Properties

Label 4704.2.c.f.2353.1
Level 47044704
Weight 22
Character 4704.2353
Analytic conductor 37.56237.562
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4704,2,Mod(2353,4704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4704.2353");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4704=25372 4704 = 2^{5} \cdot 3 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4704.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 37.561629110837.5616291108
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+x142x132x124x112x10+16x9+8x8+32x78x6++256 x^{16} + x^{14} - 2 x^{13} - 2 x^{12} - 4 x^{11} - 2 x^{10} + 16 x^{9} + 8 x^{8} + 32 x^{7} - 8 x^{6} + \cdots + 256 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 213 2^{13}
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2353.1
Root 0.236856+1.39424i-0.236856 + 1.39424i of defining polynomial
Character χ\chi == 4704.2353
Dual form 4704.2.c.f.2353.16

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq33.56550iq51.00000q94.07092iq11+1.44065iq133.56550q156.99110q170.301495iq19+2.42499q237.71279q25+1.00000iq27+0.151350iq294.75438q314.07092q33+11.3431iq37+1.44065q39+0.239424q411.32831iq43+3.56550iq456.35872q47+6.99110iq51+5.98569iq5314.5149q550.301495q5711.2428iq59+4.20933iq61+5.13663q654.38075iq672.42499iq69+8.46387q710.569448q73+7.71279iq75+1.49383q79+1.00000q81+10.0352iq83+24.9268iq85+0.151350q87+3.66869q89+4.75438iq931.07498q9510.4657q97+4.07092iq99+O(q100)q-1.00000i q^{3} -3.56550i q^{5} -1.00000 q^{9} -4.07092i q^{11} +1.44065i q^{13} -3.56550 q^{15} -6.99110 q^{17} -0.301495i q^{19} +2.42499 q^{23} -7.71279 q^{25} +1.00000i q^{27} +0.151350i q^{29} -4.75438 q^{31} -4.07092 q^{33} +11.3431i q^{37} +1.44065 q^{39} +0.239424 q^{41} -1.32831i q^{43} +3.56550i q^{45} -6.35872 q^{47} +6.99110i q^{51} +5.98569i q^{53} -14.5149 q^{55} -0.301495 q^{57} -11.2428i q^{59} +4.20933i q^{61} +5.13663 q^{65} -4.38075i q^{67} -2.42499i q^{69} +8.46387 q^{71} -0.569448 q^{73} +7.71279i q^{75} +1.49383 q^{79} +1.00000 q^{81} +10.0352i q^{83} +24.9268i q^{85} +0.151350 q^{87} +3.66869 q^{89} +4.75438i q^{93} -1.07498 q^{95} -10.4657 q^{97} +4.07092i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q98q2316q25+24q31+24q4732q558q57+40q71+8q73+8q79+16q8124q87+24q95+24q97+O(q100) 16 q - 16 q^{9} - 8 q^{23} - 16 q^{25} + 24 q^{31} + 24 q^{47} - 32 q^{55} - 8 q^{57} + 40 q^{71} + 8 q^{73} + 8 q^{79} + 16 q^{81} - 24 q^{87} + 24 q^{95} + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4704Z)×\left(\mathbb{Z}/4704\mathbb{Z}\right)^\times.

nn 14711471 17651765 31373137 46094609
χ(n)\chi(n) 11 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 1.00000i − 0.577350i
44 0 0
55 − 3.56550i − 1.59454i −0.603623 0.797270i 0.706277π-0.706277\pi
0.603623 0.797270i 0.293723π-0.293723\pi
66 0 0
77 0 0
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 − 4.07092i − 1.22743i −0.789528 0.613714i 0.789675π-0.789675\pi
0.789528 0.613714i 0.210325π-0.210325\pi
1212 0 0
1313 1.44065i 0.399564i 0.979840 + 0.199782i 0.0640233π0.0640233\pi
−0.979840 + 0.199782i 0.935977π0.935977\pi
1414 0 0
1515 −3.56550 −0.920608
1616 0 0
1717 −6.99110 −1.69559 −0.847796 0.530323i 0.822071π-0.822071\pi
−0.847796 + 0.530323i 0.822071π0.822071\pi
1818 0 0
1919 − 0.301495i − 0.0691677i −0.999402 0.0345838i 0.988989π-0.988989\pi
0.999402 0.0345838i 0.0110106π-0.0110106\pi
2020 0 0
2121 0 0
2222 0 0
2323 2.42499 0.505646 0.252823 0.967513i 0.418641π-0.418641\pi
0.252823 + 0.967513i 0.418641π0.418641\pi
2424 0 0
2525 −7.71279 −1.54256
2626 0 0
2727 1.00000i 0.192450i
2828 0 0
2929 0.151350i 0.0281050i 0.999901 + 0.0140525i 0.00447319π0.00447319\pi
−0.999901 + 0.0140525i 0.995527π0.995527\pi
3030 0 0
3131 −4.75438 −0.853912 −0.426956 0.904272i 0.640414π-0.640414\pi
−0.426956 + 0.904272i 0.640414π0.640414\pi
3232 0 0
3333 −4.07092 −0.708656
3434 0 0
3535 0 0
3636 0 0
3737 11.3431i 1.86479i 0.361443 + 0.932394i 0.382284π0.382284\pi
−0.361443 + 0.932394i 0.617716π0.617716\pi
3838 0 0
3939 1.44065 0.230688
4040 0 0
4141 0.239424 0.0373917 0.0186959 0.999825i 0.494049π-0.494049\pi
0.0186959 + 0.999825i 0.494049π0.494049\pi
4242 0 0
4343 − 1.32831i − 0.202566i −0.994858 0.101283i 0.967705π-0.967705\pi
0.994858 0.101283i 0.0322947π-0.0322947\pi
4444 0 0
4545 3.56550i 0.531513i
4646 0 0
4747 −6.35872 −0.927515 −0.463757 0.885962i 0.653499π-0.653499\pi
−0.463757 + 0.885962i 0.653499π0.653499\pi
4848 0 0
4949 0 0
5050 0 0
5151 6.99110i 0.978950i
5252 0 0
