Properties

Label 4732.2.a.h.1.1
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.79129\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.79129 q^{3} -0.791288 q^{5} -1.00000 q^{7} +4.79129 q^{9} -0.791288 q^{11} +2.20871 q^{15} +3.00000 q^{17} +6.37386 q^{19} +2.79129 q^{21} +6.00000 q^{23} -4.37386 q^{25} -5.00000 q^{27} -6.79129 q^{29} +1.00000 q^{31} +2.20871 q^{33} +0.791288 q^{35} +4.00000 q^{37} -7.58258 q^{41} -9.37386 q^{43} -3.79129 q^{45} -6.16515 q^{47} +1.00000 q^{49} -8.37386 q^{51} -1.41742 q^{53} +0.626136 q^{55} -17.7913 q^{57} +9.00000 q^{59} +2.00000 q^{61} -4.79129 q^{63} +7.00000 q^{67} -16.7477 q^{69} +1.58258 q^{71} -14.0000 q^{73} +12.2087 q^{75} +0.791288 q^{77} -4.00000 q^{79} -0.417424 q^{81} +9.00000 q^{83} -2.37386 q^{85} +18.9564 q^{87} -8.37386 q^{89} -2.79129 q^{93} -5.04356 q^{95} +4.62614 q^{97} -3.79129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 3 q^{5} - 2 q^{7} + 5 q^{9} + 3 q^{11} + 9 q^{15} + 6 q^{17} - q^{19} + q^{21} + 12 q^{23} + 5 q^{25} - 10 q^{27} - 9 q^{29} + 2 q^{31} + 9 q^{33} - 3 q^{35} + 8 q^{37} - 6 q^{41} - 5 q^{43}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.79129 −1.61155 −0.805775 0.592221i \(-0.798251\pi\)
−0.805775 + 0.592221i \(0.798251\pi\)
\(4\) 0 0
\(5\) −0.791288 −0.353875 −0.176937 0.984222i \(-0.556619\pi\)
−0.176937 + 0.984222i \(0.556619\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 4.79129 1.59710
\(10\) 0 0
\(11\) −0.791288 −0.238582 −0.119291 0.992859i \(-0.538062\pi\)
−0.119291 + 0.992859i \(0.538062\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.20871 0.570287
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 6.37386 1.46226 0.731132 0.682236i \(-0.238992\pi\)
0.731132 + 0.682236i \(0.238992\pi\)
\(20\) 0 0
\(21\) 2.79129 0.609109
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −4.37386 −0.874773
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −6.79129 −1.26111 −0.630555 0.776144i \(-0.717173\pi\)
−0.630555 + 0.776144i \(0.717173\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 2.20871 0.384487
\(34\) 0 0
\(35\) 0.791288 0.133752
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.58258 −1.18420 −0.592100 0.805865i \(-0.701701\pi\)
−0.592100 + 0.805865i \(0.701701\pi\)
\(42\) 0 0
\(43\) −9.37386 −1.42950 −0.714750 0.699380i \(-0.753460\pi\)
−0.714750 + 0.699380i \(0.753460\pi\)
\(44\) 0 0
\(45\) −3.79129 −0.565172
\(46\) 0 0
\(47\) −6.16515 −0.899280 −0.449640 0.893210i \(-0.648448\pi\)
−0.449640 + 0.893210i \(0.648448\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −8.37386 −1.17258
\(52\) 0 0
\(53\) −1.41742 −0.194698 −0.0973491 0.995250i \(-0.531036\pi\)
−0.0973491 + 0.995250i \(0.531036\pi\)
\(54\) 0 0
\(55\) 0.626136 0.0844282
\(56\) 0 0
\(57\) −17.7913 −2.35651
\(58\) 0 0
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) −4.79129 −0.603646
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −16.7477 −2.01619
\(70\) 0 0
\(71\) 1.58258 0.187817 0.0939086 0.995581i \(-0.470064\pi\)
0.0939086 + 0.995581i \(0.470064\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) 12.2087 1.40974
\(76\) 0 0
\(77\) 0.791288 0.0901756
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −0.417424 −0.0463805
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) −2.37386 −0.257482
\(86\) 0 0
\(87\) 18.9564 2.03234
\(88\) 0 0
\(89\) −8.37386 −0.887628 −0.443814 0.896119i \(-0.646375\pi\)
−0.443814 + 0.896119i \(0.646375\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.79129 −0.289443
\(94\) 0 0
\(95\) −5.04356 −0.517458
\(96\) 0 0
\(97\) 4.62614 0.469713 0.234856 0.972030i \(-0.424538\pi\)
0.234856 + 0.972030i \(0.424538\pi\)
\(98\) 0 0
\(99\) −3.79129 −0.381039
\(100\) 0 0
\(101\) 17.5390 1.74520 0.872599 0.488438i \(-0.162433\pi\)
0.872599 + 0.488438i \(0.162433\pi\)
\(102\) 0 0
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 0 0
\(105\) −2.20871 −0.215548
\(106\) 0 0
\(107\) 14.3739 1.38957 0.694787 0.719216i \(-0.255499\pi\)
0.694787 + 0.719216i \(0.255499\pi\)
