Properties

Label 4704.2.c.f.2353.1
Level $4704$
Weight $2$
Character 4704.2353
Analytic conductor $37.562$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4704,2,Mod(2353,4704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4704.2353");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4704.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5616291108\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 2 x^{13} - 2 x^{12} - 4 x^{11} - 2 x^{10} + 16 x^{9} + 8 x^{8} + 32 x^{7} - 8 x^{6} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2353.1
Root \(-0.236856 + 1.39424i\) of defining polynomial
Character \(\chi\) \(=\) 4704.2353
Dual form 4704.2.c.f.2353.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -3.56550i q^{5} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} -3.56550i q^{5} -1.00000 q^{9} -4.07092i q^{11} +1.44065i q^{13} -3.56550 q^{15} -6.99110 q^{17} -0.301495i q^{19} +2.42499 q^{23} -7.71279 q^{25} +1.00000i q^{27} +0.151350i q^{29} -4.75438 q^{31} -4.07092 q^{33} +11.3431i q^{37} +1.44065 q^{39} +0.239424 q^{41} -1.32831i q^{43} +3.56550i q^{45} -6.35872 q^{47} +6.99110i q^{51} +5.98569i q^{53} -14.5149 q^{55} -0.301495 q^{57} -11.2428i q^{59} +4.20933i q^{61} +5.13663 q^{65} -4.38075i q^{67} -2.42499i q^{69} +8.46387 q^{71} -0.569448 q^{73} +7.71279i q^{75} +1.49383 q^{79} +1.00000 q^{81} +10.0352i q^{83} +24.9268i q^{85} +0.151350 q^{87} +3.66869 q^{89} +4.75438i q^{93} -1.07498 q^{95} -10.4657 q^{97} +4.07092i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 16 q^{9} - 8 q^{23} - 16 q^{25} + 24 q^{31} + 24 q^{47} - 32 q^{55} - 8 q^{57} + 40 q^{71} + 8 q^{73} + 8 q^{79} + 16 q^{81} - 24 q^{87} + 24 q^{95} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4704\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(1765\) \(3137\) \(4609\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) − 3.56550i − 1.59454i −0.603623 0.797270i \(-0.706277\pi\)
0.603623 0.797270i \(-0.293723\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 4.07092i − 1.22743i −0.789528 0.613714i \(-0.789675\pi\)
0.789528 0.613714i \(-0.210325\pi\)
\(12\) 0 0
\(13\) 1.44065i 0.399564i 0.979840 + 0.199782i \(0.0640233\pi\)
−0.979840 + 0.199782i \(0.935977\pi\)
\(14\) 0 0
\(15\) −3.56550 −0.920608
\(16\) 0 0
\(17\) −6.99110 −1.69559 −0.847796 0.530323i \(-0.822071\pi\)
−0.847796 + 0.530323i \(0.822071\pi\)
\(18\) 0 0
\(19\) − 0.301495i − 0.0691677i −0.999402 0.0345838i \(-0.988989\pi\)
0.999402 0.0345838i \(-0.0110106\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.42499 0.505646 0.252823 0.967513i \(-0.418641\pi\)
0.252823 + 0.967513i \(0.418641\pi\)
\(24\) 0 0
\(25\) −7.71279 −1.54256
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.151350i 0.0281050i 0.999901 + 0.0140525i \(0.00447319\pi\)
−0.999901 + 0.0140525i \(0.995527\pi\)
\(30\) 0 0
\(31\) −4.75438 −0.853912 −0.426956 0.904272i \(-0.640414\pi\)
−0.426956 + 0.904272i \(0.640414\pi\)
\(32\) 0 0
\(33\) −4.07092 −0.708656
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3431i 1.86479i 0.361443 + 0.932394i \(0.382284\pi\)
−0.361443 + 0.932394i \(0.617716\pi\)
\(38\) 0 0
\(39\) 1.44065 0.230688
\(40\) 0 0
\(41\) 0.239424 0.0373917 0.0186959 0.999825i \(-0.494049\pi\)
0.0186959 + 0.999825i \(0.494049\pi\)
\(42\) 0 0
\(43\) − 1.32831i − 0.202566i −0.994858 0.101283i \(-0.967705\pi\)
0.994858 0.101283i \(-0.0322947\pi\)
\(44\) 0 0
\(45\) 3.56550i 0.531513i
\(46\) 0 0
\(47\) −6.35872 −0.927515 −0.463757 0.885962i \(-0.653499\pi\)
−0.463757 + 0.885962i \(0.653499\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 6.99110i 0.978950i
\(52\) 0 0
\(53\) 5.98569i 0.822198i 0.911591 + 0.411099i \(0.134855\pi\)
−0.911591 + 0.411099i \(0.865145\pi\)
\(54\) 0 0
\(55\) −14.5149 −1.95718
\(56\) 0 0
\(57\) −0.301495 −0.0399340
\(58\) 0 0
\(59\) − 11.2428i − 1.46369i −0.681473 0.731843i \(-0.738660\pi\)
0.681473 0.731843i \(-0.261340\pi\)
\(60\) 0 0
\(61\) 4.20933i 0.538950i 0.963007 + 0.269475i \(0.0868501\pi\)
−0.963007 + 0.269475i \(0.913150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.13663 0.637120
\(66\) 0 0
\(67\) − 4.38075i − 0.535194i −0.963531 0.267597i \(-0.913771\pi\)
0.963531 0.267597i \(-0.0862295\pi\)
\(68\) 0 0
\(69\) − 2.42499i − 0.291935i
\(70\) 0 0
\(71\) 8.46387 1.00448 0.502238 0.864729i \(-0.332510\pi\)
0.502238 + 0.864729i \(0.332510\pi\)
\(72\) 0 0