5353 5.98569i 0.822198i 0.911591 + 0.411099i 0.134855π0.134855\pi
−0.911591 + 0.411099i 0.865145π0.865145\pi
5454 0 0
5555 −14.5149 −1.95718
5656 0 0
5757 −0.301495 −0.0399340
5858 0 0
5959 − 11.2428i − 1.46369i −0.681473 0.731843i 0.738660π-0.738660\pi
0.681473 0.731843i 0.261340π-0.261340\pi
6060 0 0
6161 4.20933i 0.538950i 0.963007 + 0.269475i 0.0868501π0.0868501\pi
−0.963007 + 0.269475i 0.913150π0.913150\pi
6262 0 0
6363 0 0
6464 0 0
6565 5.13663 0.637120
6666 0 0
6767 − 4.38075i − 0.535194i −0.963531 0.267597i 0.913771π-0.913771\pi
0.963531 0.267597i 0.0862295π-0.0862295\pi
6868 0 0
6969 − 2.42499i − 0.291935i
7070 0 0
7171 8.46387 1.00448 0.502238 0.864729i 0.332510π-0.332510\pi
0.502238 + 0.864729i 0.332510π0.332510\pi
7272 0 0
7373 −0.569448 −0.0666488 −0.0333244 0.999445i 0.510609π-0.510609\pi
−0.0333244 + 0.999445i 0.510609π0.510609\pi
7474 0 0
7575 7.71279i 0.890596i
7676 0 0
7777 0 0
7878 0 0
7979 1.49383 0.168069 0.0840347 0.996463i 0.473219π-0.473219\pi
0.0840347 + 0.996463i 0.473219π0.473219\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 10.0352i 1.10151i 0.834668 + 0.550753i 0.185660π0.185660\pi
−0.834668 + 0.550753i 0.814340π0.814340\pi
8484 0 0
8585 24.9268i 2.70369i
8686 0 0
8787 0.151350 0.0162264
8888 0 0
8989 3.66869 0.388880 0.194440 0.980914i 0.437711π-0.437711\pi
0.194440 + 0.980914i 0.437711π0.437711\pi
9090 0 0
9191 0 0
9292 0 0
9393 4.75438i 0.493006i
9494 0 0
9595 −1.07498 −0.110291
9696 0 0
9797 −10.4657 −1.06264 −0.531318 0.847173i 0.678303π-0.678303\pi
−0.531318 + 0.847173i 0.678303π0.678303\pi
9898 0 0
9999 4.07092i 0.409143i
100100 0 0
101101 − 12.7337i − 1.26705i −0.773722 0.633526i 0.781607π-0.781607\pi
0.773722 0.633526i 0.218393π-0.218393\pi
102102 0 0
103103 −6.00875 −0.592060 −0.296030 0.955179i 0.595663π-0.595663\pi
−0.296030 + 0.955179i 0.595663π0.595663\pi
104104 0 0
105105 0 0
106106 0 0
107107 − 15.9659i − 1.54349i −0.635935 0.771743i 0.719385π-0.719385\pi
0.635935 0.771743i 0.280615π-0.280615\pi
108108 0 0
109109 13.8711i 1.32861i 0.747463 + 0.664304i 0.231272π0.231272\pi
−0.747463 + 0.664304i 0.768728π0.768728\pi
110110 0 0
111111 11.3431 1.07664
112112 0 0
113113 −16.4495 −1.54744 −0.773719 0.633529i 0.781606π-0.781606\pi
−0.773719 + 0.633529i 0.781606π0.781606\pi
114114 0 0
115115 − 8.64631i − 0.806272i
116116 0 0
117117 − 1.44065i − 0.133188i
118118 0 0
119119 0 0
120120 0 0
121121 −5.57239 −0.506581
122122 0 0
123123 − 0.239424i − 0.0215881i
124124 0 0
125125 9.67245i 0.865131i
126126 0 0
127127 3.33297 0.295754 0.147877 0.989006i 0.452756π-0.452756\pi
0.147877 + 0.989006i 0.452756π0.452756\pi
128128 0 0
129129 −1.32831 −0.116951
130130 0 0
131131 4.08867i 0.357229i 0.983919 + 0.178614i 0.0571614π0.0571614\pi
−0.983919 + 0.178614i 0.942839π0.942839\pi
132132 0 0
133133 0 0
134134 0 0
135135 3.56550 0.306869
136136 0 0
137137 8.28737 0.708037 0.354019 0.935238i 0.384815π-0.384815\pi
0.354019 + 0.935238i 0.384815π0.384815\pi
138138 0 0
139139 − 18.4180i − 1.56219i −0.624411 0.781096i 0.714661π-0.714661\pi
0.624411 0.781096i 0.285339π-0.285339\pi
140140 0 0
141141 6.35872i 0.535501i
142142 0 0
143143 5.86476 0.490436
144144 0 0
145145 0.539638 0.0448145
146146 0 0
147147 0 0
148148 0 0
149149 − 5.11203i − 0.418794i −0.977831 0.209397i 0.932850π-0.932850\pi
0.977831 0.209397i 0.0671501π-0.0671501\pi
150150 0 0
151151 4.17126 0.339452 0.169726 0.985491i 0.445712π-0.445712\pi
0.169726 + 0.985491i 0.445712π0.445712\pi
152152 0 0
153153 6.99110 0.565197
154154 0 0
155155 16.9517i 1.36160i
156156 0 0
157157 − 9.04875i − 0.722169i −0.932533 0.361084i 0.882407π-0.882407\pi
0.932533 0.361084i 0.117593π-0.117593\pi
158158 0 0
159159 5.98569 0.474696
160160 0 0
161161 0 0
162162 0 0
163163 13.4512i 1.05358i 0.849996 + 0.526790i 0.176604π0.176604\pi
−0.849996 + 0.526790i 0.823396π0.823396\pi
164164 0 0
165165 14.5149i 1.12998i
166166 0 0
167167 17.2099 1.33174 0.665872 0.746066i 0.268060π-0.268060\pi
0.665872 + 0.746066i 0.268060π0.268060\pi
168168 0 0
169169 10.9245 0.840349
170170 0 0
171171 0.301495i 0.0230559i
172172 0 0
173173 3.44940i 0.262253i 0.991366 + 0.131126i 0.0418594π0.0418594\pi
−0.991366 + 0.131126i 0.958141π0.958141\pi
174174 0 0
175175 0 0
176176 0 0
177177 −11.2428 −0.845060
178178 0 0
179179 − 11.3017i − 0.844726i −0.906427 0.422363i 0.861201π-0.861201\pi
0.906427 0.422363i 0.138799π-0.138799\pi
180180 0 0
181181 10.0566i 0.747502i 0.927529 + 0.373751i 0.121929π0.121929\pi
−0.927529 + 0.373751i 0.878071π0.878071\pi
182182 0 0
183183 4.20933 0.311163
