Properties

Label 4732.2.g.e.337.1
Level $4732$
Weight $2$
Character 4732.337
Analytic conductor $37.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(337,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.1
Root \(-1.79129i\) of defining polynomial
Character \(\chi\) \(=\) 4732.337
Dual form 4732.2.g.e.337.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.79129 q^{3} -0.791288i q^{5} +1.00000i q^{7} +4.79129 q^{9} +0.791288i q^{11} +2.20871i q^{15} -3.00000 q^{17} +6.37386i q^{19} -2.79129i q^{21} -6.00000 q^{23} +4.37386 q^{25} -5.00000 q^{27} -6.79129 q^{29} +1.00000i q^{31} -2.20871i q^{33} +0.791288 q^{35} -4.00000i q^{37} -7.58258i q^{41} +9.37386 q^{43} -3.79129i q^{45} +6.16515i q^{47} -1.00000 q^{49} +8.37386 q^{51} -1.41742 q^{53} +0.626136 q^{55} -17.7913i q^{57} -9.00000i q^{59} +2.00000 q^{61} +4.79129i q^{63} +7.00000i q^{67} +16.7477 q^{69} +1.58258i q^{71} +14.0000i q^{73} -12.2087 q^{75} -0.791288 q^{77} -4.00000 q^{79} -0.417424 q^{81} +9.00000i q^{83} +2.37386i q^{85} +18.9564 q^{87} +8.37386i q^{89} -2.79129i q^{93} +5.04356 q^{95} +4.62614i q^{97} +3.79129i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 10 q^{9} - 12 q^{17} - 24 q^{23} - 10 q^{25} - 20 q^{27} - 18 q^{29} - 6 q^{35} + 10 q^{43} - 4 q^{49} + 6 q^{51} - 24 q^{53} + 30 q^{55} + 8 q^{61} + 12 q^{69} - 58 q^{75} + 6 q^{77} - 16 q^{79}+ \cdots + 66 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.79129 −1.61155 −0.805775 0.592221i \(-0.798251\pi\)
−0.805775 + 0.592221i \(0.798251\pi\)
\(4\) 0 0
\(5\) − 0.791288i − 0.353875i −0.984222 0.176937i \(-0.943381\pi\)
0.984222 0.176937i \(-0.0566190\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 4.79129 1.59710
\(10\) 0 0
\(11\) 0.791288i 0.238582i 0.992859 + 0.119291i \(0.0380622\pi\)
−0.992859 + 0.119291i \(0.961938\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.20871i 0.570287i
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 6.37386i 1.46226i 0.682236 + 0.731132i \(0.261008\pi\)
−0.682236 + 0.731132i \(0.738992\pi\)
\(20\) 0 0
\(21\) − 2.79129i − 0.609109i
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 4.37386 0.874773
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −6.79129 −1.26111 −0.630555 0.776144i \(-0.717173\pi\)
−0.630555 + 0.776144i \(0.717173\pi\)
\(30\) 0 0
\(31\) 1.00000i 0.179605i 0.995960 + 0.0898027i \(0.0286236\pi\)
−0.995960 + 0.0898027i \(0.971376\pi\)
\(32\) 0 0
\(33\) − 2.20871i − 0.384487i
\(34\) 0 0
\(35\) 0.791288 0.133752
\(36\) 0 0
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 7.58258i − 1.18420i −0.805865 0.592100i \(-0.798299\pi\)
0.805865 0.592100i \(-0.201701\pi\)
\(42\) 0 0
\(43\) 9.37386 1.42950 0.714750 0.699380i \(-0.246540\pi\)
0.714750 + 0.699380i \(0.246540\pi\)
\(44\) 0 0
\(45\) − 3.79129i − 0.565172i
\(46\) 0 0
\(47\) 6.16515i 0.899280i 0.893210 + 0.449640i \(0.148448\pi\)
−0.893210 + 0.449640i \(0.851552\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 8.37386 1.17258
\(52\) 0 0
\(53\) −1.41742 −0.194698 −0.0973491 0.995250i \(-0.531036\pi\)
−0.0973491 + 0.995250i \(0.531036\pi\)
\(54\) 0 0
\(55\) 0.626136 0.0844282
\(56\) 0 0
\(57\) − 17.7913i − 2.35651i
\(58\) 0 0
\(59\) − 9.00000i − 1.17170i −0.810419 0.585850i \(-0.800761\pi\)
0.810419 0.585850i \(-0.199239\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 4.79129i 0.603646i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000i 0.855186i 0.903971 + 0.427593i \(0.140638\pi\)
−0.903971 + 0.427593i \(0.859362\pi\)
\(68\) 0 0
\(69\) 16.7477 2.01619
\(70\) 0 0
\(71\) 1.58258i 0.187817i 0.995581 + 0.0939086i \(0.0299361\pi\)
−0.995581 + 0.0939086i \(0.970064\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) −12.2087 −1.40974
\(76\) 0 0
\(77\) −0.791288 −0.0901756
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −0.417424 −0.0463805
\(82\) 0 0
\(83\) 9.00000i 0.987878i 0.869496 + 0.493939i \(0.164443\pi\)
−0.869496 + 0.493939i \(0.835557\pi\)
\(84\) 0 0
\(85\) 2.37386i 0.257482i
\(86\) 0 0
\(87\) 18.9564 2.03234
\(88\) 0 0
\(89\) 8.37386i 0.887628i 0.896119 + 0.443814i \(0.146375\pi\)
−0.896119 + 0.443814i \(0.853625\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 2.79129i − 0.289443i
