Properties

Label 2548.2.i.i.165.1
Level $2548$
Weight $2$
Character 2548.165
Analytic conductor $20.346$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(165,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.1
Root \(1.39564 + 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 2548.165
Dual form 2548.2.i.i.1745.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39564 - 2.41733i) q^{3} +(0.395644 + 0.685275i) q^{5} +(-2.39564 + 4.14938i) q^{9} +(-0.395644 - 0.685275i) q^{11} +(-2.50000 + 2.59808i) q^{13} +(1.10436 - 1.91280i) q^{15} -3.00000 q^{17} +(-3.18693 + 5.51993i) q^{19} +6.00000 q^{23} +(2.18693 - 3.78788i) q^{25} +5.00000 q^{27} +(3.39564 - 5.88143i) q^{29} +(-0.500000 + 0.866025i) q^{31} +(-1.10436 + 1.91280i) q^{33} -4.00000 q^{37} +(9.76951 + 2.41733i) q^{39} +(3.79129 - 6.56670i) q^{41} +(4.68693 + 8.11800i) q^{43} -3.79129 q^{45} +(3.08258 + 5.33918i) q^{47} +(4.18693 + 7.25198i) q^{51} +(0.708712 - 1.22753i) q^{53} +(0.313068 - 0.542250i) q^{55} +17.7913 q^{57} +9.00000 q^{59} +(1.00000 - 1.73205i) q^{61} +(-2.76951 - 0.685275i) q^{65} +(3.50000 + 6.06218i) q^{67} +(-8.37386 - 14.5040i) q^{69} +(0.791288 + 1.37055i) q^{71} +(7.00000 - 12.1244i) q^{73} -12.2087 q^{75} +(2.00000 + 3.46410i) q^{79} +(0.208712 + 0.361500i) q^{81} +9.00000 q^{83} +(-1.18693 - 2.05583i) q^{85} -18.9564 q^{87} -8.37386 q^{89} +2.79129 q^{93} -5.04356 q^{95} +(-2.31307 - 4.00635i) q^{97} +3.79129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 3 q^{5} - 5 q^{9} + 3 q^{11} - 10 q^{13} + 9 q^{15} - 12 q^{17} + q^{19} + 24 q^{23} - 5 q^{25} + 20 q^{27} + 9 q^{29} - 2 q^{31} - 9 q^{33} - 16 q^{37} + 7 q^{39} + 6 q^{41} + 5 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39564 2.41733i −0.805775 1.39564i −0.915766 0.401711i \(-0.868416\pi\)
0.109991 0.993933i \(-0.464918\pi\)
\(4\) 0 0
\(5\) 0.395644 + 0.685275i 0.176937 + 0.306464i 0.940830 0.338879i \(-0.110048\pi\)
−0.763893 + 0.645343i \(0.776714\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.39564 + 4.14938i −0.798548 + 1.38313i
\(10\) 0 0
\(11\) −0.395644 0.685275i −0.119291 0.206618i 0.800196 0.599739i \(-0.204729\pi\)
−0.919487 + 0.393121i \(0.871396\pi\)
\(12\) 0 0
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) 0 0
\(15\) 1.10436 1.91280i 0.285144 0.493883i
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −3.18693 + 5.51993i −0.731132 + 1.26636i 0.225267 + 0.974297i \(0.427674\pi\)
−0.956400 + 0.292061i \(0.905659\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 2.18693 3.78788i 0.437386 0.757575i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 3.39564 5.88143i 0.630555 1.09215i −0.356883 0.934149i \(-0.616161\pi\)
0.987438 0.158005i \(-0.0505061\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 0 0
\(33\) −1.10436 + 1.91280i −0.192244 + 0.332976i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 9.76951 + 2.41733i 1.56437 + 0.387082i
\(40\) 0 0
\(41\) 3.79129 6.56670i 0.592100 1.02555i −0.401849 0.915706i \(-0.631632\pi\)
0.993949 0.109841i \(-0.0350342\pi\)
\(42\) 0 0
\(43\) 4.68693 + 8.11800i 0.714750 + 1.23798i 0.963056 + 0.269302i \(0.0867930\pi\)
−0.248305 + 0.968682i \(0.579874\pi\)
\(44\) 0 0
\(45\) −3.79129 −0.565172
\(46\) 0 0
\(47\) 3.08258 + 5.33918i 0.449640 + 0.778799i 0.998362 0.0572054i \(-0.0182190\pi\)
−0.548723 + 0.836005i \(0.684886\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4.18693 + 7.25198i 0.586288 + 1.01548i
\(52\) 0 0
\(53\) 0.708712 1.22753i 0.0973491 0.168614i −0.813237 0.581932i \(-0.802297\pi\)
0.910587 + 0.413318i \(0.135630\pi\)
\(54\) 0 0
\(55\) 0.313068 0.542250i 0.0422141 0.0731170i
\(56\) 0 0
\(57\) 17.7913 2.35651
\(58\) 0 0
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.76951 0.685275i −0.343515 0.0849979i
\(66\) 0 0
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 0 0
\(69\) −8.37386 14.5040i −1.00809 1.74607i
\(70\) 0 0
\(71\) 0.791288 + 1.37055i 0.0939086 + 0.162654i 0.909153 0.416463i \(-0.136731\pi\)
−0.815244 + 0.579118i \(0.803397\pi\)
\(72\) 0 0
\(73\) 7.00000 12.1244i 0.819288 1.41905i −0.0869195 0.996215i \(-0.527702\pi\)
0.906208 0.422833i \(-0.138964\pi\)
\(74\) 0 0
\(75\) −12.2087 −1.40974
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) 0.208712 + 0.361500i 0.0231902 + 0.0401667i
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) −1.18693 2.05583i −0.128741 0.222986i
\(86\) 0 0
\(87\) −18.9564 −2.03234
\(88\) 0 0
\(89\) −8.37386 −0.887628 −0.443814 0.896119i \(-0.646375\pi\)
−0.443814 + 0.896119i \(0.646375\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.79129 0.289443
\(94\) 0 0
\(95\) −5.04356 −0.517458
\(96\) 0 0
\(97\) −2.31307 4.00635i −0.234856 0.406783i 0.724374 0.689407i \(-0.242129\pi\)
−0.959231 + 0.282623i \(0.908795\pi\)
\(98\) 0 0
\(99\) 3.79129 0.381039
\(100\) 0 0
\(101\) 8.76951 + 15.1892i 0.872599 + 1.51139i 0.859299 + 0.511474i \(0.170900\pi\)