184184 0 0
185185 40.4437 2.97348
186186 0 0
187187 28.4602i 2.08122i
188188 0 0
189189 0 0
190190 0 0
191191 −21.4860 −1.55468 −0.777338 0.629084i 0.783430π-0.783430\pi
−0.777338 + 0.629084i 0.783430π0.783430\pi
192192 0 0
193193 −16.4160 −1.18165 −0.590823 0.806801i 0.701197π-0.701197\pi
−0.590823 + 0.806801i 0.701197π0.701197\pi
194194 0 0
195195 − 5.13663i − 0.367841i
196196 0 0
197197 15.7045i 1.11890i 0.828864 + 0.559450i 0.188988π0.188988\pi
−0.828864 + 0.559450i 0.811012π0.811012\pi
198198 0 0
199199 6.27434 0.444776 0.222388 0.974958i 0.428615π-0.428615\pi
0.222388 + 0.974958i 0.428615π0.428615\pi
200200 0 0
201201 −4.38075 −0.308994
202202 0 0
203203 0 0
204204 0 0
205205 − 0.853666i − 0.0596226i
206206 0 0
207207 −2.42499 −0.168549
208208 0 0
209209 −1.22736 −0.0848984
210210 0 0
211211 9.40458i 0.647438i 0.946153 + 0.323719i 0.104933π0.104933\pi
−0.946153 + 0.323719i 0.895067π0.895067\pi
212212 0 0
213213 − 8.46387i − 0.579935i
214214 0 0
215215 −4.73610 −0.322999
216216 0 0
217217 0 0
218218 0 0
219219 0.569448i 0.0384797i
220220 0 0
221221 − 10.0717i − 0.677496i
222222 0 0
223223 4.34741 0.291124 0.145562 0.989349i 0.453501π-0.453501\pi
0.145562 + 0.989349i 0.453501π0.453501\pi
224224 0 0
225225 7.71279 0.514186
226226 0 0
227227 − 7.28203i − 0.483326i −0.970360 0.241663i 0.922307π-0.922307\pi
0.970360 0.241663i 0.0776928π-0.0776928\pi
228228 0 0
229229 1.02222i 0.0675505i 0.999429 + 0.0337752i 0.0107530π0.0107530\pi
−0.999429 + 0.0337752i 0.989247π0.989247\pi
230230 0 0
231231 0 0
232232 0 0
233233 −22.0661 −1.44560 −0.722800 0.691058i 0.757145π-0.757145\pi
−0.722800 + 0.691058i 0.757145π0.757145\pi
234234 0 0
235235 22.6720i 1.47896i
236236 0 0
237237 − 1.49383i − 0.0970349i
238238 0 0
239239 −4.80475 −0.310794 −0.155397 0.987852i 0.549666π-0.549666\pi
−0.155397 + 0.987852i 0.549666π0.549666\pi
240240 0 0
241241 −23.7688 −1.53108 −0.765542 0.643386i 0.777529π-0.777529\pi
−0.765542 + 0.643386i 0.777529π0.777529\pi
242242 0 0
243243 − 1.00000i − 0.0641500i
244244 0 0
245245 0 0
246246 0 0
247247 0.434348 0.0276369
248248 0 0
249249 10.0352 0.635955
250250 0 0
251251 14.0888i 0.889280i 0.895709 + 0.444640i 0.146668π0.146668\pi
−0.895709 + 0.444640i 0.853332π0.853332\pi
252252 0 0
253253 − 9.87195i − 0.620644i
254254 0 0
255255 24.9268 1.56098
256256 0 0
257257 5.79924 0.361746 0.180873 0.983506i 0.442108π-0.442108\pi
0.180873 + 0.983506i 0.442108π0.442108\pi
258258 0 0
259259 0 0
260260 0 0
261261 − 0.151350i − 0.00936832i
262262 0 0
263263 −2.43254 −0.149997 −0.0749983 0.997184i 0.523895π-0.523895\pi
−0.0749983 + 0.997184i 0.523895π0.523895\pi
264264 0 0
265265 21.3420 1.31103
266266 0 0
267267 − 3.66869i − 0.224520i
268268 0 0
269269 5.75584i 0.350940i 0.984485 + 0.175470i 0.0561445π0.0561445\pi
−0.984485 + 0.175470i 0.943856π0.943856\pi
270270 0 0
271271 17.0185 1.03380 0.516901 0.856045i 0.327086π-0.327086\pi
0.516901 + 0.856045i 0.327086π0.327086\pi
272272 0 0
273273 0 0
274274 0 0
275275 31.3982i 1.89338i
276276 0 0
277277 − 22.4704i − 1.35011i −0.737765 0.675057i 0.764119π-0.764119\pi
0.737765 0.675057i 0.235881π-0.235881\pi
278278 0 0
279279 4.75438 0.284637
280280 0 0
281281 7.29261 0.435041 0.217520 0.976056i 0.430203π-0.430203\pi
0.217520 + 0.976056i 0.430203π0.430203\pi
282282 0 0
283283 − 10.6377i − 0.632344i −0.948702 0.316172i 0.897602π-0.897602\pi
0.948702 0.316172i 0.102398π-0.102398\pi
284284 0 0
285285 1.07498i 0.0636763i
286286 0 0
287287 0 0
288288 0 0
289289 31.8755 1.87503
290290 0 0
291291 10.4657i 0.613513i
292292 0 0
293293 26.4432i 1.54483i 0.635120 + 0.772414i 0.280951π0.280951\pi
−0.635120 + 0.772414i 0.719049π0.719049\pi
294294 0 0
295295 −40.0862 −2.33391
296296 0 0
297297 4.07092 0.236219
298298 0 0
299299 3.49356i 0.202038i
300300 0 0
301301 0 0
302302 0 0
303303 −12.7337 −0.731532
304304 0 0
305305 15.0084 0.859377
306306 0 0
307307 23.6553i 1.35008i 0.737780 + 0.675041i 0.235874π0.235874\pi
−0.737780 + 0.675041i 0.764126π0.764126\pi
308308 0 0
309309 6.00875i 0.341826i
310310 0 0
311311 −3.25213 −0.184411 −0.0922056 0.995740i 0.529392π-0.529392\pi
−0.0922056 + 0.995740i 0.529392π0.529392\pi
312312 0 0
313313 −6.95242 −0.392974 −0.196487 0.980506i 0.562953π-0.562953\pi
−0.196487 + 0.980506i 0.562953π0.562953\pi
314314 0 0
315315 0 0
316316 0 0
317317 6.28507i 0.353005i 0.984300 + 0.176502i 0.0564783π0.0564783\pi
−0.984300 + 0.176502i 0.943522π0.943522\pi
318318 0 0
319319 0.616133 0.0344968
320320 0 0
321321 −15.9659 −0.891132
