Properties

Label 4732.2.a.p.1.4
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.25492.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} - 2x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.77129\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.77129 q^{3} +2.32791 q^{5} +1.00000 q^{7} +4.68002 q^{9} -0.908738 q^{11} +6.45131 q^{15} -1.93294 q^{17} +4.19046 q^{19} +2.77129 q^{21} +1.41917 q^{23} +0.419174 q^{25} +4.65582 q^{27} -7.75502 q^{29} -3.87048 q^{31} -2.51837 q^{33} +2.32791 q^{35} +11.9939 q^{37} +6.19839 q^{41} +6.91667 q^{43} +10.8947 q^{45} +3.16959 q^{47} +1.00000 q^{49} -5.35672 q^{51} +10.7792 q^{53} -2.11546 q^{55} +11.6130 q^{57} +4.97580 q^{59} -0.0483985 q^{61} +4.68002 q^{63} -3.76908 q^{67} +3.93294 q^{69} +15.3381 q^{71} -7.16959 q^{73} +1.16165 q^{75} -0.908738 q^{77} -17.3460 q^{79} -1.13745 q^{81} -12.1173 q^{83} -4.49971 q^{85} -21.4914 q^{87} +11.7814 q^{89} -10.7262 q^{93} +9.75502 q^{95} +6.37298 q^{97} -4.25291 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{5} + 4 q^{7} + 4 q^{9} - 2 q^{17} + 3 q^{19} + 3 q^{23} - q^{25} + 6 q^{27} - q^{29} + 13 q^{31} + 10 q^{33} + 3 q^{35} - 10 q^{41} + 3 q^{43} + 13 q^{45} - 3 q^{47} + 4 q^{49} + 4 q^{51} + 11 q^{53}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.77129 1.60000 0.800001 0.599998i \(-0.204832\pi\)
0.800001 + 0.599998i \(0.204832\pi\)
\(4\) 0 0
\(5\) 2.32791 1.04107 0.520537 0.853839i \(-0.325732\pi\)
0.520537 + 0.853839i \(0.325732\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 4.68002 1.56001
\(10\) 0 0
\(11\) −0.908738 −0.273995 −0.136997 0.990571i \(-0.543745\pi\)
−0.136997 + 0.990571i \(0.543745\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 6.45131 1.66572
\(16\) 0 0
\(17\) −1.93294 −0.468806 −0.234403 0.972140i \(-0.575314\pi\)
−0.234403 + 0.972140i \(0.575314\pi\)
\(18\) 0 0
\(19\) 4.19046 0.961357 0.480679 0.876897i \(-0.340390\pi\)
0.480679 + 0.876897i \(0.340390\pi\)
\(20\) 0 0
\(21\) 2.77129 0.604744
\(22\) 0 0
\(23\) 1.41917 0.295918 0.147959 0.988993i \(-0.452730\pi\)
0.147959 + 0.988993i \(0.452730\pi\)
\(24\) 0 0
\(25\) 0.419174 0.0838348
\(26\) 0 0
\(27\) 4.65582 0.896014
\(28\) 0 0
\(29\) −7.75502 −1.44007 −0.720036 0.693937i \(-0.755875\pi\)
−0.720036 + 0.693937i \(0.755875\pi\)
\(30\) 0 0
\(31\) −3.87048 −0.695159 −0.347580 0.937650i \(-0.612996\pi\)
−0.347580 + 0.937650i \(0.612996\pi\)
\(32\) 0 0
\(33\) −2.51837 −0.438392
\(34\) 0 0
\(35\) 2.32791 0.393489
\(36\) 0 0
\(37\) 11.9939 1.97178 0.985891 0.167390i \(-0.0535338\pi\)
0.985891 + 0.167390i \(0.0535338\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.19839 0.968027 0.484013 0.875061i \(-0.339179\pi\)
0.484013 + 0.875061i \(0.339179\pi\)
\(42\) 0 0
\(43\) 6.91667 1.05478 0.527391 0.849622i \(-0.323170\pi\)
0.527391 + 0.849622i \(0.323170\pi\)
\(44\) 0 0
\(45\) 10.8947 1.62408
\(46\) 0 0
\(47\) 3.16959 0.462332 0.231166 0.972914i \(-0.425746\pi\)
0.231166 + 0.972914i \(0.425746\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −5.35672 −0.750091
\(52\) 0 0
\(53\) 10.7792 1.48064 0.740320 0.672255i \(-0.234674\pi\)
0.740320 + 0.672255i \(0.234674\pi\)
\(54\) 0 0
\(55\) −2.11546 −0.285249
\(56\) 0 0
\(57\) 11.6130 1.53817
\(58\) 0 0
\(59\) 4.97580 0.647794 0.323897 0.946092i \(-0.395007\pi\)
0.323897 + 0.946092i \(0.395007\pi\)
\(60\) 0 0
\(61\) −0.0483985 −0.00619679 −0.00309840 0.999995i \(-0.500986\pi\)
−0.00309840 + 0.999995i \(0.500986\pi\)
\(62\) 0 0
\(63\) 4.68002 0.589628
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.76908 −0.460466 −0.230233 0.973136i \(-0.573949\pi\)
−0.230233 + 0.973136i \(0.573949\pi\)
\(68\) 0 0
\(69\) 3.93294 0.473470
\(70\) 0 0
\(71\) 15.3381 1.82029 0.910146 0.414287i \(-0.135969\pi\)
0.910146 + 0.414287i \(0.135969\pi\)
\(72\) 0 0
\(73\) −7.16959 −0.839137 −0.419568 0.907724i \(-0.637819\pi\)
−0.419568 + 0.907724i \(0.637819\pi\)
\(74\) 0 0
\(75\) 1.16165 0.134136
\(76\) 0 0
\(77\) −0.908738 −0.103560
\(78\) 0 0
\(79\) −17.3460 −1.95158 −0.975788 0.218717i \(-0.929813\pi\)
−0.975788 + 0.218717i \(0.929813\pi\)
\(80\) 0 0
\(81\) −1.13745 −0.126384
\(82\) 0 0
\(83\) −12.1173 −1.33004 −0.665022 0.746824i \(-0.731578\pi\)
