Properties

Label 504.2.cj.e.37.7
Level $504$
Weight $2$
Character 504.37
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(37,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 504.37
Dual form 504.2.cj.e.109.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.491996 + 1.32587i) q^{2} +(-1.51588 - 1.30465i) q^{4} +(3.08781 + 1.78275i) q^{5} +(-2.38336 + 1.14873i) q^{7} +(2.47560 - 1.36799i) q^{8} +O(q^{10})\) \(q+(-0.491996 + 1.32587i) q^{2} +(-1.51588 - 1.30465i) q^{4} +(3.08781 + 1.78275i) q^{5} +(-2.38336 + 1.14873i) q^{7} +(2.47560 - 1.36799i) q^{8} +(-3.88289 + 3.21694i) q^{10} +(-3.52552 + 2.03546i) q^{11} -1.44065i q^{13} +(-0.350472 - 3.72521i) q^{14} +(0.595789 + 3.95538i) q^{16} +(3.49555 + 6.05447i) q^{17} +(0.261102 + 0.150747i) q^{19} +(-2.35490 - 6.73095i) q^{20} +(-0.964222 - 5.67583i) q^{22} +(-1.21250 + 2.10010i) q^{23} +(3.85640 + 6.67947i) q^{25} +(1.91012 + 0.708792i) q^{26} +(5.11158 + 1.36810i) q^{28} -0.151350i q^{29} +(2.37719 + 4.11741i) q^{31} +(-5.53746 - 1.15609i) q^{32} +(-9.74726 + 1.65588i) q^{34} +(-9.40728 - 0.701863i) q^{35} +(-9.82338 - 5.67153i) q^{37} +(-0.328333 + 0.272021i) q^{38} +(10.0830 + 0.189300i) q^{40} +0.239424 q^{41} +1.32831i q^{43} +(7.99983 + 1.51405i) q^{44} +(-2.18793 - 2.64086i) q^{46} +(-3.17936 + 5.50681i) q^{47} +(4.36082 - 5.47569i) q^{49} +(-10.7535 + 1.82682i) q^{50} +(-1.87954 + 2.18385i) q^{52} +(-5.18376 + 2.99285i) q^{53} -14.5149 q^{55} +(-4.32881 + 6.10421i) q^{56} +(0.200671 + 0.0744635i) q^{58} +(9.73654 - 5.62140i) q^{59} +(3.64539 + 2.10467i) q^{61} +(-6.62874 + 1.12610i) q^{62} +(4.25723 - 6.77318i) q^{64} +(2.56831 - 4.44845i) q^{65} +(3.79384 - 2.19037i) q^{67} +(2.60011 - 13.7383i) q^{68} +(5.55892 - 12.1275i) q^{70} +8.46387 q^{71} +(-0.284724 - 0.493156i) q^{73} +(12.3528 - 10.2342i) q^{74} +(-0.199128 - 0.569162i) q^{76} +(6.06439 - 8.90112i) q^{77} +(0.746916 - 1.29370i) q^{79} +(-5.21177 + 13.2756i) q^{80} +(-0.117795 + 0.317446i) q^{82} -10.0352i q^{83} +24.9268i q^{85} +(-1.76117 - 0.653524i) q^{86} +(-5.94331 + 9.86185i) q^{88} +(-1.83434 + 3.17718i) q^{89} +(1.65492 + 3.43358i) q^{91} +(4.57789 - 1.60163i) q^{92} +(-5.73711 - 6.92476i) q^{94} +(0.537490 + 0.930960i) q^{95} +10.4657 q^{97} +(5.11457 + 8.47592i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{2} - 2 q^{4} + 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 2 q^{2} - 2 q^{4} + 16 q^{8} + 6 q^{10} - 22 q^{14} - 10 q^{16} + 40 q^{20} - 12 q^{22} + 8 q^{23} + 16 q^{25} - 6 q^{26} - 26 q^{28} - 24 q^{31} + 8 q^{32} - 24 q^{34} + 26 q^{38} - 6 q^{40} - 20 q^{44} + 16 q^{46} + 24 q^{47} + 8 q^{49} - 52 q^{50} + 44 q^{52} - 64 q^{55} - 40 q^{56} + 34 q^{58} - 100 q^{62} - 20 q^{64} - 16 q^{68} + 38 q^{70} + 80 q^{71} + 8 q^{73} - 10 q^{74} - 32 q^{76} + 8 q^{79} + 56 q^{80} + 22 q^{86} + 50 q^{88} - 64 q^{92} - 48 q^{94} - 24 q^{95} - 48 q^{97} + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.491996 + 1.32587i −0.347893 + 0.937534i
\(3\) 0 0
\(4\) −1.51588 1.30465i −0.757940 0.652324i
\(5\) 3.08781 + 1.78275i 1.38091 + 0.797270i 0.992268 0.124118i \(-0.0396100\pi\)
0.388645 + 0.921388i \(0.372943\pi\)
\(6\) 0 0
\(7\) −2.38336 + 1.14873i −0.900826 + 0.434180i
\(8\) 2.47560 1.36799i 0.875258 0.483656i
\(9\) 0 0
\(10\) −3.88289 + 3.21694i −1.22788 + 1.01729i
\(11\) −3.52552 + 2.03546i −1.06298 + 0.613714i −0.926256 0.376894i \(-0.876992\pi\)
−0.136728 + 0.990609i \(0.543659\pi\)
\(12\) 0 0
\(13\) 1.44065i 0.399564i −0.979840 0.199782i \(-0.935977\pi\)
0.979840 0.199782i \(-0.0640233\pi\)
\(14\) −0.350472 3.72521i −0.0936675 0.995604i
\(15\) 0 0
\(16\) 0.595789 + 3.95538i 0.148947 + 0.988845i
\(17\) 3.49555 + 6.05447i 0.847796 + 1.46843i 0.883171 + 0.469051i \(0.155404\pi\)
−0.0353755 + 0.999374i \(0.511263\pi\)
\(18\) 0 0
\(19\) 0.261102 + 0.150747i 0.0599010 + 0.0345838i 0.529651 0.848215i \(-0.322323\pi\)
−0.469750 + 0.882799i \(0.655656\pi\)
\(20\) −2.35490 6.73095i −0.526571 1.50509i
\(21\) 0 0
\(22\) −0.964222 5.67583i −0.205573 1.21009i
\(23\) −1.21250 + 2.10010i −0.252823 + 0.437902i −0.964302 0.264805i \(-0.914692\pi\)
0.711479 + 0.702707i \(0.248026\pi\)
\(24\) 0 0
\(25\) 3.85640 + 6.67947i 0.771279 + 1.33589i
\(26\) 1.91012 + 0.708792i 0.374604 + 0.139006i
\(27\) 0 0
\(28\) 5.11158 + 1.36810i 0.965999 + 0.258547i
\(29\) 0.151350i 0.0281050i −0.999901 0.0140525i \(-0.995527\pi\)
0.999901 0.0140525i \(-0.00447319\pi\)
\(30\) 0 0
\(31\) 2.37719 + 4.11741i 0.426956 + 0.739509i 0.996601 0.0823815i \(-0.0262526\pi\)
−0.569645 + 0.821891i \(0.692919\pi\)
\(32\) −5.53746 1.15609i −0.978894 0.204370i
\(33\) 0 0
\(34\) −9.74726 + 1.65588i −1.67164 + 0.283982i
\(35\) −9.40728 0.701863i −1.59012 0.118637i
\(36\) 0 0
\(37\) −9.82338 5.67153i −1.61495 0.932394i −0.988199 0.153178i \(-0.951049\pi\)
−0.626755 0.779216i \(-0.715617\pi\)
\(38\) −0.328333 + 0.272021i −0.0532627 + 0.0441277i
\(39\) 0 0
\(40\) 10.0830 + 0.189300i 1.59426 + 0.0299310i
\(41\) 0.239424 0.0373917 0.0186959 0.999825i \(-0.494049\pi\)
0.0186959 + 0.999825i \(0.494049\pi\)
\(42\) 0 0
\(43\) 1.32831i 0.202566i 0.994858 + 0.101283i \(0.0322947\pi\)
−0.994858 + 0.101283i \(0.967705\pi\)
\(44\) 7.99983 + 1.51405i 1.20602 + 0.228251i
\(45\) 0 0
\(46\) −2.18793 2.64086i −0.322593 0.389373i
\(47\) −3.17936 + 5.50681i −0.463757 + 0.803251i −0.999144 0.0413556i \(-0.986832\pi\)
0.535387 + 0.844607i \(0.320166\pi\)
\(48\) 0 0
\(49\) 4.36082 5.47569i 0.622975 0.782242i
\(50\) −10.7535 + 1.82682i −1.52077 + 0.258352i
\(51\) 0 0
\(52\) −1.87954 + 2.18385i −0.260645 + 0.302845i
\(53\) −5.18376 + 2.99285i −0.712045 + 0.411099i −0.811818 0.583911i \(-0.801522\pi\)
0.0997730 + 0.995010i \(0.468188\pi\)
\(54\) 0 0
\(55\) −14.5149 −1.95718
\(56\) −4.32881 + 6.10421i −0.578462 + 0.815710i
\(57\) 0 0
\(58\) 0.200671 + 0.0744635i 0.0263494 + 0.00977753i
\(59\) 9.73654 5.62140i 1.26759 0.731843i 0.293059 0.956094i \(-0.405327\pi\)
0.974531 + 0.224251i \(0.0719936\pi\)
\(60\) 0 0
\(61\) 3.64539 + 2.10467i 0.466744 + 0.269475i 0.714876 0.699251i \(-0.246483\pi\)
−0.248132 + 0.968726i \(0.579817\pi\)
\(62\) −6.62874 + 1.12610i −0.841850 + 0.143015i
\(63\) 0 0
\(64\) 4.25723 6.77318i 0.532154 0.846647i
\(65\) 2.56831 4.44845i 0.318560 0.551762i
\(66\) 0 0
\(67\) 3.79384 2.19037i 0.463491 0.267597i −0.250020 0.968241i \(-0.580437\pi\)
0.713511 + 0.700644i \(0.247104\pi\)