\(94\) 0 0
\(95\) 5.04356 0.517458
\(96\) 0 0
\(97\) 4.62614i 0.469713i 0.972030 + 0.234856i \(0.0754620\pi\)
−0.972030 + 0.234856i \(0.924538\pi\)
\(98\) 0 0
\(99\) 3.79129i 0.381039i
\(100\) 0 0
\(101\) −17.5390 −1.74520 −0.872599 0.488438i \(-0.837567\pi\)
−0.872599 + 0.488438i \(0.837567\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) −2.20871 −0.215548
\(106\) 0 0
\(107\) 14.3739 1.38957 0.694787 0.719216i \(-0.255499\pi\)
0.694787 + 0.719216i \(0.255499\pi\)
\(108\) 0 0
\(109\) − 9.74773i − 0.933663i −0.884346 0.466831i \(-0.845395\pi\)
0.884346 0.466831i \(-0.154605\pi\)
\(110\) 0 0
\(111\) 11.1652i 1.05975i
\(112\) 0 0
\(113\) 6.16515 0.579969 0.289984 0.957031i \(-0.406350\pi\)
0.289984 + 0.957031i \(0.406350\pi\)
\(114\) 0 0
\(115\) 4.74773i 0.442728i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 3.00000i − 0.275010i
\(120\) 0 0
\(121\) 10.3739 0.943079
\(122\) 0 0
\(123\) 21.1652i 1.90840i
\(124\) 0 0
\(125\) − 7.41742i − 0.663435i
\(126\) 0 0
\(127\) 15.3739 1.36421 0.682105 0.731254i \(-0.261065\pi\)
0.682105 + 0.731254i \(0.261065\pi\)
\(128\) 0 0
\(129\) −26.1652 −2.30371
\(130\) 0 0
\(131\) −18.9564 −1.65623 −0.828116 0.560557i \(-0.810587\pi\)
−0.828116 + 0.560557i \(0.810587\pi\)
\(132\) 0 0
\(133\) −6.37386 −0.552684
\(134\) 0 0
\(135\) 3.95644i 0.340516i
\(136\) 0 0
\(137\) − 2.37386i − 0.202813i −0.994845 0.101406i \(-0.967666\pi\)
0.994845 0.101406i \(-0.0323342\pi\)
\(138\) 0 0
\(139\) 13.3739 1.13436 0.567178 0.823595i \(-0.308035\pi\)
0.567178 + 0.823595i \(0.308035\pi\)
\(140\) 0 0
\(141\) − 17.2087i − 1.44923i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.37386i 0.446275i
\(146\) 0 0
\(147\) 2.79129 0.230222
\(148\) 0 0
\(149\) − 21.9564i − 1.79874i −0.437187 0.899371i \(-0.644025\pi\)
0.437187 0.899371i \(-0.355975\pi\)
\(150\) 0 0
\(151\) − 7.00000i − 0.569652i −0.958579 0.284826i \(-0.908064\pi\)
0.958579 0.284826i \(-0.0919358\pi\)
\(152\) 0 0
\(153\) −14.3739 −1.16206
\(154\) 0 0
\(155\) 0.791288 0.0635578
\(156\) 0 0
\(157\) −4.62614 −0.369206 −0.184603 0.982813i \(-0.559100\pi\)
−0.184603 + 0.982813i \(0.559100\pi\)
\(158\) 0 0
\(159\) 3.95644 0.313766
\(160\) 0 0
\(161\) − 6.00000i − 0.472866i
\(162\) 0 0
\(163\) − 20.7477i − 1.62509i −0.582900 0.812544i \(-0.698082\pi\)
0.582900 0.812544i \(-0.301918\pi\)
\(164\) 0 0
\(165\) −1.74773 −0.136060
\(166\) 0 0
\(167\) − 18.1652i − 1.40566i −0.711357 0.702831i \(-0.751919\pi\)
0.711357 0.702831i \(-0.248081\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 30.5390i 2.33538i
\(172\) 0 0
\(173\) −15.3303 −1.16554 −0.582771 0.812637i \(-0.698031\pi\)
−0.582771 + 0.812637i \(0.698031\pi\)
\(174\) 0 0
\(175\) 4.37386i 0.330633i
\(176\) 0 0
\(177\) 25.1216i 1.88825i
\(178\) 0 0
\(179\) 4.58258 0.342518 0.171259 0.985226i \(-0.445217\pi\)
0.171259 + 0.985226i \(0.445217\pi\)
\(180\) 0 0
\(181\) 2.74773 0.204237 0.102118 0.994772i \(-0.467438\pi\)
0.102118 + 0.994772i \(0.467438\pi\)
\(182\) 0 0
\(183\) −5.58258 −0.412676
\(184\) 0 0
\(185\) −3.16515 −0.232707
\(186\) 0 0
\(187\) − 2.37386i − 0.173594i
\(188\) 0 0
\(189\) − 5.00000i − 0.363696i
\(190\) 0 0
\(191\) −11.5390 −0.834934 −0.417467 0.908692i \(-0.637082\pi\)
−0.417467 + 0.908692i \(0.637082\pi\)
\(192\) 0 0
\(193\) − 10.0000i − 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.791288i 0.0563769i 0.999603 + 0.0281885i \(0.00897385\pi\)
−0.999603 + 0.0281885i \(0.991026\pi\)
\(198\) 0 0
\(199\) −15.7477 −1.11633 −0.558163 0.829731i \(-0.688494\pi\)
−0.558163 + 0.829731i \(0.688494\pi\)
\(200\) 0 0
\(201\) − 19.5390i − 1.37818i
\(202\) 0 0
\(203\) − 6.79129i − 0.476655i
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) −28.7477 −1.99811
\(208\) 0 0
\(209\) −5.04356 −0.348870
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) − 4.41742i − 0.302677i
\(214\) 0 0
\(215\) − 7.41742i − 0.505864i
\(216\) 0 0
\(217\) −1.00000 −0.0678844
\(218\) 0 0
\(219\) − 39.0780i − 2.64065i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 8.62614i − 0.577649i −0.957382 0.288824i \(-0.906736\pi\)
0.957382 0.288824i \(-0.0932644\pi\)
\(224\) 0 0
\(225\) 20.9564 1.39710
\(226\) 0 0
\(227\) 13.7477i 0.912469i 0.889860 + 0.456234i \(0.150802\pi\)