−0.665022 + 0.746824i \(0.731578\pi\)
\(84\) 0 0
\(85\) −4.49971 −0.488062
\(86\) 0 0
\(87\) −21.4914 −2.30412
\(88\) 0 0
\(89\) 11.7814 1.24883 0.624414 0.781093i \(-0.285338\pi\)
0.624414 + 0.781093i \(0.285338\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.7262 −1.11226
\(94\) 0 0
\(95\) 9.75502 1.00084
\(96\) 0 0
\(97\) 6.37298 0.647079 0.323539 0.946215i \(-0.395127\pi\)
0.323539 + 0.946215i \(0.395127\pi\)
\(98\) 0 0
\(99\) −4.25291 −0.427434
\(100\) 0 0
\(101\) −7.60963 −0.757187 −0.378593 0.925563i \(-0.623592\pi\)
−0.378593 + 0.925563i \(0.623592\pi\)
\(102\) 0 0
\(103\) 3.72510 0.367045 0.183522 0.983016i \(-0.441250\pi\)
0.183522 + 0.983016i \(0.441250\pi\)
\(104\) 0 0
\(105\) 6.45131 0.629583
\(106\) 0 0
\(107\) −8.94769 −0.865006 −0.432503 0.901633i \(-0.642369\pi\)
−0.432503 + 0.901633i \(0.642369\pi\)
\(108\) 0 0
\(109\) −0.268784 −0.0257449 −0.0128724 0.999917i \(-0.504098\pi\)
−0.0128724 + 0.999917i \(0.504098\pi\)
\(110\) 0 0
\(111\) 33.2385 3.15486
\(112\) 0 0
\(113\) 12.1718 1.14503 0.572513 0.819896i \(-0.305969\pi\)
0.572513 + 0.819896i \(0.305969\pi\)
\(114\) 0 0
\(115\) 3.30371 0.308073
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.93294 −0.177192
\(120\) 0 0
\(121\) −10.1742 −0.924927
\(122\) 0 0
\(123\) 17.1775 1.54884
\(124\) 0 0
\(125\) −10.6638 −0.953796
\(126\) 0 0
\(127\) 11.1742 0.991550 0.495775 0.868451i \(-0.334884\pi\)
0.495775 + 0.868451i \(0.334884\pi\)
\(128\) 0 0
\(129\) 19.1681 1.68765
\(130\) 0 0
\(131\) 1.54257 0.134775 0.0673875 0.997727i \(-0.478534\pi\)
0.0673875 + 0.997727i \(0.478534\pi\)
\(132\) 0 0
\(133\) 4.19046 0.363359
\(134\) 0 0
\(135\) 10.8383 0.932817
\(136\) 0 0
\(137\) −15.2571 −1.30350 −0.651752 0.758432i \(-0.725966\pi\)
−0.651752 + 0.758432i \(0.725966\pi\)
\(138\) 0 0
\(139\) 9.49138 0.805048 0.402524 0.915409i \(-0.368133\pi\)
0.402524 + 0.915409i \(0.368133\pi\)
\(140\) 0 0
\(141\) 8.78383 0.739732
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −18.0530 −1.49922
\(146\) 0 0
\(147\) 2.77129 0.228572
\(148\) 0 0
\(149\) 19.1071 1.56532 0.782659 0.622451i \(-0.213863\pi\)
0.782659 + 0.622451i \(0.213863\pi\)
\(150\) 0 0
\(151\) −18.0423 −1.46826 −0.734130 0.679009i \(-0.762410\pi\)
−0.734130 + 0.679009i \(0.762410\pi\)
\(152\) 0 0
\(153\) −9.04619 −0.731341
\(154\) 0 0
\(155\) −9.01014 −0.723712
\(156\) 0 0
\(157\) −17.7179 −1.41404 −0.707021 0.707193i \(-0.749961\pi\)
−0.707021 + 0.707193i \(0.749961\pi\)
\(158\) 0 0
\(159\) 29.8723 2.36903
\(160\) 0 0
\(161\) 1.41917 0.111847
\(162\) 0 0
\(163\) 1.14578 0.0897445 0.0448722 0.998993i \(-0.485712\pi\)
0.0448722 + 0.998993i \(0.485712\pi\)
\(164\) 0 0
\(165\) −5.86255 −0.456399
\(166\) 0 0
\(167\) 1.10532 0.0855321 0.0427660 0.999085i \(-0.486383\pi\)
0.0427660 + 0.999085i \(0.486383\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 19.6114 1.49972
\(172\) 0 0
\(173\) −18.6046 −1.41448 −0.707242 0.706972i \(-0.750061\pi\)
−0.707242 + 0.706972i \(0.750061\pi\)
\(174\) 0 0
\(175\) 0.419174 0.0316866
\(176\) 0 0
\(177\) 13.7894 1.03647
\(178\) 0 0
\(179\) −8.44337 −0.631087 −0.315544 0.948911i \(-0.602187\pi\)
−0.315544 + 0.948911i \(0.602187\pi\)
\(180\) 0 0
\(181\) −19.3506 −1.43832 −0.719159 0.694845i \(-0.755473\pi\)
−0.719159 + 0.694845i \(0.755473\pi\)
\(182\) 0 0
\(183\) −0.134126 −0.00991488
\(184\) 0 0
\(185\) 27.9207 2.05277
\(186\) 0 0
\(187\) 1.75653 0.128450
\(188\) 0 0
\(189\) 4.65582 0.338661
\(190\) 0 0
\(191\) 11.6360 0.841954 0.420977 0.907071i \(-0.361687\pi\)
0.420977 + 0.907071i \(0.361687\pi\)
\(192\) 0 0
\(193\) −16.8058 −1.20971 −0.604855 0.796336i \(-0.706769\pi\)
−0.604855 + 0.796336i \(0.706769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.56344 −0.467626 −0.233813 0.972282i \(-0.575120\pi\)
−0.233813 + 0.972282i \(0.575120\pi\)
\(198\) 0 0
\(199\) −26.1472 −1.85353 −0.926763 0.375647i \(-0.877421\pi\)
−0.926763 + 0.375647i \(0.877421\pi\)
\(200\) 0 0
\(201\) −10.4452 −0.736747
\(202\) 0 0
\(203\) −7.75502 −0.544296
\(204\) 0 0
\(205\) 14.4293 1.00779
\(206\) 0 0
\(207\) 6.64177 0.461635
\(208\) 0 0
\(209\) −3.80803 −0.263407
\(210\) 0 0
\(211\) 1.82820 0.125859 0.0629294 0.998018i \(-0.479956\pi\)
0.0629294 + 0.998018i \(0.479956\pi\)