\(68\) 2.60011 13.7383i 0.315310 1.66602i
\(69\) 0 0
\(70\) 5.55892 12.1275i 0.664418 1.44952i
\(71\) 8.46387 1.00448 0.502238 0.864729i \(-0.332510\pi\)
0.502238 + 0.864729i \(0.332510\pi\)
\(72\) 0 0
\(73\) −0.284724 0.493156i −0.0333244 0.0577196i 0.848882 0.528582i \(-0.177276\pi\)
−0.882207 + 0.470863i \(0.843943\pi\)
\(74\) 12.3528 10.2342i 1.43598 1.18970i
\(75\) 0 0
\(76\) −0.199128 0.569162i −0.0228415 0.0652873i
\(77\) 6.06439 8.90112i 0.691101 1.01438i
\(78\) 0 0
\(79\) 0.746916 1.29370i 0.0840347 0.145552i −0.820945 0.571008i \(-0.806553\pi\)
0.904979 + 0.425455i \(0.139886\pi\)
\(80\) −5.21177 + 13.2756i −0.582694 + 1.48426i
\(81\) 0 0
\(82\) −0.117795 + 0.317446i −0.0130083 + 0.0350560i
\(83\) 10.0352i 1.10151i −0.834668 0.550753i \(-0.814340\pi\)
0.834668 0.550753i \(-0.185660\pi\)
\(84\) 0 0
\(85\) 24.9268i 2.70369i
\(86\) −1.76117 0.653524i −0.189912 0.0704713i
\(87\) 0 0
\(88\) −5.94331 + 9.86185i −0.633559 + 1.05128i
\(89\) −1.83434 + 3.17718i −0.194440 + 0.336780i −0.946717 0.322067i \(-0.895622\pi\)
0.752277 + 0.658847i \(0.228956\pi\)
\(90\) 0 0
\(91\) 1.65492 + 3.43358i 0.173483 + 0.359937i
\(92\) 4.57789 1.60163i 0.477278 0.166981i
\(93\) 0 0
\(94\) −5.73711 6.92476i −0.591737 0.714234i
\(95\) 0.537490 + 0.930960i 0.0551453 + 0.0955145i
\(96\) 0 0
\(97\) 10.4657 1.06264 0.531318 0.847173i \(-0.321697\pi\)
0.531318 + 0.847173i \(0.321697\pi\)
\(98\) 5.11457 + 8.47592i 0.516650 + 0.856197i
\(99\) 0 0
\(100\) 2.86852 15.1565i 0.286852 1.51565i
\(101\) −11.0277 + 6.36685i −1.09730 + 0.633526i −0.935510 0.353300i \(-0.885060\pi\)
−0.161789 + 0.986825i \(0.551726\pi\)
\(102\) 0 0
\(103\) 3.00437 5.20373i 0.296030 0.512739i −0.679194 0.733959i \(-0.737671\pi\)
0.975224 + 0.221220i \(0.0710039\pi\)
\(104\) −1.97078 3.56647i −0.193251 0.349721i
\(105\) 0 0
\(106\) −1.41775 8.34548i −0.137704 0.810585i
\(107\) 13.8269 + 7.98297i 1.33670 + 0.771743i 0.986316 0.164864i \(-0.0527186\pi\)
0.350382 + 0.936607i \(0.386052\pi\)
\(108\) 0 0
\(109\) 12.0127 6.93554i 1.15061 0.664304i 0.201573 0.979474i \(-0.435395\pi\)
0.949035 + 0.315170i \(0.102061\pi\)
\(110\) 7.14125 19.2449i 0.680891 1.83493i
\(111\) 0 0
\(112\) −5.96366 8.74270i −0.563513 0.826107i
\(113\) 16.4495 1.54744 0.773719 0.633529i \(-0.218394\pi\)
0.773719 + 0.633529i \(0.218394\pi\)
\(114\) 0 0
\(115\) −7.48792 + 4.32315i −0.698252 + 0.403136i
\(116\) −0.197458 + 0.229428i −0.0183335 + 0.0213019i
\(117\) 0 0
\(118\) 2.66292 + 15.6751i 0.245142 + 1.44301i
\(119\) −15.2861 10.4145i −1.40128 0.954699i
\(120\) 0 0
\(121\) 2.78620 4.82583i 0.253291 0.438712i
\(122\) −4.58404 + 3.79784i −0.415019 + 0.343840i
\(123\) 0 0
\(124\) 1.76824 9.34290i 0.158792 0.839018i
\(125\) 9.67245i 0.865131i
\(126\) 0 0
\(127\) −3.33297 −0.295754 −0.147877 0.989006i \(-0.547244\pi\)
−0.147877 + 0.989006i \(0.547244\pi\)
\(128\) 6.88584 + 8.97693i 0.608628 + 0.793456i
\(129\) 0 0
\(130\) 4.63448 + 5.59387i 0.406471 + 0.490615i
\(131\) 3.54089 + 2.04433i 0.309369 + 0.178614i 0.646644 0.762792i \(-0.276172\pi\)
−0.337275 + 0.941406i \(0.609505\pi\)
\(132\) 0 0
\(133\) −0.795470 0.0593488i −0.0689760 0.00514620i
\(134\) 1.03761 + 6.10780i 0.0896356 + 0.527634i
\(135\) 0 0
\(136\) 16.9360 + 10.2066i 1.45225 + 0.875210i
\(137\) 4.14368 + 7.17707i 0.354019 + 0.613178i 0.986950 0.161030i \(-0.0514816\pi\)
−0.632931 + 0.774208i \(0.718148\pi\)
\(138\) 0 0
\(139\) 18.4180i 1.56219i −0.624411 0.781096i \(-0.714661\pi\)
0.624411 0.781096i \(-0.285339\pi\)
\(140\) 13.3446 + 13.3371i 1.12783 + 1.12719i
\(141\) 0 0
\(142\) −4.16419 + 11.2220i −0.349451 + 0.941731i
\(143\) 2.93238 + 5.07903i 0.245218 + 0.424730i
\(144\) 0 0
\(145\) 0.269819 0.467340i 0.0224072 0.0388105i
\(146\) 0.793945 0.134877i 0.0657074 0.0111625i
\(147\) 0 0
\(148\) 7.49172 + 21.4134i 0.615816 + 1.76017i
\(149\) −4.42715 2.55602i −0.362686 0.209397i 0.307572 0.951525i \(-0.400483\pi\)
−0.670258 + 0.742128i \(0.733817\pi\)
\(150\) 0 0
\(151\) 2.08563 + 3.61242i 0.169726 + 0.293974i 0.938324 0.345758i \(-0.112378\pi\)
−0.768597 + 0.639733i \(0.779045\pi\)
\(152\) 0.852606 + 0.0160070i 0.0691555 + 0.00129834i
\(153\) 0 0
\(154\) 8.81811 + 12.4199i 0.710583 + 1.00083i
\(155\) 16.9517i 1.36160i
\(156\) 0 0
\(157\) 7.83645 4.52438i 0.625417 0.361084i −0.153558 0.988140i \(-0.549073\pi\)
0.778975 + 0.627055i \(0.215740\pi\)
\(158\) 1.34780 + 1.62681i 0.107225 + 0.129422i
\(159\) 0 0
\(160\) −15.0376 13.4417i −1.18883 1.06266i
\(161\) 0.477356 6.39814i 0.0376209 0.504244i
\(162\) 0 0
\(163\) 11.6491 + 6.72560i 0.912426 + 0.526790i 0.881211 0.472723i \(-0.156729\pi\)
0.0312153 + 0.999513i \(0.490062\pi\)
\(164\) −0.362938 0.312364i −0.0283407 0.0243915i
\(165\) 0 0
\(166\) 13.3054 + 4.93728i 1.03270 + 0.383207i
\(167\) −17.2099 −1.33174 −0.665872 0.746066i \(-0.731940\pi\)
−0.665872 + 0.746066i \(0.731940\pi\)
\(168\) 0 0
\(169\) 10.9245 0.840349
\(170\) −33.0497 12.2639i −2.53480 0.940595i
\(171\) 0 0
\(172\) 1.73298 2.01356i 0.132138 0.153533i
\(173\) −2.98726 1.72470i −0.227117 0.131126i 0.382124 0.924111i \(-0.375193\pi\)
−0.609242 + 0.792985i \(0.708526\pi\)
\(174\) 0 0
\(175\) −16.8641 11.4896i −1.27481 0.868534i
\(176\) −10.1515 12.7321i −0.765197 0.959716i
\(177\) 0 0
\(178\) −3.31005 3.99526i −0.248098 0.299458i
\(179\) −9.78752 + 5.65083i −0.731554 + 0.422363i −0.818990 0.573807i \(-0.805466\pi\)
0.0874365 + 0.996170i \(0.472133\pi\)
\(180\) 0 0
\(181\) 10.0566i 0.747502i −0.927529 0.373751i \(-0.878071\pi\)
0.927529 0.373751i \(-0.121929\pi\)
\(182\) −5.36671 + 0.504906i −0.397807 + 0.0374261i
\(183\) 0 0
\(184\) −0.128748 + 6.85770i −0.00949144 + 0.505557i
\(185\) −20.2218 35.0253i −1.48674 2.57511i
\(186\) 0 0
\(187\) −24.6473 14.2301i −1.80239 1.04061i
\(188\) 12.0040 4.19973i 0.875480 0.306297i
\(189\) 0 0
\(190\) −1.49878 + 0.254616i −0.108733 + 0.0184718i
\(191\) 10.7430 18.6075i 0.777338 1.34639i −0.156134 0.987736i \(-0.549903\pi\)
0.933471 0.358652i \(-0.116764\pi\)
\(192\) 0 0
\(193\) 8.20798 + 14.2166i 0.590823 + 1.02334i 0.994122 + 0.108267i \(0.0345302\pi\)
−0.403299 + 0.915068i \(0.632136\pi\)
\(194\) −5.14910 + 13.8763i −0.369684 + 0.996257i
\(195\) 0 0
\(196\) −13.7543 + 2.61116i −0.982453 + 0.186511i
\(197\) 15.7045i 1.11890i −0.828864 0.559450i \(-0.811012\pi\)
0.828864 0.559450i \(-0.188988\pi\)
\(198\) 0 0