322322 0 0
323323 2.10778i 0.117280i
324324 0 0
325325 − 11.1114i − 0.616350i
326326 0 0
327327 13.8711 0.767072
328328 0 0
329329 0 0
330330 0 0
331331 25.3553i 1.39365i 0.717239 + 0.696827i 0.245406π0.245406\pi
−0.717239 + 0.696827i 0.754594π0.754594\pi
332332 0 0
333333 − 11.3431i − 0.621596i
334334 0 0
335335 −15.6196 −0.853388
336336 0 0
337337 −18.0761 −0.984668 −0.492334 0.870406i 0.663856π-0.663856\pi
−0.492334 + 0.870406i 0.663856π0.663856\pi
338338 0 0
339339 16.4495i 0.893413i
340340 0 0
341341 19.3547i 1.04812i
342342 0 0
343343 0 0
344344 0 0
345345 −8.64631 −0.465501
346346 0 0
347347 7.46130i 0.400543i 0.979740 + 0.200272i 0.0641825π0.0641825\pi
−0.979740 + 0.200272i 0.935818π0.935818\pi
348348 0 0
349349 − 23.2053i − 1.24215i −0.783750 0.621077i 0.786695π-0.786695\pi
0.783750 0.621077i 0.213305π-0.213305\pi
350350 0 0
351351 −1.44065 −0.0768960
352352 0 0
353353 4.29061 0.228366 0.114183 0.993460i 0.463575π-0.463575\pi
0.114183 + 0.993460i 0.463575π0.463575\pi
354354 0 0
355355 − 30.1779i − 1.60168i
356356 0 0
357357 0 0
358358 0 0
359359 −6.01411 −0.317413 −0.158706 0.987326i 0.550732π-0.550732\pi
−0.158706 + 0.987326i 0.550732π0.550732\pi
360360 0 0
361361 18.9091 0.995216
362362 0 0
363363 5.57239i 0.292475i
364364 0 0
365365 2.03037i 0.106274i
366366 0 0
367367 −15.5739 −0.812949 −0.406475 0.913662i 0.633242π-0.633242\pi
−0.406475 + 0.913662i 0.633242π0.633242\pi
368368 0 0
369369 −0.239424 −0.0124639
370370 0 0
371371 0 0
372372 0 0
373373 11.3685i 0.588641i 0.955707 + 0.294320i 0.0950933π0.0950933\pi
−0.955707 + 0.294320i 0.904907π0.904907\pi
374374 0 0
375375 9.67245 0.499483
376376 0 0
377377 −0.218042 −0.0112297
378378 0 0
379379 31.9644i 1.64190i 0.571000 + 0.820950i 0.306556π0.306556\pi
−0.571000 + 0.820950i 0.693444π0.693444\pi
380380 0 0
381381 − 3.33297i − 0.170753i
382382 0 0
383383 −9.50448 −0.485656 −0.242828 0.970069i 0.578075π-0.578075\pi
−0.242828 + 0.970069i 0.578075π0.578075\pi
384384 0 0
385385 0 0
386386 0 0
387387 1.32831i 0.0675219i
388388 0 0
389389 11.3605i 0.575998i 0.957631 + 0.287999i 0.0929901π0.0929901\pi
−0.957631 + 0.287999i 0.907010π0.907010\pi
390390 0 0
391391 −16.9534 −0.857368
392392 0 0
393393 4.08867 0.206246
394394 0 0
395395 − 5.32626i − 0.267993i
396396 0 0
397397 − 21.5933i − 1.08374i −0.840463 0.541868i 0.817717π-0.817717\pi
0.840463 0.541868i 0.182283π-0.182283\pi
398398 0 0
399399 0 0
400400 0 0
401401 28.2459 1.41053 0.705267 0.708942i 0.250827π-0.250827\pi
0.705267 + 0.708942i 0.250827π0.250827\pi
402402 0 0
403403 − 6.84938i − 0.341192i
404404 0 0
405405 − 3.56550i − 0.177171i
406406 0 0
407407 46.1767 2.28889
408408 0 0
409409 −13.4892 −0.666996 −0.333498 0.942751i 0.608229π-0.608229\pi
−0.333498 + 0.942751i 0.608229π0.608229\pi
410410 0 0
411411 − 8.28737i − 0.408786i
412412 0 0
413413 0 0
414414 0 0
415415 35.7805 1.75640
416416 0 0
417417 −18.4180 −0.901932
418418 0 0
419419 − 25.0575i − 1.22414i −0.790804 0.612069i 0.790337π-0.790337\pi
0.790804 0.612069i 0.209663π-0.209663\pi
420420 0 0
421421 − 23.0346i − 1.12264i −0.827600 0.561318i 0.810294π-0.810294\pi
0.827600 0.561318i 0.189706π-0.189706\pi
422422 0 0
423423 6.35872 0.309172
424424 0 0
425425 53.9209 2.61555
426426 0 0
427427 0 0
428428 0 0
429429 − 5.86476i − 0.283153i
430430 0 0
431431 −0.185856 −0.00895238 −0.00447619 0.999990i 0.501425π-0.501425\pi
−0.00447619 + 0.999990i 0.501425π0.501425\pi
432432 0 0
433433 −34.7454 −1.66976 −0.834878 0.550435i 0.814462π-0.814462\pi
−0.834878 + 0.550435i 0.814462π0.814462\pi
434434 0 0
435435 − 0.539638i − 0.0258737i
436436 0 0
437437 − 0.731123i − 0.0349743i
438438 0 0
439439 −27.1781 −1.29714 −0.648570 0.761155i 0.724632π-0.724632\pi
−0.648570 + 0.761155i 0.724632π0.724632\pi
440440 0 0
441441 0 0
442442 0 0
443443 3.96868i 0.188558i 0.995546 + 0.0942789i 0.0300545π0.0300545\pi
−0.995546 + 0.0942789i 0.969945π0.969945\pi
444444 0 0
445445 − 13.0807i − 0.620085i
446446 0 0
447447 −5.11203 −0.241791
448448 0 0
449449 −12.1637 −0.574040 −0.287020 0.957925i 0.592665π-0.592665\pi
−0.287020 + 0.957925i 0.592665π0.592665\pi
450450 0 0
451451 − 0.974675i − 0.0458957i
452452 0 0
453453 − 4.17126i − 0.195983i
454454 0 0
455455 0 0
456456 0 0
457457 25.7582 1.20492 0.602459 0.798150i 0.294188π-0.294188\pi
0.602459 + 0.798150i 0.294188π0.294188\pi
458458 0 0
459459 − 6.99110i − 0.326317i
460460 0 0
461461 − 17.0423i − 0.793737i −0.917875 0.396868i 0.870097π-0.870097\pi
0.917875 0.396868i 0.129903π-0.129903\pi
462462 0 0