0.0132996 + 0.999912i \(0.495766\pi\)
\(102\) 0 0
\(103\) −0.500000 0.866025i −0.0492665 0.0853320i 0.840341 0.542059i \(-0.182355\pi\)
−0.889607 + 0.456727i \(0.849022\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3739 1.38957 0.694787 0.719216i \(-0.255499\pi\)
0.694787 + 0.719216i \(0.255499\pi\)
\(108\) 0 0
\(109\) −4.87386 + 8.44178i −0.466831 + 0.808576i −0.999282 0.0378852i \(-0.987938\pi\)
0.532451 + 0.846461i \(0.321271\pi\)
\(110\) 0 0
\(111\) 5.58258 + 9.66930i 0.529875 + 0.917770i
\(112\) 0 0
\(113\) −3.08258 5.33918i −0.289984 0.502268i 0.683821 0.729649i \(-0.260317\pi\)
−0.973806 + 0.227382i \(0.926983\pi\)
\(114\) 0 0
\(115\) 2.37386 + 4.11165i 0.221364 + 0.383414i
\(116\) 0 0
\(117\) −4.79129 16.5975i −0.442955 1.53444i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.18693 8.98403i 0.471539 0.816730i
\(122\) 0 0
\(123\) −21.1652 −1.90840
\(124\) 0 0
\(125\) 7.41742 0.663435
\(126\) 0 0
\(127\) 7.68693 13.3142i 0.682105 1.18144i −0.292232 0.956347i \(-0.594398\pi\)
0.974337 0.225093i \(-0.0722686\pi\)
\(128\) 0 0
\(129\) 13.0826 22.6597i 1.15186 1.99507i
\(130\) 0 0
\(131\) −9.47822 16.4168i −0.828116 1.43434i −0.899514 0.436891i \(-0.856080\pi\)
0.0713986 0.997448i \(-0.477254\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.97822 + 3.42638i 0.170258 + 0.294896i
\(136\) 0 0
\(137\) −2.37386 −0.202813 −0.101406 0.994845i \(-0.532334\pi\)
−0.101406 + 0.994845i \(0.532334\pi\)
\(138\) 0 0
\(139\) 6.68693 + 11.5821i 0.567178 + 0.982381i 0.996843 + 0.0793931i \(0.0252982\pi\)
−0.429665 + 0.902988i \(0.641368\pi\)
\(140\) 0 0
\(141\) 8.60436 14.9032i 0.724617 1.25507i
\(142\) 0 0
\(143\) 2.76951 + 0.685275i 0.231598 + 0.0573056i
\(144\) 0 0
\(145\) 5.37386 0.446275
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.9782 + 19.0148i −0.899371 + 1.55776i −0.0710706 + 0.997471i \(0.522642\pi\)
−0.828300 + 0.560285i \(0.810692\pi\)
\(150\) 0 0
\(151\) 3.50000 6.06218i 0.284826 0.493333i −0.687741 0.725956i \(-0.741398\pi\)
0.972567 + 0.232623i \(0.0747309\pi\)
\(152\) 0 0
\(153\) 7.18693 12.4481i 0.581029 1.00637i
\(154\) 0 0
\(155\) −0.791288 −0.0635578
\(156\) 0 0
\(157\) −2.31307 + 4.00635i −0.184603 + 0.319742i −0.943443 0.331536i \(-0.892433\pi\)
0.758840 + 0.651277i \(0.225767\pi\)
\(158\) 0 0
\(159\) −3.95644 −0.313766
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.3739 17.9681i 0.812544 1.40737i −0.0985346 0.995134i \(-0.531416\pi\)
0.911078 0.412233i \(-0.135251\pi\)
\(164\) 0 0
\(165\) −1.74773 −0.136060
\(166\) 0 0
\(167\) −9.08258 + 15.7315i −0.702831 + 1.21734i 0.264638 + 0.964348i \(0.414748\pi\)
−0.967469 + 0.252991i \(0.918586\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) −15.2695 26.4476i −1.16769 2.02250i
\(172\) 0 0
\(173\) 7.66515 13.2764i 0.582771 1.00939i −0.412379 0.911013i \(-0.635302\pi\)
0.995149 0.0983759i \(-0.0313647\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.5608 21.7559i −0.944127 1.63528i
\(178\) 0 0
\(179\) 2.29129 + 3.96863i 0.171259 + 0.296629i 0.938860 0.344298i \(-0.111883\pi\)
−0.767601 + 0.640928i \(0.778550\pi\)
\(180\) 0 0
\(181\) 2.74773 0.204237 0.102118 0.994772i \(-0.467438\pi\)
0.102118 + 0.994772i \(0.467438\pi\)
\(182\) 0 0
\(183\) −5.58258 −0.412676
\(184\) 0 0
\(185\) −1.58258 2.74110i −0.116353 0.201530i
\(186\) 0 0
\(187\) 1.18693 + 2.05583i 0.0867970 + 0.150337i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.76951 9.99308i 0.417467 0.723074i −0.578217 0.815883i \(-0.696251\pi\)
0.995684 + 0.0928091i \(0.0295846\pi\)
\(192\) 0 0
\(193\) 5.00000 + 8.66025i 0.359908 + 0.623379i 0.987945 0.154805i \(-0.0494748\pi\)
−0.628037 + 0.778183i \(0.716141\pi\)
\(194\) 0 0
\(195\) 2.20871 + 7.65120i 0.158169 + 0.547914i
\(196\) 0 0
\(197\) 0.395644 0.685275i 0.0281885 0.0488238i −0.851587 0.524213i \(-0.824359\pi\)
0.879775 + 0.475389i \(0.157693\pi\)
\(198\) 0 0
\(199\) −15.7477 −1.11633 −0.558163 0.829731i \(-0.688494\pi\)
−0.558163 + 0.829731i \(0.688494\pi\)
\(200\) 0 0
\(201\) 9.76951 16.9213i 0.689088 1.19354i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) −14.3739 + 24.8963i −0.999053 + 1.73041i
\(208\) 0 0
\(209\) 5.04356 0.348870
\(210\) 0 0
\(211\) 6.50000 11.2583i 0.447478 0.775055i −0.550743 0.834675i \(-0.685655\pi\)
0.998221 + 0.0596196i \(0.0189888\pi\)
\(212\) 0 0
\(213\) 2.20871 3.82560i 0.151338 0.262126i
\(214\) 0 0
\(215\) −3.70871 + 6.42368i −0.252932 + 0.438091i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −39.0780 −2.64065
\(220\) 0 0
\(221\) 7.50000 7.79423i 0.504505 0.524297i
\(222\) 0 0
\(223\) 4.31307 7.47045i 0.288824 0.500259i −0.684705 0.728820i \(-0.740069\pi\)
0.973529 + 0.228562i \(0.0734023\pi\)
\(224\) 0 0
\(225\) 10.4782 + 18.1488i 0.698548 + 1.20992i
\(226\) 0 0
\(227\) 13.7477 0.912469 0.456234 0.889860i \(-0.349198\pi\)
0.456234 + 0.889860i \(0.349198\pi\)
\(228\) 0 0