\(199\) −3.13717 5.43374i −0.222388 0.385188i 0.733144 0.680073i \(-0.238052\pi\)
−0.955533 + 0.294885i \(0.904719\pi\)
\(200\) 18.6843 + 11.2602i 1.32118 + 0.796219i
\(201\) 0 0
\(202\) −3.01606 17.7538i −0.212209 1.24915i
\(203\) 0.173861 + 0.360721i 0.0122026 + 0.0253177i
\(204\) 0 0
\(205\) 0.739296 + 0.426833i 0.0516347 + 0.0298113i
\(206\) 5.42135 + 6.54363i 0.377723 + 0.455916i
\(207\) 0 0
\(208\) 5.69831 0.858321i 0.395106 0.0595139i
\(209\) −1.22736 −0.0848984
\(210\) 0 0
\(211\) 9.40458i 0.647438i −0.946153 0.323719i \(-0.895067\pi\)
0.946153 0.323719i \(-0.104933\pi\)
\(212\) 11.7626 + 2.22619i 0.807857 + 0.152895i
\(213\) 0 0
\(214\) −17.3872 + 14.4051i −1.18856 + 0.984716i
\(215\) −2.36805 + 4.10158i −0.161500 + 0.279726i
\(216\) 0 0
\(217\) −10.3955 7.08253i −0.705693 0.480793i
\(218\) 3.28545 + 19.3396i 0.222519 + 1.30984i
\(219\) 0 0
\(220\) 22.0028 + 18.9368i 1.48343 + 1.27672i
\(221\) 8.72235 5.03585i 0.586729 0.338748i
\(222\) 0 0
\(223\) 4.34741 0.291124 0.145562 0.989349i \(-0.453501\pi\)
0.145562 + 0.989349i \(0.453501\pi\)
\(224\) 14.5258 3.60569i 0.970546 0.240915i
\(225\) 0 0
\(226\) −8.09307 + 21.8099i −0.538343 + 1.45078i
\(227\) 6.30643 3.64102i 0.418572 0.241663i −0.275894 0.961188i \(-0.588974\pi\)
0.694466 + 0.719525i \(0.255641\pi\)
\(228\) 0 0
\(229\) 0.885272 + 0.511112i 0.0585004 + 0.0337752i 0.528965 0.848644i \(-0.322580\pi\)
−0.470465 + 0.882419i \(0.655914\pi\)
\(230\) −2.04793 12.0550i −0.135037 0.794884i
\(231\) 0 0
\(232\) −0.207044 0.374682i −0.0135931 0.0245991i
\(233\) −11.0331 + 19.1098i −0.722800 + 1.25193i 0.237074 + 0.971492i \(0.423812\pi\)
−0.959873 + 0.280434i \(0.909522\pi\)
\(234\) 0 0
\(235\) −19.6345 + 11.3360i −1.28082 + 0.739480i
\(236\) −22.0934 4.18139i −1.43816 0.272185i
\(237\) 0 0
\(238\) 21.3291 15.1436i 1.38256 0.981612i
\(239\) −4.80475 −0.310794 −0.155397 0.987852i \(-0.549666\pi\)
−0.155397 + 0.987852i \(0.549666\pi\)
\(240\) 0 0
\(241\) −11.8844 20.5844i −0.765542 1.32596i −0.939960 0.341286i \(-0.889138\pi\)
0.174418 0.984672i \(-0.444196\pi\)
\(242\) 5.02765 + 6.06843i 0.323190 + 0.390094i
\(243\) 0 0
\(244\) −2.78013 7.94637i −0.177979 0.508714i
\(245\) 23.2272 9.13366i 1.48393 0.583528i
\(246\) 0 0
\(247\) 0.217174 0.376156i 0.0138184 0.0239342i
\(248\) 11.5175 + 6.94113i 0.731365 + 0.440762i
\(249\) 0 0
\(250\) −12.8244 4.75880i −0.811089 0.300973i
\(251\) 14.0888i 0.889280i −0.895709 0.444640i \(-0.853332\pi\)
0.895709 0.444640i \(-0.146668\pi\)
\(252\) 0 0
\(253\) 9.87195i 0.620644i
\(254\) 1.63981 4.41910i 0.102891 0.277279i
\(255\) 0 0
\(256\) −15.2901 + 4.71314i −0.955629 + 0.294572i
\(257\) −2.89962 + 5.02229i −0.180873 + 0.313282i −0.942178 0.335112i \(-0.891226\pi\)
0.761305 + 0.648394i \(0.224559\pi\)
\(258\) 0 0
\(259\) 29.9277 + 2.23287i 1.85962 + 0.138743i
\(260\) −9.69691 + 3.39257i −0.601377 + 0.210399i
\(261\) 0 0
\(262\) −4.45263 + 3.68897i −0.275084 + 0.227905i
\(263\) 1.21627 + 2.10664i 0.0749983 + 0.129901i 0.901086 0.433641i \(-0.142772\pi\)
−0.826087 + 0.563542i \(0.809438\pi\)
\(264\) 0 0
\(265\) −21.3420 −1.31103
\(266\) 0.470057 1.02549i 0.0288210 0.0628770i
\(267\) 0 0
\(268\) −8.60867 1.62928i −0.525858 0.0995240i
\(269\) 4.98470 2.87792i 0.303923 0.175470i −0.340281 0.940324i \(-0.610522\pi\)
0.644204 + 0.764854i \(0.277189\pi\)
\(270\) 0 0
\(271\) −8.50926 + 14.7385i −0.516901 + 0.895299i 0.482906 + 0.875672i \(0.339581\pi\)
−0.999807 + 0.0196268i \(0.993752\pi\)
\(272\) −21.8651 + 17.4334i −1.32577 + 1.05706i
\(273\) 0 0
\(274\) −11.5546 + 1.96291i −0.698036 + 0.118584i
\(275\) −27.1916 15.6991i −1.63972 0.946690i
\(276\) 0 0
\(277\) −19.4599 + 11.2352i −1.16923 + 0.675057i −0.953499 0.301395i \(-0.902548\pi\)
−0.215734 + 0.976452i \(0.569214\pi\)
\(278\) 24.4199 + 9.06156i 1.46461 + 0.543476i
\(279\) 0 0
\(280\) −24.2488 + 11.1315i −1.44915 + 0.665233i
\(281\) −7.29261 −0.435041 −0.217520 0.976056i \(-0.569797\pi\)
−0.217520 + 0.976056i \(0.569797\pi\)
\(282\) 0 0
\(283\) −9.21249 + 5.31883i −0.547626 + 0.316172i −0.748164 0.663514i \(-0.769064\pi\)
0.200538 + 0.979686i \(0.435731\pi\)
\(284\) −12.8302 11.0424i −0.761333 0.655244i
\(285\) 0 0
\(286\) −8.17687 + 1.38910i −0.483508 + 0.0821394i
\(287\) −0.570633 + 0.275034i −0.0336834 + 0.0162348i
\(288\) 0 0
\(289\) −15.9378 + 27.6050i −0.937515 + 1.62382i
\(290\) 0.486884 + 0.587675i 0.0285908 + 0.0345095i
\(291\) 0 0
\(292\) −0.211788 + 1.11903i −0.0123939 + 0.0654863i
\(293\) 26.4432i 1.54483i 0.635120 + 0.772414i \(0.280951\pi\)
−0.635120 + 0.772414i \(0.719049\pi\)
\(294\) 0 0
\(295\) 40.0862 2.33391
\(296\) −32.0774 0.602228i −1.86446 0.0350038i
\(297\) 0 0
\(298\) 5.56709 4.61229i 0.322493 0.267183i
\(299\) 3.02551 + 1.74678i 0.174970 + 0.101019i
\(300\) 0 0
\(301\) −1.52588 3.16585i −0.0879501 0.182477i
\(302\) −5.81573 + 0.987988i −0.334658 + 0.0568523i
\(303\) 0 0
\(304\) −0.440702 + 1.12257i −0.0252760 + 0.0643839i
\(305\) 7.50419 + 12.9976i 0.429689 + 0.744243i
\(306\) 0 0
\(307\) 23.6553i 1.35008i 0.737780 + 0.675041i \(0.235874\pi\)
−0.737780 + 0.675041i \(0.764126\pi\)
\(308\) −20.8057 + 5.58115i −1.18552 + 0.318015i
\(309\) 0 0
\(310\) −22.4759 8.34018i −1.27654 0.473691i
\(311\) −1.62606 2.81643i −0.0922056 0.159705i 0.816233 0.577722i \(-0.196058\pi\)
−0.908439 + 0.418018i \(0.862725\pi\)
\(312\) 0 0
\(313\) −3.47621 + 6.02097i −0.196487 + 0.340325i −0.947387 0.320091i \(-0.896287\pi\)
0.750900 + 0.660416i \(0.229620\pi\)
\(314\) 2.14325 + 12.6161i 0.120951 + 0.711968i
\(315\) 0 0
\(316\) −2.82006 + 0.986628i −0.158641 + 0.0555022i
\(317\) 5.44303 + 3.14254i 0.305711 + 0.176502i 0.645006 0.764178i \(-0.276855\pi\)
−0.339295 + 0.940680i \(0.610188\pi\)
\(318\) 0 0
\(319\) 0.308067 + 0.533587i 0.0172484 + 0.0298751i
\(320\) 25.2204 13.3247i 1.40986 0.744875i
\(321\) 0 0
\(322\) 8.24827 + 3.78077i 0.459658 + 0.210694i
\(323\) 2.10778i 0.117280i
\(324\) 0 0
\(325\) 9.62276 5.55570i 0.533775 0.308175i
\(326\) −14.6486 + 12.1362i −0.811310 + 0.672164i
\(327\) 0 0
\(328\) 0.592719 0.327528i 0.0327274 0.0180847i
\(329\) 1.25170 16.7770i 0.0690087 0.924944i
\(330\) 0 0
\(331\) 21.9584 + 12.6777i 1.20694 + 0.696827i 0.962090 0.272733i \(-0.0879277\pi\)
0.244851 + 0.969561i \(0.421261\pi\)
\(332\) −13.0924 + 15.2122i −0.718539 + 0.834876i
\(333\) 0 0
\(334\) 8.46721 22.8182i 0.463305 1.24856i
\(335\) 15.6196 0.853388
\(336\) 0 0