463463 −34.1343 −1.58635 −0.793177 0.608991i 0.791574π-0.791574\pi
−0.793177 + 0.608991i 0.791574π0.791574\pi
464464 0 0
465465 16.9517 0.786118
466466 0 0
467467 − 16.2743i − 0.753085i −0.926399 0.376543i 0.877113π-0.877113\pi
0.926399 0.376543i 0.122887π-0.122887\pi
468468 0 0
469469 0 0
470470 0 0
471471 −9.04875 −0.416944
472472 0 0
473473 −5.40746 −0.248635
474474 0 0
475475 2.32537i 0.106695i
476476 0 0
477477 − 5.98569i − 0.274066i
478478 0 0
479479 −20.0091 −0.914239 −0.457119 0.889405i 0.651119π-0.651119\pi
−0.457119 + 0.889405i 0.651119π0.651119\pi
480480 0 0
481481 −16.3413 −0.745101
482482 0 0
483483 0 0
484484 0 0
485485 37.3156i 1.69442i
486486 0 0
487487 −16.5578 −0.750304 −0.375152 0.926963i 0.622410π-0.622410\pi
−0.375152 + 0.926963i 0.622410π0.622410\pi
488488 0 0
489489 13.4512 0.608284
490490 0 0
491491 9.49257i 0.428394i 0.976791 + 0.214197i 0.0687134π0.0687134\pi
−0.976791 + 0.214197i 0.931287π0.931287\pi
492492 0 0
493493 − 1.05810i − 0.0476545i
494494 0 0
495495 14.5149 0.652395
496496 0 0
497497 0 0
498498 0 0
499499 − 34.2301i − 1.53235i −0.642633 0.766174i 0.722158π-0.722158\pi
0.642633 0.766174i 0.277842π-0.277842\pi
500500 0 0
501501 − 17.2099i − 0.768883i
502502 0 0
503503 −21.0469 −0.938436 −0.469218 0.883082i 0.655464π-0.655464\pi
−0.469218 + 0.883082i 0.655464π0.655464\pi
504504 0 0
505505 −45.4020 −2.02036
506506 0 0
507507 − 10.9245i − 0.485176i
508508 0 0
509509 15.0455i 0.666881i 0.942771 + 0.333440i 0.108210π0.108210\pi
−0.942771 + 0.333440i 0.891790π0.891790\pi
510510 0 0
511511 0 0
512512 0 0
513513 0.301495 0.0133113
514514 0 0
515515 21.4242i 0.944063i
516516 0 0
517517 25.8858i 1.13846i
518518 0 0
519519 3.44940 0.151412
520520 0 0
521521 8.97913 0.393383 0.196691 0.980465i 0.436980π-0.436980\pi
0.196691 + 0.980465i 0.436980π0.436980\pi
522522 0 0
523523 − 9.87353i − 0.431739i −0.976422 0.215870i 0.930741π-0.930741\pi
0.976422 0.215870i 0.0692586π-0.0692586\pi
524524 0 0
525525 0 0
526526 0 0
527527 33.2384 1.44789
528528 0 0
529529 −17.1194 −0.744323
530530 0 0
531531 11.2428i 0.487896i
532532 0 0
533533 0.344925i 0.0149404i
534534 0 0
535535 −56.9266 −2.46115
536536 0 0
537537 −11.3017 −0.487703
538538 0 0
539539 0 0
540540 0 0
541541 − 19.7815i − 0.850475i −0.905082 0.425237i 0.860191π-0.860191\pi
0.905082 0.425237i 0.139809π-0.139809\pi
542542 0 0
543543 10.0566 0.431570
544544 0 0
545545 49.4573 2.11852
546546 0 0
547547 − 39.3961i − 1.68446i −0.539122 0.842228i 0.681244π-0.681244\pi
0.539122 0.842228i 0.318756π-0.318756\pi
548548 0 0
549549 − 4.20933i − 0.179650i
550550 0 0
551551 0.0456312 0.00194395
552552 0 0
553553 0 0
554554 0 0
555555 − 40.4437i − 1.71674i
556556 0 0
557557 6.75051i 0.286028i 0.989721 + 0.143014i 0.0456794π0.0456794\pi
−0.989721 + 0.143014i 0.954321π0.954321\pi
558558 0 0
559559 1.91363 0.0809379
560560 0 0
561561 28.4602 1.20159
562562 0 0
563563 28.9861i 1.22162i 0.791778 + 0.610809i 0.209156π0.209156\pi
−0.791778 + 0.610809i 0.790844π0.790844\pi
564564 0 0
565565 58.6506i 2.46745i
566566 0 0
567567 0 0
568568 0 0
569569 −39.9668 −1.67550 −0.837748 0.546057i 0.816128π-0.816128\pi
−0.837748 + 0.546057i 0.816128π0.816128\pi
570570 0 0
571571 8.09846i 0.338910i 0.985538 + 0.169455i 0.0542007π0.0542007\pi
−0.985538 + 0.169455i 0.945799π0.945799\pi
572572 0 0
573573 21.4860i 0.897592i
574574 0 0
575575 −18.7034 −0.779988
576576 0 0
577577 −47.5222 −1.97838 −0.989188 0.146653i 0.953150π-0.953150\pi
−0.989188 + 0.146653i 0.953150π0.953150\pi
578578 0 0
579579 16.4160i 0.682224i
580580 0 0
581581 0 0
582582 0 0
583583 24.3673 1.00919
584584 0 0
585585 −5.13663 −0.212373
586586 0 0
587587 − 11.8785i − 0.490279i −0.969488 0.245140i 0.921166π-0.921166\pi
0.969488 0.245140i 0.0788338π-0.0788338\pi
588588 0 0
589589 1.43342i 0.0590631i
590590 0 0
591591 15.7045 0.645997
592592 0 0
593593 −32.2320 −1.32361 −0.661806 0.749675i 0.730210π-0.730210\pi
−0.661806 + 0.749675i 0.730210π0.730210\pi
594594 0 0
595595 0 0
596596 0 0
597597 − 6.27434i − 0.256792i
598598 0 0
599599 −39.6855 −1.62150 −0.810752 0.585390i 0.800942π-0.800942\pi
−0.810752 + 0.585390i 0.800942π0.800942\pi
600600 0 0
601601 −22.3599 −0.912081 −0.456040 0.889959i 0.650733π-0.650733\pi
−0.456040 + 0.889959i 0.650733π0.650733\pi
602602 0 0
603603 4.38075i 0.178398i
604604 0 0
605605 19.8684i 0.807764i
606606 0 0
607607 14.7751 0.599704 0.299852 0.953986i 0.403063π-0.403063\pi
0.299852 + 0.953986i 0.403063π0.403063\pi
608608 0 0
609609 0 0
610610 0 0
611611 − 9.16067i − 0.370601i