\(229\) −13.3739 23.1642i −0.883770 1.53073i −0.847117 0.531406i \(-0.821664\pi\)
−0.0366526 0.999328i \(-0.511669\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.9782 + 24.2110i 0.915744 + 1.58611i 0.805809 + 0.592176i \(0.201731\pi\)
0.109935 + 0.993939i \(0.464936\pi\)
\(234\) 0 0
\(235\) −2.43920 + 4.22483i −0.159116 + 0.275597i
\(236\) 0 0
\(237\) 5.58258 9.66930i 0.362627 0.628089i
\(238\) 0 0
\(239\) −24.4955 −1.58448 −0.792240 0.610210i \(-0.791085\pi\)
−0.792240 + 0.610210i \(0.791085\pi\)
\(240\) 0 0
\(241\) 3.37386 0.217330 0.108665 0.994078i \(-0.465342\pi\)
0.108665 + 0.994078i \(0.465342\pi\)
\(242\) 0 0
\(243\) 8.08258 13.9994i 0.518497 0.898064i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.37386 22.0797i −0.405559 1.40490i
\(248\) 0 0
\(249\) −12.5608 21.7559i −0.796008 1.37873i
\(250\) 0 0
\(251\) 2.20871 + 3.82560i 0.139413 + 0.241470i 0.927274 0.374382i \(-0.122145\pi\)
−0.787862 + 0.615852i \(0.788812\pi\)
\(252\) 0 0
\(253\) −2.37386 4.11165i −0.149244 0.258497i
\(254\) 0 0
\(255\) −3.31307 + 5.73840i −0.207472 + 0.359353i
\(256\) 0 0
\(257\) 0.626136 0.0390573 0.0195287 0.999809i \(-0.493783\pi\)
0.0195287 + 0.999809i \(0.493783\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 16.2695 + 28.1796i 1.00706 + 1.74427i
\(262\) 0 0
\(263\) 5.29129 + 9.16478i 0.326275 + 0.565125i 0.981770 0.190075i \(-0.0608732\pi\)
−0.655495 + 0.755200i \(0.727540\pi\)
\(264\) 0 0
\(265\) 1.12159 0.0688988
\(266\) 0 0
\(267\) 11.6869 + 20.2424i 0.715229 + 1.23881i
\(268\) 0 0
\(269\) 23.3739 1.42513 0.712565 0.701606i \(-0.247533\pi\)
0.712565 + 0.701606i \(0.247533\pi\)
\(270\) 0 0
\(271\) −3.74773 −0.227658 −0.113829 0.993500i \(-0.536312\pi\)
−0.113829 + 0.993500i \(0.536312\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.46099 −0.208705
\(276\) 0 0
\(277\) 32.4955 1.95246 0.976231 0.216731i \(-0.0695395\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) −2.39564 4.14938i −0.143423 0.248417i
\(280\) 0 0
\(281\) −22.7477 −1.35702 −0.678508 0.734593i \(-0.737373\pi\)
−0.678508 + 0.734593i \(0.737373\pi\)
\(282\) 0 0
\(283\) 13.0000 + 22.5167i 0.772770 + 1.33848i 0.936039 + 0.351895i \(0.114463\pi\)
−0.163270 + 0.986581i \(0.552204\pi\)
\(284\) 0 0
\(285\) 7.03901 + 12.1919i 0.416955 + 0.722188i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −6.45644 + 11.1829i −0.378483 + 0.655552i
\(292\) 0 0
\(293\) −6.79129 11.7629i −0.396751 0.687193i 0.596572 0.802560i \(-0.296529\pi\)
−0.993323 + 0.115366i \(0.963196\pi\)
\(294\) 0 0
\(295\) 3.56080 + 6.16748i 0.207318 + 0.359084i
\(296\) 0 0
\(297\) −1.97822 3.42638i −0.114788 0.198819i
\(298\) 0 0
\(299\) −15.0000 + 15.5885i −0.867472 + 0.901504i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 24.4782 42.3975i 1.40624 2.43567i
\(304\) 0 0
\(305\) 1.58258 0.0906180
\(306\) 0 0
\(307\) 14.1216 0.805962 0.402981 0.915208i \(-0.367974\pi\)
0.402981 + 0.915208i \(0.367974\pi\)
\(308\) 0 0
\(309\) −1.39564 + 2.41733i −0.0793954 + 0.137517i
\(310\) 0 0
\(311\) 9.47822 16.4168i 0.537461 0.930909i −0.461579 0.887099i \(-0.652717\pi\)
0.999040 0.0438100i \(-0.0139496\pi\)
\(312\) 0 0
\(313\) 3.37386 + 5.84370i 0.190702 + 0.330306i 0.945483 0.325671i \(-0.105590\pi\)
−0.754781 + 0.655977i \(0.772257\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.29129 + 14.3609i 0.465685 + 0.806590i 0.999232 0.0391801i \(-0.0124746\pi\)
−0.533547 + 0.845770i \(0.679141\pi\)
\(318\) 0 0
\(319\) −5.37386 −0.300879
\(320\) 0 0
\(321\) −20.0608 34.7463i −1.11968 1.93935i
\(322\) 0 0
\(323\) 9.56080 16.5598i 0.531977 0.921411i
\(324\) 0 0
\(325\) 4.37386 + 15.1515i 0.242618 + 0.840454i
\(326\) 0 0
\(327\) 27.2087 1.50465
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.5608 + 23.4880i −0.745369 + 1.29102i 0.204654 + 0.978834i \(0.434393\pi\)
−0.950022 + 0.312182i \(0.898940\pi\)
\(332\) 0 0
\(333\) 9.58258 16.5975i 0.525122 0.909538i
\(334\) 0 0
\(335\) −2.76951 + 4.79693i −0.151314 + 0.262084i
\(336\) 0 0
\(337\) −6.37386 −0.347206 −0.173603 0.984816i \(-0.555541\pi\)
−0.173603 + 0.984816i \(0.555541\pi\)
\(338\) 0 0
\(339\) −8.60436 + 14.9032i −0.467324 + 0.809430i
\(340\) 0 0
\(341\) 0.791288 0.0428506
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 6.62614 11.4768i 0.356739 0.617890i
\(346\) 0 0
\(347\) 4.74773 0.254871 0.127436 0.991847i \(-0.459325\pi\)
0.127436 + 0.991847i \(0.459325\pi\)
\(348\) 0 0
\(349\) −14.8739 + 25.7623i −0.796180 + 1.37902i 0.125908 + 0.992042i \(0.459816\pi\)
−0.922087 + 0.386982i \(0.873518\pi\)
\(350\) 0 0
\(351\) −12.5000 + 12.9904i −0.667201 + 0.693375i
\(352\) 0 0
\(353\) −7.35208 12.7342i −0.391312 0.677772i 0.601311 0.799015i \(-0.294645\pi\)
−0.992623 + 0.121243i \(0.961312\pi\)
\(354\) 0 0
\(355\) −0.626136 + 1.08450i −0.0332319 + 0.0575593i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.4782 + 21.6129i 0.658575 + 1.14069i 0.980985 + 0.194085i \(0.0621739\pi\)