−0.889860 + 0.456234i \(0.849198\pi\)
\(228\) 0 0
\(229\) − 26.7477i − 1.76754i −0.467922 0.883770i \(-0.654997\pi\)
0.467922 0.883770i \(-0.345003\pi\)
\(230\) 0 0
\(231\) 2.20871 0.145323
\(232\) 0 0
\(233\) 27.9564 1.83149 0.915744 0.401763i \(-0.131602\pi\)
0.915744 + 0.401763i \(0.131602\pi\)
\(234\) 0 0
\(235\) 4.87841 0.318232
\(236\) 0 0
\(237\) 11.1652 0.725255
\(238\) 0 0
\(239\) 24.4955i 1.58448i 0.610210 + 0.792240i \(0.291085\pi\)
−0.610210 + 0.792240i \(0.708915\pi\)
\(240\) 0 0
\(241\) − 3.37386i − 0.217330i −0.994078 0.108665i \(-0.965342\pi\)
0.994078 0.108665i \(-0.0346575\pi\)
\(242\) 0 0
\(243\) 16.1652 1.03699
\(244\) 0 0
\(245\) 0.791288i 0.0505535i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 25.1216i − 1.59202i
\(250\) 0 0
\(251\) −4.41742 −0.278825 −0.139413 0.990234i \(-0.544521\pi\)
−0.139413 + 0.990234i \(0.544521\pi\)
\(252\) 0 0
\(253\) − 4.74773i − 0.298487i
\(254\) 0 0
\(255\) − 6.62614i − 0.414945i
\(256\) 0 0
\(257\) 0.626136 0.0390573 0.0195287 0.999809i \(-0.493783\pi\)
0.0195287 + 0.999809i \(0.493783\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −32.5390 −2.01411
\(262\) 0 0
\(263\) −10.5826 −0.652550 −0.326275 0.945275i \(-0.605793\pi\)
−0.326275 + 0.945275i \(0.605793\pi\)
\(264\) 0 0
\(265\) 1.12159i 0.0688988i
\(266\) 0 0
\(267\) − 23.3739i − 1.43046i
\(268\) 0 0
\(269\) −23.3739 −1.42513 −0.712565 0.701606i \(-0.752467\pi\)
−0.712565 + 0.701606i \(0.752467\pi\)
\(270\) 0 0
\(271\) 3.74773i 0.227658i 0.993500 + 0.113829i \(0.0363116\pi\)
−0.993500 + 0.113829i \(0.963688\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.46099i 0.208705i
\(276\) 0 0
\(277\) −32.4955 −1.95246 −0.976231 0.216731i \(-0.930460\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) 0 0
\(279\) 4.79129i 0.286847i
\(280\) 0 0
\(281\) − 22.7477i − 1.35702i −0.734593 0.678508i \(-0.762627\pi\)
0.734593 0.678508i \(-0.237373\pi\)
\(282\) 0 0
\(283\) −26.0000 −1.54554 −0.772770 0.634686i \(-0.781129\pi\)
−0.772770 + 0.634686i \(0.781129\pi\)
\(284\) 0 0
\(285\) −14.0780 −0.833911
\(286\) 0 0
\(287\) 7.58258 0.447585
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) − 12.9129i − 0.756966i
\(292\) 0 0
\(293\) − 13.5826i − 0.793503i −0.917926 0.396751i \(-0.870138\pi\)
0.917926 0.396751i \(-0.129862\pi\)
\(294\) 0 0
\(295\) −7.12159 −0.414635
\(296\) 0 0
\(297\) − 3.95644i − 0.229576i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.37386i 0.540301i
\(302\) 0 0
\(303\) 48.9564 2.81247
\(304\) 0 0
\(305\) − 1.58258i − 0.0906180i
\(306\) 0 0
\(307\) − 14.1216i − 0.805962i −0.915208 0.402981i \(-0.867974\pi\)
0.915208 0.402981i \(-0.132026\pi\)
\(308\) 0 0
\(309\) −2.79129 −0.158791
\(310\) 0 0
\(311\) −18.9564 −1.07492 −0.537461 0.843289i \(-0.680616\pi\)
−0.537461 + 0.843289i \(0.680616\pi\)
\(312\) 0 0
\(313\) 6.74773 0.381404 0.190702 0.981648i \(-0.438924\pi\)
0.190702 + 0.981648i \(0.438924\pi\)
\(314\) 0 0
\(315\) 3.79129 0.213615
\(316\) 0 0
\(317\) 16.5826i 0.931370i 0.884950 + 0.465685i \(0.154192\pi\)
−0.884950 + 0.465685i \(0.845808\pi\)
\(318\) 0 0
\(319\) − 5.37386i − 0.300879i
\(320\) 0 0
\(321\) −40.1216 −2.23937
\(322\) 0 0
\(323\) − 19.1216i − 1.06395i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 27.2087i 1.50465i
\(328\) 0 0
\(329\) −6.16515 −0.339896
\(330\) 0 0
\(331\) − 27.1216i − 1.49074i −0.666652 0.745369i \(-0.732273\pi\)
0.666652 0.745369i \(-0.267727\pi\)
\(332\) 0 0
\(333\) − 19.1652i − 1.05024i
\(334\) 0 0
\(335\) 5.53901 0.302629
\(336\) 0 0
\(337\) 6.37386 0.347206 0.173603 0.984816i \(-0.444459\pi\)
0.173603 + 0.984816i \(0.444459\pi\)
\(338\) 0 0
\(339\) −17.2087 −0.934649
\(340\) 0 0
\(341\) −0.791288 −0.0428506
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) − 13.2523i − 0.713478i
\(346\) 0 0
\(347\) 4.74773 0.254871 0.127436 0.991847i \(-0.459325\pi\)
0.127436 + 0.991847i \(0.459325\pi\)
\(348\) 0 0
\(349\) − 29.7477i − 1.59236i −0.605060 0.796180i \(-0.706851\pi\)
0.605060 0.796180i \(-0.293149\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.7042i 0.782624i 0.920258 + 0.391312i \(0.127979\pi\)
−0.920258 + 0.391312i \(0.872021\pi\)
\(354\) 0 0
\(355\) 1.25227 0.0664637
\(356\) 0 0
\(357\) 8.37386i 0.443192i