\(108\) 0 0
\(109\) −9.74773 −0.933663 −0.466831 0.884346i \(-0.654605\pi\)
−0.466831 + 0.884346i \(0.654605\pi\)
\(110\) 0 0
\(111\) −11.1652 −1.05975
\(112\) 0 0
\(113\) 6.16515 0.579969 0.289984 0.957031i \(-0.406350\pi\)
0.289984 + 0.957031i \(0.406350\pi\)
\(114\) 0 0
\(115\) −4.74773 −0.442728
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.00000 −0.275010
\(120\) 0 0
\(121\) −10.3739 −0.943079
\(122\) 0 0
\(123\) 21.1652 1.90840
\(124\) 0 0
\(125\) 7.41742 0.663435
\(126\) 0 0
\(127\) −15.3739 −1.36421 −0.682105 0.731254i \(-0.738935\pi\)
−0.682105 + 0.731254i \(0.738935\pi\)
\(128\) 0 0
\(129\) 26.1652 2.30371
\(130\) 0 0
\(131\) −18.9564 −1.65623 −0.828116 0.560557i \(-0.810587\pi\)
−0.828116 + 0.560557i \(0.810587\pi\)
\(132\) 0 0
\(133\) −6.37386 −0.552684
\(134\) 0 0
\(135\) 3.95644 0.340516
\(136\) 0 0
\(137\) 2.37386 0.202813 0.101406 0.994845i \(-0.467666\pi\)
0.101406 + 0.994845i \(0.467666\pi\)
\(138\) 0 0
\(139\) 13.3739 1.13436 0.567178 0.823595i \(-0.308035\pi\)
0.567178 + 0.823595i \(0.308035\pi\)
\(140\) 0 0
\(141\) 17.2087 1.44923
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.37386 0.446275
\(146\) 0 0
\(147\) −2.79129 −0.230222
\(148\) 0 0
\(149\) −21.9564 −1.79874 −0.899371 0.437187i \(-0.855975\pi\)
−0.899371 + 0.437187i \(0.855975\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) 0 0
\(153\) 14.3739 1.16206
\(154\) 0 0
\(155\) −0.791288 −0.0635578
\(156\) 0 0
\(157\) −4.62614 −0.369206 −0.184603 0.982813i \(-0.559100\pi\)
−0.184603 + 0.982813i \(0.559100\pi\)
\(158\) 0 0
\(159\) 3.95644 0.313766
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 20.7477 1.62509 0.812544 0.582900i \(-0.198082\pi\)
0.812544 + 0.582900i \(0.198082\pi\)
\(164\) 0 0
\(165\) −1.74773 −0.136060
\(166\) 0 0
\(167\) 18.1652 1.40566 0.702831 0.711357i \(-0.251919\pi\)
0.702831 + 0.711357i \(0.251919\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 30.5390 2.33538
\(172\) 0 0
\(173\) 15.3303 1.16554 0.582771 0.812637i \(-0.301969\pi\)
0.582771 + 0.812637i \(0.301969\pi\)
\(174\) 0 0
\(175\) 4.37386 0.330633
\(176\) 0 0
\(177\) −25.1216 −1.88825
\(178\) 0 0
\(179\) −4.58258 −0.342518 −0.171259 0.985226i \(-0.554783\pi\)
−0.171259 + 0.985226i \(0.554783\pi\)
\(180\) 0 0
\(181\) −2.74773 −0.204237 −0.102118 0.994772i \(-0.532562\pi\)
−0.102118 + 0.994772i \(0.532562\pi\)
\(182\) 0 0
\(183\) −5.58258 −0.412676
\(184\) 0 0
\(185\) −3.16515 −0.232707
\(186\) 0 0
\(187\) −2.37386 −0.173594
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −11.5390 −0.834934 −0.417467 0.908692i \(-0.637082\pi\)
−0.417467 + 0.908692i \(0.637082\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.791288 0.0563769 0.0281885 0.999603i \(-0.491026\pi\)
0.0281885 + 0.999603i \(0.491026\pi\)
\(198\) 0 0
\(199\) 15.7477 1.11633 0.558163 0.829731i \(-0.311506\pi\)
0.558163 + 0.829731i \(0.311506\pi\)
\(200\) 0 0
\(201\) −19.5390 −1.37818
\(202\) 0 0
\(203\) 6.79129 0.476655
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) 28.7477 1.99811
\(208\) 0 0
\(209\) −5.04356 −0.348870
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) −4.41742 −0.302677
\(214\) 0 0
\(215\) 7.41742 0.505864
\(216\) 0 0
\(217\) −1.00000 −0.0678844
\(218\) 0 0
\(219\) 39.0780 2.64065
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.62614 −0.577649 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(224\) 0 0
\(225\) −20.9564 −1.39710
\(226\) 0 0
\(227\) 13.7477 0.912469 0.456234 0.889860i \(-0.349198\pi\)
0.456234 + 0.889860i \(0.349198\pi\)
\(228\) 0 0
\(229\) 26.7477 1.76754 0.883770 0.467922i \(-0.154997\pi\)
0.883770 + 0.467922i \(0.154997\pi\)
\(230\) 0 0
\(231\) −2.20871 −0.145323
\(232\) 0 0
\(233\) −27.9564 −1.83149 −0.915744 0.401763i \(-0.868398\pi\)
−0.915744 + 0.401763i \(0.868398\pi\)
\(234\) 0 0
\(235\) 4.87841 0.318232
\(236\) 0 0
\(237\) 11.1652 0.725255
\(238\) 0 0
\(239\) 24.4955 1.58448 0.792240 0.610210i \(-0.208915\pi\)
0.792240 + 0.610210i \(0.208915\pi\)
\(240\) 0 0