\(73\) −0.569448 −0.0666488 −0.0333244 0.999445i \(-0.510609\pi\)
−0.0333244 + 0.999445i \(0.510609\pi\)
\(74\) 0 0
\(75\) 7.71279i 0.890596i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.49383 0.168069 0.0840347 0.996463i \(-0.473219\pi\)
0.0840347 + 0.996463i \(0.473219\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.0352i 1.10151i 0.834668 + 0.550753i \(0.185660\pi\)
−0.834668 + 0.550753i \(0.814340\pi\)
\(84\) 0 0
\(85\) 24.9268i 2.70369i
\(86\) 0 0
\(87\) 0.151350 0.0162264
\(88\) 0 0
\(89\) 3.66869 0.388880 0.194440 0.980914i \(-0.437711\pi\)
0.194440 + 0.980914i \(0.437711\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.75438i 0.493006i
\(94\) 0 0
\(95\) −1.07498 −0.110291
\(96\) 0 0
\(97\) −10.4657 −1.06264 −0.531318 0.847173i \(-0.678303\pi\)
−0.531318 + 0.847173i \(0.678303\pi\)
\(98\) 0 0
\(99\) 4.07092i 0.409143i
\(100\) 0 0
\(101\) − 12.7337i − 1.26705i −0.773722 0.633526i \(-0.781607\pi\)
0.773722 0.633526i \(-0.218393\pi\)
\(102\) 0 0
\(103\) −6.00875 −0.592060 −0.296030 0.955179i \(-0.595663\pi\)
−0.296030 + 0.955179i \(0.595663\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 15.9659i − 1.54349i −0.635935 0.771743i \(-0.719385\pi\)
0.635935 0.771743i \(-0.280615\pi\)
\(108\) 0 0
\(109\) 13.8711i 1.32861i 0.747463 + 0.664304i \(0.231272\pi\)
−0.747463 + 0.664304i \(0.768728\pi\)
\(110\) 0 0
\(111\) 11.3431 1.07664
\(112\) 0 0
\(113\) −16.4495 −1.54744 −0.773719 0.633529i \(-0.781606\pi\)
−0.773719 + 0.633529i \(0.781606\pi\)
\(114\) 0 0
\(115\) − 8.64631i − 0.806272i
\(116\) 0 0
\(117\) − 1.44065i − 0.133188i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.57239 −0.506581
\(122\) 0 0
\(123\) − 0.239424i − 0.0215881i
\(124\) 0 0
\(125\) 9.67245i 0.865131i
\(126\) 0 0
\(127\) 3.33297 0.295754 0.147877 0.989006i \(-0.452756\pi\)
0.147877 + 0.989006i \(0.452756\pi\)
\(128\) 0 0
\(129\) −1.32831 −0.116951
\(130\) 0 0
\(131\) 4.08867i 0.357229i 0.983919 + 0.178614i \(0.0571614\pi\)
−0.983919 + 0.178614i \(0.942839\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.56550 0.306869
\(136\) 0 0
\(137\) 8.28737 0.708037 0.354019 0.935238i \(-0.384815\pi\)
0.354019 + 0.935238i \(0.384815\pi\)
\(138\) 0 0
\(139\) − 18.4180i − 1.56219i −0.624411 0.781096i \(-0.714661\pi\)
0.624411 0.781096i \(-0.285339\pi\)
\(140\) 0 0
\(141\) 6.35872i 0.535501i
\(142\) 0 0
\(143\) 5.86476 0.490436
\(144\) 0 0
\(145\) 0.539638 0.0448145
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 5.11203i − 0.418794i −0.977831 0.209397i \(-0.932850\pi\)
0.977831 0.209397i \(-0.0671501\pi\)
\(150\) 0 0
\(151\) 4.17126 0.339452 0.169726 0.985491i \(-0.445712\pi\)
0.169726 + 0.985491i \(0.445712\pi\)
\(152\) 0 0
\(153\) 6.99110 0.565197
\(154\) 0 0
\(155\) 16.9517i 1.36160i
\(156\) 0 0
\(157\) − 9.04875i − 0.722169i −0.932533 0.361084i \(-0.882407\pi\)
0.932533 0.361084i \(-0.117593\pi\)
\(158\) 0 0
\(159\) 5.98569 0.474696
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 13.4512i 1.05358i 0.849996 + 0.526790i \(0.176604\pi\)
−0.849996 + 0.526790i \(0.823396\pi\)
\(164\) 0 0
\(165\) 14.5149i 1.12998i
\(166\) 0 0
\(167\) 17.2099 1.33174 0.665872 0.746066i \(-0.268060\pi\)
0.665872 + 0.746066i \(0.268060\pi\)
\(168\) 0 0
\(169\) 10.9245 0.840349
\(170\) 0 0
\(171\) 0.301495i 0.0230559i
\(172\) 0 0
\(173\) 3.44940i 0.262253i 0.991366 + 0.131126i \(0.0418594\pi\)
−0.991366 + 0.131126i \(0.958141\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.2428 −0.845060
\(178\) 0 0
\(179\) − 11.3017i − 0.844726i −0.906427 0.422363i \(-0.861201\pi\)
0.906427 0.422363i \(-0.138799\pi\)
\(180\) 0 0
\(181\) 10.0566i 0.747502i 0.927529 + 0.373751i \(0.121929\pi\)
−0.927529 + 0.373751i \(0.878071\pi\)
\(182\) 0 0
\(183\) 4.20933 0.311163
\(184\) 0 0
\(185\) 40.4437 2.97348
\(186\) 0 0
\(187\) 28.4602i 2.08122i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.4860 −1.55468 −0.777338 0.629084i \(-0.783430\pi\)
−0.777338 + 0.629084i \(0.783430\pi\)
\(192\) 0 0
\(193\) −16.4160 −1.18165 −0.590823 0.806801i \(-0.701197\pi\)
−0.590823 + 0.806801i \(0.701197\pi\)
\(194\) 0 0
\(195\) − 5.13663i − 0.367841i
\(196\) 0 0
\(197\) 15.7045i 1.11890i 0.828864 + 0.559450i \(0.188988\pi\)
−0.828864 + 0.559450i \(0.811012\pi\)
\(198\) 0 0
\(199\) 6.27434 0.444776 0.222388 0.974958i \(-0.428615\pi\)
0.222388 + 0.974958i \(0.428615\pi\)
\(200\) 0 0
\(201\) −4.38075 −0.308994