\(212\) 0 0
\(213\) 42.5061 2.91247
\(214\) 0 0
\(215\) 16.1014 1.09811
\(216\) 0 0
\(217\) −3.87048 −0.262746
\(218\) 0 0
\(219\) −19.8690 −1.34262
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.98815 −0.601891 −0.300946 0.953641i \(-0.597302\pi\)
−0.300946 + 0.953641i \(0.597302\pi\)
\(224\) 0 0
\(225\) 1.96175 0.130783
\(226\) 0 0
\(227\) −10.4452 −0.693272 −0.346636 0.938000i \(-0.612676\pi\)
−0.346636 + 0.938000i \(0.612676\pi\)
\(228\) 0 0
\(229\) 20.3517 1.34488 0.672440 0.740152i \(-0.265246\pi\)
0.672440 + 0.740152i \(0.265246\pi\)
\(230\) 0 0
\(231\) −2.51837 −0.165697
\(232\) 0 0
\(233\) −22.6621 −1.48464 −0.742320 0.670045i \(-0.766275\pi\)
−0.742320 + 0.670045i \(0.766275\pi\)
\(234\) 0 0
\(235\) 7.37852 0.481322
\(236\) 0 0
\(237\) −48.0707 −3.12253
\(238\) 0 0
\(239\) 20.0159 1.29472 0.647360 0.762185i \(-0.275873\pi\)
0.647360 + 0.762185i \(0.275873\pi\)
\(240\) 0 0
\(241\) 21.8380 1.40671 0.703353 0.710841i \(-0.251685\pi\)
0.703353 + 0.710841i \(0.251685\pi\)
\(242\) 0 0
\(243\) −17.1197 −1.09823
\(244\) 0 0
\(245\) 2.32791 0.148725
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −33.5804 −2.12807
\(250\) 0 0
\(251\) 10.7713 0.679878 0.339939 0.940448i \(-0.389594\pi\)
0.339939 + 0.940448i \(0.389594\pi\)
\(252\) 0 0
\(253\) −1.28966 −0.0810801
\(254\) 0 0
\(255\) −12.4700 −0.780900
\(256\) 0 0
\(257\) −17.3089 −1.07970 −0.539848 0.841762i \(-0.681518\pi\)
−0.539848 + 0.841762i \(0.681518\pi\)
\(258\) 0 0
\(259\) 11.9939 0.745263
\(260\) 0 0
\(261\) −36.2937 −2.24652
\(262\) 0 0
\(263\) −5.37410 −0.331381 −0.165691 0.986178i \(-0.552985\pi\)
−0.165691 + 0.986178i \(0.552985\pi\)
\(264\) 0 0
\(265\) 25.0931 1.54146
\(266\) 0 0
\(267\) 32.6497 1.99813
\(268\) 0 0
\(269\) −17.0851 −1.04170 −0.520850 0.853648i \(-0.674385\pi\)
−0.520850 + 0.853648i \(0.674385\pi\)
\(270\) 0 0
\(271\) −18.4452 −1.12047 −0.560233 0.828335i \(-0.689288\pi\)
−0.560233 + 0.828335i \(0.689288\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.380919 −0.0229703
\(276\) 0 0
\(277\) 8.35765 0.502162 0.251081 0.967966i \(-0.419214\pi\)
0.251081 + 0.967966i \(0.419214\pi\)
\(278\) 0 0
\(279\) −18.1140 −1.08445
\(280\) 0 0
\(281\) −9.28966 −0.554174 −0.277087 0.960845i \(-0.589369\pi\)
−0.277087 + 0.960845i \(0.589369\pi\)
\(282\) 0 0
\(283\) −1.91427 −0.113792 −0.0568958 0.998380i \(-0.518120\pi\)
−0.0568958 + 0.998380i \(0.518120\pi\)
\(284\) 0 0
\(285\) 27.0339 1.60135
\(286\) 0 0
\(287\) 6.19839 0.365880
\(288\) 0 0
\(289\) −13.2638 −0.780221
\(290\) 0 0
\(291\) 17.6614 1.03533
\(292\) 0 0
\(293\) −11.6473 −0.680443 −0.340221 0.940345i \(-0.610502\pi\)
−0.340221 + 0.940345i \(0.610502\pi\)
\(294\) 0 0
\(295\) 11.5832 0.674402
\(296\) 0 0
\(297\) −4.23092 −0.245503
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.91667 0.398670
\(302\) 0 0
\(303\) −21.0885 −1.21150
\(304\) 0 0
\(305\) −0.112667 −0.00645132
\(306\) 0 0
\(307\) −5.53131 −0.315689 −0.157844 0.987464i \(-0.550454\pi\)
−0.157844 + 0.987464i \(0.550454\pi\)
\(308\) 0 0
\(309\) 10.3233 0.587272
\(310\) 0 0
\(311\) 19.2490 1.09151 0.545755 0.837945i \(-0.316243\pi\)
0.545755 + 0.837945i \(0.316243\pi\)
\(312\) 0 0
\(313\) 20.8932 1.18095 0.590476 0.807055i \(-0.298940\pi\)
0.590476 + 0.807055i \(0.298940\pi\)
\(314\) 0 0
\(315\) 10.8947 0.613846
\(316\) 0 0
\(317\) 6.93515 0.389517 0.194758 0.980851i \(-0.437608\pi\)
0.194758 + 0.980851i \(0.437608\pi\)
\(318\) 0 0
\(319\) 7.04728 0.394572
\(320\) 0 0
\(321\) −24.7966 −1.38401
\(322\) 0 0
\(323\) −8.09989 −0.450690
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.744878 −0.0411918
\(328\) 0 0
\(329\) 3.16959 0.174745
\(330\) 0 0
\(331\) −28.6436 −1.57439 −0.787197 0.616702i \(-0.788468\pi\)
−0.787197 + 0.616702i \(0.788468\pi\)
\(332\) 0 0
\(333\) 56.1316 3.07599
\(334\) 0 0
\(335\) −8.77408 −0.479379
\(336\) 0 0
\(337\) 10.1234 0.551457 0.275728 0.961236i \(-0.411081\pi\)
0.275728 + 0.961236i \(0.411081\pi\)
\(338\) 0 0
\(339\) 33.7315 1.83204
\(340\) 0 0
\(341\) 3.51725 0.190470
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 9.15553 0.492917
\(346\) 0 0
\(347\) −6.18252 −0.331895 −0.165948 0.986135i \(-0.553068\pi\)