\(241\) 3.37386 0.217330 0.108665 0.994078i \(-0.465342\pi\)
0.108665 + 0.994078i \(0.465342\pi\)
\(242\) 0 0
\(243\) 16.1652 1.03699
\(244\) 0 0
\(245\) −0.791288 −0.0505535
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −25.1216 −1.59202
\(250\) 0 0
\(251\) 4.41742 0.278825 0.139413 0.990234i \(-0.455479\pi\)
0.139413 + 0.990234i \(0.455479\pi\)
\(252\) 0 0
\(253\) −4.74773 −0.298487
\(254\) 0 0
\(255\) 6.62614 0.414945
\(256\) 0 0
\(257\) −0.626136 −0.0390573 −0.0195287 0.999809i \(-0.506217\pi\)
−0.0195287 + 0.999809i \(0.506217\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) −32.5390 −2.01411
\(262\) 0 0
\(263\) −10.5826 −0.652550 −0.326275 0.945275i \(-0.605793\pi\)
−0.326275 + 0.945275i \(0.605793\pi\)
\(264\) 0 0
\(265\) 1.12159 0.0688988
\(266\) 0 0
\(267\) 23.3739 1.43046
\(268\) 0 0
\(269\) −23.3739 −1.42513 −0.712565 0.701606i \(-0.752467\pi\)
−0.712565 + 0.701606i \(0.752467\pi\)
\(270\) 0 0
\(271\) −3.74773 −0.227658 −0.113829 0.993500i \(-0.536312\pi\)
−0.113829 + 0.993500i \(0.536312\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.46099 0.208705
\(276\) 0 0
\(277\) 32.4955 1.95246 0.976231 0.216731i \(-0.0695395\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 4.79129 0.286847
\(280\) 0 0
\(281\) 22.7477 1.35702 0.678508 0.734593i \(-0.262627\pi\)
0.678508 + 0.734593i \(0.262627\pi\)
\(282\) 0 0
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 0 0
\(285\) 14.0780 0.833911
\(286\) 0 0
\(287\) 7.58258 0.447585
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −12.9129 −0.756966
\(292\) 0 0
\(293\) 13.5826 0.793503 0.396751 0.917926i \(-0.370138\pi\)
0.396751 + 0.917926i \(0.370138\pi\)
\(294\) 0 0
\(295\) −7.12159 −0.414635
\(296\) 0 0
\(297\) 3.95644 0.229576
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.37386 0.540301
\(302\) 0 0
\(303\) −48.9564 −2.81247
\(304\) 0 0
\(305\) −1.58258 −0.0906180
\(306\) 0 0
\(307\) 14.1216 0.805962 0.402981 0.915208i \(-0.367974\pi\)
0.402981 + 0.915208i \(0.367974\pi\)
\(308\) 0 0
\(309\) 2.79129 0.158791
\(310\) 0 0
\(311\) 18.9564 1.07492 0.537461 0.843289i \(-0.319384\pi\)
0.537461 + 0.843289i \(0.319384\pi\)
\(312\) 0 0
\(313\) 6.74773 0.381404 0.190702 0.981648i \(-0.438924\pi\)
0.190702 + 0.981648i \(0.438924\pi\)
\(314\) 0 0
\(315\) 3.79129 0.213615
\(316\) 0 0
\(317\) 16.5826 0.931370 0.465685 0.884950i \(-0.345808\pi\)
0.465685 + 0.884950i \(0.345808\pi\)
\(318\) 0 0
\(319\) 5.37386 0.300879
\(320\) 0 0
\(321\) −40.1216 −2.23937
\(322\) 0 0
\(323\) 19.1216 1.06395
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 27.2087 1.50465
\(328\) 0 0
\(329\) 6.16515 0.339896
\(330\) 0 0
\(331\) −27.1216 −1.49074 −0.745369 0.666652i \(-0.767727\pi\)
−0.745369 + 0.666652i \(0.767727\pi\)
\(332\) 0 0
\(333\) 19.1652 1.05024
\(334\) 0 0
\(335\) −5.53901 −0.302629
\(336\) 0 0
\(337\) −6.37386 −0.347206 −0.173603 0.984816i \(-0.555541\pi\)
−0.173603 + 0.984816i \(0.555541\pi\)
\(338\) 0 0
\(339\) −17.2087 −0.934649
\(340\) 0 0
\(341\) −0.791288 −0.0428506
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 13.2523 0.713478
\(346\) 0 0
\(347\) 4.74773 0.254871 0.127436 0.991847i \(-0.459325\pi\)
0.127436 + 0.991847i \(0.459325\pi\)
\(348\) 0 0
\(349\) 29.7477 1.59236 0.796180 0.605060i \(-0.206851\pi\)
0.796180 + 0.605060i \(0.206851\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.7042 0.782624 0.391312 0.920258i \(-0.372021\pi\)
0.391312 + 0.920258i \(0.372021\pi\)
\(354\) 0 0
\(355\) −1.25227 −0.0664637
\(356\) 0 0
\(357\) 8.37386 0.443192
\(358\) 0 0
\(359\) 24.9564 1.31715 0.658575 0.752515i \(-0.271159\pi\)
0.658575 + 0.752515i \(0.271159\pi\)
\(360\) 0 0
\(361\) 21.6261 1.13822
\(362\) 0 0
\(363\) 28.9564 1.51982
\(364\) 0 0
\(365\) 11.0780 0.579851
\(366\) 0 0
\(367\) 2.00000 0.104399 0.0521996 0.998637i \(-0.483377\pi\)
0.0521996 + 0.998637i \(0.483377\pi\)
\(368\) 0 0
\(369\) −36.3303 −1.89128
\(370\) 0 0
\(371\) 1.41742 0.0735890
\(372\) 0 0
\(373\) −15.3739 −0.796028 −0.398014 0.917379i \(-0.630301\pi\)