−0.322409 + 0.946600i \(0.604493\pi\)
\(360\) 0 0
\(361\) −10.8131 18.7288i −0.569109 0.985725i
\(362\) 0 0
\(363\) −28.9564 −1.51982
\(364\) 0 0
\(365\) 11.0780 0.579851
\(366\) 0 0
\(367\) 1.00000 + 1.73205i 0.0521996 + 0.0904123i 0.890945 0.454112i \(-0.150043\pi\)
−0.838745 + 0.544524i \(0.816710\pi\)
\(368\) 0 0
\(369\) 18.1652 + 31.4630i 0.945640 + 1.63790i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7.68693 13.3142i 0.398014 0.689381i −0.595467 0.803380i \(-0.703033\pi\)
0.993481 + 0.113999i \(0.0363661\pi\)
\(374\) 0 0
\(375\) −10.3521 17.9303i −0.534579 0.925918i
\(376\) 0 0
\(377\) 6.79129 + 23.5257i 0.349769 + 1.21164i
\(378\) 0 0
\(379\) −2.81307 + 4.87238i −0.144498 + 0.250277i −0.929185 0.369614i \(-0.879490\pi\)
0.784688 + 0.619891i \(0.212823\pi\)
\(380\) 0 0
\(381\) −42.9129 −2.19849
\(382\) 0 0
\(383\) −19.2695 + 33.3758i −0.984626 + 1.70542i −0.341038 + 0.940049i \(0.610779\pi\)
−0.643587 + 0.765373i \(0.722555\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −44.9129 −2.28305
\(388\) 0 0
\(389\) −12.1652 + 21.0707i −0.616798 + 1.06832i 0.373269 + 0.927723i \(0.378237\pi\)
−0.990066 + 0.140602i \(0.955096\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) −26.4564 + 45.8239i −1.33455 + 2.31151i
\(394\) 0 0
\(395\) −1.58258 + 2.74110i −0.0796280 + 0.137920i
\(396\) 0 0
\(397\) −15.7477 + 27.2759i −0.790356 + 1.36894i 0.135391 + 0.990792i \(0.456771\pi\)
−0.925747 + 0.378144i \(0.876562\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −25.1216 −1.25451 −0.627256 0.778813i \(-0.715822\pi\)
−0.627256 + 0.778813i \(0.715822\pi\)
\(402\) 0 0
\(403\) −1.00000 3.46410i −0.0498135 0.172559i
\(404\) 0 0
\(405\) −0.165151 + 0.286051i −0.00820644 + 0.0142140i
\(406\) 0 0
\(407\) 1.58258 + 2.74110i 0.0784454 + 0.135871i
\(408\) 0 0
\(409\) 29.1216 1.43997 0.719985 0.693990i \(-0.244149\pi\)
0.719985 + 0.693990i \(0.244149\pi\)
\(410\) 0 0
\(411\) 3.31307 + 5.73840i 0.163422 + 0.283055i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.56080 + 6.16748i 0.174793 + 0.302750i
\(416\) 0 0
\(417\) 18.6652 32.3290i 0.914036 1.58316i
\(418\) 0 0
\(419\) −0.708712 + 1.22753i −0.0346229 + 0.0599685i −0.882818 0.469716i \(-0.844356\pi\)
0.848195 + 0.529684i \(0.177690\pi\)
\(420\) 0 0
\(421\) 23.4955 1.14510 0.572549 0.819870i \(-0.305955\pi\)
0.572549 + 0.819870i \(0.305955\pi\)
\(422\) 0 0
\(423\) −29.5390 −1.43624
\(424\) 0 0
\(425\) −6.56080 + 11.3636i −0.318245 + 0.551217i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.20871 7.65120i −0.106638 0.369404i
\(430\) 0 0
\(431\) −4.26951 7.39500i −0.205655 0.356205i 0.744686 0.667415i \(-0.232599\pi\)
−0.950341 + 0.311210i \(0.899266\pi\)
\(432\) 0 0
\(433\) −11.2477 19.4816i −0.540531 0.936228i −0.998874 0.0474518i \(-0.984890\pi\)
0.458342 0.888776i \(-0.348443\pi\)
\(434\) 0 0
\(435\) −7.50000 12.9904i −0.359597 0.622841i
\(436\) 0 0
\(437\) −19.1216 + 33.1196i −0.914710 + 1.58432i
\(438\) 0 0
\(439\) 9.37386 0.447390 0.223695 0.974659i \(-0.428188\pi\)
0.223695 + 0.974659i \(0.428188\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.79129 + 11.7629i 0.322664 + 0.558870i 0.981037 0.193822i \(-0.0620883\pi\)
−0.658373 + 0.752692i \(0.728755\pi\)
\(444\) 0 0
\(445\) −3.31307 5.73840i −0.157054 0.272026i
\(446\) 0 0
\(447\) 61.2867 2.89876
\(448\) 0 0
\(449\) 1.41742 + 2.45505i 0.0668924 + 0.115861i 0.897532 0.440950i \(-0.145358\pi\)
−0.830639 + 0.556811i \(0.812025\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) −19.5390 −0.918023
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.4955 0.818403 0.409201 0.912444i \(-0.365807\pi\)
0.409201 + 0.912444i \(0.365807\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) 12.3956 + 21.4699i 0.577323 + 0.999952i 0.995785 + 0.0917181i \(0.0292359\pi\)
−0.418462 + 0.908234i \(0.637431\pi\)
\(462\) 0 0
\(463\) 5.00000 0.232370 0.116185 0.993228i \(-0.462933\pi\)
0.116185 + 0.993228i \(0.462933\pi\)
\(464\) 0 0
\(465\) 1.10436 + 1.91280i 0.0512133 + 0.0887040i
\(466\) 0 0
\(467\) 21.0826 + 36.5161i 0.975585 + 1.68976i 0.677990 + 0.735071i \(0.262851\pi\)
0.297595 + 0.954692i \(0.403815\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 12.9129 0.594994
\(472\) 0 0
\(473\) 3.70871 6.42368i 0.170527 0.295361i
\(474\) 0 0
\(475\) 13.9392 + 24.1434i 0.639575 + 1.10778i
\(476\) 0 0
\(477\) 3.39564 + 5.88143i 0.155476 + 0.269292i
\(478\) 0 0
\(479\) 11.1434 + 19.3009i 0.509154 + 0.881880i 0.999944 + 0.0106021i \(0.00337483\pi\)
−0.490790 + 0.871278i \(0.663292\pi\)
\(480\) 0 0
\(481\) 10.0000 10.3923i 0.455961 0.473848i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.83030 3.17018i 0.0831098 0.143950i
\(486\) 0 0
\(487\) 18.1216 0.821168 0.410584 0.911823i \(-0.365325\pi\)
0.410584 + 0.911823i \(0.365325\pi\)
\(488\) 0 0
\(489\) −57.9129 −2.61891
\(490\) 0 0