612612 0 0
613613 26.2641i 1.06080i 0.847749 + 0.530398i 0.177957π0.177957\pi
−0.847749 + 0.530398i 0.822043π0.822043\pi
614614 0 0
615615 −0.853666 −0.0344231
616616 0 0
617617 33.8882 1.36429 0.682144 0.731218i 0.261048π-0.261048\pi
0.682144 + 0.731218i 0.261048π0.261048\pi
618618 0 0
619619 6.05216i 0.243257i 0.992576 + 0.121628i 0.0388116π0.0388116\pi
−0.992576 + 0.121628i 0.961188π0.961188\pi
620620 0 0
621621 2.42499i 0.0973115i
622622 0 0
623623 0 0
624624 0 0
625625 −4.07682 −0.163073
626626 0 0
627627 1.22736i 0.0490161i
628628 0 0
629629 − 79.3005i − 3.16192i
630630 0 0
631631 14.6555 0.583426 0.291713 0.956506i 0.405775π-0.405775\pi
0.291713 + 0.956506i 0.405775π0.405775\pi
632632 0 0
633633 9.40458 0.373798
634634 0 0
635635 − 11.8837i − 0.471591i
636636 0 0
637637 0 0
638638 0 0
639639 −8.46387 −0.334826
640640 0 0
641641 15.5498 0.614178 0.307089 0.951681i 0.400645π-0.400645\pi
0.307089 + 0.951681i 0.400645π0.400645\pi
642642 0 0
643643 28.3180i 1.11675i 0.829587 + 0.558377i 0.188576π0.188576\pi
−0.829587 + 0.558377i 0.811424π0.811424\pi
644644 0 0
645645 4.73610i 0.186484i
646646 0 0
647647 25.8683 1.01699 0.508495 0.861065i 0.330202π-0.330202\pi
0.508495 + 0.861065i 0.330202π0.330202\pi
648648 0 0
649649 −45.7685 −1.79657
650650 0 0
651651 0 0
652652 0 0
653653 − 28.2649i − 1.10609i −0.833151 0.553045i 0.813466π-0.813466\pi
0.833151 0.553045i 0.186534π-0.186534\pi
654654 0 0
655655 14.5781 0.569615
656656 0 0
657657 0.569448 0.0222163
658658 0 0
659659 21.7217i 0.846159i 0.906093 + 0.423079i 0.139051π0.139051\pi
−0.906093 + 0.423079i 0.860949π0.860949\pi
660660 0 0
661661 − 31.7834i − 1.23623i −0.786087 0.618115i 0.787896π-0.787896\pi
0.786087 0.618115i 0.212104π-0.212104\pi
662662 0 0
663663 −10.0717 −0.391153
664664 0 0
665665 0 0
666666 0 0
667667 0.367022i 0.0142111i
668668 0 0
669669 − 4.34741i − 0.168081i
670670 0 0
671671 17.1359 0.661523
672672 0 0
673673 16.1882 0.624009 0.312004 0.950081i 0.399000π-0.399000\pi
0.312004 + 0.950081i 0.399000π0.399000\pi
674674 0 0
675675 − 7.71279i − 0.296865i
676676 0 0
677677 23.8876i 0.918077i 0.888416 + 0.459038i 0.151806π0.151806\pi
−0.888416 + 0.459038i 0.848194π0.848194\pi
678678 0 0
679679 0 0
680680 0 0
681681 −7.28203 −0.279048
682682 0 0
683683 25.2315i 0.965456i 0.875770 + 0.482728i 0.160354π0.160354\pi
−0.875770 + 0.482728i 0.839646π0.839646\pi
684684 0 0
685685 − 29.5486i − 1.12899i
686686 0 0
687687 1.02222 0.0390003
688688 0 0
689689 −8.62327 −0.328520
690690 0 0
691691 15.9452i 0.606584i 0.952898 + 0.303292i 0.0980857π0.0980857\pi
−0.952898 + 0.303292i 0.901914π0.901914\pi
692692 0 0
693693 0 0
694694 0 0
695695 −65.6693 −2.49098
696696 0 0
697697 −1.67384 −0.0634011
698698 0 0
699699 22.0661i 0.834617i
700700 0 0
701701 − 46.5568i − 1.75842i −0.476430 0.879212i 0.658069π-0.658069\pi
0.476430 0.879212i 0.341931π-0.341931\pi
702702 0 0
703703 3.41988 0.128983
704704 0 0
705705 22.6720 0.853877
706706 0 0
707707 0 0
708708 0 0
709709 5.40547i 0.203007i 0.994835 + 0.101503i 0.0323653π0.0323653\pi
−0.994835 + 0.101503i 0.967635π0.967635\pi
710710 0 0
711711 −1.49383 −0.0560231
712712 0 0
713713 −11.5293 −0.431777
714714 0 0
715715 − 20.9108i − 0.782019i
716716 0 0
717717 4.80475i 0.179437i
718718 0 0
719719 19.4807 0.726508 0.363254 0.931690i 0.381666π-0.381666\pi
0.363254 + 0.931690i 0.381666π0.381666\pi
720720 0 0
721721 0 0
722722 0 0
723723 23.7688i 0.883972i
724724 0 0
725725 − 1.16733i − 0.0433535i
726726 0 0
727727 22.4025 0.830864 0.415432 0.909624i 0.363630π-0.363630\pi
0.415432 + 0.909624i 0.363630π0.363630\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 9.28637i 0.343469i
732732 0 0
733733 − 46.5412i − 1.71904i −0.511103 0.859520i 0.670763π-0.670763\pi
0.511103 0.859520i 0.329237π-0.329237\pi
734734 0 0
735735 0 0
736736 0 0
737737 −17.8337 −0.656912
738738 0 0
739739 − 31.9417i − 1.17499i −0.809226 0.587497i 0.800113π-0.800113\pi
0.809226 0.587497i 0.199887π-0.199887\pi
740740 0 0
741741 − 0.434348i − 0.0159562i
742742 0 0
743743 −14.3888 −0.527874 −0.263937 0.964540i 0.585021π-0.585021\pi
−0.263937 + 0.964540i 0.585021π0.585021\pi
744744 0 0
745745 −18.2269 −0.667784
746746 0 0
747747 − 10.0352i − 0.367169i
748748 0 0
749749 0 0
750750 0 0
751751 30.3137 1.10616 0.553080 0.833128i 0.313452π-0.313452\pi
0.553080 + 0.833128i 0.313452π0.313452\pi
752752 0 0
753753 14.0888 0.513426
754754 0 0
755755 − 14.8726i − 0.541270i
756756 0 0
757757 51.0353i 1.85491i 0.373937 + 0.927454i 0.378007π0.378007\pi