−0.398014 + 0.917379i \(0.630301\pi\)
\(374\) 0 0
\(375\) −20.7042 −1.06916
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.62614 −0.288995 −0.144498 0.989505i \(-0.546157\pi\)
−0.144498 + 0.989505i \(0.546157\pi\)
\(380\) 0 0
\(381\) 42.9129 2.19849
\(382\) 0 0
\(383\) 38.5390 1.96925 0.984626 0.174677i \(-0.0558880\pi\)
0.984626 + 0.174677i \(0.0558880\pi\)
\(384\) 0 0
\(385\) −0.626136 −0.0319109
\(386\) 0 0
\(387\) −44.9129 −2.28305
\(388\) 0 0
\(389\) 24.3303 1.23360 0.616798 0.787122i \(-0.288430\pi\)
0.616798 + 0.787122i \(0.288430\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) 52.9129 2.66910
\(394\) 0 0
\(395\) 3.16515 0.159256
\(396\) 0 0
\(397\) 31.4955 1.58071 0.790356 0.612648i \(-0.209896\pi\)
0.790356 + 0.612648i \(0.209896\pi\)
\(398\) 0 0
\(399\) 17.7913 0.890678
\(400\) 0 0
\(401\) 25.1216 1.25451 0.627256 0.778813i \(-0.284178\pi\)
0.627256 + 0.778813i \(0.284178\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.330303 0.0164129
\(406\) 0 0
\(407\) −3.16515 −0.156891
\(408\) 0 0
\(409\) 29.1216 1.43997 0.719985 0.693990i \(-0.244149\pi\)
0.719985 + 0.693990i \(0.244149\pi\)
\(410\) 0 0
\(411\) −6.62614 −0.326843
\(412\) 0 0
\(413\) −9.00000 −0.442861
\(414\) 0 0
\(415\) −7.12159 −0.349585
\(416\) 0 0
\(417\) −37.3303 −1.82807
\(418\) 0 0
\(419\) −1.41742 −0.0692457 −0.0346229 0.999400i \(-0.511023\pi\)
−0.0346229 + 0.999400i \(0.511023\pi\)
\(420\) 0 0
\(421\) −23.4955 −1.14510 −0.572549 0.819870i \(-0.694045\pi\)
−0.572549 + 0.819870i \(0.694045\pi\)
\(422\) 0 0
\(423\) −29.5390 −1.43624
\(424\) 0 0
\(425\) −13.1216 −0.636491
\(426\) 0 0
\(427\) −2.00000 −0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.53901 −0.411310 −0.205655 0.978625i \(-0.565932\pi\)
−0.205655 + 0.978625i \(0.565932\pi\)
\(432\) 0 0
\(433\) −22.4955 −1.08106 −0.540531 0.841324i \(-0.681777\pi\)
−0.540531 + 0.841324i \(0.681777\pi\)
\(434\) 0 0
\(435\) −15.0000 −0.719195
\(436\) 0 0
\(437\) 38.2432 1.82942
\(438\) 0 0
\(439\) −9.37386 −0.447390 −0.223695 0.974659i \(-0.571812\pi\)
−0.223695 + 0.974659i \(0.571812\pi\)
\(440\) 0 0
\(441\) 4.79129 0.228157
\(442\) 0 0
\(443\) −13.5826 −0.645328 −0.322664 0.946514i \(-0.604578\pi\)
−0.322664 + 0.946514i \(0.604578\pi\)
\(444\) 0 0
\(445\) 6.62614 0.314109
\(446\) 0 0
\(447\) 61.2867 2.89876
\(448\) 0 0
\(449\) 2.83485 0.133785 0.0668924 0.997760i \(-0.478692\pi\)
0.0668924 + 0.997760i \(0.478692\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 0 0
\(453\) −19.5390 −0.918023
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.4955 −0.818403 −0.409201 0.912444i \(-0.634193\pi\)
−0.409201 + 0.912444i \(0.634193\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) −24.7913 −1.15465 −0.577323 0.816516i \(-0.695903\pi\)
−0.577323 + 0.816516i \(0.695903\pi\)
\(462\) 0 0
\(463\) −5.00000 −0.232370 −0.116185 0.993228i \(-0.537067\pi\)
−0.116185 + 0.993228i \(0.537067\pi\)
\(464\) 0 0
\(465\) 2.20871 0.102427
\(466\) 0 0
\(467\) 42.1652 1.95117 0.975585 0.219621i \(-0.0704821\pi\)
0.975585 + 0.219621i \(0.0704821\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) 0 0
\(471\) 12.9129 0.594994
\(472\) 0 0
\(473\) 7.41742 0.341054
\(474\) 0 0
\(475\) −27.8784 −1.27915
\(476\) 0 0
\(477\) −6.79129 −0.310952
\(478\) 0 0
\(479\) −22.2867 −1.01831 −0.509154 0.860676i \(-0.670041\pi\)
−0.509154 + 0.860676i \(0.670041\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 16.7477 0.762048
\(484\) 0 0
\(485\) −3.66061 −0.166220
\(486\) 0 0
\(487\) −18.1216 −0.821168 −0.410584 0.911823i \(-0.634675\pi\)
−0.410584 + 0.911823i \(0.634675\pi\)
\(488\) 0 0
\(489\) −57.9129 −2.61891
\(490\) 0 0
\(491\) −9.79129 −0.441875 −0.220937 0.975288i \(-0.570912\pi\)
−0.220937 + 0.975288i \(0.570912\pi\)
\(492\) 0 0
\(493\) −20.3739 −0.917593
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 0 0
\(497\) −1.58258 −0.0709882
\(498\) 0 0
\(499\) 20.1216 0.900766 0.450383 0.892835i \(-0.351287\pi\)
0.450383 + 0.892835i \(0.351287\pi\)
\(500\) 0 0
\(501\) −50.7042 −2.26530
\(502\) 0 0