−0.165948 + 0.986135i \(0.553068\pi\)
\(348\) 0 0
\(349\) 18.1738 0.972821 0.486411 0.873730i \(-0.338306\pi\)
0.486411 + 0.873730i \(0.338306\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −28.2638 −1.50433 −0.752164 0.658976i \(-0.770990\pi\)
−0.752164 + 0.658976i \(0.770990\pi\)
\(354\) 0 0
\(355\) 35.7056 1.89506
\(356\) 0 0
\(357\) −5.35672 −0.283508
\(358\) 0 0
\(359\) −26.7949 −1.41418 −0.707090 0.707123i \(-0.749993\pi\)
−0.707090 + 0.707123i \(0.749993\pi\)
\(360\) 0 0
\(361\) −1.44005 −0.0757920
\(362\) 0 0
\(363\) −28.1956 −1.47989
\(364\) 0 0
\(365\) −16.6902 −0.873603
\(366\) 0 0
\(367\) 14.8932 0.777417 0.388709 0.921361i \(-0.372921\pi\)
0.388709 + 0.921361i \(0.372921\pi\)
\(368\) 0 0
\(369\) 29.0086 1.51013
\(370\) 0 0
\(371\) 10.7792 0.559629
\(372\) 0 0
\(373\) 26.5760 1.37605 0.688026 0.725686i \(-0.258477\pi\)
0.688026 + 0.725686i \(0.258477\pi\)
\(374\) 0 0
\(375\) −29.5523 −1.52608
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.349711 −0.0179634 −0.00898172 0.999960i \(-0.502859\pi\)
−0.00898172 + 0.999960i \(0.502859\pi\)
\(380\) 0 0
\(381\) 30.9669 1.58648
\(382\) 0 0
\(383\) 28.3968 1.45101 0.725504 0.688218i \(-0.241607\pi\)
0.725504 + 0.688218i \(0.241607\pi\)
\(384\) 0 0
\(385\) −2.11546 −0.107814
\(386\) 0 0
\(387\) 32.3702 1.64547
\(388\) 0 0
\(389\) 6.14187 0.311405 0.155703 0.987804i \(-0.450236\pi\)
0.155703 + 0.987804i \(0.450236\pi\)
\(390\) 0 0
\(391\) −2.74317 −0.138728
\(392\) 0 0
\(393\) 4.27490 0.215640
\(394\) 0 0
\(395\) −40.3799 −2.03174
\(396\) 0 0
\(397\) −7.30371 −0.366563 −0.183281 0.983060i \(-0.558672\pi\)
−0.183281 + 0.983060i \(0.558672\pi\)
\(398\) 0 0
\(399\) 11.6130 0.581375
\(400\) 0 0
\(401\) −6.84500 −0.341823 −0.170912 0.985286i \(-0.554671\pi\)
−0.170912 + 0.985286i \(0.554671\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.64789 −0.131575
\(406\) 0 0
\(407\) −10.8993 −0.540258
\(408\) 0 0
\(409\) −3.16293 −0.156397 −0.0781985 0.996938i \(-0.524917\pi\)
−0.0781985 + 0.996938i \(0.524917\pi\)
\(410\) 0 0
\(411\) −42.2819 −2.08561
\(412\) 0 0
\(413\) 4.97580 0.244843
\(414\) 0 0
\(415\) −28.2080 −1.38467
\(416\) 0 0
\(417\) 26.3033 1.28808
\(418\) 0 0
\(419\) −27.1522 −1.32647 −0.663236 0.748410i \(-0.730817\pi\)
−0.663236 + 0.748410i \(0.730817\pi\)
\(420\) 0 0
\(421\) −26.6238 −1.29757 −0.648783 0.760973i \(-0.724722\pi\)
−0.648783 + 0.760973i \(0.724722\pi\)
\(422\) 0 0
\(423\) 14.8337 0.721241
\(424\) 0 0
\(425\) −0.810237 −0.0393023
\(426\) 0 0
\(427\) −0.0483985 −0.00234217
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.5468 −0.797031 −0.398515 0.917162i \(-0.630474\pi\)
−0.398515 + 0.917162i \(0.630474\pi\)
\(432\) 0 0
\(433\) −10.9994 −0.528598 −0.264299 0.964441i \(-0.585141\pi\)
−0.264299 + 0.964441i \(0.585141\pi\)
\(434\) 0 0
\(435\) −50.0300 −2.39876
\(436\) 0 0
\(437\) 5.94699 0.284483
\(438\) 0 0
\(439\) 25.6024 1.22194 0.610968 0.791655i \(-0.290780\pi\)
0.610968 + 0.791655i \(0.290780\pi\)
\(440\) 0 0
\(441\) 4.68002 0.222858
\(442\) 0 0
\(443\) −22.4278 −1.06558 −0.532789 0.846248i \(-0.678856\pi\)
−0.532789 + 0.846248i \(0.678856\pi\)
\(444\) 0 0
\(445\) 27.4261 1.30012
\(446\) 0 0
\(447\) 52.9513 2.50451
\(448\) 0 0
\(449\) −4.49918 −0.212329 −0.106165 0.994349i \(-0.533857\pi\)
−0.106165 + 0.994349i \(0.533857\pi\)
\(450\) 0 0
\(451\) −5.63272 −0.265234
\(452\) 0 0
\(453\) −50.0003 −2.34922
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −40.1439 −1.87785 −0.938926 0.344120i \(-0.888177\pi\)
−0.938926 + 0.344120i \(0.888177\pi\)
\(458\) 0 0
\(459\) −8.99941 −0.420057
\(460\) 0 0
\(461\) 9.66748 0.450259 0.225130 0.974329i \(-0.427719\pi\)
0.225130 + 0.974329i \(0.427719\pi\)
\(462\) 0 0
\(463\) −22.7513 −1.05734 −0.528671 0.848827i \(-0.677310\pi\)
−0.528671 + 0.848827i \(0.677310\pi\)
\(464\) 0 0
\(465\) −24.9697 −1.15794
\(466\) 0 0
\(467\) 24.8074 1.14795 0.573976 0.818872i \(-0.305400\pi\)
0.573976 + 0.818872i \(0.305400\pi\)
\(468\) 0 0
\(469\) −3.76908 −0.174040
\(470\) 0 0
\(471\) −49.1013 −2.26247
\(472\) 0 0
\(473\) −6.28544 −0.289005
\(474\) 0 0
\(475\) 1.75653 0.0805953
\(476\) 0 0
\(477\) 50.4470 2.30981
\(478\) 0 0
\(479\) 40.3922 1.84557 0.922783 0.385320i \(-0.125909\pi\)