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 0.853666i − 0.0596226i
\(206\) 0 0
\(207\) −2.42499 −0.168549
\(208\) 0 0
\(209\) −1.22736 −0.0848984
\(210\) 0 0
\(211\) 9.40458i 0.647438i 0.946153 + 0.323719i \(0.104933\pi\)
−0.946153 + 0.323719i \(0.895067\pi\)
\(212\) 0 0
\(213\) − 8.46387i − 0.579935i
\(214\) 0 0
\(215\) −4.73610 −0.322999
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.569448i 0.0384797i
\(220\) 0 0
\(221\) − 10.0717i − 0.677496i
\(222\) 0 0
\(223\) 4.34741 0.291124 0.145562 0.989349i \(-0.453501\pi\)
0.145562 + 0.989349i \(0.453501\pi\)
\(224\) 0 0
\(225\) 7.71279 0.514186
\(226\) 0 0
\(227\) − 7.28203i − 0.483326i −0.970360 0.241663i \(-0.922307\pi\)
0.970360 0.241663i \(-0.0776928\pi\)
\(228\) 0 0
\(229\) 1.02222i 0.0675505i 0.999429 + 0.0337752i \(0.0107530\pi\)
−0.999429 + 0.0337752i \(0.989247\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0661 −1.44560 −0.722800 0.691058i \(-0.757145\pi\)
−0.722800 + 0.691058i \(0.757145\pi\)
\(234\) 0 0
\(235\) 22.6720i 1.47896i
\(236\) 0 0
\(237\) − 1.49383i − 0.0970349i
\(238\) 0 0
\(239\) −4.80475 −0.310794 −0.155397 0.987852i \(-0.549666\pi\)
−0.155397 + 0.987852i \(0.549666\pi\)
\(240\) 0 0
\(241\) −23.7688 −1.53108 −0.765542 0.643386i \(-0.777529\pi\)
−0.765542 + 0.643386i \(0.777529\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.434348 0.0276369
\(248\) 0 0
\(249\) 10.0352 0.635955
\(250\) 0 0
\(251\) 14.0888i 0.889280i 0.895709 + 0.444640i \(0.146668\pi\)
−0.895709 + 0.444640i \(0.853332\pi\)
\(252\) 0 0
\(253\) − 9.87195i − 0.620644i
\(254\) 0 0
\(255\) 24.9268 1.56098
\(256\) 0 0
\(257\) 5.79924 0.361746 0.180873 0.983506i \(-0.442108\pi\)
0.180873 + 0.983506i \(0.442108\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 0.151350i − 0.00936832i
\(262\) 0 0
\(263\) −2.43254 −0.149997 −0.0749983 0.997184i \(-0.523895\pi\)
−0.0749983 + 0.997184i \(0.523895\pi\)
\(264\) 0 0
\(265\) 21.3420 1.31103
\(266\) 0 0
\(267\) − 3.66869i − 0.224520i
\(268\) 0 0
\(269\) 5.75584i 0.350940i 0.984485 + 0.175470i \(0.0561445\pi\)
−0.984485 + 0.175470i \(0.943856\pi\)
\(270\) 0 0
\(271\) 17.0185 1.03380 0.516901 0.856045i \(-0.327086\pi\)
0.516901 + 0.856045i \(0.327086\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 31.3982i 1.89338i
\(276\) 0 0
\(277\) − 22.4704i − 1.35011i −0.737765 0.675057i \(-0.764119\pi\)
0.737765 0.675057i \(-0.235881\pi\)
\(278\) 0 0
\(279\) 4.75438 0.284637
\(280\) 0 0
\(281\) 7.29261 0.435041 0.217520 0.976056i \(-0.430203\pi\)
0.217520 + 0.976056i \(0.430203\pi\)
\(282\) 0 0
\(283\) − 10.6377i − 0.632344i −0.948702 0.316172i \(-0.897602\pi\)
0.948702 0.316172i \(-0.102398\pi\)
\(284\) 0 0
\(285\) 1.07498i 0.0636763i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 31.8755 1.87503
\(290\) 0 0
\(291\) 10.4657i 0.613513i
\(292\) 0 0
\(293\) 26.4432i 1.54483i 0.635120 + 0.772414i \(0.280951\pi\)
−0.635120 + 0.772414i \(0.719049\pi\)
\(294\) 0 0
\(295\) −40.0862 −2.33391
\(296\) 0 0
\(297\) 4.07092 0.236219
\(298\) 0 0
\(299\) 3.49356i 0.202038i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.7337 −0.731532
\(304\) 0 0
\(305\) 15.0084 0.859377
\(306\) 0 0
\(307\) 23.6553i 1.35008i 0.737780 + 0.675041i \(0.235874\pi\)
−0.737780 + 0.675041i \(0.764126\pi\)
\(308\) 0 0
\(309\) 6.00875i 0.341826i
\(310\) 0 0
\(311\) −3.25213 −0.184411 −0.0922056 0.995740i \(-0.529392\pi\)
−0.0922056 + 0.995740i \(0.529392\pi\)
\(312\) 0 0
\(313\) −6.95242 −0.392974 −0.196487 0.980506i \(-0.562953\pi\)
−0.196487 + 0.980506i \(0.562953\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.28507i 0.353005i 0.984300 + 0.176502i \(0.0564783\pi\)
−0.984300 + 0.176502i \(0.943522\pi\)
\(318\) 0 0
\(319\) 0.616133 0.0344968
\(320\) 0 0
\(321\) −15.9659 −0.891132
\(322\) 0 0
\(323\) 2.10778i 0.117280i
\(324\) 0 0
\(325\) − 11.1114i − 0.616350i
\(326\) 0 0
\(327\) 13.8711 0.767072
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 25.3553i 1.39365i 0.717239 + 0.696827i \(0.245406\pi\)
−0.717239 + 0.696827i \(0.754594\pi\)
\(332\) 0 0
\(333\) − 11.3431i − 0.621596i
\(334\) 0 0
\(335\) −15.6196 −0.853388
\(336\) 0 0
\(337\) −18.0761 −0.984668 −0.492334 0.870406i \(-0.663856\pi\)
−0.492334 + 0.870406i \(0.663856\pi\)
\(338\) 0 0
\(339\) 16.4495i 0.893413i
\(340\) 0 0
\(341\) 19.3547i 1.04812i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.64631 −0.465501