\(503\) −17.2087 −0.767299 −0.383649 0.923479i \(-0.625333\pi\)
−0.383649 + 0.923479i \(0.625333\pi\)
\(504\) 0 0
\(505\) −13.8784 −0.617581
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.74773 −0.0774666 −0.0387333 0.999250i \(-0.512332\pi\)
−0.0387333 + 0.999250i \(0.512332\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) 0 0
\(513\) −31.8693 −1.40706
\(514\) 0 0
\(515\) 0.791288 0.0348683
\(516\) 0 0
\(517\) 4.87841 0.214552
\(518\) 0 0
\(519\) −42.7913 −1.87833
\(520\) 0 0
\(521\) 31.5826 1.38366 0.691829 0.722061i \(-0.256805\pi\)
0.691829 + 0.722061i \(0.256805\pi\)
\(522\) 0 0
\(523\) −26.7477 −1.16960 −0.584798 0.811179i \(-0.698826\pi\)
−0.584798 + 0.811179i \(0.698826\pi\)
\(524\) 0 0
\(525\) −12.2087 −0.532832
\(526\) 0 0
\(527\) 3.00000 0.130682
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 43.1216 1.87132
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −11.3739 −0.491735
\(536\) 0 0
\(537\) 12.7913 0.551985
\(538\) 0 0
\(539\) −0.791288 −0.0340832
\(540\) 0 0
\(541\) −39.1216 −1.68197 −0.840984 0.541060i \(-0.818023\pi\)
−0.840984 + 0.541060i \(0.818023\pi\)
\(542\) 0 0
\(543\) 7.66970 0.329138
\(544\) 0 0
\(545\) 7.71326 0.330400
\(546\) 0 0
\(547\) −41.7477 −1.78500 −0.892502 0.451044i \(-0.851052\pi\)
−0.892502 + 0.451044i \(0.851052\pi\)
\(548\) 0 0
\(549\) 9.58258 0.408974
\(550\) 0 0
\(551\) −43.2867 −1.84408
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) 8.83485 0.375018
\(556\) 0 0
\(557\) 20.2087 0.856271 0.428135 0.903715i \(-0.359171\pi\)
0.428135 + 0.903715i \(0.359171\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 6.62614 0.279756
\(562\) 0 0
\(563\) −39.4955 −1.66453 −0.832267 0.554374i \(-0.812958\pi\)
−0.832267 + 0.554374i \(0.812958\pi\)
\(564\) 0 0
\(565\) −4.87841 −0.205236
\(566\) 0 0
\(567\) 0.417424 0.0175302
\(568\) 0 0
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) 15.1216 0.632819 0.316409 0.948623i \(-0.397523\pi\)
0.316409 + 0.948623i \(0.397523\pi\)
\(572\) 0 0
\(573\) 32.2087 1.34554
\(574\) 0 0
\(575\) −26.2432 −1.09442
\(576\) 0 0
\(577\) −26.4955 −1.10302 −0.551510 0.834168i \(-0.685948\pi\)
−0.551510 + 0.834168i \(0.685948\pi\)
\(578\) 0 0
\(579\) −27.9129 −1.16002
\(580\) 0 0
\(581\) −9.00000 −0.373383
\(582\) 0 0
\(583\) 1.12159 0.0464515
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.7042 −0.730729 −0.365365 0.930865i \(-0.619056\pi\)
−0.365365 + 0.930865i \(0.619056\pi\)
\(588\) 0 0
\(589\) 6.37386 0.262630
\(590\) 0 0
\(591\) −2.20871 −0.0908543
\(592\) 0 0
\(593\) 6.95644 0.285667 0.142833 0.989747i \(-0.454379\pi\)
0.142833 + 0.989747i \(0.454379\pi\)
\(594\) 0 0
\(595\) 2.37386 0.0973189
\(596\) 0 0
\(597\) −43.9564 −1.79902
\(598\) 0 0
\(599\) 36.9564 1.51000 0.755000 0.655725i \(-0.227637\pi\)
0.755000 + 0.655725i \(0.227637\pi\)
\(600\) 0 0
\(601\) −12.3739 −0.504740 −0.252370 0.967631i \(-0.581210\pi\)
−0.252370 + 0.967631i \(0.581210\pi\)
\(602\) 0 0
\(603\) 33.5390 1.36581
\(604\) 0 0
\(605\) 8.20871 0.333732
\(606\) 0 0
\(607\) 21.7477 0.882713 0.441357 0.897332i \(-0.354497\pi\)
0.441357 + 0.897332i \(0.354497\pi\)
\(608\) 0 0
\(609\) −18.9564 −0.768154
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 20.1216 0.812703 0.406352 0.913717i \(-0.366801\pi\)
0.406352 + 0.913717i \(0.366801\pi\)
\(614\) 0 0
\(615\) −16.7477 −0.675334
\(616\) 0 0
\(617\) −2.66970 −0.107478 −0.0537390 0.998555i \(-0.517114\pi\)
−0.0537390 + 0.998555i \(0.517114\pi\)
\(618\) 0 0
\(619\) 34.0000 1.36658 0.683288 0.730149i \(-0.260549\pi\)
0.683288 + 0.730149i \(0.260549\pi\)
\(620\) 0 0
\(621\) −30.0000 −1.20386
\(622\) 0 0
\(623\) 8.37386 0.335492
\(624\) 0 0
\(625\) 16.0000 0.640000
\(626\) 0 0
\(627\) 14.0780 0.562222
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 29.1216 1.15931 0.579656 0.814861i \(-0.303187\pi\)
0.579656 + 0.814861i \(0.303187\pi\)
\(632\) 0 0
\(633\) 36.2867 1.44227
\(634\) 0 0
\(635\) 12.1652 0.482759
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 7.58258 0.299962