\(358\) 0 0
\(359\) − 24.9564i − 1.31715i −0.752515 0.658575i \(-0.771159\pi\)
0.752515 0.658575i \(-0.228841\pi\)
\(360\) 0 0
\(361\) −21.6261 −1.13822
\(362\) 0 0
\(363\) −28.9564 −1.51982
\(364\) 0 0
\(365\) 11.0780 0.579851
\(366\) 0 0
\(367\) 2.00000 0.104399 0.0521996 0.998637i \(-0.483377\pi\)
0.0521996 + 0.998637i \(0.483377\pi\)
\(368\) 0 0
\(369\) − 36.3303i − 1.89128i
\(370\) 0 0
\(371\) − 1.41742i − 0.0735890i
\(372\) 0 0
\(373\) −15.3739 −0.796028 −0.398014 0.917379i \(-0.630301\pi\)
−0.398014 + 0.917379i \(0.630301\pi\)
\(374\) 0 0
\(375\) 20.7042i 1.06916i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 5.62614i − 0.288995i −0.989505 0.144498i \(-0.953843\pi\)
0.989505 0.144498i \(-0.0461566\pi\)
\(380\) 0 0
\(381\) −42.9129 −2.19849
\(382\) 0 0
\(383\) 38.5390i 1.96925i 0.174677 + 0.984626i \(0.444112\pi\)
−0.174677 + 0.984626i \(0.555888\pi\)
\(384\) 0 0
\(385\) 0.626136i 0.0319109i
\(386\) 0 0
\(387\) 44.9129 2.28305
\(388\) 0 0
\(389\) −24.3303 −1.23360 −0.616798 0.787122i \(-0.711570\pi\)
−0.616798 + 0.787122i \(0.711570\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) 52.9129 2.66910
\(394\) 0 0
\(395\) 3.16515i 0.159256i
\(396\) 0 0
\(397\) − 31.4955i − 1.58071i −0.612648 0.790356i \(-0.709896\pi\)
0.612648 0.790356i \(-0.290104\pi\)
\(398\) 0 0
\(399\) 17.7913 0.890678
\(400\) 0 0
\(401\) − 25.1216i − 1.25451i −0.778813 0.627256i \(-0.784178\pi\)
0.778813 0.627256i \(-0.215822\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.330303i 0.0164129i
\(406\) 0 0
\(407\) 3.16515 0.156891
\(408\) 0 0
\(409\) 29.1216i 1.43997i 0.693990 + 0.719985i \(0.255851\pi\)
−0.693990 + 0.719985i \(0.744149\pi\)
\(410\) 0 0
\(411\) 6.62614i 0.326843i
\(412\) 0 0
\(413\) 9.00000 0.442861
\(414\) 0 0
\(415\) 7.12159 0.349585
\(416\) 0 0
\(417\) −37.3303 −1.82807
\(418\) 0 0
\(419\) −1.41742 −0.0692457 −0.0346229 0.999400i \(-0.511023\pi\)
−0.0346229 + 0.999400i \(0.511023\pi\)
\(420\) 0 0
\(421\) − 23.4955i − 1.14510i −0.819870 0.572549i \(-0.805955\pi\)
0.819870 0.572549i \(-0.194045\pi\)
\(422\) 0 0
\(423\) 29.5390i 1.43624i
\(424\) 0 0
\(425\) −13.1216 −0.636491
\(426\) 0 0
\(427\) 2.00000i 0.0967868i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 8.53901i − 0.411310i −0.978625 0.205655i \(-0.934068\pi\)
0.978625 0.205655i \(-0.0659325\pi\)
\(432\) 0 0
\(433\) 22.4955 1.08106 0.540531 0.841324i \(-0.318223\pi\)
0.540531 + 0.841324i \(0.318223\pi\)
\(434\) 0 0
\(435\) − 15.0000i − 0.719195i
\(436\) 0 0
\(437\) − 38.2432i − 1.82942i
\(438\) 0 0
\(439\) 9.37386 0.447390 0.223695 0.974659i \(-0.428188\pi\)
0.223695 + 0.974659i \(0.428188\pi\)
\(440\) 0 0
\(441\) −4.79129 −0.228157
\(442\) 0 0
\(443\) −13.5826 −0.645328 −0.322664 0.946514i \(-0.604578\pi\)
−0.322664 + 0.946514i \(0.604578\pi\)
\(444\) 0 0
\(445\) 6.62614 0.314109
\(446\) 0 0
\(447\) 61.2867i 2.89876i
\(448\) 0 0
\(449\) − 2.83485i − 0.133785i −0.997760 0.0668924i \(-0.978692\pi\)
0.997760 0.0668924i \(-0.0213084\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 0 0
\(453\) 19.5390i 0.918023i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 17.4955i − 0.818403i −0.912444 0.409201i \(-0.865807\pi\)
0.912444 0.409201i \(-0.134193\pi\)
\(458\) 0 0
\(459\) 15.0000 0.700140
\(460\) 0 0
\(461\) − 24.7913i − 1.15465i −0.816516 0.577323i \(-0.804097\pi\)
0.816516 0.577323i \(-0.195903\pi\)
\(462\) 0 0
\(463\) 5.00000i 0.232370i 0.993228 + 0.116185i \(0.0370665\pi\)
−0.993228 + 0.116185i \(0.962933\pi\)
\(464\) 0 0
\(465\) −2.20871 −0.102427
\(466\) 0 0
\(467\) −42.1652 −1.95117 −0.975585 0.219621i \(-0.929518\pi\)
−0.975585 + 0.219621i \(0.929518\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) 0 0
\(471\) 12.9129 0.594994
\(472\) 0 0
\(473\) 7.41742i 0.341054i
\(474\) 0 0
\(475\) 27.8784i 1.27915i
\(476\) 0 0
\(477\) −6.79129 −0.310952
\(478\) 0 0
\(479\) 22.2867i 1.01831i 0.860676 + 0.509154i \(0.170041\pi\)
−0.860676 + 0.509154i \(0.829959\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 16.7477i 0.762048i
\(484\) 0 0
\(485\) 3.66061 0.166220
\(486\) 0 0
\(487\) − 18.1216i − 0.821168i −0.911823 0.410584i \(-0.865325\pi\)
0.911823 0.410584i \(-0.134675\pi\)
\(488\) 0 0
\(489\) 57.9129i 2.61891i