\(337\) −18.0761 −0.984668 −0.492334 0.870406i \(-0.663856\pi\)
−0.492334 + 0.870406i \(0.663856\pi\)
\(338\) −5.37482 + 14.4846i −0.292352 + 0.787856i
\(339\) 0 0
\(340\) 32.5207 37.7860i 1.76368 2.04923i
\(341\) −16.7617 9.67735i −0.907695 0.524058i
\(342\) 0 0
\(343\) −4.10331 + 18.0600i −0.221558 + 0.975147i
\(344\) 1.81711 + 3.28838i 0.0979721 + 0.177297i
\(345\) 0 0
\(346\) 3.75645 3.11219i 0.201948 0.167312i
\(347\) 6.46167 3.73065i 0.346881 0.200272i −0.316430 0.948616i \(-0.602484\pi\)
0.663311 + 0.748344i \(0.269151\pi\)
\(348\) 0 0
\(349\) 23.2053i 1.24215i 0.783750 + 0.621077i \(0.213305\pi\)
−0.783750 + 0.621077i \(0.786695\pi\)
\(350\) 23.5309 16.7068i 1.25778 0.893018i
\(351\) 0 0
\(352\) 21.8756 7.19546i 1.16597 0.383519i
\(353\) −2.14531 3.71578i −0.114183 0.197771i 0.803270 0.595615i \(-0.203092\pi\)
−0.917453 + 0.397844i \(0.869758\pi\)
\(354\) 0 0
\(355\) 26.1349 + 15.0890i 1.38709 + 0.800839i
\(356\) 6.92574 2.42305i 0.367064 0.128421i
\(357\) 0 0
\(358\) −2.67687 15.7572i −0.141477 0.832794i
\(359\) 3.00706 5.20837i 0.158706 0.274888i −0.775696 0.631107i \(-0.782601\pi\)
0.934402 + 0.356219i \(0.115934\pi\)
\(360\) 0 0
\(361\) −9.45455 16.3758i −0.497608 0.861882i
\(362\) 13.3338 + 4.94781i 0.700809 + 0.260051i
\(363\) 0 0
\(364\) 1.97095 7.36399i 0.103306 0.385978i
\(365\) 2.03037i 0.106274i
\(366\) 0 0
\(367\) 7.78693 + 13.4874i 0.406475 + 0.704035i 0.994492 0.104814i \(-0.0334246\pi\)
−0.588017 + 0.808848i \(0.700091\pi\)
\(368\) −9.02910 3.54466i −0.470674 0.184778i
\(369\) 0 0
\(370\) 56.3881 9.57933i 2.93148 0.498006i
\(371\) 8.91680 13.0878i 0.462937 0.679485i
\(372\) 0 0
\(373\) −9.84545 5.68427i −0.509778 0.294320i 0.222964 0.974827i \(-0.428427\pi\)
−0.732742 + 0.680506i \(0.761760\pi\)
\(374\) 30.9937 25.6780i 1.60264 1.32778i
\(375\) 0 0
\(376\) −0.337598 + 17.9820i −0.0174103 + 0.927351i
\(377\) −0.218042 −0.0112297
\(378\) 0 0
\(379\) 31.9644i 1.64190i −0.571000 0.820950i \(-0.693444\pi\)
0.571000 0.820950i \(-0.306556\pi\)
\(380\) 0.399804 2.11246i 0.0205095 0.108367i
\(381\) 0 0
\(382\) 19.3856 + 23.3987i 0.991854 + 1.19718i
\(383\) −4.75224 + 8.23112i −0.242828 + 0.420590i −0.961519 0.274739i \(-0.911408\pi\)
0.718691 + 0.695330i \(0.244742\pi\)
\(384\) 0 0
\(385\) 34.5942 16.6737i 1.76308 0.849771i
\(386\) −22.8877 + 3.88822i −1.16496 + 0.197905i
\(387\) 0 0
\(388\) −15.8648 13.6541i −0.805415 0.693183i
\(389\) −9.83845 + 5.68023i −0.498829 + 0.287999i −0.728230 0.685333i \(-0.759657\pi\)
0.229401 + 0.973332i \(0.426323\pi\)
\(390\) 0 0
\(391\) −16.9534 −0.857368
\(392\) 3.30501 19.5212i 0.166928 0.985969i
\(393\) 0 0
\(394\) 20.8222 + 7.72655i 1.04901 + 0.389258i
\(395\) 4.61268 2.66313i 0.232089 0.133997i
\(396\) 0 0
\(397\) −18.7003 10.7967i −0.938544 0.541868i −0.0490401 0.998797i \(-0.515616\pi\)
−0.889503 + 0.456928i \(0.848950\pi\)
\(398\) 8.74793 1.48612i 0.438494 0.0744923i
\(399\) 0 0
\(400\) −24.1223 + 19.2331i −1.20611 + 0.961653i
\(401\) 14.1230 24.4617i 0.705267 1.22156i −0.261329 0.965250i \(-0.584161\pi\)
0.966595 0.256308i \(-0.0825060\pi\)
\(402\) 0 0
\(403\) 5.93174 3.42469i 0.295481 0.170596i
\(404\) 25.0232 + 4.73589i 1.24495 + 0.235619i
\(405\) 0 0
\(406\) −0.563810 + 0.0530438i −0.0279814 + 0.00263252i
\(407\) 46.1767 2.28889
\(408\) 0 0
\(409\) −6.74458 11.6820i −0.333498 0.577635i 0.649697 0.760193i \(-0.274896\pi\)
−0.983195 + 0.182558i \(0.941562\pi\)
\(410\) −0.929657 + 0.770213i −0.0459125 + 0.0380381i
\(411\) 0 0
\(412\) −11.3433 + 3.96858i −0.558845 + 0.195518i
\(413\) −16.7482 + 24.5825i −0.824126 + 1.20963i
\(414\) 0 0
\(415\) 17.8903 30.9868i 0.878198 1.52108i
\(416\) −1.66552 + 7.97752i −0.0816586 + 0.391130i
\(417\) 0 0
\(418\) 0.603857 1.62733i 0.0295356 0.0795951i
\(419\) 25.0575i 1.22414i 0.790804 + 0.612069i \(0.209663\pi\)
−0.790804 + 0.612069i \(0.790337\pi\)
\(420\) 0 0
\(421\) 23.0346i 1.12264i −0.827600 0.561318i \(-0.810294\pi\)
0.827600 0.561318i \(-0.189706\pi\)
\(422\) 12.4693 + 4.62701i 0.606995 + 0.225239i
\(423\) 0 0
\(424\) −8.73878 + 14.5004i −0.424392 + 0.704202i
\(425\) −26.9604 + 46.6969i −1.30777 + 2.26513i
\(426\) 0 0
\(427\) −11.1060 0.828601i −0.537456 0.0400988i
\(428\) −10.5450 30.1405i −0.509711 1.45689i
\(429\) 0 0
\(430\) −4.27311 5.15769i −0.206068 0.248726i
\(431\) 0.0929281 + 0.160956i 0.00447619 + 0.00775299i 0.868255 0.496118i \(-0.165242\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(432\) 0 0
\(433\) 34.7454 1.66976 0.834878 0.550435i \(-0.185538\pi\)
0.834878 + 0.550435i \(0.185538\pi\)
\(434\) 14.5051 10.2986i 0.696266 0.494347i
\(435\) 0 0
\(436\) −27.2583 5.15890i −1.30543 0.247066i
\(437\) −0.633171 + 0.365561i −0.0302887 + 0.0174872i
\(438\) 0 0
\(439\) 13.5890 23.5369i 0.648570 1.12336i −0.334895 0.942255i \(-0.608701\pi\)
0.983465 0.181100i \(-0.0579658\pi\)
\(440\) −35.9331 + 19.8561i −1.71304 + 0.946604i
\(441\) 0 0
\(442\) 2.38555 + 14.0424i 0.113469 + 0.667927i
\(443\) −3.43698 1.98434i −0.163296 0.0942789i 0.416125 0.909307i \(-0.363388\pi\)
−0.579421 + 0.815029i \(0.696721\pi\)
\(444\) 0 0
\(445\) −11.3282 + 6.54035i −0.537009 + 0.310042i
\(446\) −2.13891 + 5.76411i −0.101280 + 0.272939i
\(447\) 0 0
\(448\) −2.36595 + 21.0334i −0.111781 + 0.993733i
\(449\) 12.1637 0.574040 0.287020 0.957925i \(-0.407335\pi\)
0.287020 + 0.957925i \(0.407335\pi\)
\(450\) 0 0
\(451\) −0.844094 + 0.487338i −0.0397468 + 0.0229478i
\(452\) −24.9355 21.4608i −1.17287 1.00943i
\(453\) 0 0
\(454\) 1.72479 + 10.1529i 0.0809486 + 0.476499i
\(455\) −1.01114 + 13.5526i −0.0474028 + 0.635354i
\(456\) 0 0
\(457\) −12.8791 + 22.3072i −0.602459 + 1.04349i 0.389989 + 0.920820i \(0.372479\pi\)
−0.992448 + 0.122670i \(0.960854\pi\)
\(458\) −1.11322 + 0.922294i −0.0520173 + 0.0430960i
\(459\) 0 0
\(460\) 16.9910 + 3.21571i 0.792209 + 0.149933i
\(461\) 17.0423i 0.793737i −0.917875 0.396868i \(-0.870097\pi\)
0.917875 0.396868i \(-0.129903\pi\)
\(462\) 0 0
\(463\) 34.1343 1.58635 0.793177 0.608991i \(-0.208426\pi\)
0.793177 + 0.608991i \(0.208426\pi\)
\(464\) 0.598646 0.0901726i 0.0277915 0.00418616i
\(465\) 0 0
\(466\) −19.9090 24.0304i −0.922266 1.11319i
\(467\) −14.0940 8.13715i −0.652191 0.376543i 0.137104 0.990557i \(-0.456220\pi\)
−0.789295 + 0.614014i \(0.789554\pi\)
\(468\) 0 0
\(469\) −6.52593 + 9.57856i −0.301340 + 0.442297i
\(470\) −5.37000 31.6102i −0.247700 1.45807i