\(640\) 0 0
\(641\) 40.1216 1.58471 0.792354 0.610062i \(-0.208855\pi\)
0.792354 + 0.610062i \(0.208855\pi\)
\(642\) 0 0
\(643\) 23.7477 0.936519 0.468259 0.883591i \(-0.344881\pi\)
0.468259 + 0.883591i \(0.344881\pi\)
\(644\) 0 0
\(645\) −20.7042 −0.815226
\(646\) 0 0
\(647\) −19.5826 −0.769870 −0.384935 0.922944i \(-0.625776\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(648\) 0 0
\(649\) −7.12159 −0.279547
\(650\) 0 0
\(651\) 2.79129 0.109399
\(652\) 0 0
\(653\) −0.626136 −0.0245026 −0.0122513 0.999925i \(-0.503900\pi\)
−0.0122513 + 0.999925i \(0.503900\pi\)
\(654\) 0 0
\(655\) 15.0000 0.586098
\(656\) 0 0
\(657\) −67.0780 −2.61696
\(658\) 0 0
\(659\) 21.1652 0.824477 0.412239 0.911076i \(-0.364747\pi\)
0.412239 + 0.911076i \(0.364747\pi\)
\(660\) 0 0
\(661\) −18.7477 −0.729202 −0.364601 0.931164i \(-0.618795\pi\)
−0.364601 + 0.931164i \(0.618795\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.04356 0.195581
\(666\) 0 0
\(667\) −40.7477 −1.57776
\(668\) 0 0
\(669\) 24.0780 0.930910
\(670\) 0 0
\(671\) −1.58258 −0.0610947
\(672\) 0 0
\(673\) 20.4955 0.790042 0.395021 0.918672i \(-0.370737\pi\)
0.395021 + 0.918672i \(0.370737\pi\)
\(674\) 0 0
\(675\) 21.8693 0.841750
\(676\) 0 0
\(677\) 14.0436 0.539738 0.269869 0.962897i \(-0.413020\pi\)
0.269869 + 0.962897i \(0.413020\pi\)
\(678\) 0 0
\(679\) −4.62614 −0.177535
\(680\) 0 0
\(681\) −38.3739 −1.47049
\(682\) 0 0
\(683\) 31.7477 1.21479 0.607397 0.794399i \(-0.292214\pi\)
0.607397 + 0.794399i \(0.292214\pi\)
\(684\) 0 0
\(685\) −1.87841 −0.0717703
\(686\) 0 0
\(687\) −74.6606 −2.84848
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −5.62614 −0.214028 −0.107014 0.994257i \(-0.534129\pi\)
−0.107014 + 0.994257i \(0.534129\pi\)
\(692\) 0 0
\(693\) 3.79129 0.144019
\(694\) 0 0
\(695\) −10.5826 −0.401420
\(696\) 0 0
\(697\) −22.7477 −0.861632
\(698\) 0 0
\(699\) 78.0345 2.95153
\(700\) 0 0
\(701\) −34.7477 −1.31240 −0.656202 0.754585i \(-0.727838\pi\)
−0.656202 + 0.754585i \(0.727838\pi\)
\(702\) 0 0
\(703\) 25.4955 0.961579
\(704\) 0 0
\(705\) −13.6170 −0.512848
\(706\) 0 0
\(707\) −17.5390 −0.659623
\(708\) 0 0
\(709\) 25.6261 0.962410 0.481205 0.876608i \(-0.340199\pi\)
0.481205 + 0.876608i \(0.340199\pi\)
\(710\) 0 0
\(711\) −19.1652 −0.718749
\(712\) 0 0
\(713\) 6.00000 0.224702
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −68.3739 −2.55347
\(718\) 0 0
\(719\) 48.8258 1.82089 0.910447 0.413626i \(-0.135738\pi\)
0.910447 + 0.413626i \(0.135738\pi\)
\(720\) 0 0
\(721\) 1.00000 0.0372419
\(722\) 0 0
\(723\) −9.41742 −0.350238
\(724\) 0 0
\(725\) 29.7042 1.10319
\(726\) 0 0
\(727\) −28.4955 −1.05684 −0.528419 0.848984i \(-0.677215\pi\)
−0.528419 + 0.848984i \(0.677215\pi\)
\(728\) 0 0
\(729\) −43.8693 −1.62479
\(730\) 0 0
\(731\) −28.1216 −1.04011
\(732\) 0 0
\(733\) 30.8693 1.14018 0.570092 0.821581i \(-0.306907\pi\)
0.570092 + 0.821581i \(0.306907\pi\)
\(734\) 0 0
\(735\) 2.20871 0.0814696
\(736\) 0 0
\(737\) −5.53901 −0.204032
\(738\) 0 0
\(739\) −42.7477 −1.57250 −0.786250 0.617908i \(-0.787980\pi\)
−0.786250 + 0.617908i \(0.787980\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.7913 1.01956 0.509782 0.860304i \(-0.329726\pi\)
0.509782 + 0.860304i \(0.329726\pi\)
\(744\) 0 0
\(745\) 17.3739 0.636529
\(746\) 0 0
\(747\) 43.1216 1.57774
\(748\) 0 0
\(749\) −14.3739 −0.525210
\(750\) 0 0
\(751\) 5.00000 0.182453 0.0912263 0.995830i \(-0.470921\pi\)
0.0912263 + 0.995830i \(0.470921\pi\)
\(752\) 0 0
\(753\) −12.3303 −0.449341
\(754\) 0 0
\(755\) −5.53901 −0.201585
\(756\) 0 0
\(757\) −4.00000 −0.145382 −0.0726912 0.997354i \(-0.523159\pi\)
−0.0726912 + 0.997354i \(0.523159\pi\)
\(758\) 0 0
\(759\) 13.2523 0.481027
\(760\) 0 0
\(761\) 20.5390 0.744539 0.372269 0.928125i \(-0.378580\pi\)
0.372269 + 0.928125i \(0.378580\pi\)
\(762\) 0 0
\(763\) 9.74773 0.352891
\(764\) 0 0
\(765\) −11.3739 −0.411223
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −35.0000 −1.26213 −0.631066 0.775729i \(-0.717382\pi\)
−0.631066 + 0.775729i \(0.717382\pi\)