\(490\) 0 0
\(491\) 9.79129 0.441875 0.220937 0.975288i \(-0.429088\pi\)
0.220937 + 0.975288i \(0.429088\pi\)
\(492\) 0 0
\(493\) 20.3739 0.917593
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 0 0
\(497\) −1.58258 −0.0709882
\(498\) 0 0
\(499\) 20.1216i 0.900766i 0.892835 + 0.450383i \(0.148713\pi\)
−0.892835 + 0.450383i \(0.851287\pi\)
\(500\) 0 0
\(501\) 50.7042i 2.26530i
\(502\) 0 0
\(503\) −17.2087 −0.767299 −0.383649 0.923479i \(-0.625333\pi\)
−0.383649 + 0.923479i \(0.625333\pi\)
\(504\) 0 0
\(505\) 13.8784i 0.617581i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 1.74773i − 0.0774666i −0.999250 0.0387333i \(-0.987668\pi\)
0.999250 0.0387333i \(-0.0123323\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) − 31.8693i − 1.40706i
\(514\) 0 0
\(515\) − 0.791288i − 0.0348683i
\(516\) 0 0
\(517\) −4.87841 −0.214552
\(518\) 0 0
\(519\) 42.7913 1.87833
\(520\) 0 0
\(521\) 31.5826 1.38366 0.691829 0.722061i \(-0.256805\pi\)
0.691829 + 0.722061i \(0.256805\pi\)
\(522\) 0 0
\(523\) −26.7477 −1.16960 −0.584798 0.811179i \(-0.698826\pi\)
−0.584798 + 0.811179i \(0.698826\pi\)
\(524\) 0 0
\(525\) − 12.2087i − 0.532832i
\(526\) 0 0
\(527\) − 3.00000i − 0.130682i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) − 43.1216i − 1.87132i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 11.3739i − 0.491735i
\(536\) 0 0
\(537\) −12.7913 −0.551985
\(538\) 0 0
\(539\) − 0.791288i − 0.0340832i
\(540\) 0 0
\(541\) 39.1216i 1.68197i 0.541060 + 0.840984i \(0.318023\pi\)
−0.541060 + 0.840984i \(0.681977\pi\)
\(542\) 0 0
\(543\) −7.66970 −0.329138
\(544\) 0 0
\(545\) −7.71326 −0.330400
\(546\) 0 0
\(547\) −41.7477 −1.78500 −0.892502 0.451044i \(-0.851052\pi\)
−0.892502 + 0.451044i \(0.851052\pi\)
\(548\) 0 0
\(549\) 9.58258 0.408974
\(550\) 0 0
\(551\) − 43.2867i − 1.84408i
\(552\) 0 0
\(553\) − 4.00000i − 0.170097i
\(554\) 0 0
\(555\) 8.83485 0.375018
\(556\) 0 0
\(557\) − 20.2087i − 0.856271i −0.903715 0.428135i \(-0.859171\pi\)
0.903715 0.428135i \(-0.140829\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 6.62614i 0.279756i
\(562\) 0 0
\(563\) 39.4955 1.66453 0.832267 0.554374i \(-0.187042\pi\)
0.832267 + 0.554374i \(0.187042\pi\)
\(564\) 0 0
\(565\) − 4.87841i − 0.205236i
\(566\) 0 0
\(567\) − 0.417424i − 0.0175302i
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) −15.1216 −0.632819 −0.316409 0.948623i \(-0.602477\pi\)
−0.316409 + 0.948623i \(0.602477\pi\)
\(572\) 0 0
\(573\) 32.2087 1.34554
\(574\) 0 0
\(575\) −26.2432 −1.09442
\(576\) 0 0
\(577\) − 26.4955i − 1.10302i −0.834168 0.551510i \(-0.814052\pi\)
0.834168 0.551510i \(-0.185948\pi\)
\(578\) 0 0
\(579\) 27.9129i 1.16002i
\(580\) 0 0
\(581\) −9.00000 −0.373383
\(582\) 0 0
\(583\) − 1.12159i − 0.0464515i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 17.7042i − 0.730729i −0.930865 0.365365i \(-0.880944\pi\)
0.930865 0.365365i \(-0.119056\pi\)
\(588\) 0 0
\(589\) −6.37386 −0.262630
\(590\) 0 0
\(591\) − 2.20871i − 0.0908543i
\(592\) 0 0
\(593\) − 6.95644i − 0.285667i −0.989747 0.142833i \(-0.954379\pi\)
0.989747 0.142833i \(-0.0456213\pi\)
\(594\) 0 0
\(595\) −2.37386 −0.0973189
\(596\) 0 0
\(597\) 43.9564 1.79902
\(598\) 0 0
\(599\) 36.9564 1.51000 0.755000 0.655725i \(-0.227637\pi\)
0.755000 + 0.655725i \(0.227637\pi\)
\(600\) 0 0
\(601\) −12.3739 −0.504740 −0.252370 0.967631i \(-0.581210\pi\)
−0.252370 + 0.967631i \(0.581210\pi\)
\(602\) 0 0
\(603\) 33.5390i 1.36581i
\(604\) 0 0
\(605\) − 8.20871i − 0.333732i
\(606\) 0 0
\(607\) 21.7477 0.882713 0.441357 0.897332i \(-0.354497\pi\)
0.441357 + 0.897332i \(0.354497\pi\)
\(608\) 0 0
\(609\) 18.9564i 0.768154i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 20.1216i 0.812703i 0.913717 + 0.406352i \(0.133199\pi\)
−0.913717 + 0.406352i \(0.866801\pi\)
\(614\) 0 0
\(615\) 16.7477 0.675334
\(616\) 0 0
\(617\) − 2.66970i − 0.107478i −0.998555 0.0537390i \(-0.982886\pi\)
0.998555 0.0537390i \(-0.0171139\pi\)
\(618\) 0 0
\(619\) − 34.0000i − 1.36658i −0.730149 0.683288i \(-0.760549\pi\)
0.730149 0.683288i \(-0.239451\pi\)
\(620\) 0 0
\(621\) 30.0000 1.20386
\(622\) 0 0
\(623\) −8.37386 −0.335492
\(624\) 0 0
\(625\) 16.0000 0.640000
\(626\) 0 0
