 0
\(855\) 56.5991 + 16.7689i 1.93565 + 0.573484i
\(856\) 0 0
\(857\) −17.1683 + 29.7363i −0.586457 + 1.01577i 0.408235 + 0.912877i \(0.366144\pi\)
−0.994692 + 0.102896i \(0.967189\pi\)
\(858\) 0 0
\(859\) −24.9768 43.2610i −0.852196 1.47605i −0.879222 0.476412i \(-0.841937\pi\)
0.0270262 0.999635i \(-0.491396\pi\)
\(860\) 0 0
\(861\) −22.3379 17.6108i −0.761273 0.600174i
\(862\) 0 0
\(863\) 8.06797 0.274637 0.137318 0.990527i \(-0.456152\pi\)
0.137318 + 0.990527i \(0.456152\pi\)
\(864\) 0 0
\(865\) 2.93318 + 5.08041i 0.0997309 + 0.172739i
\(866\) 0 0
\(867\) −52.1992 + 20.8237i −1.77278 + 0.707209i
\(868\) 0 0
\(869\) −31.9858 −1.08505
\(870\) 0 0
\(871\) 0.0987781 0.312342i 0.00334697 0.0105833i
\(872\) 0 0
\(873\) 11.7030 + 48.7588i 0.396088 + 1.65024i
\(874\) 0 0
\(875\) −7.30270 −0.246876
\(876\) 0 0
\(877\) 12.1463 21.0381i 0.410153 0.710406i −0.584753 0.811211i \(-0.698809\pi\)
0.994906 + 0.100805i \(0.0321420\pi\)
\(878\) 0 0
\(879\) 9.01740 3.59728i 0.304149 0.121333i
\(880\) 0 0
\(881\) 22.8199 39.5252i 0.768822 1.33164i −0.169379 0.985551i \(-0.554176\pi\)
0.938202 0.346089i \(-0.112490\pi\)
\(882\) 0 0
\(883\) 31.7238 1.06759 0.533796 0.845613i \(-0.320765\pi\)
0.533796 + 0.845613i \(0.320765\pi\)
\(884\) 0 0
\(885\) −30.7347 24.2307i −1.03314 0.814506i
\(886\) 0 0
\(887\) 26.4579 0.888370 0.444185 0.895935i \(-0.353493\pi\)
0.444185 + 0.895935i \(0.353493\pi\)
\(888\) 0 0
\(889\) −16.0905 + 27.8695i −0.539657 + 0.934714i
\(890\) 0 0
\(891\) 41.0825 + 26.6859i 1.37631 + 0.894011i
\(892\) 0 0
\(893\) −19.6375 −0.657143
\(894\) 0 0
\(895\) −4.69776 −0.157029
\(896\) 0 0
\(897\) −3.64610 + 2.47778i −0.121740 + 0.0827306i
\(898\) 0 0
\(899\) 7.61927 13.1970i 0.254117 0.440143i
\(900\) 0 0
\(901\) 0.345301 + 0.598079i 0.0115036 + 0.0199249i
\(902\) 0 0
\(903\) 29.7458 + 23.4511i 0.989878 + 0.780403i
\(904\) 0 0
\(905\) 23.5295 + 40.7543i 0.782147 + 1.35472i
\(906\) 0 0
\(907\) −14.1210 24.4583i −0.468880 0.812124i 0.530487 0.847693i \(-0.322009\pi\)
−0.999367 + 0.0355691i \(0.988676\pi\)
\(908\) 0 0
\(909\) 8.59327 8.15378i 0.285021 0.270444i
\(910\) 0 0
\(911\) −6.73518 + 11.6657i −0.223146 + 0.386501i −0.955762 0.294142i \(-0.904966\pi\)
0.732615 + 0.680643i \(0.238299\pi\)
\(912\) 0 0
\(913\) 35.5429 1.17630
\(914\) 0 0
\(915\) 6.42308 44.2904i 0.212340 1.46419i
\(916\) 0 0
\(917\) −31.0796 53.8314i −1.02634 1.77767i
\(918\) 0 0
\(919\) −0.668978 1.15870i −0.0220675 0.0382221i 0.854781 0.518989i \(-0.173692\pi\)
−0.876848 + 0.480767i \(0.840358\pi\)
\(920\) 0 0
\(921\) −24.8011 19.5528i −0.817225 0.644285i
\(922\) 0 0
\(923\) −18.4942 + 4.08328i −0.608743 + 0.134403i
\(924\) 0 0
\(925\) 5.36577 + 9.29379i 0.176426 + 0.305578i
\(926\) 0 0
\(927\) −8.26243 + 7.83986i −0.271374 + 0.257495i
\(928\) 0 0
\(929\) 35.6255 1.16884 0.584418 0.811453i \(-0.301323\pi\)
0.584418 + 0.811453i \(0.301323\pi\)
\(930\) 0 0
\(931\) −27.9345 48.3839i −0.915515 1.58572i
\(932\) 0 0
\(933\) −4.01289 + 27.6709i −0.131376 + 0.905905i
\(934\) 0 0
\(935\) −124.369 −4.06731
\(936\) 0 0