\(770\) 0 0
\(771\) 1.74773 0.0629429
\(772\) 0 0
\(773\) 42.4955 1.52846 0.764228 0.644947i \(-0.223120\pi\)
0.764228 + 0.644947i \(0.223120\pi\)
\(774\) 0 0
\(775\) −4.37386 −0.157114
\(776\) 0 0
\(777\) 11.1652 0.400548
\(778\) 0 0
\(779\) −48.3303 −1.73161
\(780\) 0 0
\(781\) −1.25227 −0.0448098
\(782\) 0 0
\(783\) 33.9564 1.21350
\(784\) 0 0
\(785\) 3.66061 0.130653
\(786\) 0 0
\(787\) −14.0000 −0.499046 −0.249523 0.968369i \(-0.580274\pi\)
−0.249523 + 0.968369i \(0.580274\pi\)
\(788\) 0 0
\(789\) 29.5390 1.05162
\(790\) 0 0
\(791\) −6.16515 −0.219208
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −3.13068 −0.111034
\(796\) 0 0
\(797\) 49.9129 1.76800 0.884002 0.467482i \(-0.154839\pi\)
0.884002 + 0.467482i \(0.154839\pi\)
\(798\) 0 0
\(799\) −18.4955 −0.654322
\(800\) 0 0
\(801\) −40.1216 −1.41763
\(802\) 0 0
\(803\) 11.0780 0.390935
\(804\) 0 0
\(805\) 4.74773 0.167335
\(806\) 0 0
\(807\) 65.2432 2.29667
\(808\) 0 0
\(809\) 6.16515 0.216755 0.108378 0.994110i \(-0.465434\pi\)
0.108378 + 0.994110i \(0.465434\pi\)
\(810\) 0 0
\(811\) −25.8693 −0.908395 −0.454197 0.890901i \(-0.650074\pi\)
−0.454197 + 0.890901i \(0.650074\pi\)
\(812\) 0 0
\(813\) 10.4610 0.366883
\(814\) 0 0
\(815\) −16.4174 −0.575077
\(816\) 0 0
\(817\) −59.7477 −2.09031
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −33.0000 −1.15171 −0.575854 0.817553i \(-0.695330\pi\)
−0.575854 + 0.817553i \(0.695330\pi\)
\(822\) 0 0
\(823\) 18.2523 0.636234 0.318117 0.948051i \(-0.396949\pi\)
0.318117 + 0.948051i \(0.396949\pi\)
\(824\) 0 0
\(825\) −9.66061 −0.336339
\(826\) 0 0
\(827\) −4.12159 −0.143322 −0.0716609 0.997429i \(-0.522830\pi\)
−0.0716609 + 0.997429i \(0.522830\pi\)
\(828\) 0 0
\(829\) −42.3739 −1.47171 −0.735853 0.677142i \(-0.763218\pi\)
−0.735853 + 0.677142i \(0.763218\pi\)
\(830\) 0 0
\(831\) −90.7042 −3.14649
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −14.3739 −0.497428
\(836\) 0 0
\(837\) −5.00000 −0.172825
\(838\) 0 0
\(839\) −26.0436 −0.899124 −0.449562 0.893249i \(-0.648420\pi\)
−0.449562 + 0.893249i \(0.648420\pi\)
\(840\) 0 0
\(841\) 17.1216 0.590400
\(842\) 0 0
\(843\) −63.4955 −2.18690
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.3739 0.356450
\(848\) 0 0
\(849\) −72.5735 −2.49072
\(850\) 0 0
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) −9.74773 −0.333756 −0.166878 0.985978i \(-0.553369\pi\)
−0.166878 + 0.985978i \(0.553369\pi\)
\(854\) 0 0
\(855\) −24.1652 −0.826431
\(856\) 0 0
\(857\) 20.2087 0.690316 0.345158 0.938545i \(-0.387825\pi\)
0.345158 + 0.938545i \(0.387825\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) −21.1652 −0.721306
\(862\) 0 0
\(863\) 2.83485 0.0964994 0.0482497 0.998835i \(-0.484636\pi\)
0.0482497 + 0.998835i \(0.484636\pi\)
\(864\) 0 0
\(865\) −12.1307 −0.412456
\(866\) 0 0
\(867\) 22.3303 0.758377
\(868\) 0 0
\(869\) 3.16515 0.107370
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 22.1652 0.750177
\(874\) 0 0
\(875\) −7.41742 −0.250755
\(876\) 0 0
\(877\) 23.7477 0.801904 0.400952 0.916099i \(-0.368679\pi\)
0.400952 + 0.916099i \(0.368679\pi\)
\(878\) 0 0
\(879\) −37.9129 −1.27877
\(880\) 0 0
\(881\) −7.41742 −0.249899 −0.124950 0.992163i \(-0.539877\pi\)
−0.124950 + 0.992163i \(0.539877\pi\)
\(882\) 0 0
\(883\) −29.7477 −1.00109 −0.500545 0.865710i \(-0.666867\pi\)
−0.500545 + 0.865710i \(0.666867\pi\)
\(884\) 0 0
\(885\) 19.8784 0.668205
\(886\) 0 0
\(887\) −25.2523 −0.847888 −0.423944 0.905688i \(-0.639355\pi\)
−0.423944 + 0.905688i \(0.639355\pi\)
\(888\) 0 0
\(889\) 15.3739 0.515623
\(890\) 0 0
\(891\) 0.330303 0.0110656
\(892\) 0 0
\(893\) −39.2958 −1.31498
\(894\) 0 0
\(895\) 3.62614 0.121208
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.79129 −0.226502
\(900\) 0 0
\(901\) −4.25227 −0.141664
\(902\) 0 0
\(903\) −26.1652 −0.870722
\(904\) 0 0
\(905\) 2.17424 0.0722743
\(906\) 0 0
\(907\) 50.9909 1.69313 0.846563 0.532289i \(-0.178668\pi\)
0.846563 + 0.532289i \(0.178668\pi\)
\(908\) 0 0
\(909\) 84.0345 2.78725