\(471\) 0 0
\(472\) 16.4138 27.2358i 0.755508 1.25363i
\(473\) −2.70373 4.68299i −0.124318 0.215324i
\(474\) 0 0
\(475\) 2.32537i 0.106695i
\(476\) 9.58465 + 35.7302i 0.439312 + 1.63769i
\(477\) 0 0
\(478\) 2.36392 6.37050i 0.108123 0.291380i
\(479\) −10.0045 17.3284i −0.457119 0.791754i 0.541688 0.840580i \(-0.317785\pi\)
−0.998807 + 0.0488257i \(0.984452\pi\)
\(480\) 0 0
\(481\) −8.17067 + 14.1520i −0.372551 + 0.645277i
\(482\) 33.1394 5.62979i 1.50946 0.256430i
\(483\) 0 0
\(484\) −10.5196 + 3.68038i −0.478162 + 0.167290i
\(485\) 32.3163 + 18.6578i 1.46741 + 0.847208i
\(486\) 0 0
\(487\) −8.27889 14.3394i −0.375152 0.649782i 0.615198 0.788373i \(-0.289076\pi\)
−0.990350 + 0.138590i \(0.955743\pi\)
\(488\) 11.9037 + 0.223483i 0.538855 + 0.0101166i
\(489\) 0 0
\(490\) 0.682399 + 35.2901i 0.0308277 + 1.59424i
\(491\) 9.49257i 0.428394i 0.976791 + 0.214197i \(0.0687134\pi\)
−0.976791 + 0.214197i \(0.931287\pi\)
\(492\) 0 0
\(493\) 0.916343 0.529051i 0.0412700 0.0238273i
\(494\) 0.391887 + 0.473012i 0.0176318 + 0.0212818i
\(495\) 0 0
\(496\) −14.8696 + 11.8558i −0.667666 + 0.532341i
\(497\) −20.1725 + 9.72273i −0.904859 + 0.436124i
\(498\) 0 0
\(499\) −29.6441 17.1150i −1.32705 0.766174i −0.342210 0.939624i \(-0.611175\pi\)
−0.984843 + 0.173449i \(0.944509\pi\)
\(500\) 12.6191 14.6623i 0.564345 0.655717i
\(501\) 0 0
\(502\) 18.6800 + 6.93165i 0.833730 + 0.309375i
\(503\) 21.0469 0.938436 0.469218 0.883082i \(-0.344536\pi\)
0.469218 + 0.883082i \(0.344536\pi\)
\(504\) 0 0
\(505\) −45.4020 −2.02036
\(506\) 13.0890 + 4.85695i 0.581875 + 0.215918i
\(507\) 0 0
\(508\) 5.05239 + 4.34836i 0.224164 + 0.192927i
\(509\) −13.0298 7.52276i −0.577536 0.333440i 0.182618 0.983184i \(-0.441543\pi\)
−0.760153 + 0.649744i \(0.774876\pi\)
\(510\) 0 0
\(511\) 1.24510 + 0.848298i 0.0550802 + 0.0375265i
\(512\) 1.27361 22.5915i 0.0562863 0.998415i
\(513\) 0 0
\(514\) −5.23232 6.31547i −0.230788 0.278563i
\(515\) 18.5539 10.7121i 0.817582 0.472031i
\(516\) 0 0
\(517\) 25.8858i 1.13846i
\(518\) −17.6848 + 38.5818i −0.777026 + 1.69519i
\(519\) 0 0
\(520\) 0.272715 14.5260i 0.0119593 0.637008i
\(521\) −4.48956 7.77615i −0.196691 0.340679i 0.750762 0.660572i \(-0.229686\pi\)
−0.947454 + 0.319893i \(0.896353\pi\)
\(522\) 0 0
\(523\) 8.55073 + 4.93677i 0.373897 + 0.215870i 0.675160 0.737672i \(-0.264075\pi\)
−0.301262 + 0.953541i \(0.597408\pi\)
\(524\) −2.70043 7.71858i −0.117969 0.337188i
\(525\) 0 0
\(526\) −3.39153 + 0.576161i −0.147878 + 0.0251218i
\(527\) −16.6192 + 28.7853i −0.723943 + 1.25391i
\(528\) 0 0
\(529\) 8.55971 + 14.8259i 0.372161 + 0.644602i
\(530\) 10.5002 28.2968i 0.456098 1.22913i
\(531\) 0 0
\(532\) 1.12841 + 1.12777i 0.0489227 + 0.0488952i
\(533\) 0.344925i 0.0149404i
\(534\) 0 0
\(535\) 28.4633 + 49.2998i 1.23057 + 2.13142i
\(536\) 6.39564 10.6124i 0.276250 0.458386i
\(537\) 0 0
\(538\) 1.36331 + 8.02501i 0.0587763 + 0.345983i
\(539\) −4.22862 + 28.1810i −0.182139 + 1.21384i
\(540\) 0 0
\(541\) 17.1313 + 9.89077i 0.736533 + 0.425237i 0.820807 0.571205i \(-0.193524\pi\)
−0.0842746 + 0.996443i \(0.526857\pi\)
\(542\) −15.3548 18.5335i −0.659547 0.796081i
\(543\) 0 0
\(544\) −12.3570 37.5676i −0.529800 1.61070i
\(545\) 49.4573 2.11852
\(546\) 0 0
\(547\) 39.3961i 1.68446i 0.539122 + 0.842228i \(0.318756\pi\)
−0.539122 + 0.842228i \(0.681244\pi\)
\(548\) 3.08222 16.2856i 0.131666 0.695687i
\(549\) 0 0
\(550\) 34.1931 28.3287i 1.45800 1.20794i
\(551\) 0.0228156 0.0395178i 0.000971977 0.00168351i
\(552\) 0 0
\(553\) −0.294059 + 3.94136i −0.0125047 + 0.167604i
\(554\) −5.32225 31.3291i −0.226121 1.33104i
\(555\) 0 0
\(556\) −24.0290 + 27.9194i −1.01905 + 1.18405i
\(557\) −5.84611 + 3.37525i −0.247708 + 0.143014i −0.618714 0.785616i \(-0.712346\pi\)
0.371006 + 0.928630i \(0.379013\pi\)
\(558\) 0 0
\(559\) 1.91363 0.0809379
\(560\) −2.82862 37.6275i −0.119531 1.59005i
\(561\) 0 0
\(562\) 3.58793 9.66908i 0.151348 0.407866i
\(563\) −25.1027 + 14.4930i −1.05795 + 0.610809i −0.924865 0.380296i \(-0.875822\pi\)
−0.133087 + 0.991104i \(0.542489\pi\)
\(564\) 0 0
\(565\) 50.7929 + 29.3253i 2.13688 + 1.23373i
\(566\) −2.51960 14.8314i −0.105907 0.623412i
\(567\) 0 0
\(568\) 20.9532 11.5785i 0.879177 0.485821i
\(569\) −19.9834 + 34.6123i −0.837748 + 1.45102i 0.0540248 + 0.998540i \(0.482795\pi\)
−0.891773 + 0.452483i \(0.850538\pi\)
\(570\) 0 0
\(571\) −7.01347 + 4.04923i −0.293505 + 0.169455i −0.639521 0.768773i \(-0.720867\pi\)
0.346017 + 0.938228i \(0.387534\pi\)
\(572\) 2.18121 11.5249i 0.0912008 0.481881i
\(573\) 0 0
\(574\) −0.0839113 0.891903i −0.00350239 0.0372273i
\(575\) −18.7034 −0.779988
\(576\) 0 0
\(577\) −23.7611 41.1555i −0.989188 1.71332i −0.621599 0.783336i \(-0.713517\pi\)
−0.367589 0.929988i \(-0.619817\pi\)
\(578\) −28.7594 34.7130i −1.19623 1.44387i
\(579\) 0 0
\(580\) −1.01873 + 0.356413i −0.0423004 + 0.0147993i
\(581\) 11.5278 + 23.9175i 0.478253 + 0.992266i
\(582\) 0 0
\(583\) 12.1836 21.1027i 0.504595 0.873984i
\(584\) −1.37949 0.831361i −0.0570839 0.0344020i
\(585\) 0 0
\(586\) −35.0603 13.0099i −1.44833 0.537435i
\(587\) 11.8785i 0.490279i 0.969488 + 0.245140i \(0.0788338\pi\)
−0.969488 + 0.245140i \(0.921166\pi\)
\(588\) 0 0
\(589\) 1.43342i 0.0590631i
\(590\) −19.7222 + 53.1492i −0.811951 + 2.18812i
\(591\) 0 0
\(592\) 16.5804 42.2342i 0.681450 1.73582i
\(593\) 16.1160 27.9138i 0.661806 1.14628i −0.318335 0.947978i \(-0.603124\pi\)
0.980141 0.198303i \(-0.0635430\pi\)
\(594\) 0 0
\(595\) −28.6342 59.4095i −1.17389 2.43555i
\(596\) 3.37633 + 9.65048i 0.138300 + 0.395299i
\(597\) 0 0
\(598\) −3.80454 + 3.15203i −0.155579 + 0.128896i
\(599\) 19.8427 + 34.3686i 0.810752 + 1.40426i 0.912338 + 0.409437i \(0.134275\pi\)
−0.101586 + 0.994827i \(0.532392\pi\)
\(600\) 0 0
\(601\) 22.3599 0.912081 0.456040 0.889959i \(-0.349267\pi\)
0.456040 + 0.889959i \(0.349267\pi\)
\(602\) 4.94824 0.465536i 0.201675 0.0189738i
\(603\) 0 0
\(604\) 1.55137 8.19701i 0.0631242 0.333532i
\(605\) 17.2065 9.93418i 0.699544 0.403882i
\(606\) 0 0
\(607\) −7.38757 + 12.7956i −0.299852 + 0.519359i −0.976102 0.217313i \(-0.930271\pi\)
0.676250 + 0.736672i \(0.263604\pi\)
\(608\) −1.27157 1.13662i −0.0515688 0.0460958i
\(609\) 0 0
\(610\) −20.9252 + 3.55483i −0.847239 + 0.143931i
\(611\) 7.93337 + 4.58033i 0.320950 + 0.185300i
\(612\) 0 0
\(613\) 22.7453 13.1320i 0.918676 0.530398i 0.0354633 0.999371i \(-0.488709\pi\)