\(491\) 4.89564 8.47950i 0.220937 0.382675i −0.734156 0.678981i \(-0.762422\pi\)
0.955093 + 0.296307i \(0.0957550\pi\)
\(492\) 0 0
\(493\) −10.1869 + 17.6443i −0.458796 + 0.794659i
\(494\) 0 0
\(495\) 1.50000 + 2.59808i 0.0674200 + 0.116775i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 10.0608 + 17.4258i 0.450383 + 0.780086i 0.998410 0.0563745i \(-0.0179541\pi\)
−0.548027 + 0.836461i \(0.684621\pi\)
\(500\) 0 0
\(501\) 50.7042 2.26530
\(502\) 0 0
\(503\) −8.60436 14.9032i −0.383649 0.664500i 0.607932 0.793989i \(-0.292000\pi\)
−0.991581 + 0.129489i \(0.958666\pi\)
\(504\) 0 0
\(505\) −6.93920 + 12.0191i −0.308791 + 0.534841i
\(506\) 0 0
\(507\) −30.7042 + 19.3386i −1.36362 + 0.858858i
\(508\) 0 0
\(509\) −1.74773 −0.0774666 −0.0387333 0.999250i \(-0.512332\pi\)
−0.0387333 + 0.999250i \(0.512332\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −15.9347 + 27.5996i −0.703532 + 1.21855i
\(514\) 0 0
\(515\) 0.395644 0.685275i 0.0174342 0.0301968i
\(516\) 0 0
\(517\) 2.43920 4.22483i 0.107276 0.185808i
\(518\) 0 0
\(519\) −42.7913 −1.87833
\(520\) 0 0
\(521\) 15.7913 27.3513i 0.691829 1.19828i −0.279409 0.960172i \(-0.590139\pi\)
0.971238 0.238111i \(-0.0765281\pi\)
\(522\) 0 0
\(523\) 26.7477 1.16960 0.584798 0.811179i \(-0.301174\pi\)
0.584798 + 0.811179i \(0.301174\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.50000 2.59808i 0.0653410 0.113174i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −21.5608 + 37.3444i −0.935659 + 1.62061i
\(532\) 0 0
\(533\) 7.58258 + 26.2668i 0.328438 + 1.13774i
\(534\) 0 0
\(535\) 5.68693 + 9.85005i 0.245868 + 0.425855i
\(536\) 0 0
\(537\) 6.39564 11.0776i 0.275992 0.478033i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.5608 33.8803i −0.840984 1.45663i −0.889063 0.457784i \(-0.848643\pi\)
0.0480792 0.998844i \(-0.484690\pi\)
\(542\) 0 0
\(543\) −3.83485 6.64215i −0.164569 0.285042i
\(544\) 0 0
\(545\) −7.71326 −0.330400
\(546\) 0 0
\(547\) −41.7477 −1.78500 −0.892502 0.451044i \(-0.851052\pi\)
−0.892502 + 0.451044i \(0.851052\pi\)
\(548\) 0 0
\(549\) 4.79129 + 8.29875i 0.204487 + 0.354182i
\(550\) 0 0
\(551\) 21.6434 + 37.4874i 0.922039 + 1.59702i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.41742 + 7.65120i −0.187509 + 0.324775i
\(556\) 0 0
\(557\) 10.1044 + 17.5013i 0.428135 + 0.741552i 0.996707 0.0810813i \(-0.0258373\pi\)
−0.568572 + 0.822633i \(0.692504\pi\)
\(558\) 0 0
\(559\) −32.8085 8.11800i −1.38765 0.343355i
\(560\) 0 0
\(561\) 3.31307 5.73840i 0.139878 0.242276i
\(562\) 0 0
\(563\) 39.4955 1.66453 0.832267 0.554374i \(-0.187042\pi\)
0.832267 + 0.554374i \(0.187042\pi\)
\(564\) 0 0
\(565\) 2.43920 4.22483i 0.102618 0.177740i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) −7.56080 + 13.0957i −0.316409 + 0.548037i −0.979736 0.200293i \(-0.935811\pi\)
0.663327 + 0.748330i \(0.269144\pi\)
\(572\) 0 0
\(573\) −32.2087 −1.34554
\(574\) 0 0
\(575\) 13.1216 22.7273i 0.547208 0.947792i
\(576\) 0 0
\(577\) 13.2477 22.9457i 0.551510 0.955244i −0.446656 0.894706i \(-0.647385\pi\)
0.998166 0.0605376i \(-0.0192815\pi\)
\(578\) 0 0
\(579\) 13.9564 24.1733i 0.580010 1.00461i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.12159 −0.0464515
\(584\) 0 0
\(585\) 9.47822 9.85005i 0.391876 0.407250i
\(586\) 0 0
\(587\) 8.85208 15.3323i 0.365365 0.632830i −0.623470 0.781847i \(-0.714278\pi\)
0.988835 + 0.149017i \(0.0476110\pi\)
\(588\) 0 0
\(589\) −3.18693 5.51993i −0.131315 0.227445i
\(590\) 0 0
\(591\) −2.20871 −0.0908543
\(592\) 0 0
\(593\) −3.47822 6.02445i −0.142833 0.247395i 0.785729 0.618571i \(-0.212288\pi\)
−0.928563 + 0.371176i \(0.878955\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 21.9782 + 38.0674i 0.899509 + 1.55799i
\(598\) 0 0
\(599\) −18.4782 + 32.0052i −0.755000 + 1.30770i 0.190375 + 0.981711i \(0.439030\pi\)
−0.945375 + 0.325986i \(0.894304\pi\)
\(600\) 0 0
\(601\) −6.18693 + 10.7161i −0.252370 + 0.437118i −0.964178 0.265256i \(-0.914543\pi\)
0.711808 + 0.702374i \(0.247877\pi\)
\(602\) 0 0
\(603\) −33.5390 −1.36581
\(604\) 0 0
\(605\) 8.20871 0.333732
\(606\) 0 0
\(607\) 10.8739 18.8341i 0.441357 0.764452i −0.556434 0.830892i \(-0.687831\pi\)
0.997790 + 0.0664400i \(0.0211641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.5780 5.33918i −0.872954 0.216000i
\(612\) 0 0
\(613\) 10.0608 + 17.4258i 0.406352 + 0.703822i 0.994478 0.104947i \(-0.0334674\pi\)
−0.588126 + 0.808769i \(0.700134\pi\)
\(614\) 0 0
\(615\) −8.37386 14.5040i −0.337667 0.584856i
\(616\) 0 0
\(617\) −1.33485 2.31203i −0.0537390 0.0930786i 0.837905 0.545817i \(-0.183781\pi\)
−0.891644 + 0.452738i \(0.850447\pi\)
\(618\) 0 0
\(619\) −17.0000 + 29.4449i −0.683288 + 1.18349i 0.290684 + 0.956819i \(0.406117\pi\)
−0.973972 + 0.226670i \(0.927216\pi\)
\(620\) 0 0
\(621\) 30.0000 1.20386
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −8.00000 13.8564i −0.320000 0.554256i