\(346\) 0 0
\(347\) 7.46130i 0.400543i 0.979740 + 0.200272i \(0.0641825\pi\)
−0.979740 + 0.200272i \(0.935818\pi\)
\(348\) 0 0
\(349\) − 23.2053i − 1.24215i −0.783750 0.621077i \(-0.786695\pi\)
0.783750 0.621077i \(-0.213305\pi\)
\(350\) 0 0
\(351\) −1.44065 −0.0768960
\(352\) 0 0
\(353\) 4.29061 0.228366 0.114183 0.993460i \(-0.463575\pi\)
0.114183 + 0.993460i \(0.463575\pi\)
\(354\) 0 0
\(355\) − 30.1779i − 1.60168i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.01411 −0.317413 −0.158706 0.987326i \(-0.550732\pi\)
−0.158706 + 0.987326i \(0.550732\pi\)
\(360\) 0 0
\(361\) 18.9091 0.995216
\(362\) 0 0
\(363\) 5.57239i 0.292475i
\(364\) 0 0
\(365\) 2.03037i 0.106274i
\(366\) 0 0
\(367\) −15.5739 −0.812949 −0.406475 0.913662i \(-0.633242\pi\)
−0.406475 + 0.913662i \(0.633242\pi\)
\(368\) 0 0
\(369\) −0.239424 −0.0124639
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.3685i 0.588641i 0.955707 + 0.294320i \(0.0950933\pi\)
−0.955707 + 0.294320i \(0.904907\pi\)
\(374\) 0 0
\(375\) 9.67245 0.499483
\(376\) 0 0
\(377\) −0.218042 −0.0112297
\(378\) 0 0
\(379\) 31.9644i 1.64190i 0.571000 + 0.820950i \(0.306556\pi\)
−0.571000 + 0.820950i \(0.693444\pi\)
\(380\) 0 0
\(381\) − 3.33297i − 0.170753i
\(382\) 0 0
\(383\) −9.50448 −0.485656 −0.242828 0.970069i \(-0.578075\pi\)
−0.242828 + 0.970069i \(0.578075\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.32831i 0.0675219i
\(388\) 0 0
\(389\) 11.3605i 0.575998i 0.957631 + 0.287999i \(0.0929901\pi\)
−0.957631 + 0.287999i \(0.907010\pi\)
\(390\) 0 0
\(391\) −16.9534 −0.857368
\(392\) 0 0
\(393\) 4.08867 0.206246
\(394\) 0 0
\(395\) − 5.32626i − 0.267993i
\(396\) 0 0
\(397\) − 21.5933i − 1.08374i −0.840463 0.541868i \(-0.817717\pi\)
0.840463 0.541868i \(-0.182283\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.2459 1.41053 0.705267 0.708942i \(-0.250827\pi\)
0.705267 + 0.708942i \(0.250827\pi\)
\(402\) 0 0
\(403\) − 6.84938i − 0.341192i
\(404\) 0 0
\(405\) − 3.56550i − 0.177171i
\(406\) 0 0
\(407\) 46.1767 2.28889
\(408\) 0 0
\(409\) −13.4892 −0.666996 −0.333498 0.942751i \(-0.608229\pi\)
−0.333498 + 0.942751i \(0.608229\pi\)
\(410\) 0 0
\(411\) − 8.28737i − 0.408786i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 35.7805 1.75640
\(416\) 0 0
\(417\) −18.4180 −0.901932
\(418\) 0 0
\(419\) − 25.0575i − 1.22414i −0.790804 0.612069i \(-0.790337\pi\)
0.790804 0.612069i \(-0.209663\pi\)
\(420\) 0 0
\(421\) − 23.0346i − 1.12264i −0.827600 0.561318i \(-0.810294\pi\)
0.827600 0.561318i \(-0.189706\pi\)
\(422\) 0 0
\(423\) 6.35872 0.309172
\(424\) 0 0
\(425\) 53.9209 2.61555
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 5.86476i − 0.283153i
\(430\) 0 0
\(431\) −0.185856 −0.00895238 −0.00447619 0.999990i \(-0.501425\pi\)
−0.00447619 + 0.999990i \(0.501425\pi\)
\(432\) 0 0
\(433\) −34.7454 −1.66976 −0.834878 0.550435i \(-0.814462\pi\)
−0.834878 + 0.550435i \(0.814462\pi\)
\(434\) 0 0
\(435\) − 0.539638i − 0.0258737i
\(436\) 0 0
\(437\) − 0.731123i − 0.0349743i
\(438\) 0 0
\(439\) −27.1781 −1.29714 −0.648570 0.761155i \(-0.724632\pi\)
−0.648570 + 0.761155i \(0.724632\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.96868i 0.188558i 0.995546 + 0.0942789i \(0.0300545\pi\)
−0.995546 + 0.0942789i \(0.969945\pi\)
\(444\) 0 0
\(445\) − 13.0807i − 0.620085i
\(446\) 0 0
\(447\) −5.11203 −0.241791
\(448\) 0 0
\(449\) −12.1637 −0.574040 −0.287020 0.957925i \(-0.592665\pi\)
−0.287020 + 0.957925i \(0.592665\pi\)
\(450\) 0 0
\(451\) − 0.974675i − 0.0458957i
\(452\) 0 0
\(453\) − 4.17126i − 0.195983i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.7582 1.20492 0.602459 0.798150i \(-0.294188\pi\)
0.602459 + 0.798150i \(0.294188\pi\)
\(458\) 0 0
\(459\) − 6.99110i − 0.326317i
\(460\) 0 0
\(461\) − 17.0423i − 0.793737i −0.917875 0.396868i \(-0.870097\pi\)
0.917875 0.396868i \(-0.129903\pi\)
\(462\) 0 0
\(463\) −34.1343 −1.58635 −0.793177 0.608991i \(-0.791574\pi\)
−0.793177 + 0.608991i \(0.791574\pi\)
\(464\) 0 0
\(465\) 16.9517 0.786118
\(466\) 0 0
\(467\) − 16.2743i − 0.753085i −0.926399 0.376543i \(-0.877113\pi\)
0.926399 0.376543i \(-0.122887\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −9.04875 −0.416944
\(472\) 0 0
\(473\) −5.40746 −0.248635
\(474\) 0 0
\(475\) 2.32537i 0.106695i
\(476\) 0 0
\(477\) − 5.98569i − 0.274066i
\(478\) 0 0
\(479\) −20.0091 −0.914239 −0.457119 0.889405i \(-0.651119\pi\)