\(627\) 14.0780 0.562222
\(628\) 0 0
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) − 29.1216i − 1.15931i −0.814861 0.579656i \(-0.803187\pi\)
0.814861 0.579656i \(-0.196813\pi\)
\(632\) 0 0
\(633\) 36.2867 1.44227
\(634\) 0 0
\(635\) − 12.1652i − 0.482759i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 7.58258i 0.299962i
\(640\) 0 0
\(641\) −40.1216 −1.58471 −0.792354 0.610062i \(-0.791145\pi\)
−0.792354 + 0.610062i \(0.791145\pi\)
\(642\) 0 0
\(643\) 23.7477i 0.936519i 0.883591 + 0.468259i \(0.155119\pi\)
−0.883591 + 0.468259i \(0.844881\pi\)
\(644\) 0 0
\(645\) 20.7042i 0.815226i
\(646\) 0 0
\(647\) 19.5826 0.769870 0.384935 0.922944i \(-0.374224\pi\)
0.384935 + 0.922944i \(0.374224\pi\)
\(648\) 0 0
\(649\) 7.12159 0.279547
\(650\) 0 0
\(651\) 2.79129 0.109399
\(652\) 0 0
\(653\) −0.626136 −0.0245026 −0.0122513 0.999925i \(-0.503900\pi\)
−0.0122513 + 0.999925i \(0.503900\pi\)
\(654\) 0 0
\(655\) 15.0000i 0.586098i
\(656\) 0 0
\(657\) 67.0780i 2.61696i
\(658\) 0 0
\(659\) 21.1652 0.824477 0.412239 0.911076i \(-0.364747\pi\)
0.412239 + 0.911076i \(0.364747\pi\)
\(660\) 0 0
\(661\) 18.7477i 0.729202i 0.931164 + 0.364601i \(0.118795\pi\)
−0.931164 + 0.364601i \(0.881205\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.04356i 0.195581i
\(666\) 0 0
\(667\) 40.7477 1.57776
\(668\) 0 0
\(669\) 24.0780i 0.930910i
\(670\) 0 0
\(671\) 1.58258i 0.0610947i
\(672\) 0 0
\(673\) −20.4955 −0.790042 −0.395021 0.918672i \(-0.629263\pi\)
−0.395021 + 0.918672i \(0.629263\pi\)
\(674\) 0 0
\(675\) −21.8693 −0.841750
\(676\) 0 0
\(677\) 14.0436 0.539738 0.269869 0.962897i \(-0.413020\pi\)
0.269869 + 0.962897i \(0.413020\pi\)
\(678\) 0 0
\(679\) −4.62614 −0.177535
\(680\) 0 0
\(681\) − 38.3739i − 1.47049i
\(682\) 0 0
\(683\) − 31.7477i − 1.21479i −0.794399 0.607397i \(-0.792214\pi\)
0.794399 0.607397i \(-0.207786\pi\)
\(684\) 0 0
\(685\) −1.87841 −0.0717703
\(686\) 0 0
\(687\) 74.6606i 2.84848i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 5.62614i − 0.214028i −0.994257 0.107014i \(-0.965871\pi\)
0.994257 0.107014i \(-0.0341290\pi\)
\(692\) 0 0
\(693\) −3.79129 −0.144019
\(694\) 0 0
\(695\) − 10.5826i − 0.401420i
\(696\) 0 0
\(697\) 22.7477i 0.861632i
\(698\) 0 0
\(699\) −78.0345 −2.95153
\(700\) 0 0
\(701\) 34.7477 1.31240 0.656202 0.754585i \(-0.272162\pi\)
0.656202 + 0.754585i \(0.272162\pi\)
\(702\) 0 0
\(703\) 25.4955 0.961579
\(704\) 0 0
\(705\) −13.6170 −0.512848
\(706\) 0 0
\(707\) − 17.5390i − 0.659623i
\(708\) 0 0
\(709\) − 25.6261i − 0.962410i −0.876608 0.481205i \(-0.840199\pi\)
0.876608 0.481205i \(-0.159801\pi\)
\(710\) 0 0
\(711\) −19.1652 −0.718749
\(712\) 0 0
\(713\) − 6.00000i − 0.224702i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 68.3739i − 2.55347i
\(718\) 0 0
\(719\) −48.8258 −1.82089 −0.910447 0.413626i \(-0.864262\pi\)
−0.910447 + 0.413626i \(0.864262\pi\)
\(720\) 0 0
\(721\) 1.00000i 0.0372419i
\(722\) 0 0
\(723\) 9.41742i 0.350238i
\(724\) 0 0
\(725\) −29.7042 −1.10319
\(726\) 0 0
\(727\) 28.4955 1.05684 0.528419 0.848984i \(-0.322785\pi\)
0.528419 + 0.848984i \(0.322785\pi\)
\(728\) 0 0
\(729\) −43.8693 −1.62479
\(730\) 0 0
\(731\) −28.1216 −1.04011
\(732\) 0 0
\(733\) 30.8693i 1.14018i 0.821581 + 0.570092i \(0.193093\pi\)
−0.821581 + 0.570092i \(0.806907\pi\)
\(734\) 0 0
\(735\) − 2.20871i − 0.0814696i
\(736\) 0 0
\(737\) −5.53901 −0.204032
\(738\) 0 0
\(739\) 42.7477i 1.57250i 0.617908 + 0.786250i \(0.287980\pi\)
−0.617908 + 0.786250i \(0.712020\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.7913i 1.01956i 0.860304 + 0.509782i \(0.170274\pi\)
−0.860304 + 0.509782i \(0.829726\pi\)
\(744\) 0 0
\(745\) −17.3739 −0.636529
\(746\) 0 0
\(747\) 43.1216i 1.57774i
\(748\) 0 0
\(749\) 14.3739i 0.525210i
\(750\) 0 0
\(751\) −5.00000 −0.182453 −0.0912263 0.995830i \(-0.529079\pi\)
−0.0912263 + 0.995830i \(0.529079\pi\)
\(752\) 0 0
\(753\) 12.3303 0.449341
\(754\) 0 0
\(755\) −5.53901 −0.201585
\(756\) 0 0
\(757\) −4.00000 −0.145382 −0.0726912 0.997354i \(-0.523159\pi\)
−0.0726912 + 0.997354i \(0.523159\pi\)
\(758\) 0 0
\(759\) 13.2523i 0.481027i
\(760\) 0 0
\(761\) − 20.5390i − 0.744539i −0.928125 0.372269i \(-0.878580\pi\)
0.928125 0.372269i \(-0.121420\pi\)