\(626\) 0 0
\(627\) −7.03901 12.1919i −0.281111 0.486899i
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 14.5608 + 25.2200i 0.579656 + 1.00399i 0.995519 + 0.0945663i \(0.0301464\pi\)
−0.415862 + 0.909428i \(0.636520\pi\)
\(632\) 0 0
\(633\) −36.2867 −1.44227
\(634\) 0 0
\(635\) 12.1652 0.482759
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −7.58258 −0.299962
\(640\) 0 0
\(641\) 40.1216 1.58471 0.792354 0.610062i \(-0.208855\pi\)
0.792354 + 0.610062i \(0.208855\pi\)
\(642\) 0 0
\(643\) −11.8739 20.5661i −0.468259 0.811049i 0.531083 0.847320i \(-0.321785\pi\)
−0.999342 + 0.0362709i \(0.988452\pi\)
\(644\) 0 0
\(645\) 20.7042 0.815226
\(646\) 0 0
\(647\) −9.79129 16.9590i −0.384935 0.666727i 0.606825 0.794835i \(-0.292443\pi\)
−0.991760 + 0.128108i \(0.959110\pi\)
\(648\) 0 0
\(649\) −3.56080 6.16748i −0.139773 0.242095i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.626136 −0.0245026 −0.0122513 0.999925i \(-0.503900\pi\)
−0.0122513 + 0.999925i \(0.503900\pi\)
\(654\) 0 0
\(655\) 7.50000 12.9904i 0.293049 0.507576i
\(656\) 0 0
\(657\) 33.5390 + 58.0913i 1.30848 + 2.26636i
\(658\) 0 0
\(659\) −10.5826 18.3296i −0.412239 0.714018i 0.582896 0.812547i \(-0.301920\pi\)
−0.995134 + 0.0985288i \(0.968586\pi\)
\(660\) 0 0
\(661\) 9.37386 + 16.2360i 0.364601 + 0.631508i 0.988712 0.149828i \(-0.0478720\pi\)
−0.624111 + 0.781336i \(0.714539\pi\)
\(662\) 0 0
\(663\) −29.3085 7.25198i −1.13825 0.281644i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.3739 35.2886i 0.788879 1.36638i
\(668\) 0 0
\(669\) −24.0780 −0.930910
\(670\) 0 0
\(671\) −1.58258 −0.0610947
\(672\) 0 0
\(673\) −10.2477 + 17.7496i −0.395021 + 0.684196i −0.993104 0.117238i \(-0.962596\pi\)
0.598083 + 0.801434i \(0.295929\pi\)
\(674\) 0 0
\(675\) 10.9347 18.9394i 0.420875 0.728977i
\(676\) 0 0
\(677\) 7.02178 + 12.1621i 0.269869 + 0.467427i 0.968828 0.247735i \(-0.0796863\pi\)
−0.698959 + 0.715162i \(0.746353\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −19.1869 33.2327i −0.735245 1.27348i
\(682\) 0 0
\(683\) −31.7477 −1.21479 −0.607397 0.794399i \(-0.707786\pi\)
−0.607397 + 0.794399i \(0.707786\pi\)
\(684\) 0 0
\(685\) −0.939205 1.62675i −0.0358852 0.0621549i
\(686\) 0 0
\(687\) −37.3303 + 64.6580i −1.42424 + 2.46686i
\(688\) 0 0
\(689\) 1.41742 + 4.91010i 0.0539996 + 0.187060i
\(690\) 0 0
\(691\) −5.62614 −0.214028 −0.107014 0.994257i \(-0.534129\pi\)
−0.107014 + 0.994257i \(0.534129\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.29129 + 9.16478i −0.200710 + 0.347640i
\(696\) 0 0
\(697\) −11.3739 + 19.7001i −0.430816 + 0.746195i
\(698\) 0 0
\(699\) 39.0172 67.5798i 1.47577 2.55610i
\(700\) 0 0
\(701\) −34.7477 −1.31240 −0.656202 0.754585i \(-0.727838\pi\)
−0.656202 + 0.754585i \(0.727838\pi\)
\(702\) 0 0
\(703\) 12.7477 22.0797i 0.480790 0.832752i
\(704\) 0 0
\(705\) 13.6170 0.512848
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12.8131 22.1929i 0.481205 0.833471i −0.518562 0.855040i \(-0.673533\pi\)
0.999767 + 0.0215684i \(0.00686598\pi\)
\(710\) 0 0
\(711\) −19.1652 −0.718749
\(712\) 0 0
\(713\) −3.00000 + 5.19615i −0.112351 + 0.194597i
\(714\) 0 0
\(715\) 0.626136 + 2.16900i 0.0234162 + 0.0811160i
\(716\) 0 0
\(717\) 34.1869 + 59.2135i 1.27673 + 2.21137i
\(718\) 0 0
\(719\) 24.4129 42.2843i 0.910447 1.57694i 0.0970125 0.995283i \(-0.469071\pi\)
0.813434 0.581657i \(-0.197595\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −4.70871 8.15573i −0.175119 0.303315i
\(724\) 0 0
\(725\) −14.8521 25.7246i −0.551593 0.955386i
\(726\) 0 0
\(727\) 28.4955 1.05684 0.528419 0.848984i \(-0.322785\pi\)
0.528419 + 0.848984i \(0.322785\pi\)
\(728\) 0 0
\(729\) −43.8693 −1.62479
\(730\) 0 0
\(731\) −14.0608 24.3540i −0.520057 0.900766i
\(732\) 0 0
\(733\) −15.4347 26.7336i −0.570092 0.987429i −0.996556 0.0829239i \(-0.973574\pi\)
0.426464 0.904505i \(-0.359759\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.76951 4.79693i 0.102016 0.176697i
\(738\) 0 0
\(739\) −21.3739 37.0206i −0.786250 1.36183i −0.928249 0.371959i \(-0.878686\pi\)
0.141999 0.989867i \(-0.454647\pi\)
\(740\) 0 0
\(741\) −44.4782 + 46.2231i −1.63395 + 1.69805i
\(742\) 0 0
\(743\) 13.8956 24.0680i 0.509782 0.882968i −0.490154 0.871636i \(-0.663059\pi\)
0.999936 0.0113320i \(-0.00360718\pi\)
\(744\) 0 0
\(745\) −17.3739 −0.636529
\(746\) 0 0
\(747\) −21.5608 + 37.3444i −0.788868 + 1.36636i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 5.00000 0.182453 0.0912263 0.995830i \(-0.470921\pi\)
0.0912263 + 0.995830i \(0.470921\pi\)
\(752\) 0 0
\(753\) 6.16515 10.6784i 0.224671 0.389141i
\(754\) 0 0
\(755\) 5.53901 0.201585
\(756\) 0 0
\(757\) 2.00000 3.46410i 0.0726912 0.125905i −0.827389 0.561630i \(-0.810175\pi\)
0.900080 + 0.435725i \(0.143508\pi\)
\(758\) 0 0
\(759\) −6.62614 + 11.4768i −0.240514 + 0.416582i
\(760\) 0 0
\(761\) −10.2695 + 17.7873i −0.372269 + 0.644789i −0.989914 0.141668i \(-0.954754\pi\)