−0.373937 + 0.927454i 0.621993π0.621993\pi
758758 0 0
759759 −9.87195 −0.358329
760760 0 0
761761 −30.2111 −1.09515 −0.547576 0.836756i 0.684449π-0.684449\pi
−0.547576 + 0.836756i 0.684449π0.684449\pi
762762 0 0
763763 0 0
764764 0 0
765765 − 24.9268i − 0.901229i
766766 0 0
767767 16.1969 0.584836
768768 0 0
769769 −4.26448 −0.153781 −0.0768906 0.997040i 0.524499π-0.524499\pi
−0.0768906 + 0.997040i 0.524499π0.524499\pi
770770 0 0
771771 − 5.79924i − 0.208854i
772772 0 0
773773 5.39018i 0.193871i 0.995291 + 0.0969357i 0.0309041π0.0309041\pi
−0.995291 + 0.0969357i 0.969096π0.969096\pi
774774 0 0
775775 36.6695 1.31721
776776 0 0
777777 0 0
778778 0 0
779779 − 0.0721851i − 0.00258630i
780780 0 0
781781 − 34.4557i − 1.23292i
782782 0 0
783783 −0.151350 −0.00540880
784784 0 0
785785 −32.2633 −1.15153
786786 0 0
787787 − 6.19873i − 0.220961i −0.993878 0.110480i 0.964761π-0.964761\pi
0.993878 0.110480i 0.0352390π-0.0352390\pi
788788 0 0
789789 2.43254i 0.0866006i
790790 0 0
791791 0 0
792792 0 0
793793 −6.06416 −0.215345
794794 0 0
795795 − 21.3420i − 0.756922i
796796 0 0
797797 − 2.24353i − 0.0794699i −0.999210 0.0397349i 0.987349π-0.987349\pi
0.999210 0.0397349i 0.0126514π-0.0126514\pi
798798 0 0
799799 44.4545 1.57269
800800 0 0
801801 −3.66869 −0.129627
802802 0 0
803803 2.31818i 0.0818067i
804804 0 0
805805 0 0
806806 0 0
807807 5.75584 0.202615
808808 0 0
809809 −15.3369 −0.539216 −0.269608 0.962970i 0.586894π-0.586894\pi
−0.269608 + 0.962970i 0.586894π0.586894\pi
810810 0 0
811811 − 15.1509i − 0.532019i −0.963970 0.266010i 0.914295π-0.914295\pi
0.963970 0.266010i 0.0857053π-0.0857053\pi
812812 0 0
813813 − 17.0185i − 0.596866i
814814 0 0
815815 47.9602 1.67997
816816 0 0
817817 −0.400480 −0.0140110
818818 0 0
819819 0 0
820820 0 0
821821 − 1.63526i − 0.0570710i −0.999593 0.0285355i 0.990916π-0.990916\pi
0.999593 0.0285355i 0.00908437π-0.00908437\pi
822822 0 0
823823 −45.0135 −1.56907 −0.784535 0.620084i 0.787098π-0.787098\pi
−0.784535 + 0.620084i 0.787098π0.787098\pi
824824 0 0
825825 31.3982 1.09314
826826 0 0
827827 − 42.4945i − 1.47768i −0.673882 0.738839i 0.735374π-0.735374\pi
0.673882 0.738839i 0.264626π-0.264626\pi
828828 0 0
829829 45.7456i 1.58881i 0.607388 + 0.794405i 0.292217π0.292217\pi
−0.607388 + 0.794405i 0.707783π0.707783\pi
830830 0 0
831831 −22.4704 −0.779489
832832 0 0
833833 0 0
834834 0 0
835835 − 61.3620i − 2.12352i
836836 0 0
837837 − 4.75438i − 0.164335i
838838 0 0
839839 30.4207 1.05024 0.525120 0.851028i 0.324020π-0.324020\pi
0.525120 + 0.851028i 0.324020π0.324020\pi
840840 0 0
841841 28.9771 0.999210
842842 0 0
843843 − 7.29261i − 0.251171i
844844 0 0
845845 − 38.9514i − 1.33997i
846846 0 0
847847 0 0
848848 0 0
849849 −10.6377 −0.365084
850850 0 0
851851 27.5068i 0.942922i
852852 0 0
853853 0.386158i 0.0132218i 0.999978 + 0.00661090i 0.00210433π0.00210433\pi
−0.999978 + 0.00661090i 0.997896π0.997896\pi
854854 0 0
855855 1.07498 0.0367635
856856 0 0
857857 26.3234 0.899190 0.449595 0.893233i 0.351568π-0.351568\pi
0.449595 + 0.893233i 0.351568π0.351568\pi
858858 0 0
859859 − 23.2753i − 0.794144i −0.917787 0.397072i 0.870026π-0.870026\pi
0.917787 0.397072i 0.129974π-0.129974\pi
860860 0 0
861861 0 0
862862 0 0
863863 −16.5123 −0.562084 −0.281042 0.959695i 0.590680π-0.590680\pi
−0.281042 + 0.959695i 0.590680π0.590680\pi
864864 0 0
865865 12.2988 0.418172
866866 0 0
867867 − 31.8755i − 1.08255i
868868 0 0
869869 − 6.08128i − 0.206293i
870870 0 0
871871 6.31111 0.213844
872872 0 0
873873 10.4657 0.354212
874874 0 0
875875 0 0
876876 0 0
877877 − 28.6736i − 0.968237i −0.875002 0.484119i 0.839140π-0.839140\pi
0.875002 0.484119i 0.160860π-0.160860\pi
878878 0 0
879879 26.4432 0.891907
880880 0 0
881881 −5.88181 −0.198163 −0.0990816 0.995079i 0.531590π-0.531590\pi
−0.0990816 + 0.995079i 0.531590π0.531590\pi
882882 0 0
883883 1.69703i 0.0571095i 0.999592 + 0.0285548i 0.00909050π0.00909050\pi
−0.999592 + 0.0285548i 0.990910π0.990910\pi
884884 0 0
885885 40.0862i 1.34748i
886886 0 0
887887 −57.7245 −1.93820 −0.969099 0.246672i 0.920663π-0.920663\pi
−0.969099 + 0.246672i 0.920663π0.920663\pi
888888 0 0
889889 0 0
890890 0 0
891891 − 4.07092i − 0.136381i
892892 0 0
893893 1.91712i 0.0641540i
894894 0 0
895895 −40.2961 −1.34695
896896 0 0
897897 3.49356 0.116646
898898 0 0
899899 − 0.719575i − 0.0239992i
900900 0 0
901901 − 41.8466i − 1.39411i
902902 0 0
903903 0 0
904904 0 0
905905 35.8568 1.19192
906906 0 0
907907 − 45.3277i − 1.50508i −0.658546 0.752540i 0.728828π-0.728828\pi