0.922783 + 0.385320i \(0.125909\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.93294 0.178955
\(484\) 0 0
\(485\) 14.8357 0.673657
\(486\) 0 0
\(487\) 10.5793 0.479394 0.239697 0.970848i \(-0.422952\pi\)
0.239697 + 0.970848i \(0.422952\pi\)
\(488\) 0 0
\(489\) 3.17529 0.143591
\(490\) 0 0
\(491\) 13.8186 0.623623 0.311812 0.950144i \(-0.399064\pi\)
0.311812 + 0.950144i \(0.399064\pi\)
\(492\) 0 0
\(493\) 14.9900 0.675114
\(494\) 0 0
\(495\) −9.90041 −0.444990
\(496\) 0 0
\(497\) 15.3381 0.688006
\(498\) 0 0
\(499\) −12.8366 −0.574647 −0.287324 0.957834i \(-0.592766\pi\)
−0.287324 + 0.957834i \(0.592766\pi\)
\(500\) 0 0
\(501\) 3.06315 0.136852
\(502\) 0 0
\(503\) −19.3882 −0.864475 −0.432238 0.901760i \(-0.642276\pi\)
−0.432238 + 0.901760i \(0.642276\pi\)
\(504\) 0 0
\(505\) −17.7146 −0.788287
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.23386 −0.409283 −0.204642 0.978837i \(-0.565603\pi\)
−0.204642 + 0.978837i \(0.565603\pi\)
\(510\) 0 0
\(511\) −7.16959 −0.317164
\(512\) 0 0
\(513\) 19.5100 0.861389
\(514\) 0 0
\(515\) 8.67169 0.382121
\(516\) 0 0
\(517\) −2.88032 −0.126676
\(518\) 0 0
\(519\) −51.5587 −2.26318
\(520\) 0 0
\(521\) 39.5902 1.73448 0.867239 0.497893i \(-0.165893\pi\)
0.867239 + 0.497893i \(0.165893\pi\)
\(522\) 0 0
\(523\) 30.3920 1.32895 0.664474 0.747311i \(-0.268655\pi\)
0.664474 + 0.747311i \(0.268655\pi\)
\(524\) 0 0
\(525\) 1.16165 0.0506986
\(526\) 0 0
\(527\) 7.48140 0.325895
\(528\) 0 0
\(529\) −20.9859 −0.912432
\(530\) 0 0
\(531\) 23.2869 1.01056
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −20.8294 −0.900535
\(536\) 0 0
\(537\) −23.3990 −1.00974
\(538\) 0 0
\(539\) −0.908738 −0.0391421
\(540\) 0 0
\(541\) −19.2290 −0.826720 −0.413360 0.910568i \(-0.635645\pi\)
−0.413360 + 0.910568i \(0.635645\pi\)
\(542\) 0 0
\(543\) −53.6260 −2.30131
\(544\) 0 0
\(545\) −0.625706 −0.0268023
\(546\) 0 0
\(547\) −8.33845 −0.356526 −0.178263 0.983983i \(-0.557048\pi\)
−0.178263 + 0.983983i \(0.557048\pi\)
\(548\) 0 0
\(549\) −0.226506 −0.00966704
\(550\) 0 0
\(551\) −32.4971 −1.38442
\(552\) 0 0
\(553\) −17.3460 −0.737627
\(554\) 0 0
\(555\) 77.3762 3.28444
\(556\) 0 0
\(557\) 37.2621 1.57884 0.789422 0.613850i \(-0.210380\pi\)
0.789422 + 0.613850i \(0.210380\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 4.86785 0.205521
\(562\) 0 0
\(563\) 9.02753 0.380465 0.190232 0.981739i \(-0.439076\pi\)
0.190232 + 0.981739i \(0.439076\pi\)
\(564\) 0 0
\(565\) 28.3349 1.19206
\(566\) 0 0
\(567\) −1.13745 −0.0477685
\(568\) 0 0
\(569\) 38.8560 1.62893 0.814465 0.580213i \(-0.197031\pi\)
0.814465 + 0.580213i \(0.197031\pi\)
\(570\) 0 0
\(571\) 13.4509 0.562903 0.281452 0.959575i \(-0.409184\pi\)
0.281452 + 0.959575i \(0.409184\pi\)
\(572\) 0 0
\(573\) 32.2468 1.34713
\(574\) 0 0
\(575\) 0.594881 0.0248083
\(576\) 0 0
\(577\) 11.5167 0.479446 0.239723 0.970841i \(-0.422943\pi\)
0.239723 + 0.970841i \(0.422943\pi\)
\(578\) 0 0
\(579\) −46.5737 −1.93554
\(580\) 0 0
\(581\) −12.1173 −0.502709
\(582\) 0 0
\(583\) −9.79548 −0.405688
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 46.4498 1.91719 0.958594 0.284776i \(-0.0919191\pi\)
0.958594 + 0.284776i \(0.0919191\pi\)
\(588\) 0 0
\(589\) −16.2191 −0.668296
\(590\) 0 0
\(591\) −18.1892 −0.748203
\(592\) 0 0
\(593\) 8.51044 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(594\) 0 0
\(595\) −4.49971 −0.184470
\(596\) 0 0
\(597\) −72.4614 −2.96565
\(598\) 0 0
\(599\) 17.9952 0.735262 0.367631 0.929972i \(-0.380169\pi\)
0.367631 + 0.929972i \(0.380169\pi\)
\(600\) 0 0
\(601\) −10.0809 −0.411210 −0.205605 0.978635i \(-0.565916\pi\)
−0.205605 + 0.978635i \(0.565916\pi\)
\(602\) 0 0
\(603\) −17.6394 −0.718331
\(604\) 0 0
\(605\) −23.6846 −0.962917
\(606\) 0 0
\(607\) 39.8239 1.61640 0.808201 0.588907i \(-0.200441\pi\)
0.808201 + 0.588907i \(0.200441\pi\)
\(608\) 0 0
\(609\) −21.4914 −0.870875
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.13854 −0.247933 −0.123967 0.992286i \(-0.539562\pi\)
−0.123967 + 0.992286i \(0.539562\pi\)
\(614\) 0 0
\(615\) 39.9878 1.61246
\(616\) 0 0
\(617\) 28.3968 1.14321 0.571606 0.820528i \(-0.306321\pi\)
0.571606 + 0.820528i \(0.306321\pi\)
\(618\) 0 0