\(762\) 0 0
\(763\) 9.74773 0.352891
\(764\) 0 0
\(765\) 11.3739i 0.411223i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 35.0000i − 1.26213i −0.775729 0.631066i \(-0.782618\pi\)
0.775729 0.631066i \(-0.217382\pi\)
\(770\) 0 0
\(771\) −1.74773 −0.0629429
\(772\) 0 0
\(773\) 42.4955i 1.52846i 0.644947 + 0.764228i \(0.276880\pi\)
−0.644947 + 0.764228i \(0.723120\pi\)
\(774\) 0 0
\(775\) 4.37386i 0.157114i
\(776\) 0 0
\(777\) −11.1652 −0.400548
\(778\) 0 0
\(779\) 48.3303 1.73161
\(780\) 0 0
\(781\) −1.25227 −0.0448098
\(782\) 0 0
\(783\) 33.9564 1.21350
\(784\) 0 0
\(785\) 3.66061i 0.130653i
\(786\) 0 0
\(787\) 14.0000i 0.499046i 0.968369 + 0.249523i \(0.0802738\pi\)
−0.968369 + 0.249523i \(0.919726\pi\)
\(788\) 0 0
\(789\) 29.5390 1.05162
\(790\) 0 0
\(791\) 6.16515i 0.219208i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 3.13068i − 0.111034i
\(796\) 0 0
\(797\) −49.9129 −1.76800 −0.884002 0.467482i \(-0.845161\pi\)
−0.884002 + 0.467482i \(0.845161\pi\)
\(798\) 0 0
\(799\) − 18.4955i − 0.654322i
\(800\) 0 0
\(801\) 40.1216i 1.41763i
\(802\) 0 0
\(803\) −11.0780 −0.390935
\(804\) 0 0
\(805\) −4.74773 −0.167335
\(806\) 0 0
\(807\) 65.2432 2.29667
\(808\) 0 0
\(809\) 6.16515 0.216755 0.108378 0.994110i \(-0.465434\pi\)
0.108378 + 0.994110i \(0.465434\pi\)
\(810\) 0 0
\(811\) − 25.8693i − 0.908395i −0.890901 0.454197i \(-0.849926\pi\)
0.890901 0.454197i \(-0.150074\pi\)
\(812\) 0 0
\(813\) − 10.4610i − 0.366883i
\(814\) 0 0
\(815\) −16.4174 −0.575077
\(816\) 0 0
\(817\) 59.7477i 2.09031i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 33.0000i − 1.15171i −0.817553 0.575854i \(-0.804670\pi\)
0.817553 0.575854i \(-0.195330\pi\)
\(822\) 0 0
\(823\) −18.2523 −0.636234 −0.318117 0.948051i \(-0.603051\pi\)
−0.318117 + 0.948051i \(0.603051\pi\)
\(824\) 0 0
\(825\) − 9.66061i − 0.336339i
\(826\) 0 0
\(827\) 4.12159i 0.143322i 0.997429 + 0.0716609i \(0.0228299\pi\)
−0.997429 + 0.0716609i \(0.977170\pi\)
\(828\) 0 0
\(829\) 42.3739 1.47171 0.735853 0.677142i \(-0.236782\pi\)
0.735853 + 0.677142i \(0.236782\pi\)
\(830\) 0 0
\(831\) 90.7042 3.14649
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −14.3739 −0.497428
\(836\) 0 0
\(837\) − 5.00000i − 0.172825i
\(838\) 0 0
\(839\) 26.0436i 0.899124i 0.893249 + 0.449562i \(0.148420\pi\)
−0.893249 + 0.449562i \(0.851580\pi\)
\(840\) 0 0
\(841\) 17.1216 0.590400
\(842\) 0 0
\(843\) 63.4955i 2.18690i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.3739i 0.356450i
\(848\) 0 0
\(849\) 72.5735 2.49072
\(850\) 0 0
\(851\) 24.0000i 0.822709i
\(852\) 0 0
\(853\) 9.74773i 0.333756i 0.985978 + 0.166878i \(0.0533686\pi\)
−0.985978 + 0.166878i \(0.946631\pi\)
\(854\) 0 0
\(855\) 24.1652 0.826431
\(856\) 0 0
\(857\) −20.2087 −0.690316 −0.345158 0.938545i \(-0.612175\pi\)
−0.345158 + 0.938545i \(0.612175\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) −21.1652 −0.721306
\(862\) 0 0
\(863\) 2.83485i 0.0964994i 0.998835 + 0.0482497i \(0.0153643\pi\)
−0.998835 + 0.0482497i \(0.984636\pi\)
\(864\) 0 0
\(865\) 12.1307i 0.412456i
\(866\) 0 0
\(867\) 22.3303 0.758377
\(868\) 0 0
\(869\) − 3.16515i − 0.107370i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 22.1652i 0.750177i
\(874\) 0 0
\(875\) 7.41742 0.250755
\(876\) 0 0
\(877\) 23.7477i 0.801904i 0.916099 + 0.400952i \(0.131321\pi\)
−0.916099 + 0.400952i \(0.868679\pi\)
\(878\) 0 0
\(879\) 37.9129i 1.27877i
\(880\) 0 0
\(881\) 7.41742 0.249899 0.124950 0.992163i \(-0.460123\pi\)
0.124950 + 0.992163i \(0.460123\pi\)
\(882\) 0 0
\(883\) 29.7477 1.00109 0.500545 0.865710i \(-0.333133\pi\)
0.500545 + 0.865710i \(0.333133\pi\)
\(884\) 0 0
\(885\) 19.8784 0.668205
\(886\) 0 0
\(887\) −25.2523 −0.847888 −0.423944 0.905688i \(-0.639355\pi\)
−0.423944 + 0.905688i \(0.639355\pi\)
\(888\) 0 0
\(889\) 15.3739i 0.515623i
\(890\) 0 0
\(891\) − 0.330303i − 0.0110656i
\(892\) 0 0
\(893\) −39.2958 −1.31498
\(894\) 0 0
\(895\) − 3.62614i − 0.121208i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 6.79129i − 0.226502i
\(900\) 0 0
\(901\) 4.25227 0.141664
\(902\) 0 0
\(903\) − 26.1652i − 0.870722i
\(904\) 0 0
\(905\) − 2.17424i − 0.0722743i
\(906\) 0 0
\(907\) −50.9909 −1.69313 −0.846563 0.532289i \(-0.821332\pi\)