0.658546 0.752540i 0.271172π-0.271172\pi
908908 0 0
909909 12.7337i 0.422350i
910910 0 0
911911 26.4254 0.875511 0.437755 0.899094i 0.355774π-0.355774\pi
0.437755 + 0.899094i 0.355774π0.355774\pi
912912 0 0
913913 40.8525 1.35202
914914 0 0
915915 − 15.0084i − 0.496162i
916916 0 0
917917 0 0
918918 0 0
919919 0.300665 0.00991803 0.00495901 0.999988i 0.498421π-0.498421\pi
0.00495901 + 0.999988i 0.498421π0.498421\pi
920920 0 0
921921 23.6553 0.779470
922922 0 0
923923 12.1934i 0.401352i
924924 0 0
925925 − 87.4867i − 2.87654i
926926 0 0
927927 6.00875 0.197353
928928 0 0
929929 38.6666 1.26861 0.634304 0.773084i 0.281287π-0.281287\pi
0.634304 + 0.773084i 0.281287π0.281287\pi
930930 0 0
931931 0 0
932932 0 0
933933 3.25213i 0.106470i
934934 0 0
935935 101.475 3.31858
936936 0 0
937937 −23.9292 −0.781734 −0.390867 0.920447i 0.627825π-0.627825\pi
−0.390867 + 0.920447i 0.627825π0.627825\pi
938938 0 0
939939 6.95242i 0.226884i
940940 0 0
941941 42.4067i 1.38242i 0.722654 + 0.691210i 0.242922π0.242922\pi
−0.722654 + 0.691210i 0.757078π0.757078\pi
942942 0 0
943943 0.580601 0.0189070
944944 0 0
945945 0 0
946946 0 0
947947 − 13.7810i − 0.447823i −0.974609 0.223911i 0.928117π-0.928117\pi
0.974609 0.223911i 0.0718826π-0.0718826\pi
948948 0 0
949949 − 0.820373i − 0.0266304i
950950 0 0
951951 6.28507 0.203807
952952 0 0
953953 57.0092 1.84671 0.923354 0.383950i 0.125436π-0.125436\pi
0.923354 + 0.383950i 0.125436π0.125436\pi
954954 0 0
955955 76.6085i 2.47899i
956956 0 0
957957 − 0.616133i − 0.0199168i
958958 0 0
959959 0 0
960960 0 0
961961 −8.39587 −0.270834
962962 0 0
963963 15.9659i 0.514495i
964964 0 0
965965 58.5311i 1.88418i
966966 0 0
967967 20.0555 0.644941 0.322470 0.946580i 0.395487π-0.395487\pi
0.322470 + 0.946580i 0.395487π0.395487\pi
968968 0 0
969969 2.10778 0.0677117
970970 0 0
971971 1.13107i 0.0362977i 0.999835 + 0.0181488i 0.00577727π0.00577727\pi
−0.999835 + 0.0181488i 0.994223π0.994223\pi
972972 0 0
973973 0 0
974974 0 0
975975 −11.1114 −0.355850
976976 0 0
977977 −31.0067 −0.991991 −0.495996 0.868325i 0.665197π-0.665197\pi
−0.495996 + 0.868325i 0.665197π0.665197\pi
978978 0 0
979979 − 14.9349i − 0.477323i
980980 0 0
981981 − 13.8711i − 0.442869i
982982 0 0
983983 −9.18804 −0.293053 −0.146527 0.989207i 0.546809π-0.546809\pi
−0.146527 + 0.989207i 0.546809π0.546809\pi
984984 0 0
985985 55.9944 1.78413
986986 0 0
987987 0 0
988988 0 0
989989 − 3.22115i − 0.102427i
990990 0 0
991991 −40.0550 −1.27239 −0.636194 0.771529i 0.719492π-0.719492\pi
−0.636194 + 0.771529i 0.719492π0.719492\pi
992992 0 0
993993 25.3553 0.804627
994994 0 0
995995 − 22.3712i − 0.709214i
996996 0 0
997997 − 26.0861i − 0.826154i −0.910696 0.413077i 0.864454π-0.864454\pi
0.910696 0.413077i 0.135546π-0.135546\pi
998998 0 0
999999 −11.3431 −0.358879
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4704.2.c.f.2353.1 16
4.3 odd 2 1176.2.c.f.589.2 16
7.3 odd 6 672.2.bk.a.625.9 32
7.5 odd 6 672.2.bk.a.529.8 32
7.6 odd 2 4704.2.c.e.2353.16 16
8.3 odd 2 1176.2.c.f.589.1 16
8.5 even 2 inner 4704.2.c.f.2353.16 16
21.5 even 6 2016.2.cr.e.1873.2 32
21.17 even 6 2016.2.cr.e.1297.15 32
28.3 even 6 168.2.bc.a.37.10 32
28.19 even 6 168.2.bc.a.109.12 yes 32
28.27 even 2 1176.2.c.e.589.2 16
56.3 even 6 168.2.bc.a.37.12 yes 32
56.5 odd 6 672.2.bk.a.529.9 32
56.13 odd 2 4704.2.c.e.2353.1 16
56.19 even 6 168.2.bc.a.109.10 yes 32
56.27 even 2 1176.2.c.e.589.1 16
56.45 odd 6 672.2.bk.a.625.8 32
84.47 odd 6 504.2.cj.e.109.5 32
84.59 odd 6 504.2.cj.e.37.7 32
168.5 even 6 2016.2.cr.e.1873.15 32
168.59 odd 6 504.2.cj.e.37.5 32
168.101 even 6 2016.2.cr.e.1297.2 32
168.131 odd 6 504.2.cj.e.109.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.bc.a.37.10 32 28.3 even 6
168.2.bc.a.37.12 yes 32 56.3 even 6
168.2.bc.a.109.10 yes 32 56.19 even 6
168.2.bc.a.109.12 yes 32 28.19 even 6
504.2.cj.e.37.5 32 168.59 odd 6
504.2.cj.e.37.7 32 84.59 odd 6
504.2.cj.e.109.5 32 84.47 odd 6
504.2.cj.e.109.7 32 168.131 odd 6
672.2.bk.a.529.8 32 7.5 odd 6
672.2.bk.a.529.9 32 56.5 odd 6
672.2.bk.a.625.8 32 56.45 odd 6
672.2.bk.a.625.9 32 7.3 odd 6
1176.2.c.e.589.1 16 56.27 even 2
1176.2.c.e.589.2 16 28.27 even 2
1176.2.c.f.589.1 16 8.3 odd 2
1176.2.c.f.589.2 16 4.3 odd 2
2016.2.cr.e.1297.2 32 168.101 even 6
2016.2.cr.e.1297.15 32 21.17 even 6
2016.2.cr.e.1873.2 32 21.5 even 6
2016.2.cr.e.1873.15 32 168.5 even 6
4704.2.c.e.2353.1 16 56.13 odd 2
4704.2.c.e.2353.16 16 7.6 odd 2
4704.2.c.f.2353.1 16 1.1 even 1 trivial
4704.2.c.f.2353.16 16 8.5 even 2 inner