0.883212 + 0.468973i \(0.155376\pi\)
\(614\) −31.3640 11.6383i −1.26575 0.469685i
\(615\) 0 0
\(616\) 2.83643 30.3316i 0.114283 1.22210i
\(617\) −33.8882 −1.36429 −0.682144 0.731218i \(-0.738952\pi\)
−0.682144 + 0.731218i \(0.738952\pi\)
\(618\) 0 0
\(619\) 5.24132 3.02608i 0.210667 0.121628i −0.390955 0.920410i \(-0.627855\pi\)
0.601621 + 0.798782i \(0.294522\pi\)
\(620\) 22.1161 25.6968i 0.888202 1.03201i
\(621\) 0 0
\(622\) 4.53424 0.770286i 0.181806 0.0308857i
\(623\) 0.722176 9.67953i 0.0289334 0.387802i
\(624\) 0 0
\(625\) 2.03841 3.53063i 0.0815364 0.141225i
\(626\) −6.27277 7.57130i −0.250710 0.302610i
\(627\) 0 0
\(628\) −17.7818 3.36539i −0.709573 0.134294i
\(629\) 79.3005i 3.16192i
\(630\) 0 0
\(631\) −14.6555 −0.583426 −0.291713 0.956506i \(-0.594225\pi\)
−0.291713 + 0.956506i \(0.594225\pi\)
\(632\) 0.0793109 4.22445i 0.00315482 0.168040i
\(633\) 0 0
\(634\) −6.84455 + 5.67066i −0.271832 + 0.225211i
\(635\) −10.2916 5.94186i −0.408410 0.235796i
\(636\) 0 0
\(637\) −7.88854 6.28241i −0.312555 0.248918i
\(638\) −0.859036 + 0.145935i −0.0340096 + 0.00577762i
\(639\) 0 0
\(640\) 5.25857 + 39.9948i 0.207863 + 1.58093i
\(641\) 7.77488 + 13.4665i 0.307089 + 0.531894i 0.977724 0.209893i \(-0.0673117\pi\)
−0.670635 + 0.741787i \(0.733978\pi\)
\(642\) 0 0
\(643\) 28.3180i 1.11675i 0.829587 + 0.558377i \(0.188576\pi\)
−0.829587 + 0.558377i \(0.811424\pi\)
\(644\) −9.07093 + 9.07604i −0.357445 + 0.357646i
\(645\) 0 0
\(646\) −2.79465 1.03702i −0.109954 0.0408010i
\(647\) 12.9342 + 22.4026i 0.508495 + 0.880739i 0.999952 + 0.00983684i \(0.00313121\pi\)
−0.491457 + 0.870902i \(0.663535\pi\)
\(648\) 0 0
\(649\) −22.8843 + 39.6367i −0.898286 + 1.55588i
\(650\) 2.63180 + 15.4919i 0.103228 + 0.607644i
\(651\) 0 0
\(652\) −8.88408 25.3931i −0.347927 0.994472i
\(653\) −24.4781 14.1324i −0.957902 0.553045i −0.0623752 0.998053i \(-0.519868\pi\)
−0.895527 + 0.445008i \(0.853201\pi\)
\(654\) 0 0
\(655\) 7.28907 + 12.6250i 0.284808 + 0.493301i
\(656\) 0.142646 + 0.947012i 0.00556939 + 0.0369746i
\(657\) 0 0
\(658\) 21.6283 + 9.91379i 0.843159 + 0.386480i
\(659\) 21.7217i 0.846159i 0.906093 + 0.423079i \(0.139051\pi\)
−0.906093 + 0.423079i \(0.860949\pi\)
\(660\) 0 0
\(661\) 27.5252 15.8917i 1.07061 0.618115i 0.142260 0.989829i \(-0.454563\pi\)
0.928347 + 0.371714i \(0.121230\pi\)
\(662\) −27.6124 + 22.8766i −1.07319 + 0.889126i
\(663\) 0 0
\(664\) −13.7280 24.8432i −0.532750 0.964103i
\(665\) −2.35046 1.60138i −0.0911469 0.0620989i
\(666\) 0 0
\(667\) 0.317850 + 0.183511i 0.0123072 + 0.00710557i
\(668\) 26.0882 + 22.4529i 1.00938 + 0.868728i
\(669\) 0 0
\(670\) −7.68475 + 20.7096i −0.296888 + 0.800080i
\(671\) −17.1359 −0.661523
\(672\) 0 0
\(673\) 16.1882 0.624009 0.312004 0.950081i \(-0.399000\pi\)
0.312004 + 0.950081i \(0.399000\pi\)
\(674\) 8.89336 23.9666i 0.342559 0.923159i
\(675\) 0 0
\(676\) −16.5603 14.2527i −0.636934 0.548180i
\(677\) −20.6873 11.9438i −0.795078 0.459038i 0.0466693 0.998910i \(-0.485139\pi\)
−0.841747 + 0.539872i \(0.818473\pi\)
\(678\) 0 0
\(679\) −24.9437 + 12.0224i −0.957250 + 0.461376i
\(680\) 34.0995 + 61.7088i 1.30765 + 2.36643i
\(681\) 0 0
\(682\) 21.0776 17.4626i 0.807103 0.668679i
\(683\) 21.8511 12.6157i 0.836110 0.482728i −0.0198304 0.999803i \(-0.506313\pi\)
0.855940 + 0.517075i \(0.172979\pi\)
\(684\) 0 0
\(685\) 29.5486i 1.12899i
\(686\) −21.9264 14.3259i −0.837155 0.546965i
\(687\) 0 0
\(688\) −5.25398 + 0.791394i −0.200306 + 0.0301716i
\(689\) 4.31164 + 7.46797i 0.164260 + 0.284507i
\(690\) 0 0
\(691\) −13.8089 7.97260i −0.525317 0.303292i 0.213790 0.976880i \(-0.431419\pi\)
−0.739107 + 0.673588i \(0.764752\pi\)
\(692\) 2.27821 + 6.51176i 0.0866047 + 0.247540i
\(693\) 0 0
\(694\) 1.76725 + 10.4028i 0.0670840 + 0.394886i
\(695\) 32.8346 56.8713i 1.24549 2.15725i
\(696\) 0 0
\(697\) 0.836918 + 1.44958i 0.0317005 + 0.0549069i
\(698\) −30.7674 11.4169i −1.16456 0.432137i
\(699\) 0 0
\(700\) 10.5741 + 39.4186i 0.399662 + 1.48988i
\(701\) 46.5568i 1.75842i 0.476430 + 0.879212i \(0.341931\pi\)
−0.476430 + 0.879212i \(0.658069\pi\)
\(702\) 0 0
\(703\) −1.70994 2.96170i −0.0644915 0.111703i
\(704\) −1.22242 + 32.5444i −0.0460718 + 1.22656i
\(705\) 0 0
\(706\) 5.98213 1.01626i 0.225141 0.0382474i
\(707\) 18.9692 27.8424i 0.713411 1.04712i
\(708\) 0 0
\(709\) −4.68128 2.70274i −0.175809 0.101503i 0.409513 0.912304i \(-0.365699\pi\)
−0.585322 + 0.810801i \(0.699032\pi\)
\(710\) −32.8643 + 27.2278i −1.23337 + 1.02184i
\(711\) 0 0
\(712\) −0.194779 + 10.3748i −0.00729964 + 0.388812i
\(713\) −11.5293 −0.431777
\(714\) 0 0
\(715\) 20.9108i 0.782019i
\(716\) 22.2091 + 4.20329i 0.829992 + 0.157084i
\(717\) 0 0
\(718\) 5.42619 + 6.54947i 0.202504 + 0.244424i
\(719\) 9.74035 16.8708i 0.363254 0.629174i −0.625240 0.780432i \(-0.714999\pi\)
0.988494 + 0.151258i \(0.0483324\pi\)
\(720\) 0 0
\(721\) −1.18281 + 15.8536i −0.0440503 + 0.590419i
\(722\) 26.3638 4.47874i 0.981158 0.166681i
\(723\) 0 0
\(724\) −13.1203 + 15.2446i −0.487613 + 0.566562i
\(725\) 1.01094 0.583665i 0.0375453 0.0216768i
\(726\) 0 0
\(727\) 22.4025 0.830864 0.415432 0.909624i \(-0.363630\pi\)
0.415432 + 0.909624i \(0.363630\pi\)
\(728\) 8.79401 + 6.23629i 0.325928 + 0.231132i
\(729\) 0 0
\(730\) 2.69201 + 0.998931i 0.0996357 + 0.0369721i
\(731\) −8.04223 + 4.64318i −0.297453 + 0.171734i
\(732\) 0 0
\(733\) −40.3059 23.2706i −1.48873 0.859520i −0.488815 0.872388i \(-0.662571\pi\)
−0.999917 + 0.0128680i \(0.995904\pi\)
\(734\) −21.7137 + 3.68877i −0.801467 + 0.136155i
\(735\) 0 0
\(736\) 9.14205 10.2275i 0.336980 0.376990i
\(737\) −8.91684 + 15.4444i −0.328456 + 0.568902i
\(738\) 0 0
\(739\) 27.6623 15.9708i 1.01757 0.587497i 0.104174 0.994559i \(-0.466780\pi\)
0.913400 + 0.407062i \(0.133447\pi\)
\(740\) −15.0417 + 79.4765i −0.552945 + 2.92161i
\(741\) 0 0
\(742\) 12.9657 + 18.2617i 0.475987 + 0.670407i
\(743\) −14.3888 −0.527874 −0.263937 0.964540i \(-0.585021\pi\)
−0.263937 + 0.964540i \(0.585021\pi\)
\(744\) 0 0
\(745\) −9.11347 15.7850i −0.333892 0.578318i
\(746\) 12.3805 10.2572i 0.453284 0.375542i
\(747\) 0 0
\(748\) 18.7970 + 53.7272i 0.687288 + 1.96446i
\(749\) −42.1248 3.14287i −1.53921 0.114838i
\(750\) 0 0
\(751\) 15.1568 26.2524i 0.553080 0.957963i −0.444970 0.895546i \(-0.646786\pi\)
0.998050 0.0624177i \(-0.0198811\pi\)
\(752\) −23.6758 9.29468i −0.863366 0.338942i