−0.846563 + 0.532289i \(0.821332\pi\)
\(908\) 0 0
\(909\) −84.0345 −2.78725
\(910\) 0 0
\(911\) 32.3739 1.07259 0.536297 0.844029i \(-0.319823\pi\)
0.536297 + 0.844029i \(0.319823\pi\)
\(912\) 0 0
\(913\) −7.12159 −0.235690
\(914\) 0 0
\(915\) 4.41742i 0.146036i
\(916\) 0 0
\(917\) − 18.9564i − 0.625997i
\(918\) 0 0
\(919\) 11.4955 0.379200 0.189600 0.981861i \(-0.439281\pi\)
0.189600 + 0.981861i \(0.439281\pi\)
\(920\) 0 0
\(921\) 39.4174i 1.29885i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 17.4955i − 0.575247i
\(926\) 0 0
\(927\) 4.79129 0.157367
\(928\) 0 0
\(929\) − 46.5826i − 1.52832i −0.645024 0.764162i \(-0.723153\pi\)
0.645024 0.764162i \(-0.276847\pi\)
\(930\) 0 0
\(931\) − 6.37386i − 0.208895i
\(932\) 0 0
\(933\) 52.9129 1.73229
\(934\) 0 0
\(935\) −1.87841 −0.0614306
\(936\) 0 0
\(937\) −17.7477 −0.579793 −0.289896 0.957058i \(-0.593621\pi\)
−0.289896 + 0.957058i \(0.593621\pi\)
\(938\) 0 0
\(939\) −18.8348 −0.614652
\(940\) 0 0
\(941\) − 38.0780i − 1.24131i −0.784084 0.620654i \(-0.786867\pi\)
0.784084 0.620654i \(-0.213133\pi\)
\(942\) 0 0
\(943\) 45.4955i 1.48154i
\(944\) 0 0
\(945\) −3.95644 −0.128703
\(946\) 0 0
\(947\) − 32.3739i − 1.05201i −0.850482 0.526005i \(-0.823689\pi\)
0.850482 0.526005i \(-0.176311\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 46.2867i − 1.50095i
\(952\) 0 0
\(953\) −8.66970 −0.280839 −0.140420 0.990092i \(-0.544845\pi\)
−0.140420 + 0.990092i \(0.544845\pi\)
\(954\) 0 0
\(955\) 9.13068i 0.295462i
\(956\) 0 0
\(957\) 15.0000i 0.484881i
\(958\) 0 0
\(959\) 2.37386 0.0766561
\(960\) 0 0
\(961\) 30.0000 0.967742
\(962\) 0 0
\(963\) 68.8693 2.21928
\(964\) 0 0
\(965\) −7.91288 −0.254725
\(966\) 0 0
\(967\) − 3.74773i − 0.120519i −0.998183 0.0602594i \(-0.980807\pi\)
0.998183 0.0602594i \(-0.0191928\pi\)
\(968\) 0 0
\(969\) 53.3739i 1.71462i
\(970\) 0 0
\(971\) −31.4174 −1.00823 −0.504117 0.863636i \(-0.668182\pi\)
−0.504117 + 0.863636i \(0.668182\pi\)
\(972\) 0 0
\(973\) 13.3739i 0.428746i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48.8258i 1.56207i 0.624485 + 0.781037i \(0.285309\pi\)
−0.624485 + 0.781037i \(0.714691\pi\)
\(978\) 0 0
\(979\) −6.62614 −0.211772
\(980\) 0 0
\(981\) − 46.7042i − 1.49115i
\(982\) 0 0
\(983\) − 14.5390i − 0.463723i −0.972749 0.231861i \(-0.925518\pi\)
0.972749 0.231861i \(-0.0744815\pi\)
\(984\) 0 0
\(985\) 0.626136 0.0199504
\(986\) 0 0
\(987\) 17.2087 0.547759
\(988\) 0 0
\(989\) −56.2432 −1.78843
\(990\) 0 0
\(991\) 23.6261 0.750509 0.375254 0.926922i \(-0.377555\pi\)
0.375254 + 0.926922i \(0.377555\pi\)
\(992\) 0 0
\(993\) 75.7042i 2.40240i
\(994\) 0 0
\(995\) 12.4610i 0.395040i
\(996\) 0 0
\(997\) 35.0000 1.10846 0.554231 0.832363i \(-0.313013\pi\)
0.554231 + 0.832363i \(0.313013\pi\)
\(998\) 0 0
\(999\) 20.0000i 0.632772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.g.e.337.1 4
13.5 odd 4 4732.2.a.h.1.1 2
13.7 odd 12 364.2.k.d.29.2 4
13.8 odd 4 4732.2.a.g.1.1 2
13.11 odd 12 364.2.k.d.113.2 yes 4
13.12 even 2 inner 4732.2.g.e.337.2 4
39.11 even 12 3276.2.z.e.3025.1 4
39.20 even 12 3276.2.z.e.757.1 4
52.7 even 12 1456.2.s.k.1121.1 4
52.11 even 12 1456.2.s.k.113.1 4
91.11 odd 12 2548.2.l.j.373.1 4
91.20 even 12 2548.2.k.e.393.1 4
91.24 even 12 2548.2.l.l.373.2 4
91.33 even 12 2548.2.l.l.1537.2 4
91.37 odd 12 2548.2.i.k.165.2 4
91.46 odd 12 2548.2.i.k.1745.2 4
91.59 even 12 2548.2.i.i.1745.1 4
91.72 odd 12 2548.2.l.j.1537.1 4
91.76 even 12 2548.2.k.e.1569.1 4
91.89 even 12 2548.2.i.i.165.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.d.29.2 4 13.7 odd 12
364.2.k.d.113.2 yes 4 13.11 odd 12
1456.2.s.k.113.1 4 52.11 even 12
1456.2.s.k.1121.1 4 52.7 even 12
2548.2.i.i.165.1 4 91.89 even 12
2548.2.i.i.1745.1 4 91.59 even 12
2548.2.i.k.165.2 4 91.37 odd 12
2548.2.i.k.1745.2 4 91.46 odd 12
2548.2.k.e.393.1 4 91.20 even 12
2548.2.k.e.1569.1 4 91.76 even 12
2548.2.l.j.373.1 4 91.11 odd 12
2548.2.l.j.1537.1 4 91.72 odd 12
2548.2.l.l.373.2 4 91.24 even 12
2548.2.l.l.1537.2 4 91.33 even 12
3276.2.z.e.757.1 4 39.20 even 12
3276.2.z.e.3025.1 4 39.11 even 12
4732.2.a.g.1.1 2 13.8 odd 4
4732.2.a.h.1.1 2 13.5 odd 4
4732.2.g.e.337.1 4 1.1 even 1 trivial
4732.2.g.e.337.2 4 13.12 even 2 inner