−0.457119 + 0.889405i \(0.651119\pi\)
\(480\) 0 0
\(481\) −16.3413 −0.745101
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 37.3156i 1.69442i
\(486\) 0 0
\(487\) −16.5578 −0.750304 −0.375152 0.926963i \(-0.622410\pi\)
−0.375152 + 0.926963i \(0.622410\pi\)
\(488\) 0 0
\(489\) 13.4512 0.608284
\(490\) 0 0
\(491\) 9.49257i 0.428394i 0.976791 + 0.214197i \(0.0687134\pi\)
−0.976791 + 0.214197i \(0.931287\pi\)
\(492\) 0 0
\(493\) − 1.05810i − 0.0476545i
\(494\) 0 0
\(495\) 14.5149 0.652395
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 34.2301i − 1.53235i −0.642633 0.766174i \(-0.722158\pi\)
0.642633 0.766174i \(-0.277842\pi\)
\(500\) 0 0
\(501\) − 17.2099i − 0.768883i
\(502\) 0 0
\(503\) −21.0469 −0.938436 −0.469218 0.883082i \(-0.655464\pi\)
−0.469218 + 0.883082i \(0.655464\pi\)
\(504\) 0 0
\(505\) −45.4020 −2.02036
\(506\) 0 0
\(507\) − 10.9245i − 0.485176i
\(508\) 0 0
\(509\) 15.0455i 0.666881i 0.942771 + 0.333440i \(0.108210\pi\)
−0.942771 + 0.333440i \(0.891790\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.301495 0.0133113
\(514\) 0 0
\(515\) 21.4242i 0.944063i
\(516\) 0 0
\(517\) 25.8858i 1.13846i
\(518\) 0 0
\(519\) 3.44940 0.151412
\(520\) 0 0
\(521\) 8.97913 0.393383 0.196691 0.980465i \(-0.436980\pi\)
0.196691 + 0.980465i \(0.436980\pi\)
\(522\) 0 0
\(523\) − 9.87353i − 0.431739i −0.976422 0.215870i \(-0.930741\pi\)
0.976422 0.215870i \(-0.0692586\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 33.2384 1.44789
\(528\) 0 0
\(529\) −17.1194 −0.744323
\(530\) 0 0
\(531\) 11.2428i 0.487896i
\(532\) 0 0
\(533\) 0.344925i 0.0149404i
\(534\) 0 0
\(535\) −56.9266 −2.46115
\(536\) 0 0
\(537\) −11.3017 −0.487703
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 19.7815i − 0.850475i −0.905082 0.425237i \(-0.860191\pi\)
0.905082 0.425237i \(-0.139809\pi\)
\(542\) 0 0
\(543\) 10.0566 0.431570
\(544\) 0 0
\(545\) 49.4573 2.11852
\(546\) 0 0
\(547\) − 39.3961i − 1.68446i −0.539122 0.842228i \(-0.681244\pi\)
0.539122 0.842228i \(-0.318756\pi\)
\(548\) 0 0
\(549\) − 4.20933i − 0.179650i
\(550\) 0 0
\(551\) 0.0456312 0.00194395
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) − 40.4437i − 1.71674i
\(556\) 0 0
\(557\) 6.75051i 0.286028i 0.989721 + 0.143014i \(0.0456794\pi\)
−0.989721 + 0.143014i \(0.954321\pi\)
\(558\) 0 0
\(559\) 1.91363 0.0809379
\(560\) 0 0
\(561\) 28.4602 1.20159
\(562\) 0 0
\(563\) 28.9861i 1.22162i 0.791778 + 0.610809i \(0.209156\pi\)
−0.791778 + 0.610809i \(0.790844\pi\)
\(564\) 0 0
\(565\) 58.6506i 2.46745i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −39.9668 −1.67550 −0.837748 0.546057i \(-0.816128\pi\)
−0.837748 + 0.546057i \(0.816128\pi\)
\(570\) 0 0
\(571\) 8.09846i 0.338910i 0.985538 + 0.169455i \(0.0542007\pi\)
−0.985538 + 0.169455i \(0.945799\pi\)
\(572\) 0 0
\(573\) 21.4860i 0.897592i
\(574\) 0 0
\(575\) −18.7034 −0.779988
\(576\) 0 0
\(577\) −47.5222 −1.97838 −0.989188 0.146653i \(-0.953150\pi\)
−0.989188 + 0.146653i \(0.953150\pi\)
\(578\) 0 0
\(579\) 16.4160i 0.682224i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 24.3673 1.00919
\(584\) 0 0
\(585\) −5.13663 −0.212373
\(586\) 0 0
\(587\) − 11.8785i − 0.490279i −0.969488 0.245140i \(-0.921166\pi\)
0.969488 0.245140i \(-0.0788338\pi\)
\(588\) 0 0
\(589\) 1.43342i 0.0590631i
\(590\) 0 0
\(591\) 15.7045 0.645997
\(592\) 0 0
\(593\) −32.2320 −1.32361 −0.661806 0.749675i \(-0.730210\pi\)
−0.661806 + 0.749675i \(0.730210\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 6.27434i − 0.256792i
\(598\) 0 0
\(599\) −39.6855 −1.62150 −0.810752 0.585390i \(-0.800942\pi\)
−0.810752 + 0.585390i \(0.800942\pi\)
\(600\) 0 0
\(601\) −22.3599 −0.912081 −0.456040 0.889959i \(-0.650733\pi\)
−0.456040 + 0.889959i \(0.650733\pi\)
\(602\) 0 0
\(603\) 4.38075i 0.178398i
\(604\) 0 0
\(605\) 19.8684i 0.807764i
\(606\) 0 0
\(607\) 14.7751 0.599704 0.299852 0.953986i \(-0.403063\pi\)
0.299852 + 0.953986i \(0.403063\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 9.16067i − 0.370601i
\(612\) 0 0
\(613\) 26.2641i 1.06080i 0.847749 + 0.530398i \(0.177957\pi\)
−0.847749 + 0.530398i \(0.822043\pi\)
\(614\) 0 0
\(615\) −0.853666 −0.0344231
\(616\) 0 0
\(617\) 33.8882 1.36429 0.682144 0.731218i \(-0.261048\pi\)
0.682144 + 0.731218i \(0.261048\pi\)
\(618\) 0 0
\(619\) 6.05216i 0.243257i 0.992576 + 0.121628i \(0.0388116\pi\)
−0.992576 + 0.121628i \(0.961188\pi\)