\(937\) −4.94466 −0.161535 −0.0807674 0.996733i \(-0.525737\pi\)
−0.0807674 + 0.996733i \(0.525737\pi\)
\(938\) 0 0
\(939\) 31.2521 12.4673i 1.01987 0.406855i
\(940\) 0 0
\(941\) 21.5001 + 37.2393i 0.700884 + 1.21397i 0.968156 + 0.250346i \(0.0805445\pi\)
−0.267272 + 0.963621i \(0.586122\pi\)
\(942\) 0 0
\(943\) −2.87797 −0.0937195
\(944\) 0 0
\(945\) −67.7254 + 6.21728i −2.20311 + 0.202248i
\(946\) 0 0
\(947\) 7.05397 + 12.2178i 0.229223 + 0.397026i 0.957578 0.288174i \(-0.0930481\pi\)
−0.728355 + 0.685200i \(0.759715\pi\)
\(948\) 0 0
\(949\) −4.79085 + 15.1489i −0.155518 + 0.491756i
\(950\) 0 0
\(951\) −22.8600 + 9.11945i −0.741285 + 0.295718i
\(952\) 0 0
\(953\) −12.1851 21.1053i −0.394716 0.683668i 0.598349 0.801235i \(-0.295824\pi\)
−0.993065 + 0.117568i \(0.962490\pi\)
\(954\) 0 0
\(955\) 29.2614 + 50.6822i 0.946876 + 1.64004i
\(956\) 0 0
\(957\) −23.2076 + 9.25815i −0.750196 + 0.299273i
\(958\) 0 0
\(959\) −12.7310 −0.411106
\(960\) 0 0
\(961\) −1.03061 + 1.78507i −0.0332455 + 0.0575828i
\(962\) 0 0
\(963\) 25.1395 + 7.44822i 0.810110 + 0.240016i
\(964\) 0 0
\(965\) −20.1999 34.9872i −0.650257 1.12628i
\(966\) 0 0
\(967\) 11.6255 + 20.1359i 0.373850 + 0.647527i 0.990154 0.139981i \(-0.0447043\pi\)
−0.616304 + 0.787508i \(0.711371\pi\)
\(968\) 0 0
\(969\) −68.5062 + 27.3289i −2.20074 + 0.877932i
\(970\) 0 0
\(971\) −9.46186 16.3884i −0.303646 0.525930i 0.673313 0.739357i \(-0.264871\pi\)
−0.976959 + 0.213428i \(0.931537\pi\)
\(972\) 0 0
\(973\) 38.5724 66.8093i 1.23657 2.14181i
\(974\) 0 0
\(975\) −2.54135 34.6162i −0.0813882 1.10861i
\(976\) 0 0
\(977\) −4.51953 −0.144592 −0.0722962 0.997383i \(-0.523033\pi\)
−0.0722962 + 0.997383i \(0.523033\pi\)
\(978\) 0 0
\(979\) 34.0039 1.08677
\(980\) 0 0
\(981\) −11.7751 49.0589i −0.375949 1.56633i
\(982\) 0 0
\(983\) −2.16165 + 3.74408i −0.0689459 + 0.119418i −0.898438 0.439101i \(-0.855297\pi\)
0.829492 + 0.558519i \(0.188630\pi\)
\(984\) 0 0
\(985\) −66.9236 −2.13236
\(986\) 0 0
\(987\) 21.0142 8.38311i 0.668888 0.266837i
\(988\) 0 0
\(989\) 3.83239 0.121863
\(990\) 0 0
\(991\) 19.8927 34.4552i 0.631912 1.09450i −0.355248 0.934772i \(-0.615604\pi\)
0.987160 0.159732i \(-0.0510630\pi\)
\(992\) 0 0
\(993\) −10.7579 8.48134i −0.341392 0.269147i
\(994\) 0 0
\(995\) 8.78169 15.2103i 0.278398 0.482200i
\(996\) 0 0
\(997\) 21.7154 0.687735 0.343867 0.939018i \(-0.388263\pi\)
0.343867 + 0.939018i \(0.388263\pi\)
\(998\) 0 0
\(999\) 5.78979 + 8.19384i 0.183181 + 0.259242i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.61.12 yes 28
3.2 odd 2 1404.2.k.a.1153.3 28
9.4 even 3 468.2.j.a.373.2 yes 28
9.5 odd 6 1404.2.j.a.685.3 28
13.3 even 3 468.2.j.a.133.2 28
39.29 odd 6 1404.2.j.a.289.3 28
117.68 odd 6 1404.2.k.a.1225.3 28
117.94 even 3 inner 468.2.k.a.445.12 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.2 28 13.3 even 3
468.2.j.a.373.2 yes 28 9.4 even 3
468.2.k.a.61.12 yes 28 1.1 even 1 trivial
468.2.k.a.445.12 yes 28 117.94 even 3 inner
1404.2.j.a.289.3 28 39.29 odd 6
1404.2.j.a.685.3 28 9.5 odd 6
1404.2.k.a.1153.3 28 3.2 odd 2
1404.2.k.a.1225.3 28 117.68 odd 6