0.617645 + 0.786457i \(0.288087\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.3739 0.411223
\(766\) 0 0
\(767\) −22.5000 + 23.3827i −0.812428 + 0.844300i
\(768\) 0 0
\(769\) 17.5000 30.3109i 0.631066 1.09304i −0.356268 0.934384i \(-0.615951\pi\)
0.987334 0.158655i \(-0.0507157\pi\)
\(770\) 0 0
\(771\) −0.873864 1.51358i −0.0314714 0.0545101i
\(772\) 0 0
\(773\) 42.4955 1.52846 0.764228 0.644947i \(-0.223120\pi\)
0.764228 + 0.644947i \(0.223120\pi\)
\(774\) 0 0
\(775\) 2.18693 + 3.78788i 0.0785569 + 0.136065i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.1652 + 41.8553i 0.865806 + 1.49962i
\(780\) 0 0
\(781\) 0.626136 1.08450i 0.0224049 0.0388065i
\(782\) 0 0
\(783\) 16.9782 29.4071i 0.606752 1.05093i
\(784\) 0 0
\(785\) −3.66061 −0.130653
\(786\) 0 0
\(787\) −14.0000 −0.499046 −0.249523 0.968369i \(-0.580274\pi\)
−0.249523 + 0.968369i \(0.580274\pi\)
\(788\) 0 0
\(789\) 14.7695 25.5815i 0.525808 0.910727i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.00000 + 6.92820i 0.0710221 + 0.246028i
\(794\) 0 0
\(795\) −1.56534 2.71125i −0.0555169 0.0961581i
\(796\) 0 0
\(797\) 24.9564 + 43.2258i 0.884002 + 1.53114i 0.846853 + 0.531827i \(0.178494\pi\)
0.0371497 + 0.999310i \(0.488172\pi\)
\(798\) 0 0
\(799\) −9.24773 16.0175i −0.327161 0.566660i
\(800\) 0 0
\(801\) 20.0608 34.7463i 0.708813 1.22770i
\(802\) 0 0
\(803\) −11.0780 −0.390935
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −32.6216 56.5023i −1.14833 1.98897i
\(808\) 0 0
\(809\) −3.08258 5.33918i −0.108378 0.187715i 0.806736 0.590913i \(-0.201232\pi\)
−0.915113 + 0.403197i \(0.867899\pi\)
\(810\) 0 0
\(811\) −25.8693 −0.908395 −0.454197 0.890901i \(-0.650074\pi\)
−0.454197 + 0.890901i \(0.650074\pi\)
\(812\) 0 0
\(813\) 5.23049 + 9.05948i 0.183441 + 0.317730i
\(814\) 0 0
\(815\) 16.4174 0.575077
\(816\) 0 0
\(817\) −59.7477 −2.09031
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.0000 1.15171 0.575854 0.817553i \(-0.304670\pi\)
0.575854 + 0.817553i \(0.304670\pi\)
\(822\) 0 0
\(823\) 18.2523 0.636234 0.318117 0.948051i \(-0.396949\pi\)
0.318117 + 0.948051i \(0.396949\pi\)
\(824\) 0 0
\(825\) 4.83030 + 8.36633i 0.168170 + 0.291278i
\(826\) 0 0
\(827\) 4.12159 0.143322 0.0716609 0.997429i \(-0.477170\pi\)
0.0716609 + 0.997429i \(0.477170\pi\)
\(828\) 0 0
\(829\) −21.1869 36.6968i −0.735853 1.27453i −0.954348 0.298696i \(-0.903448\pi\)
0.218496 0.975838i \(-0.429885\pi\)
\(830\) 0 0
\(831\) −45.3521 78.5521i −1.57325 2.72494i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −14.3739 −0.497428
\(836\) 0 0
\(837\) −2.50000 + 4.33013i −0.0864126 + 0.149671i
\(838\) 0 0
\(839\) 13.0218 + 22.5544i 0.449562 + 0.778664i 0.998357 0.0572927i \(-0.0182468\pi\)
−0.548796 + 0.835957i \(0.684913\pi\)
\(840\) 0 0
\(841\) −8.56080 14.8277i −0.295200 0.511301i
\(842\) 0 0
\(843\) 31.7477 + 54.9887i 1.09345 + 1.89391i
\(844\) 0 0
\(845\) 8.70417 5.48220i 0.299432 0.188594i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 36.2867 62.8505i 1.24536 2.15702i
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −9.74773 −0.333756 −0.166878 0.985978i \(-0.553369\pi\)
−0.166878 + 0.985978i \(0.553369\pi\)
\(854\) 0 0
\(855\) 12.0826 20.9276i 0.413215 0.715710i
\(856\) 0 0
\(857\) 10.1044 17.5013i 0.345158 0.597832i −0.640224 0.768188i \(-0.721159\pi\)
0.985383 + 0.170356i \(0.0544919\pi\)
\(858\) 0 0
\(859\) 7.00000 + 12.1244i 0.238837 + 0.413678i 0.960381 0.278691i \(-0.0899005\pi\)
−0.721544 + 0.692369i \(0.756567\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41742 + 2.45505i 0.0482497 + 0.0835709i 0.889142 0.457632i \(-0.151302\pi\)
−0.840892 + 0.541203i \(0.817969\pi\)
\(864\) 0 0
\(865\) 12.1307 0.412456
\(866\) 0 0
\(867\) 11.1652 + 19.3386i 0.379188 + 0.656774i
\(868\) 0 0
\(869\) 1.58258 2.74110i 0.0536852 0.0929855i
\(870\) 0 0
\(871\) −24.5000 6.06218i −0.830151 0.205409i
\(872\) 0 0
\(873\) 22.1652 0.750177
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11.8739 20.5661i 0.400952 0.694469i −0.592889 0.805284i \(-0.702013\pi\)
0.993841 + 0.110815i \(0.0353461\pi\)
\(878\) 0 0
\(879\) −18.9564 + 32.8335i −0.639385 + 1.10745i
\(880\) 0 0
\(881\) −3.70871 + 6.42368i −0.124950 + 0.216419i −0.921713 0.387872i \(-0.873210\pi\)
0.796764 + 0.604291i \(0.206544\pi\)
\(882\) 0 0
\(883\) −29.7477 −1.00109 −0.500545 0.865710i \(-0.666867\pi\)
−0.500545 + 0.865710i \(0.666867\pi\)
\(884\) 0 0
\(885\) 9.93920 17.2152i 0.334103 0.578683i
\(886\) 0 0
\(887\) 25.2523 0.847888 0.423944 0.905688i \(-0.360645\pi\)
0.423944 + 0.905688i \(0.360645\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.165151 0.286051i 0.00553278 0.00958306i
\(892\) 0 0
\(893\) −39.2958 −1.31498
\(894\) 0 0
\(895\) −1.81307 + 3.14033i −0.0606042 + 0.104970i
\(896\) 0 0
\(897\) 58.6170 + 14.5040i 1.95717 + 0.484273i
\(898\) 0 0
\(899\) 3.39564 + 5.88143i 0.113251 + 0.196157i