\(619\) −9.95160 −0.399989 −0.199994 0.979797i \(-0.564092\pi\)
−0.199994 + 0.979797i \(0.564092\pi\)
\(620\) 0 0
\(621\) 6.60743 0.265147
\(622\) 0 0
\(623\) 11.7814 0.472013
\(624\) 0 0
\(625\) −26.9202 −1.07681
\(626\) 0 0
\(627\) −10.5531 −0.421452
\(628\) 0 0
\(629\) −23.1834 −0.924383
\(630\) 0 0
\(631\) 46.4171 1.84783 0.923917 0.382592i \(-0.124969\pi\)
0.923917 + 0.382592i \(0.124969\pi\)
\(632\) 0 0
\(633\) 5.06648 0.201374
\(634\) 0 0
\(635\) 26.0125 1.03228
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 71.7825 2.83967
\(640\) 0 0
\(641\) 19.2052 0.758560 0.379280 0.925282i \(-0.376172\pi\)
0.379280 + 0.925282i \(0.376172\pi\)
\(642\) 0 0
\(643\) 7.98776 0.315006 0.157503 0.987518i \(-0.449656\pi\)
0.157503 + 0.987518i \(0.449656\pi\)
\(644\) 0 0
\(645\) 44.6216 1.75697
\(646\) 0 0
\(647\) −22.5655 −0.887139 −0.443570 0.896240i \(-0.646288\pi\)
−0.443570 + 0.896240i \(0.646288\pi\)
\(648\) 0 0
\(649\) −4.52170 −0.177492
\(650\) 0 0
\(651\) −10.7262 −0.420393
\(652\) 0 0
\(653\) −25.7446 −1.00746 −0.503732 0.863860i \(-0.668040\pi\)
−0.503732 + 0.863860i \(0.668040\pi\)
\(654\) 0 0
\(655\) 3.59097 0.140311
\(656\) 0 0
\(657\) −33.5538 −1.30906
\(658\) 0 0
\(659\) −43.3529 −1.68879 −0.844396 0.535720i \(-0.820040\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(660\) 0 0
\(661\) −5.46928 −0.212730 −0.106365 0.994327i \(-0.533921\pi\)
−0.106365 + 0.994327i \(0.533921\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.75502 0.378284
\(666\) 0 0
\(667\) −11.0057 −0.426143
\(668\) 0 0
\(669\) −24.9087 −0.963027
\(670\) 0 0
\(671\) 0.0439815 0.00169789
\(672\) 0 0
\(673\) −7.17601 −0.276615 −0.138307 0.990389i \(-0.544166\pi\)
−0.138307 + 0.990389i \(0.544166\pi\)
\(674\) 0 0
\(675\) 1.95160 0.0751172
\(676\) 0 0
\(677\) 0.609048 0.0234076 0.0117038 0.999932i \(-0.496274\pi\)
0.0117038 + 0.999932i \(0.496274\pi\)
\(678\) 0 0
\(679\) 6.37298 0.244573
\(680\) 0 0
\(681\) −28.9466 −1.10924
\(682\) 0 0
\(683\) −34.2763 −1.31155 −0.655773 0.754958i \(-0.727657\pi\)
−0.655773 + 0.754958i \(0.727657\pi\)
\(684\) 0 0
\(685\) −35.5173 −1.35704
\(686\) 0 0
\(687\) 56.4004 2.15181
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 21.4049 0.814282 0.407141 0.913365i \(-0.366526\pi\)
0.407141 + 0.913365i \(0.366526\pi\)
\(692\) 0 0
\(693\) −4.25291 −0.161555
\(694\) 0 0
\(695\) 22.0951 0.838115
\(696\) 0 0
\(697\) −11.9811 −0.453817
\(698\) 0 0
\(699\) −62.8030 −2.37543
\(700\) 0 0
\(701\) 34.1562 1.29006 0.645031 0.764156i \(-0.276844\pi\)
0.645031 + 0.764156i \(0.276844\pi\)
\(702\) 0 0
\(703\) 50.2599 1.89559
\(704\) 0 0
\(705\) 20.4480 0.770116
\(706\) 0 0
\(707\) −7.60963 −0.286190
\(708\) 0 0
\(709\) −24.6272 −0.924893 −0.462447 0.886647i \(-0.653028\pi\)
−0.462447 + 0.886647i \(0.653028\pi\)
\(710\) 0 0
\(711\) −81.1796 −3.04447
\(712\) 0 0
\(713\) −5.49289 −0.205710
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 55.4697 2.07155
\(718\) 0 0
\(719\) 18.6090 0.694000 0.347000 0.937865i \(-0.387200\pi\)
0.347000 + 0.937865i \(0.387200\pi\)
\(720\) 0 0
\(721\) 3.72510 0.138730
\(722\) 0 0
\(723\) 60.5192 2.25073
\(724\) 0 0
\(725\) −3.25071 −0.120728
\(726\) 0 0
\(727\) 29.3061 1.08690 0.543451 0.839441i \(-0.317117\pi\)
0.543451 + 0.839441i \(0.317117\pi\)
\(728\) 0 0
\(729\) −44.0312 −1.63078
\(730\) 0 0
\(731\) −13.3695 −0.494489
\(732\) 0 0
\(733\) −15.1865 −0.560928 −0.280464 0.959865i \(-0.590488\pi\)
−0.280464 + 0.959865i \(0.590488\pi\)
\(734\) 0 0
\(735\) 6.45131 0.237960
\(736\) 0 0
\(737\) 3.42510 0.126165
\(738\) 0 0
\(739\) 15.8531 0.583166 0.291583 0.956546i \(-0.405818\pi\)
0.291583 + 0.956546i \(0.405818\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.0404 −0.625151 −0.312575 0.949893i \(-0.601192\pi\)
−0.312575 + 0.949893i \(0.601192\pi\)
\(744\) 0 0
\(745\) 44.4797 1.62961
\(746\) 0 0
\(747\) −56.7091 −2.07488
\(748\) 0 0
\(749\) −8.94769 −0.326941
\(750\) 0 0
\(751\) 12.1966 0.445060 0.222530 0.974926i \(-0.428569\pi\)
0.222530 + 0.974926i \(0.428569\pi\)
\(752\) 0 0
\(753\) 29.8503 1.08781
\(754\) 0 0
\(755\) −42.0008 −1.52857
\(756\) 0 0
\(757\) 8.90080 0.323505 0.161753 0.986831i \(-0.448285\pi\)
0.161753 + 0.986831i \(0.448285\pi\)