\(910\) 0 0
\(911\) 32.3739 1.07259 0.536297 0.844029i \(-0.319823\pi\)
0.536297 + 0.844029i \(0.319823\pi\)
\(912\) 0 0
\(913\) −7.12159 −0.235690
\(914\) 0 0
\(915\) 4.41742 0.146036
\(916\) 0 0
\(917\) 18.9564 0.625997
\(918\) 0 0
\(919\) 11.4955 0.379200 0.189600 0.981861i \(-0.439281\pi\)
0.189600 + 0.981861i \(0.439281\pi\)
\(920\) 0 0
\(921\) −39.4174 −1.29885
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −17.4955 −0.575247
\(926\) 0 0
\(927\) −4.79129 −0.157367
\(928\) 0 0
\(929\) −46.5826 −1.52832 −0.764162 0.645024i \(-0.776847\pi\)
−0.764162 + 0.645024i \(0.776847\pi\)
\(930\) 0 0
\(931\) 6.37386 0.208895
\(932\) 0 0
\(933\) −52.9129 −1.73229
\(934\) 0 0
\(935\) 1.87841 0.0614306
\(936\) 0 0
\(937\) −17.7477 −0.579793 −0.289896 0.957058i \(-0.593621\pi\)
−0.289896 + 0.957058i \(0.593621\pi\)
\(938\) 0 0
\(939\) −18.8348 −0.614652
\(940\) 0 0
\(941\) −38.0780 −1.24131 −0.620654 0.784084i \(-0.713133\pi\)
−0.620654 + 0.784084i \(0.713133\pi\)
\(942\) 0 0
\(943\) −45.4955 −1.48154
\(944\) 0 0
\(945\) −3.95644 −0.128703
\(946\) 0 0
\(947\) 32.3739 1.05201 0.526005 0.850482i \(-0.323689\pi\)
0.526005 + 0.850482i \(0.323689\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −46.2867 −1.50095
\(952\) 0 0
\(953\) 8.66970 0.280839 0.140420 0.990092i \(-0.455155\pi\)
0.140420 + 0.990092i \(0.455155\pi\)
\(954\) 0 0
\(955\) 9.13068 0.295462
\(956\) 0 0
\(957\) −15.0000 −0.484881
\(958\) 0 0
\(959\) −2.37386 −0.0766561
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 68.8693 2.21928
\(964\) 0 0
\(965\) −7.91288 −0.254725
\(966\) 0 0
\(967\) −3.74773 −0.120519 −0.0602594 0.998183i \(-0.519193\pi\)
−0.0602594 + 0.998183i \(0.519193\pi\)
\(968\) 0 0
\(969\) −53.3739 −1.71462
\(970\) 0 0
\(971\) −31.4174 −1.00823 −0.504117 0.863636i \(-0.668182\pi\)
−0.504117 + 0.863636i \(0.668182\pi\)
\(972\) 0 0
\(973\) −13.3739 −0.428746
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48.8258 1.56207 0.781037 0.624485i \(-0.214691\pi\)
0.781037 + 0.624485i \(0.214691\pi\)
\(978\) 0 0
\(979\) 6.62614 0.211772
\(980\) 0 0
\(981\) −46.7042 −1.49115
\(982\) 0 0
\(983\) 14.5390 0.463723 0.231861 0.972749i \(-0.425518\pi\)
0.231861 + 0.972749i \(0.425518\pi\)
\(984\) 0 0
\(985\) −0.626136 −0.0199504
\(986\) 0 0
\(987\) −17.2087 −0.547759
\(988\) 0 0
\(989\) −56.2432 −1.78843
\(990\) 0 0
\(991\) 23.6261 0.750509 0.375254 0.926922i \(-0.377555\pi\)
0.375254 + 0.926922i \(0.377555\pi\)
\(992\) 0 0
\(993\) 75.7042 2.40240
\(994\) 0 0
\(995\) −12.4610 −0.395040
\(996\) 0 0
\(997\) 35.0000 1.10846 0.554231 0.832363i \(-0.313013\pi\)
0.554231 + 0.832363i \(0.313013\pi\)
\(998\) 0 0
\(999\) −20.0000 −0.632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.h.1.1 2
13.4 even 6 364.2.k.d.29.2 4
13.5 odd 4 4732.2.g.e.337.2 4
13.8 odd 4 4732.2.g.e.337.1 4
13.10 even 6 364.2.k.d.113.2 yes 4
13.12 even 2 4732.2.a.g.1.1 2
39.17 odd 6 3276.2.z.e.757.1 4
39.23 odd 6 3276.2.z.e.3025.1 4
52.23 odd 6 1456.2.s.k.113.1 4
52.43 odd 6 1456.2.s.k.1121.1 4
91.4 even 6 2548.2.i.k.1745.2 4
91.10 odd 6 2548.2.l.l.373.2 4
91.17 odd 6 2548.2.i.i.1745.1 4
91.23 even 6 2548.2.i.k.165.2 4
91.30 even 6 2548.2.l.j.1537.1 4
91.62 odd 6 2548.2.k.e.1569.1 4
91.69 odd 6 2548.2.k.e.393.1 4
91.75 odd 6 2548.2.i.i.165.1 4
91.82 odd 6 2548.2.l.l.1537.2 4
91.88 even 6 2548.2.l.j.373.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.d.29.2 4 13.4 even 6
364.2.k.d.113.2 yes 4 13.10 even 6
1456.2.s.k.113.1 4 52.23 odd 6
1456.2.s.k.1121.1 4 52.43 odd 6
2548.2.i.i.165.1 4 91.75 odd 6
2548.2.i.i.1745.1 4 91.17 odd 6
2548.2.i.k.165.2 4 91.23 even 6
2548.2.i.k.1745.2 4 91.4 even 6
2548.2.k.e.393.1 4 91.69 odd 6
2548.2.k.e.1569.1 4 91.62 odd 6
2548.2.l.j.373.1 4 91.88 even 6
2548.2.l.j.1537.1 4 91.30 even 6
2548.2.l.l.373.2 4 91.10 odd 6
2548.2.l.l.1537.2 4 91.82 odd 6
3276.2.z.e.757.1 4 39.17 odd 6
3276.2.z.e.3025.1 4 39.23 odd 6
4732.2.a.g.1.1 2 13.12 even 2
4732.2.a.h.1.1 2 1.1 even 1 trivial
4732.2.g.e.337.1 4 13.8 odd 4
4732.2.g.e.337.2 4 13.5 odd 4