\(620\) 0 0
\(621\) 2.42499i 0.0973115i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.07682 −0.163073
\(626\) 0 0
\(627\) 1.22736i 0.0490161i
\(628\) 0 0
\(629\) − 79.3005i − 3.16192i
\(630\) 0 0
\(631\) 14.6555 0.583426 0.291713 0.956506i \(-0.405775\pi\)
0.291713 + 0.956506i \(0.405775\pi\)
\(632\) 0 0
\(633\) 9.40458 0.373798
\(634\) 0 0
\(635\) − 11.8837i − 0.471591i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.46387 −0.334826
\(640\) 0 0
\(641\) 15.5498 0.614178 0.307089 0.951681i \(-0.400645\pi\)
0.307089 + 0.951681i \(0.400645\pi\)
\(642\) 0 0
\(643\) 28.3180i 1.11675i 0.829587 + 0.558377i \(0.188576\pi\)
−0.829587 + 0.558377i \(0.811424\pi\)
\(644\) 0 0
\(645\) 4.73610i 0.186484i
\(646\) 0 0
\(647\) 25.8683 1.01699 0.508495 0.861065i \(-0.330202\pi\)
0.508495 + 0.861065i \(0.330202\pi\)
\(648\) 0 0
\(649\) −45.7685 −1.79657
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 28.2649i − 1.10609i −0.833151 0.553045i \(-0.813466\pi\)
0.833151 0.553045i \(-0.186534\pi\)
\(654\) 0 0
\(655\) 14.5781 0.569615
\(656\) 0 0
\(657\) 0.569448 0.0222163
\(658\) 0 0
\(659\) 21.7217i 0.846159i 0.906093 + 0.423079i \(0.139051\pi\)
−0.906093 + 0.423079i \(0.860949\pi\)
\(660\) 0 0
\(661\) − 31.7834i − 1.23623i −0.786087 0.618115i \(-0.787896\pi\)
0.786087 0.618115i \(-0.212104\pi\)
\(662\) 0 0
\(663\) −10.0717 −0.391153
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.367022i 0.0142111i
\(668\) 0 0
\(669\) − 4.34741i − 0.168081i
\(670\) 0 0
\(671\) 17.1359 0.661523
\(672\) 0 0
\(673\) 16.1882 0.624009 0.312004 0.950081i \(-0.399000\pi\)
0.312004 + 0.950081i \(0.399000\pi\)
\(674\) 0 0
\(675\) − 7.71279i − 0.296865i
\(676\) 0 0
\(677\) 23.8876i 0.918077i 0.888416 + 0.459038i \(0.151806\pi\)
−0.888416 + 0.459038i \(0.848194\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.28203 −0.279048
\(682\) 0 0
\(683\) 25.2315i 0.965456i 0.875770 + 0.482728i \(0.160354\pi\)
−0.875770 + 0.482728i \(0.839646\pi\)
\(684\) 0 0
\(685\) − 29.5486i − 1.12899i
\(686\) 0 0
\(687\) 1.02222 0.0390003
\(688\) 0 0
\(689\) −8.62327 −0.328520
\(690\) 0 0
\(691\) 15.9452i 0.606584i 0.952898 + 0.303292i \(0.0980857\pi\)
−0.952898 + 0.303292i \(0.901914\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −65.6693 −2.49098
\(696\) 0 0
\(697\) −1.67384 −0.0634011
\(698\) 0 0
\(699\) 22.0661i 0.834617i
\(700\) 0 0
\(701\) − 46.5568i − 1.75842i −0.476430 0.879212i \(-0.658069\pi\)
0.476430 0.879212i \(-0.341931\pi\)
\(702\) 0 0
\(703\) 3.41988 0.128983
\(704\) 0 0
\(705\) 22.6720 0.853877
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.40547i 0.203007i 0.994835 + 0.101503i \(0.0323653\pi\)
−0.994835 + 0.101503i \(0.967635\pi\)
\(710\) 0 0
\(711\) −1.49383 −0.0560231
\(712\) 0 0
\(713\) −11.5293 −0.431777
\(714\) 0 0
\(715\) − 20.9108i − 0.782019i
\(716\) 0 0
\(717\) 4.80475i 0.179437i
\(718\) 0 0
\(719\) 19.4807 0.726508 0.363254 0.931690i \(-0.381666\pi\)
0.363254 + 0.931690i \(0.381666\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 23.7688i 0.883972i
\(724\) 0 0
\(725\) − 1.16733i − 0.0433535i
\(726\) 0 0
\(727\) 22.4025 0.830864 0.415432 0.909624i \(-0.363630\pi\)
0.415432 + 0.909624i \(0.363630\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 9.28637i 0.343469i
\(732\) 0 0
\(733\) − 46.5412i − 1.71904i −0.511103 0.859520i \(-0.670763\pi\)
0.511103 0.859520i \(-0.329237\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.8337 −0.656912
\(738\) 0 0
\(739\) − 31.9417i − 1.17499i −0.809226 0.587497i \(-0.800113\pi\)
0.809226 0.587497i \(-0.199887\pi\)
\(740\) 0 0
\(741\) − 0.434348i − 0.0159562i
\(742\) 0 0
\(743\) −14.3888 −0.527874 −0.263937 0.964540i \(-0.585021\pi\)
−0.263937 + 0.964540i \(0.585021\pi\)
\(744\) 0 0
\(745\) −18.2269 −0.667784
\(746\) 0 0
\(747\) − 10.0352i − 0.367169i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 30.3137 1.10616 0.553080 0.833128i \(-0.313452\pi\)
0.553080 + 0.833128i \(0.313452\pi\)
\(752\) 0 0
\(753\) 14.0888 0.513426
\(754\) 0 0
\(755\) − 14.8726i − 0.541270i
\(756\) 0 0
\(757\) 51.0353i 1.85491i 0.373937 + 0.927454i \(0.378007\pi\)
−0.373937 + 0.927454i \(0.621993\pi\)
\(758\) 0 0
\(759\) −9.87195 −0.358329
\(760\) 0 0
\(761\) −30.2111 −1.09515 −0.547576 0.836756i \(-0.684449\pi\)
−0.547576 + 0.836756i \(0.684449\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) − 24.9268i − 0.901229i