\(900\) 0 0
\(901\) −2.12614 + 3.68258i −0.0708319 + 0.122684i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.08712 + 1.88295i 0.0361371 + 0.0625914i
\(906\) 0 0
\(907\) −25.4955 44.1594i −0.846563 1.46629i −0.884257 0.467000i \(-0.845335\pi\)
0.0376945 0.999289i \(-0.487999\pi\)
\(908\) 0 0
\(909\) −84.0345 −2.78725
\(910\) 0 0
\(911\) 32.3739 1.07259 0.536297 0.844029i \(-0.319823\pi\)
0.536297 + 0.844029i \(0.319823\pi\)
\(912\) 0 0
\(913\) −3.56080 6.16748i −0.117845 0.204114i
\(914\) 0 0
\(915\) −2.20871 3.82560i −0.0730178 0.126470i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −5.74773 + 9.95536i −0.189600 + 0.328397i −0.945117 0.326732i \(-0.894052\pi\)
0.755517 + 0.655129i \(0.227386\pi\)
\(920\) 0 0
\(921\) −19.7087 34.1365i −0.649424 1.12484i
\(922\) 0 0
\(923\) −5.53901 1.37055i −0.182319 0.0451122i
\(924\) 0 0
\(925\) −8.74773 + 15.1515i −0.287623 + 0.498179i
\(926\) 0 0
\(927\) 4.79129 0.157367
\(928\) 0 0
\(929\) 23.2913 40.3417i 0.764162 1.32357i −0.176526 0.984296i \(-0.556486\pi\)
0.940688 0.339272i \(-0.110181\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −52.9129 −1.73229
\(934\) 0 0
\(935\) −0.939205 + 1.62675i −0.0307153 + 0.0532004i
\(936\) 0 0
\(937\) 17.7477 0.579793 0.289896 0.957058i \(-0.406379\pi\)
0.289896 + 0.957058i \(0.406379\pi\)
\(938\) 0 0
\(939\) 9.41742 16.3115i 0.307326 0.532304i
\(940\) 0 0
\(941\) 19.0390 32.9765i 0.620654 1.07500i −0.368710 0.929544i \(-0.620200\pi\)
0.989364 0.145460i \(-0.0464662\pi\)
\(942\) 0 0
\(943\) 22.7477 39.4002i 0.740768 1.28305i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.3739 −1.05201 −0.526005 0.850482i \(-0.676311\pi\)
−0.526005 + 0.850482i \(0.676311\pi\)
\(948\) 0 0
\(949\) 14.0000 + 48.4974i 0.454459 + 1.57429i
\(950\) 0 0
\(951\) 23.1434 40.0855i 0.750475 1.29986i
\(952\) 0 0
\(953\) −4.33485 7.50818i −0.140420 0.243214i 0.787235 0.616653i \(-0.211512\pi\)
−0.927655 + 0.373439i \(0.878178\pi\)
\(954\) 0 0
\(955\) 9.13068 0.295462
\(956\) 0 0
\(957\) 7.50000 + 12.9904i 0.242441 + 0.419919i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 0 0
\(963\) −34.4347 + 59.6426i −1.10964 + 1.92196i
\(964\) 0 0
\(965\) −3.95644 + 6.85275i −0.127362 + 0.220598i
\(966\) 0 0
\(967\) 3.74773 0.120519 0.0602594 0.998183i \(-0.480807\pi\)
0.0602594 + 0.998183i \(0.480807\pi\)
\(968\) 0 0
\(969\) −53.3739 −1.71462
\(970\) 0 0
\(971\) −15.7087 + 27.2083i −0.504117 + 0.873156i 0.495872 + 0.868396i \(0.334848\pi\)
−0.999989 + 0.00475994i \(0.998485\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 30.5218 31.7192i 0.977479 1.01583i
\(976\) 0 0
\(977\) 24.4129 + 42.2843i 0.781037 + 1.35280i 0.931338 + 0.364156i \(0.118642\pi\)
−0.150301 + 0.988640i \(0.548024\pi\)
\(978\) 0 0
\(979\) 3.31307 + 5.73840i 0.105886 + 0.183400i
\(980\) 0 0
\(981\) −23.3521 40.4470i −0.745575 1.29137i
\(982\) 0 0
\(983\) −7.26951 + 12.5912i −0.231861 + 0.401596i −0.958356 0.285577i \(-0.907815\pi\)
0.726495 + 0.687172i \(0.241148\pi\)
\(984\) 0 0
\(985\) 0.626136 0.0199504
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.1216 + 48.7080i 0.894215 + 1.54883i
\(990\) 0 0
\(991\) −11.8131 20.4608i −0.375254 0.649960i 0.615111 0.788441i \(-0.289111\pi\)
−0.990365 + 0.138481i \(0.955778\pi\)
\(992\) 0 0
\(993\) 75.7042 2.40240
\(994\) 0 0
\(995\) −6.23049 10.7915i −0.197520 0.342114i
\(996\) 0 0
\(997\) −35.0000 −1.10846 −0.554231 0.832363i \(-0.686987\pi\)
−0.554231 + 0.832363i \(0.686987\pi\)
\(998\) 0 0
\(999\) −20.0000 −0.632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.i.i.165.1 4
7.2 even 3 2548.2.l.l.373.2 4
7.3 odd 6 364.2.k.d.113.2 yes 4
7.4 even 3 2548.2.k.e.1569.1 4
7.5 odd 6 2548.2.l.j.373.1 4
7.6 odd 2 2548.2.i.k.165.2 4
13.3 even 3 2548.2.l.l.1537.2 4
21.17 even 6 3276.2.z.e.3025.1 4
28.3 even 6 1456.2.s.k.113.1 4
91.3 odd 6 364.2.k.d.29.2 4
91.16 even 3 inner 2548.2.i.i.1745.1 4
91.17 odd 6 4732.2.a.h.1.1 2
91.45 even 12 4732.2.g.e.337.1 4
91.55 odd 6 2548.2.l.j.1537.1 4
91.59 even 12 4732.2.g.e.337.2 4
91.68 odd 6 2548.2.i.k.1745.2 4
91.81 even 3 2548.2.k.e.393.1 4
91.87 odd 6 4732.2.a.g.1.1 2
273.185 even 6 3276.2.z.e.757.1 4
364.3 even 6 1456.2.s.k.1121.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.d.29.2 4 91.3 odd 6
364.2.k.d.113.2 yes 4 7.3 odd 6
1456.2.s.k.113.1 4 28.3 even 6
1456.2.s.k.1121.1 4 364.3 even 6
2548.2.i.i.165.1 4 1.1 even 1 trivial
2548.2.i.i.1745.1 4 91.16 even 3 inner
2548.2.i.k.165.2 4 7.6 odd 2
2548.2.i.k.1745.2 4 91.68 odd 6
2548.2.k.e.393.1 4 91.81 even 3
2548.2.k.e.1569.1 4 7.4 even 3
2548.2.l.j.373.1 4 7.5 odd 6
2548.2.l.j.1537.1 4 91.55 odd 6
2548.2.l.l.373.2 4 7.2 even 3
2548.2.l.l.1537.2 4 13.3 even 3
3276.2.z.e.757.1 4 273.185 even 6
3276.2.z.e.3025.1 4 21.17 even 6
4732.2.a.g.1.1 2 91.87 odd 6
4732.2.a.h.1.1 2 91.17 odd 6
4732.2.g.e.337.1 4 91.45 even 12
4732.2.g.e.337.2 4 91.59 even 12