\(753\) 0 0
\(754\) 0.107276 0.289096i 0.00390674 0.0105282i
\(755\) 14.8726i 0.541270i
\(756\) 0 0
\(757\) 51.0353i 1.85491i 0.373937 + 0.927454i \(0.378007\pi\)
−0.373937 + 0.927454i \(0.621993\pi\)
\(758\) 42.3807 + 15.7263i 1.53934 + 0.571206i
\(759\) 0 0
\(760\) 2.60415 + 1.56941i 0.0944625 + 0.0569285i
\(761\) 15.1055 26.1636i 0.547576 0.948429i −0.450864 0.892593i \(-0.648884\pi\)
0.998440 0.0558364i \(-0.0177825\pi\)
\(762\) 0 0
\(763\) −20.6635 + 30.3293i −0.748070 + 1.09799i
\(764\) −40.5613 + 14.1908i −1.46746 + 0.513406i
\(765\) 0 0
\(766\) −8.57534 10.3505i −0.309840 0.373980i
\(767\) −8.09845 14.0269i −0.292418 0.506483i
\(768\) 0 0
\(769\) 4.26448 0.153781 0.0768906 0.997040i \(-0.475501\pi\)
0.0768906 + 0.997040i \(0.475501\pi\)
\(770\) 5.08705 + 54.0709i 0.183325 + 1.94858i
\(771\) 0 0
\(772\) 6.10538 32.2592i 0.219738 1.16104i
\(773\) 4.66804 2.69509i 0.167898 0.0969357i −0.413697 0.910415i \(-0.635763\pi\)
0.581594 + 0.813479i \(0.302429\pi\)
\(774\) 0 0
\(775\) −18.3348 + 31.7568i −0.658604 + 1.14074i
\(776\) 25.9091 14.3170i 0.930081 0.513950i
\(777\) 0 0
\(778\) −2.69080 15.8392i −0.0964697 0.567863i
\(779\) 0.0625141 + 0.0360925i 0.00223980 + 0.00129315i
\(780\) 0 0
\(781\) −29.8396 + 17.2279i −1.06774 + 0.616462i
\(782\) 8.34098 22.4780i 0.298273 0.803812i
\(783\) 0 0
\(784\) 24.2566 + 13.9864i 0.866306 + 0.499513i
\(785\) 32.2633 1.15153
\(786\) 0 0
\(787\) −5.36826 + 3.09937i −0.191358 + 0.110480i −0.592618 0.805484i \(-0.701906\pi\)
0.401260 + 0.915964i \(0.368572\pi\)
\(788\) −20.4888 + 23.8062i −0.729885 + 0.848059i
\(789\) 0 0
\(790\) 1.26156 + 7.42608i 0.0448842 + 0.264208i
\(791\) −39.2051 + 18.8961i −1.39397 + 0.671867i
\(792\) 0 0
\(793\) 3.03208 5.25172i 0.107672 0.186494i
\(794\) 23.5155 19.4824i 0.834533 0.691404i
\(795\) 0 0
\(796\) −2.33354 + 12.3298i −0.0827101 + 0.437018i
\(797\) 2.24353i 0.0794699i −0.999210 0.0397349i \(-0.987349\pi\)
0.999210 0.0397349i \(-0.0126514\pi\)
\(798\) 0 0
\(799\) −44.4545 −1.57269
\(800\) −13.6326 41.4456i −0.481984 1.46532i
\(801\) 0 0
\(802\) 25.4846 + 30.7603i 0.899894 + 1.08618i
\(803\) 2.00760 + 1.15909i 0.0708466 + 0.0409033i
\(804\) 0 0
\(805\) 12.8803 18.9053i 0.453970 0.666323i
\(806\) 1.62232 + 9.54967i 0.0571437 + 0.336373i
\(807\) 0 0
\(808\) −18.5905 + 30.8476i −0.654011 + 1.08521i
\(809\) −7.66844 13.2821i −0.269608 0.466974i 0.699153 0.714972i \(-0.253561\pi\)
−0.968761 + 0.247998i \(0.920227\pi\)
\(810\) 0 0
\(811\) 15.1509i 0.532019i −0.963970 0.266010i \(-0.914295\pi\)
0.963970 0.266010i \(-0.0857053\pi\)
\(812\) 0.207062 0.773637i 0.00726646 0.0271494i
\(813\) 0 0
\(814\) −22.7187 + 61.2245i −0.796291 + 2.14592i
\(815\) 23.9801 + 41.5348i 0.839987 + 1.45490i
\(816\) 0 0
\(817\) −0.200240 + 0.346825i −0.00700550 + 0.0121339i
\(818\) 18.8071 3.19499i 0.657575 0.111710i
\(819\) 0 0
\(820\) −0.563818 1.61155i −0.0196894 0.0562777i
\(821\) −1.41618 0.817631i −0.0494249 0.0285355i 0.475084 0.879940i \(-0.342418\pi\)
−0.524509 + 0.851405i \(0.675751\pi\)
\(822\) 0 0
\(823\) −22.5067 38.9828i −0.784535 1.35886i −0.929276 0.369385i \(-0.879568\pi\)
0.144741 0.989470i \(-0.453765\pi\)
\(824\) 0.319018 16.9923i 0.0111135 0.591955i
\(825\) 0 0
\(826\) −24.3532 34.3005i −0.847358 1.19347i
\(827\) 42.4945i 1.47768i −0.673882 0.738839i \(-0.735374\pi\)
0.673882 0.738839i \(-0.264626\pi\)
\(828\) 0 0
\(829\) −39.6168 + 22.8728i −1.37595 + 0.794405i −0.991669 0.128811i \(-0.958884\pi\)
−0.384281 + 0.923216i \(0.625551\pi\)
\(830\) 32.2827 + 38.9656i 1.12055 + 1.35252i
\(831\) 0 0
\(832\) −9.75776 6.13317i −0.338289 0.212629i
\(833\) 48.3959 + 7.26192i 1.67682 + 0.251611i
\(834\) 0 0
\(835\) −53.1410 30.6810i −1.83902 1.06176i
\(836\) 1.86053 + 1.60127i 0.0643479 + 0.0553812i
\(837\) 0 0
\(838\) −33.2231 12.3282i −1.14767 0.425870i
\(839\) −30.4207 −1.05024 −0.525120 0.851028i \(-0.675980\pi\)
−0.525120 + 0.851028i \(0.675980\pi\)
\(840\) 0 0
\(841\) 28.9771 0.999210
\(842\) 30.5409 + 11.3329i 1.05251 + 0.390558i
\(843\) 0 0
\(844\) −12.2697 + 14.2562i −0.422339 + 0.490719i
\(845\) 33.7329 + 19.4757i 1.16045 + 0.669985i
\(846\) 0 0
\(847\) −1.09692 + 14.7023i −0.0376905 + 0.505177i
\(848\) −14.9263 18.7206i −0.512570 0.642870i
\(849\) 0 0
\(850\) −48.6497 58.7208i −1.66867 2.01411i
\(851\) 23.8216 13.7534i 0.816594 0.471461i
\(852\) 0 0
\(853\) 0.386158i 0.0132218i −0.999978 0.00661090i \(-0.997896\pi\)
0.999978 0.00661090i \(-0.00210433\pi\)
\(854\) 6.56271 14.3175i 0.224571 0.489933i
\(855\) 0 0
\(856\) 45.1505 + 0.847667i 1.54321 + 0.0289727i
\(857\) −13.1617 22.7967i −0.449595 0.778721i 0.548765 0.835977i \(-0.315098\pi\)
−0.998360 + 0.0572556i \(0.981765\pi\)
\(858\) 0 0
\(859\) 20.1570 + 11.6377i 0.687749 + 0.397072i 0.802768 0.596291i \(-0.203360\pi\)
−0.115019 + 0.993363i \(0.536693\pi\)
\(860\) 8.94080 3.12804i 0.304879 0.106665i
\(861\) 0 0
\(862\) −0.259128 + 0.0440212i −0.00882593 + 0.00149937i
\(863\) 8.25613 14.3000i 0.281042 0.486779i −0.690600 0.723237i \(-0.742653\pi\)
0.971642 + 0.236458i \(0.0759866\pi\)
\(864\) 0 0
\(865\) −6.14941 10.6511i −0.209086 0.362148i
\(866\) −17.0946 + 46.0680i −0.580897 + 1.56545i
\(867\) 0 0
\(868\) 6.51816 + 24.2988i 0.221241 + 0.824753i
\(869\) 6.08128i 0.206293i
\(870\) 0 0
\(871\) −3.15555 5.46558i −0.106922 0.185194i
\(872\) 20.2510 33.6028i 0.685785 1.13794i
\(873\) 0 0
\(874\) −0.173171 1.01936i −0.00585759 0.0344803i
\(875\) −11.1111 23.0530i −0.375623 0.779332i
\(876\) 0 0
\(877\) 24.8320 + 14.3368i 0.838518 + 0.484119i 0.856760 0.515715i \(-0.172474\pi\)
−0.0182421 + 0.999834i \(0.505807\pi\)
\(878\) 24.5212 + 29.5974i 0.827551 + 0.998864i
\(879\) 0 0
\(880\) −8.64780 57.4118i −0.291517 1.93535i
\(881\) −5.88181 −0.198163 −0.0990816 0.995079i \(-0.531590\pi\)
−0.0990816 + 0.995079i \(0.531590\pi\)
\(882\) 0 0
\(883\) 1.69703i 0.0571095i −0.999592 0.0285548i \(-0.990910\pi\)
0.999592 0.0285548i \(-0.00909050\pi\)
\(884\) −19.7921 3.74585i −0.665679 0.125986i
\(885\) 0 0
\(886\) 4.32196 3.58071i 0.145199 0.120296i
\(887\) −28.8622 + 49.9909i −0.969099 + 1.67853i −0.270926 + 0.962600i \(0.587330\pi\)
−0.698173 + 0.715929i \(0.746004\pi\)
\(888\) 0 0
\(889\) 7.94368 3.82870i 0.266423 0.128410i
\(890\) −3.09824 18.2376i −0.103853 0.611326i
\(891\) 0 0
\(892\) −6.59015 5.67184i −0.220655 0.189907i
\(893\) −1.66028 + 0.958561i −0.0555590 + 0.0320770i