\(766\) 0 0
\(767\) 16.1969 0.584836
\(768\) 0 0
\(769\) −4.26448 −0.153781 −0.0768906 0.997040i \(-0.524499\pi\)
−0.0768906 + 0.997040i \(0.524499\pi\)
\(770\) 0 0
\(771\) − 5.79924i − 0.208854i
\(772\) 0 0
\(773\) 5.39018i 0.193871i 0.995291 + 0.0969357i \(0.0309041\pi\)
−0.995291 + 0.0969357i \(0.969096\pi\)
\(774\) 0 0
\(775\) 36.6695 1.31721
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 0.0721851i − 0.00258630i
\(780\) 0 0
\(781\) − 34.4557i − 1.23292i
\(782\) 0 0
\(783\) −0.151350 −0.00540880
\(784\) 0 0
\(785\) −32.2633 −1.15153
\(786\) 0 0
\(787\) − 6.19873i − 0.220961i −0.993878 0.110480i \(-0.964761\pi\)
0.993878 0.110480i \(-0.0352390\pi\)
\(788\) 0 0
\(789\) 2.43254i 0.0866006i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.06416 −0.215345
\(794\) 0 0
\(795\) − 21.3420i − 0.756922i
\(796\) 0 0
\(797\) − 2.24353i − 0.0794699i −0.999210 0.0397349i \(-0.987349\pi\)
0.999210 0.0397349i \(-0.0126514\pi\)
\(798\) 0 0
\(799\) 44.4545 1.57269
\(800\) 0 0
\(801\) −3.66869 −0.129627
\(802\) 0 0
\(803\) 2.31818i 0.0818067i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.75584 0.202615
\(808\) 0 0
\(809\) −15.3369 −0.539216 −0.269608 0.962970i \(-0.586894\pi\)
−0.269608 + 0.962970i \(0.586894\pi\)
\(810\) 0 0
\(811\) − 15.1509i − 0.532019i −0.963970 0.266010i \(-0.914295\pi\)
0.963970 0.266010i \(-0.0857053\pi\)
\(812\) 0 0
\(813\) − 17.0185i − 0.596866i
\(814\) 0 0
\(815\) 47.9602 1.67997
\(816\) 0 0
\(817\) −0.400480 −0.0140110
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1.63526i − 0.0570710i −0.999593 0.0285355i \(-0.990916\pi\)
0.999593 0.0285355i \(-0.00908437\pi\)
\(822\) 0 0
\(823\) −45.0135 −1.56907 −0.784535 0.620084i \(-0.787098\pi\)
−0.784535 + 0.620084i \(0.787098\pi\)
\(824\) 0 0
\(825\) 31.3982 1.09314
\(826\) 0 0
\(827\) − 42.4945i − 1.47768i −0.673882 0.738839i \(-0.735374\pi\)
0.673882 0.738839i \(-0.264626\pi\)
\(828\) 0 0
\(829\) 45.7456i 1.58881i 0.607388 + 0.794405i \(0.292217\pi\)
−0.607388 + 0.794405i \(0.707783\pi\)
\(830\) 0 0
\(831\) −22.4704 −0.779489
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 61.3620i − 2.12352i
\(836\) 0 0
\(837\) − 4.75438i − 0.164335i
\(838\) 0 0
\(839\) 30.4207 1.05024 0.525120 0.851028i \(-0.324020\pi\)
0.525120 + 0.851028i \(0.324020\pi\)
\(840\) 0 0
\(841\) 28.9771 0.999210
\(842\) 0 0
\(843\) − 7.29261i − 0.251171i
\(844\) 0 0
\(845\) − 38.9514i − 1.33997i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10.6377 −0.365084
\(850\) 0 0
\(851\) 27.5068i 0.942922i
\(852\) 0 0
\(853\) 0.386158i 0.0132218i 0.999978 + 0.00661090i \(0.00210433\pi\)
−0.999978 + 0.00661090i \(0.997896\pi\)
\(854\) 0 0
\(855\) 1.07498 0.0367635
\(856\) 0 0
\(857\) 26.3234 0.899190 0.449595 0.893233i \(-0.351568\pi\)
0.449595 + 0.893233i \(0.351568\pi\)
\(858\) 0 0
\(859\) − 23.2753i − 0.794144i −0.917787 0.397072i \(-0.870026\pi\)
0.917787 0.397072i \(-0.129974\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.5123 −0.562084 −0.281042 0.959695i \(-0.590680\pi\)
−0.281042 + 0.959695i \(0.590680\pi\)
\(864\) 0 0
\(865\) 12.2988 0.418172
\(866\) 0 0
\(867\) − 31.8755i − 1.08255i
\(868\) 0 0
\(869\) − 6.08128i − 0.206293i
\(870\) 0 0
\(871\) 6.31111 0.213844
\(872\) 0 0
\(873\) 10.4657 0.354212
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 28.6736i − 0.968237i −0.875002 0.484119i \(-0.839140\pi\)
0.875002 0.484119i \(-0.160860\pi\)
\(878\) 0 0
\(879\) 26.4432 0.891907
\(880\) 0 0
\(881\) −5.88181 −0.198163 −0.0990816 0.995079i \(-0.531590\pi\)
−0.0990816 + 0.995079i \(0.531590\pi\)
\(882\) 0 0
\(883\) 1.69703i 0.0571095i 0.999592 + 0.0285548i \(0.00909050\pi\)
−0.999592 + 0.0285548i \(0.990910\pi\)
\(884\) 0 0
\(885\) 40.0862i 1.34748i
\(886\) 0 0
\(887\) −57.7245 −1.93820 −0.969099 0.246672i \(-0.920663\pi\)
−0.969099 + 0.246672i \(0.920663\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 4.07092i − 0.136381i
\(892\) 0 0
\(893\) 1.91712i 0.0641540i
\(894\) 0 0
\(895\) −40.2961 −1.34695
\(896\) 0 0
\(897\) 3.49356 0.116646
\(898\) 0 0
\(899\) − 0.719575i − 0.0239992i
\(900\) 0 0
\(901\) − 41.8466i − 1.39411i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 35.8568 1.19192
\(906\) 0 0
\(907\) − 45.3277i − 1.50508i −0.658546 0.752540i \(-0.728828\pi\)
0.658546 0.752540i \(-0.271172\pi\)
\(908\) 0 0
\(909\) 12.7337i 0.422350i
\(910\) 0 0
\(911\) 26.4254 0.875511 0.437755 0.899094i \(-0.355774\pi\)