\(758\) 0 0
\(759\) −3.57401 −0.129728
\(760\) 0 0
\(761\) 24.5299 0.889210 0.444605 0.895727i \(-0.353344\pi\)
0.444605 + 0.895727i \(0.353344\pi\)
\(762\) 0 0
\(763\) −0.268784 −0.00973064
\(764\) 0 0
\(765\) −21.0587 −0.761380
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −31.7896 −1.14636 −0.573180 0.819429i \(-0.694291\pi\)
−0.573180 + 0.819429i \(0.694291\pi\)
\(770\) 0 0
\(771\) −47.9678 −1.72752
\(772\) 0 0
\(773\) 3.29354 0.118460 0.0592302 0.998244i \(-0.481135\pi\)
0.0592302 + 0.998244i \(0.481135\pi\)
\(774\) 0 0
\(775\) −1.62241 −0.0582786
\(776\) 0 0
\(777\) 33.2385 1.19242
\(778\) 0 0
\(779\) 25.9741 0.930620
\(780\) 0 0
\(781\) −13.9383 −0.498751
\(782\) 0 0
\(783\) −36.1060 −1.29032
\(784\) 0 0
\(785\) −41.2457 −1.47212
\(786\) 0 0
\(787\) −11.8265 −0.421569 −0.210785 0.977533i \(-0.567602\pi\)
−0.210785 + 0.977533i \(0.567602\pi\)
\(788\) 0 0
\(789\) −14.8932 −0.530211
\(790\) 0 0
\(791\) 12.1718 0.432779
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 69.5401 2.46633
\(796\) 0 0
\(797\) −24.5512 −0.869648 −0.434824 0.900515i \(-0.643189\pi\)
−0.434824 + 0.900515i \(0.643189\pi\)
\(798\) 0 0
\(799\) −6.12661 −0.216744
\(800\) 0 0
\(801\) 55.1374 1.94818
\(802\) 0 0
\(803\) 6.51527 0.229919
\(804\) 0 0
\(805\) 3.30371 0.116441
\(806\) 0 0
\(807\) −47.3478 −1.66672
\(808\) 0 0
\(809\) 20.1958 0.710046 0.355023 0.934858i \(-0.384473\pi\)
0.355023 + 0.934858i \(0.384473\pi\)
\(810\) 0 0
\(811\) −42.1330 −1.47949 −0.739744 0.672888i \(-0.765053\pi\)
−0.739744 + 0.672888i \(0.765053\pi\)
\(812\) 0 0
\(813\) −51.1169 −1.79275
\(814\) 0 0
\(815\) 2.66728 0.0934307
\(816\) 0 0
\(817\) 28.9840 1.01402
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.8862 1.46184 0.730919 0.682465i \(-0.239092\pi\)
0.730919 + 0.682465i \(0.239092\pi\)
\(822\) 0 0
\(823\) −21.9316 −0.764488 −0.382244 0.924061i \(-0.624849\pi\)
−0.382244 + 0.924061i \(0.624849\pi\)
\(824\) 0 0
\(825\) −1.05564 −0.0367525
\(826\) 0 0
\(827\) 35.5193 1.23513 0.617563 0.786522i \(-0.288120\pi\)
0.617563 + 0.786522i \(0.288120\pi\)
\(828\) 0 0
\(829\) −13.8731 −0.481832 −0.240916 0.970546i \(-0.577448\pi\)
−0.240916 + 0.970546i \(0.577448\pi\)
\(830\) 0 0
\(831\) 23.1614 0.803461
\(832\) 0 0
\(833\) −1.93294 −0.0669723
\(834\) 0 0
\(835\) 2.57308 0.0890452
\(836\) 0 0
\(837\) −18.0203 −0.622872
\(838\) 0 0
\(839\) 3.89096 0.134331 0.0671655 0.997742i \(-0.478604\pi\)
0.0671655 + 0.997742i \(0.478604\pi\)
\(840\) 0 0
\(841\) 31.1404 1.07381
\(842\) 0 0
\(843\) −25.7443 −0.886681
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.1742 −0.349590
\(848\) 0 0
\(849\) −5.30500 −0.182067
\(850\) 0 0
\(851\) 17.0214 0.583486
\(852\) 0 0
\(853\) 22.8271 0.781585 0.390792 0.920479i \(-0.372201\pi\)
0.390792 + 0.920479i \(0.372201\pi\)
\(854\) 0 0
\(855\) 45.6537 1.56132
\(856\) 0 0
\(857\) −24.7641 −0.845925 −0.422962 0.906147i \(-0.639010\pi\)
−0.422962 + 0.906147i \(0.639010\pi\)
\(858\) 0 0
\(859\) 37.0312 1.26349 0.631743 0.775178i \(-0.282340\pi\)
0.631743 + 0.775178i \(0.282340\pi\)
\(860\) 0 0
\(861\) 17.1775 0.585408
\(862\) 0 0
\(863\) 26.8486 0.913938 0.456969 0.889483i \(-0.348935\pi\)
0.456969 + 0.889483i \(0.348935\pi\)
\(864\) 0 0
\(865\) −43.3099 −1.47258
\(866\) 0 0
\(867\) −36.7577 −1.24836
\(868\) 0 0
\(869\) 15.7630 0.534722
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 29.8257 1.00945
\(874\) 0 0
\(875\) −10.6638 −0.360501
\(876\) 0 0
\(877\) −8.60874 −0.290697 −0.145348 0.989381i \(-0.546430\pi\)
−0.145348 + 0.989381i \(0.546430\pi\)
\(878\) 0 0
\(879\) −32.2780 −1.08871
\(880\) 0 0
\(881\) −0.0606391 −0.00204298 −0.00102149 0.999999i \(-0.500325\pi\)
−0.00102149 + 0.999999i \(0.500325\pi\)
\(882\) 0 0
\(883\) −27.3929 −0.921844 −0.460922 0.887441i \(-0.652481\pi\)
−0.460922 + 0.887441i \(0.652481\pi\)
\(884\) 0 0
\(885\) 32.1004 1.07904
\(886\) 0 0
\(887\) 15.5259 0.521309 0.260655 0.965432i \(-0.416062\pi\)
0.260655 + 0.965432i \(0.416062\pi\)
\(888\) 0 0
\(889\) 11.1742 0.374770
\(890\) 0 0
\(891\) 1.03365 0.0346284
\(892\) 0 0
\(893\) 13.2820 0.444466
\(894\) 0 0
\(895\) −19.6554 −0.657009
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.0157 1.00108
\(900\) 0 0