\(894\) 0 0
\(895\) −40.2961 −1.34695
\(896\) −26.7235 13.4853i −0.892771 0.450511i
\(897\) 0 0
\(898\) −5.98448 + 16.1275i −0.199705 + 0.538182i
\(899\) 0.623170 0.359787i 0.0207839 0.0119996i
\(900\) 0 0
\(901\) −36.2402 20.9233i −1.20734 0.697056i
\(902\) −0.230858 1.35893i −0.00768672 0.0452474i
\(903\) 0 0
\(904\) 40.7224 22.5027i 1.35441 0.748427i
\(905\) 17.9284 31.0529i 0.595961 1.03223i
\(906\) 0 0
\(907\) 39.2549 22.6638i 1.30344 0.752540i 0.322446 0.946588i \(-0.395495\pi\)
0.980992 + 0.194047i \(0.0621615\pi\)
\(908\) −14.3100 2.70832i −0.474895 0.0898786i
\(909\) 0 0
\(910\) −17.4715 8.00844i −0.579175 0.265477i
\(911\) 26.4254 0.875511 0.437755 0.899094i \(-0.355774\pi\)
0.437755 + 0.899094i \(0.355774\pi\)
\(912\) 0 0
\(913\) 20.4263 + 35.3793i 0.676011 + 1.17088i
\(914\) −23.2401 28.0511i −0.768715 0.927849i
\(915\) 0 0
\(916\) −0.675146 1.92975i −0.0223074 0.0637608i
\(917\) −10.7876 0.804848i −0.356238 0.0265784i
\(918\) 0 0
\(919\) 0.150333 0.260384i 0.00495901 0.00858926i −0.863535 0.504288i \(-0.831755\pi\)
0.868494 + 0.495699i \(0.165088\pi\)
\(920\) −12.6231 + 20.9458i −0.416172 + 0.690562i
\(921\) 0 0
\(922\) 22.5959 + 8.38471i 0.744155 + 0.276136i
\(923\) 12.1934i 0.401352i
\(924\) 0 0
\(925\) 87.4867i 2.87654i
\(926\) −16.7939 + 45.2577i −0.551882 + 1.48726i
\(927\) 0 0
\(928\) −0.174974 + 0.838094i −0.00574380 + 0.0275118i
\(929\) −19.3333 + 33.4862i −0.634304 + 1.09865i 0.352358 + 0.935865i \(0.385380\pi\)
−0.986662 + 0.162782i \(0.947953\pi\)
\(930\) 0 0
\(931\) 1.96407 0.772333i 0.0643697 0.0253122i
\(932\) 41.6564 14.5739i 1.36450 0.477386i
\(933\) 0 0
\(934\) 17.7230 14.6834i 0.579914 0.480455i
\(935\) −50.7375 87.8798i −1.65929 2.87398i
\(936\) 0 0
\(937\) 23.9292 0.781734 0.390867 0.920447i \(-0.372175\pi\)
0.390867 + 0.920447i \(0.372175\pi\)
\(938\) −9.48923 13.3652i −0.309834 0.436388i
\(939\) 0 0
\(940\) 44.5531 + 8.43212i 1.45316 + 0.275025i
\(941\) 36.7253 21.2034i 1.19721 0.691210i 0.237279 0.971442i \(-0.423745\pi\)
0.959932 + 0.280232i \(0.0904113\pi\)
\(942\) 0 0
\(943\) −0.290300 + 0.502815i −0.00945348 + 0.0163739i
\(944\) 28.0357 + 35.1626i 0.912484 + 1.14444i
\(945\) 0 0
\(946\) 7.53928 1.28079i 0.245123 0.0416420i
\(947\) 11.9347 + 6.89051i 0.387826 + 0.223911i 0.681218 0.732081i \(-0.261451\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(948\) 0 0
\(949\) −0.710464 + 0.410186i −0.0230626 + 0.0133152i
\(950\) −3.08314 1.14407i −0.100030 0.0371185i
\(951\) 0 0
\(952\) −52.0894 4.87107i −1.68823 0.157872i
\(953\) −57.0092 −1.84671 −0.923354 0.383950i \(-0.874564\pi\)
−0.923354 + 0.383950i \(0.874564\pi\)
\(954\) 0 0
\(955\) 66.3449 38.3042i 2.14687 1.23950i
\(956\) 7.28344 + 6.26851i 0.235563 + 0.202738i
\(957\) 0 0
\(958\) 27.8974 4.73928i 0.901325 0.153119i
\(959\) −18.1204 12.3456i −0.585139 0.398659i
\(960\) 0 0
\(961\) 4.19793 7.27103i 0.135417 0.234549i
\(962\) −14.7439 17.7960i −0.475361 0.573766i
\(963\) 0 0
\(964\) −8.84004 + 46.7084i −0.284719 + 1.50438i
\(965\) 58.5311i 1.88418i
\(966\) 0 0
\(967\) −20.0555 −0.644941 −0.322470 0.946580i \(-0.604513\pi\)
−0.322470 + 0.946580i \(0.604513\pi\)
\(968\) 0.295851 15.7583i 0.00950900 0.506492i
\(969\) 0 0
\(970\) −40.6374 + 33.6677i −1.30479 + 1.08101i
\(971\) 0.979533 + 0.565534i 0.0314347 + 0.0181488i 0.515635 0.856808i \(-0.327556\pi\)
−0.484200 + 0.874957i \(0.660889\pi\)
\(972\) 0 0
\(973\) 21.1573 + 43.8967i 0.678273 + 1.40726i
\(974\) 23.0855 3.92181i 0.739706 0.125663i
\(975\) 0 0
\(976\) −6.15288 + 15.6728i −0.196949 + 0.501675i
\(977\) −15.5033 26.8526i −0.495996 0.859089i 0.503994 0.863707i \(-0.331863\pi\)
−0.999989 + 0.00461783i \(0.998530\pi\)
\(978\) 0 0
\(979\) 14.9349i 0.477323i
\(980\) −47.1259 16.4578i −1.50538 0.525724i
\(981\) 0 0
\(982\) −12.5859 4.67030i −0.401634 0.149035i
\(983\) −4.59402 7.95708i −0.146527 0.253791i 0.783415 0.621499i \(-0.213476\pi\)
−0.929941 + 0.367708i \(0.880143\pi\)
\(984\) 0 0
\(985\) 27.9972 48.4926i 0.892065 1.54510i
\(986\) 0.250618 + 1.47525i 0.00798130 + 0.0469814i
\(987\) 0 0
\(988\) −0.819961 + 0.286872i −0.0260864 + 0.00912663i
\(989\) −2.78959 1.61057i −0.0887040 0.0512133i
\(990\) 0 0
\(991\) −20.0275 34.6886i −0.636194 1.10192i −0.986261 0.165195i \(-0.947175\pi\)
0.350067 0.936725i \(-0.386159\pi\)
\(992\) −8.40350 25.5483i −0.266811 0.811158i
\(993\) 0 0
\(994\) −2.96635 31.5297i −0.0940868 1.00006i
\(995\) 22.3712i 0.709214i
\(996\) 0 0
\(997\) 22.5912 13.0430i 0.715470 0.413077i −0.0976129 0.995224i \(-0.531121\pi\)
0.813083 + 0.582147i \(0.197787\pi\)
\(998\) 37.2771 30.8838i 1.17999 0.977610i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cj.e.37.7 32
3.2 odd 2 168.2.bc.a.37.10 32
4.3 odd 2 2016.2.cr.e.1297.15 32
7.4 even 3 inner 504.2.cj.e.109.5 32
8.3 odd 2 2016.2.cr.e.1297.2 32
8.5 even 2 inner 504.2.cj.e.37.5 32
12.11 even 2 672.2.bk.a.625.9 32
21.2 odd 6 1176.2.c.e.589.2 16
21.5 even 6 1176.2.c.f.589.2 16
21.11 odd 6 168.2.bc.a.109.12 yes 32
24.5 odd 2 168.2.bc.a.37.12 yes 32
24.11 even 2 672.2.bk.a.625.8 32
28.11 odd 6 2016.2.cr.e.1873.2 32
56.11 odd 6 2016.2.cr.e.1873.15 32
56.53 even 6 inner 504.2.cj.e.109.7 32
84.11 even 6 672.2.bk.a.529.8 32
84.23 even 6 4704.2.c.e.2353.16 16
84.47 odd 6 4704.2.c.f.2353.1 16
168.5 even 6 1176.2.c.f.589.1 16
168.11 even 6 672.2.bk.a.529.9 32
168.53 odd 6 168.2.bc.a.109.10 yes 32
168.107 even 6 4704.2.c.e.2353.1 16
168.131 odd 6 4704.2.c.f.2353.16 16
168.149 odd 6 1176.2.c.e.589.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.bc.a.37.10 32 3.2 odd 2
168.2.bc.a.37.12 yes 32 24.5 odd 2
168.2.bc.a.109.10 yes 32 168.53 odd 6
168.2.bc.a.109.12 yes 32 21.11 odd 6
504.2.cj.e.37.5 32 8.5 even 2 inner
504.2.cj.e.37.7 32 1.1 even 1 trivial
504.2.cj.e.109.5 32 7.4 even 3 inner
504.2.cj.e.109.7 32 56.53 even 6 inner
672.2.bk.a.529.8 32 84.11 even 6
672.2.bk.a.529.9 32 168.11 even 6
672.2.bk.a.625.8 32 24.11 even 2
672.2.bk.a.625.9 32 12.11 even 2
1176.2.c.e.589.1 16 168.149 odd 6
1176.2.c.e.589.2 16 21.2 odd 6
1176.2.c.f.589.1 16 168.5 even 6
1176.2.c.f.589.2 16 21.5 even 6
2016.2.cr.e.1297.2 32 8.3 odd 2
2016.2.cr.e.1297.15 32 4.3 odd 2
2016.2.cr.e.1873.2 32 28.11 odd 6
2016.2.cr.e.1873.15 32 56.11 odd 6
4704.2.c.e.2353.1 16 168.107 even 6
4704.2.c.e.2353.16 16 84.23 even 6
4704.2.c.f.2353.1 16 84.47 odd 6
4704.2.c.f.2353.16 16 168.131 odd 6