Properties

Label 4719.2.a.c
Level $4719$
Weight $2$
Character orbit 4719.a
Self dual yes
Analytic conductor $37.681$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4719,2,Mod(1,4719)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4719, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4719.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4719 = 3 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4719.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.6814047138\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} - q^{4} + 2 q^{5} + q^{6} + 4 q^{7} + 3 q^{8} + q^{9} - 2 q^{10} + q^{12} - q^{13} - 4 q^{14} - 2 q^{15} - q^{16} - 2 q^{17} - q^{18} - 2 q^{20} - 4 q^{21} - 3 q^{24} - q^{25}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 −1.00000 2.00000 1.00000 4.00000 3.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4719.2.a.c 1
11.b odd 2 1 39.2.a.a 1
33.d even 2 1 117.2.a.a 1
44.c even 2 1 624.2.a.i 1
55.d odd 2 1 975.2.a.f 1
55.e even 4 2 975.2.c.f 2
77.b even 2 1 1911.2.a.f 1
88.b odd 2 1 2496.2.a.q 1
88.g even 2 1 2496.2.a.e 1
99.g even 6 2 1053.2.e.d 2
99.h odd 6 2 1053.2.e.b 2
132.d odd 2 1 1872.2.a.h 1
143.d odd 2 1 507.2.a.a 1
143.g even 4 2 507.2.b.a 2
143.i odd 6 2 507.2.e.b 2
143.k odd 6 2 507.2.e.a 2
143.o even 12 4 507.2.j.e 4
165.d even 2 1 2925.2.a.p 1
165.l odd 4 2 2925.2.c.e 2
231.h odd 2 1 5733.2.a.e 1
264.m even 2 1 7488.2.a.bl 1
264.p odd 2 1 7488.2.a.by 1
429.e even 2 1 1521.2.a.e 1
429.l odd 4 2 1521.2.b.b 2
572.b even 2 1 8112.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.a.a 1 11.b odd 2 1
117.2.a.a 1 33.d even 2 1
507.2.a.a 1 143.d odd 2 1
507.2.b.a 2 143.g even 4 2
507.2.e.a 2 143.k odd 6 2
507.2.e.b 2 143.i odd 6 2
507.2.j.e 4 143.o even 12 4
624.2.a.i 1 44.c even 2 1
975.2.a.f 1 55.d odd 2 1
975.2.c.f 2 55.e even 4 2
1053.2.e.b 2 99.h odd 6 2
1053.2.e.d 2 99.g even 6 2
1521.2.a.e 1 429.e even 2 1
1521.2.b.b 2 429.l odd 4 2
1872.2.a.h 1 132.d odd 2 1
1911.2.a.f 1 77.b even 2 1
2496.2.a.e 1 88.g even 2 1
2496.2.a.q 1 88.b odd 2 1
2925.2.a.p 1 165.d even 2 1
2925.2.c.e 2 165.l odd 4 2
4719.2.a.c 1 1.a even 1 1 trivial
5733.2.a.e 1 231.h odd 2 1
7488.2.a.bl 1 264.m even 2 1
7488.2.a.by 1 264.p odd 2 1
8112.2.a.s 1 572.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4719))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 12 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less