0.437755 + 0.899094i \(0.355774\pi\)
\(912\) 0 0
\(913\) 40.8525 1.35202
\(914\) 0 0
\(915\) − 15.0084i − 0.496162i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0.300665 0.00991803 0.00495901 0.999988i \(-0.498421\pi\)
0.00495901 + 0.999988i \(0.498421\pi\)
\(920\) 0 0
\(921\) 23.6553 0.779470
\(922\) 0 0
\(923\) 12.1934i 0.401352i
\(924\) 0 0
\(925\) − 87.4867i − 2.87654i
\(926\) 0 0
\(927\) 6.00875 0.197353
\(928\) 0 0
\(929\) 38.6666 1.26861 0.634304 0.773084i \(-0.281287\pi\)
0.634304 + 0.773084i \(0.281287\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.25213i 0.106470i
\(934\) 0 0
\(935\) 101.475 3.31858
\(936\) 0 0
\(937\) −23.9292 −0.781734 −0.390867 0.920447i \(-0.627825\pi\)
−0.390867 + 0.920447i \(0.627825\pi\)
\(938\) 0 0
\(939\) 6.95242i 0.226884i
\(940\) 0 0
\(941\) 42.4067i 1.38242i 0.722654 + 0.691210i \(0.242922\pi\)
−0.722654 + 0.691210i \(0.757078\pi\)
\(942\) 0 0
\(943\) 0.580601 0.0189070
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 13.7810i − 0.447823i −0.974609 0.223911i \(-0.928117\pi\)
0.974609 0.223911i \(-0.0718826\pi\)
\(948\) 0 0
\(949\) − 0.820373i − 0.0266304i
\(950\) 0 0
\(951\) 6.28507 0.203807
\(952\) 0 0
\(953\) 57.0092 1.84671 0.923354 0.383950i \(-0.125436\pi\)
0.923354 + 0.383950i \(0.125436\pi\)
\(954\) 0 0
\(955\) 76.6085i 2.47899i
\(956\) 0 0
\(957\) − 0.616133i − 0.0199168i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −8.39587 −0.270834
\(962\) 0 0
\(963\) 15.9659i 0.514495i
\(964\) 0 0
\(965\) 58.5311i 1.88418i
\(966\) 0 0
\(967\) 20.0555 0.644941 0.322470 0.946580i \(-0.395487\pi\)
0.322470 + 0.946580i \(0.395487\pi\)
\(968\) 0 0
\(969\) 2.10778 0.0677117
\(970\) 0 0
\(971\) 1.13107i 0.0362977i 0.999835 + 0.0181488i \(0.00577727\pi\)
−0.999835 + 0.0181488i \(0.994223\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −11.1114 −0.355850
\(976\) 0 0
\(977\) −31.0067 −0.991991 −0.495996 0.868325i \(-0.665197\pi\)
−0.495996 + 0.868325i \(0.665197\pi\)
\(978\) 0 0
\(979\) − 14.9349i − 0.477323i
\(980\) 0 0
\(981\) − 13.8711i − 0.442869i
\(982\) 0 0
\(983\) −9.18804 −0.293053 −0.146527 0.989207i \(-0.546809\pi\)
−0.146527 + 0.989207i \(0.546809\pi\)
\(984\) 0 0
\(985\) 55.9944 1.78413
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 3.22115i − 0.102427i
\(990\) 0 0
\(991\) −40.0550 −1.27239 −0.636194 0.771529i \(-0.719492\pi\)
−0.636194 + 0.771529i \(0.719492\pi\)
\(992\) 0 0
\(993\) 25.3553 0.804627
\(994\) 0 0
\(995\) − 22.3712i − 0.709214i
\(996\) 0 0
\(997\) − 26.0861i − 0.826154i −0.910696 0.413077i \(-0.864454\pi\)
0.910696 0.413077i \(-0.135546\pi\)
\(998\) 0 0
\(999\) −11.3431 −0.358879
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4704.2.c.f.2353.1 16
4.3 odd 2 1176.2.c.f.589.2 16
7.3 odd 6 672.2.bk.a.625.9 32
7.5 odd 6 672.2.bk.a.529.8 32
7.6 odd 2 4704.2.c.e.2353.16 16
8.3 odd 2 1176.2.c.f.589.1 16
8.5 even 2 inner 4704.2.c.f.2353.16 16
21.5 even 6 2016.2.cr.e.1873.2 32
21.17 even 6 2016.2.cr.e.1297.15 32
28.3 even 6 168.2.bc.a.37.10 32
28.19 even 6 168.2.bc.a.109.12 yes 32
28.27 even 2 1176.2.c.e.589.2 16
56.3 even 6 168.2.bc.a.37.12 yes 32
56.5 odd 6 672.2.bk.a.529.9 32
56.13 odd 2 4704.2.c.e.2353.1 16
56.19 even 6 168.2.bc.a.109.10 yes 32
56.27 even 2 1176.2.c.e.589.1 16
56.45 odd 6 672.2.bk.a.625.8 32
84.47 odd 6 504.2.cj.e.109.5 32
84.59 odd 6 504.2.cj.e.37.7 32
168.5 even 6 2016.2.cr.e.1873.15 32
168.59 odd 6 504.2.cj.e.37.5 32
168.101 even 6 2016.2.cr.e.1297.2 32
168.131 odd 6 504.2.cj.e.109.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.bc.a.37.10 32 28.3 even 6
168.2.bc.a.37.12 yes 32 56.3 even 6
168.2.bc.a.109.10 yes 32 56.19 even 6
168.2.bc.a.109.12 yes 32 28.19 even 6
504.2.cj.e.37.5 32 168.59 odd 6
504.2.cj.e.37.7 32 84.59 odd 6
504.2.cj.e.109.5 32 84.47 odd 6
504.2.cj.e.109.7 32 168.131 odd 6
672.2.bk.a.529.8 32 7.5 odd 6
672.2.bk.a.529.9 32 56.5 odd 6
672.2.bk.a.625.8 32 56.45 odd 6
672.2.bk.a.625.9 32 7.3 odd 6
1176.2.c.e.589.1 16 56.27 even 2
1176.2.c.e.589.2 16 28.27 even 2
1176.2.c.f.589.1 16 8.3 odd 2
1176.2.c.f.589.2 16 4.3 odd 2
2016.2.cr.e.1297.2 32 168.101 even 6
2016.2.cr.e.1297.15 32 21.17 even 6
2016.2.cr.e.1873.2 32 21.5 even 6
2016.2.cr.e.1873.15 32 168.5 even 6
4704.2.c.e.2353.1 16 56.13 odd 2
4704.2.c.e.2353.16 16 7.6 odd 2
4704.2.c.f.2353.1 16 1.1 even 1 trivial
4704.2.c.f.2353.16 16 8.5 even 2 inner