Properties

Label 8112.2.a.s
Level $8112$
Weight $2$
Character orbit 8112.a
Self dual yes
Analytic conductor $64.775$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8112,2,Mod(1,8112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8112.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{15} + 2 q^{17} - 4 q^{21} - q^{25} + q^{27} - 10 q^{29} + 4 q^{31} + 4 q^{33} + 8 q^{35} + 2 q^{37} - 6 q^{41} + 12 q^{43} - 2 q^{45} + 9 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −2.00000 0 −4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8112.2.a.s 1
4.b odd 2 1 507.2.a.a 1
12.b even 2 1 1521.2.a.e 1
13.b even 2 1 624.2.a.i 1
39.d odd 2 1 1872.2.a.h 1
52.b odd 2 1 39.2.a.a 1
52.f even 4 2 507.2.b.a 2
52.i odd 6 2 507.2.e.a 2
52.j odd 6 2 507.2.e.b 2
52.l even 12 4 507.2.j.e 4
104.e even 2 1 2496.2.a.e 1
104.h odd 2 1 2496.2.a.q 1
156.h even 2 1 117.2.a.a 1
156.l odd 4 2 1521.2.b.b 2
260.g odd 2 1 975.2.a.f 1
260.p even 4 2 975.2.c.f 2
312.b odd 2 1 7488.2.a.by 1
312.h even 2 1 7488.2.a.bl 1
364.h even 2 1 1911.2.a.f 1
468.x even 6 2 1053.2.e.d 2
468.bg odd 6 2 1053.2.e.b 2
572.b even 2 1 4719.2.a.c 1
780.d even 2 1 2925.2.a.p 1
780.w odd 4 2 2925.2.c.e 2
1092.d odd 2 1 5733.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.a.a 1 52.b odd 2 1
117.2.a.a 1 156.h even 2 1
507.2.a.a 1 4.b odd 2 1
507.2.b.a 2 52.f even 4 2
507.2.e.a 2 52.i odd 6 2
507.2.e.b 2 52.j odd 6 2
507.2.j.e 4 52.l even 12 4
624.2.a.i 1 13.b even 2 1
975.2.a.f 1 260.g odd 2 1
975.2.c.f 2 260.p even 4 2
1053.2.e.b 2 468.bg odd 6 2
1053.2.e.d 2 468.x even 6 2
1521.2.a.e 1 12.b even 2 1
1521.2.b.b 2 156.l odd 4 2
1872.2.a.h 1 39.d odd 2 1
1911.2.a.f 1 364.h even 2 1
2496.2.a.e 1 104.e even 2 1
2496.2.a.q 1 104.h odd 2 1
2925.2.a.p 1 780.d even 2 1
2925.2.c.e 2 780.w odd 4 2
4719.2.a.c 1 572.b even 2 1
5733.2.a.e 1 1092.d odd 2 1
7488.2.a.bl 1 312.h even 2 1
7488.2.a.by 1 312.b odd 2 1
8112.2.a.s 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8112))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 12 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less