\(901\) −20.8356 −0.694133
\(902\) 0 0
\(903\) 19.1681 0.637874
\(904\) 0 0
\(905\) −45.0465 −1.49740
\(906\) 0 0
\(907\) 20.5427 0.682109 0.341055 0.940043i \(-0.389216\pi\)
0.341055 + 0.940043i \(0.389216\pi\)
\(908\) 0 0
\(909\) −35.6133 −1.18122
\(910\) 0 0
\(911\) −26.9607 −0.893246 −0.446623 0.894722i \(-0.647374\pi\)
−0.446623 + 0.894722i \(0.647374\pi\)
\(912\) 0 0
\(913\) 11.0114 0.364425
\(914\) 0 0
\(915\) −0.312234 −0.0103221
\(916\) 0 0
\(917\) 1.54257 0.0509402
\(918\) 0 0
\(919\) 50.4079 1.66280 0.831401 0.555673i \(-0.187539\pi\)
0.831401 + 0.555673i \(0.187539\pi\)
\(920\) 0 0
\(921\) −15.3288 −0.505102
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 5.02753 0.165304
\(926\) 0 0
\(927\) 17.4335 0.572592
\(928\) 0 0
\(929\) −1.44117 −0.0472831 −0.0236415 0.999720i \(-0.507526\pi\)
−0.0236415 + 0.999720i \(0.507526\pi\)
\(930\) 0 0
\(931\) 4.19046 0.137337
\(932\) 0 0
\(933\) 53.3445 1.74642
\(934\) 0 0
\(935\) 4.08905 0.133726
\(936\) 0 0
\(937\) −5.55565 −0.181495 −0.0907475 0.995874i \(-0.528926\pi\)
−0.0907475 + 0.995874i \(0.528926\pi\)
\(938\) 0 0
\(939\) 57.9009 1.88953
\(940\) 0 0
\(941\) −21.1131 −0.688266 −0.344133 0.938921i \(-0.611827\pi\)
−0.344133 + 0.938921i \(0.611827\pi\)
\(942\) 0 0
\(943\) 8.79660 0.286457
\(944\) 0 0
\(945\) 10.8383 0.352572
\(946\) 0 0
\(947\) 54.5512 1.77268 0.886338 0.463039i \(-0.153241\pi\)
0.886338 + 0.463039i \(0.153241\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 19.2193 0.623227
\(952\) 0 0
\(953\) −4.78814 −0.155103 −0.0775515 0.996988i \(-0.524710\pi\)
−0.0775515 + 0.996988i \(0.524710\pi\)
\(954\) 0 0
\(955\) 27.0877 0.876537
\(956\) 0 0
\(957\) 19.5300 0.631316
\(958\) 0 0
\(959\) −15.2571 −0.492678
\(960\) 0 0
\(961\) −16.0194 −0.516754
\(962\) 0 0
\(963\) −41.8754 −1.34942
\(964\) 0 0
\(965\) −39.1225 −1.25940
\(966\) 0 0
\(967\) −15.9411 −0.512630 −0.256315 0.966593i \(-0.582508\pi\)
−0.256315 + 0.966593i \(0.582508\pi\)
\(968\) 0 0
\(969\) −22.4471 −0.721105
\(970\) 0 0
\(971\) 7.43432 0.238579 0.119289 0.992860i \(-0.461938\pi\)
0.119289 + 0.992860i \(0.461938\pi\)
\(972\) 0 0
\(973\) 9.49138 0.304280
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.8212 0.410185 0.205093 0.978743i \(-0.434250\pi\)
0.205093 + 0.978743i \(0.434250\pi\)
\(978\) 0 0
\(979\) −10.7062 −0.342173
\(980\) 0 0
\(981\) −1.25792 −0.0401622
\(982\) 0 0
\(983\) 24.2873 0.774643 0.387322 0.921945i \(-0.373400\pi\)
0.387322 + 0.921945i \(0.373400\pi\)
\(984\) 0 0
\(985\) −15.2791 −0.486833
\(986\) 0 0
\(987\) 8.78383 0.279592
\(988\) 0 0
\(989\) 9.81596 0.312130
\(990\) 0 0
\(991\) −23.9734 −0.761539 −0.380769 0.924670i \(-0.624341\pi\)
−0.380769 + 0.924670i \(0.624341\pi\)
\(992\) 0 0
\(993\) −79.3795 −2.51903
\(994\) 0 0
\(995\) −60.8684 −1.92966
\(996\) 0 0
\(997\) −23.3275 −0.738790 −0.369395 0.929272i \(-0.620435\pi\)
−0.369395 + 0.929272i \(0.620435\pi\)
\(998\) 0 0
\(999\) 55.8414 1.76674
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.p.1.4 4
13.5 odd 4 364.2.g.a.337.7 8
13.8 odd 4 364.2.g.a.337.8 yes 8
13.12 even 2 4732.2.a.o.1.4 4
39.5 even 4 3276.2.e.f.2521.6 8
39.8 even 4 3276.2.e.f.2521.3 8
52.31 even 4 1456.2.k.d.337.1 8
52.47 even 4 1456.2.k.d.337.2 8
91.5 even 12 2548.2.y.e.753.8 16
91.18 odd 12 2548.2.y.f.961.2 16
91.31 even 12 2548.2.y.e.961.7 16
91.34 even 4 2548.2.g.g.2157.1 8
91.44 odd 12 2548.2.y.f.753.1 16
91.47 even 12 2548.2.y.e.753.7 16
91.60 odd 12 2548.2.y.f.961.1 16
91.73 even 12 2548.2.y.e.961.8 16
91.83 even 4 2548.2.g.g.2157.2 8
91.86 odd 12 2548.2.y.f.753.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.g.a.337.7 8 13.5 odd 4
364.2.g.a.337.8 yes 8 13.8 odd 4
1456.2.k.d.337.1 8 52.31 even 4
1456.2.k.d.337.2 8 52.47 even 4
2548.2.g.g.2157.1 8 91.34 even 4
2548.2.g.g.2157.2 8 91.83 even 4
2548.2.y.e.753.7 16 91.47 even 12
2548.2.y.e.753.8 16 91.5 even 12
2548.2.y.e.961.7 16 91.31 even 12
2548.2.y.e.961.8 16 91.73 even 12
2548.2.y.f.753.1 16 91.44 odd 12
2548.2.y.f.753.2 16 91.86 odd 12
2548.2.y.f.961.1 16 91.60 odd 12
2548.2.y.f.961.2 16 91.18 odd 12
3276.2.e.f.2521.3 8 39.8 even 4
3276.2.e.f.2521.6 8 39.5 even 4
4732.2.a.o.1.4 4 13.12 even 2
4732.2.a.p.1.4 4 1.1 even 1 trivial