Properties

Label 2548.2.y.f.961.2
Level $2548$
Weight $2$
Character 2548.961
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(753,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.753");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.11348687176217973595570176.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 16x^{14} + 176x^{12} - 1016x^{10} + 4224x^{8} - 8512x^{6} + 12304x^{4} - 8448x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 961.2
Root \(-2.40000 - 1.38564i\) of defining polynomial
Character \(\chi\) \(=\) 2548.961
Dual form 2548.2.y.f.753.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38564 - 2.40000i) q^{3} +(2.01603 + 1.16396i) q^{5} +(-2.34001 + 4.05302i) q^{9} +(-0.786990 + 0.454369i) q^{11} +(-1.32791 + 3.35211i) q^{13} -6.45131i q^{15} +(-0.966468 - 1.67397i) q^{17} +(3.62904 + 2.09523i) q^{19} +(0.709587 - 1.22904i) q^{23} +(0.209587 + 0.363016i) q^{25} +4.65582 q^{27} -7.75502 q^{29} +(3.35194 - 1.93524i) q^{31} +(2.18097 + 1.25919i) q^{33} +(-10.3870 - 5.99694i) q^{37} +(9.88509 - 1.45784i) q^{39} -6.19839i q^{41} -6.91667 q^{43} +(-9.43507 + 5.44734i) q^{45} +(-2.74494 - 1.58479i) q^{47} +(-2.67836 + 4.63906i) q^{51} +(-5.38961 - 9.33508i) q^{53} -2.11546 q^{55} -11.6130i q^{57} +(4.30917 - 2.48790i) q^{59} +(0.0241992 - 0.0419143i) q^{61} +(-6.57882 + 5.21233i) q^{65} +(3.26412 - 1.88454i) q^{67} -3.93294 q^{69} -15.3381i q^{71} +(-6.20904 + 3.58479i) q^{73} +(0.580826 - 1.00602i) q^{75} +(8.67300 - 15.0221i) q^{79} +(0.568726 + 0.985063i) q^{81} +12.1173i q^{83} -4.49971i q^{85} +(10.7457 + 18.6121i) q^{87} +(-10.2030 - 5.89071i) q^{89} +(-9.28917 - 5.36311i) q^{93} +(4.87751 + 8.44810i) q^{95} -6.37298i q^{97} -4.25291i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{9} + 4 q^{13} - 4 q^{17} + 6 q^{23} - 2 q^{25} + 24 q^{27} - 4 q^{29} - 12 q^{43} + 8 q^{51} - 22 q^{53} - 40 q^{55} - 8 q^{61} + 6 q^{65} - 40 q^{69} + 20 q^{75} + 26 q^{79} + 24 q^{81} + 32 q^{87}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.38564 2.40000i −0.800001 1.38564i −0.919614 0.392822i \(-0.871499\pi\)
0.119613 0.992821i \(-0.461835\pi\)
\(4\) 0 0
\(5\) 2.01603 + 1.16396i 0.901596 + 0.520537i 0.877718 0.479178i \(-0.159065\pi\)
0.0238786 + 0.999715i \(0.492398\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.34001 + 4.05302i −0.780004 + 1.35101i
\(10\) 0 0
\(11\) −0.786990 + 0.454369i −0.237286 + 0.136997i −0.613929 0.789361i \(-0.710412\pi\)
0.376643 + 0.926359i \(0.377079\pi\)
\(12\) 0 0
\(13\) −1.32791 + 3.35211i −0.368297 + 0.929708i
\(14\) 0 0
\(15\) 6.45131i 1.66572i
\(16\) 0 0
\(17\) −0.966468 1.67397i −0.234403 0.405998i 0.724696 0.689069i \(-0.241980\pi\)
−0.959099 + 0.283071i \(0.908647\pi\)
\(18\) 0 0
\(19\) 3.62904 + 2.09523i 0.832560 + 0.480679i 0.854728 0.519076i \(-0.173724\pi\)
−0.0221684 + 0.999754i \(0.507057\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.709587 1.22904i 0.147959 0.256273i −0.782514 0.622633i \(-0.786063\pi\)
0.930473 + 0.366360i \(0.119396\pi\)
\(24\) 0 0
\(25\) 0.209587 + 0.363016i 0.0419174 + 0.0726031i
\(26\) 0 0
\(27\) 4.65582 0.896014
\(28\) 0 0
\(29\) −7.75502 −1.44007 −0.720036 0.693937i \(-0.755875\pi\)
−0.720036 + 0.693937i \(0.755875\pi\)
\(30\) 0 0
\(31\) 3.35194 1.93524i 0.602026 0.347580i −0.167812 0.985819i \(-0.553670\pi\)
0.769838 + 0.638239i \(0.220337\pi\)
\(32\) 0 0
\(33\) 2.18097 + 1.25919i 0.379659 + 0.219196i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.3870 5.99694i −1.70761 0.985891i −0.937501 0.347982i \(-0.886867\pi\)
−0.770112 0.637909i \(-0.779800\pi\)
\(38\) 0 0
\(39\) 9.88509 1.45784i 1.58288 0.233440i
\(40\) 0 0
\(41\) 6.19839i 0.968027i −0.875061 0.484013i \(-0.839179\pi\)
0.875061 0.484013i \(-0.160821\pi\)
\(42\) 0 0
\(43\) −6.91667 −1.05478 −0.527391 0.849622i \(-0.676830\pi\)
−0.527391 + 0.849622i \(0.676830\pi\)
\(44\) 0 0
\(45\) −9.43507 + 5.44734i −1.40650 + 0.812042i
\(46\) 0 0
\(47\) −2.74494 1.58479i −0.400391 0.231166i 0.286262 0.958151i \(-0.407587\pi\)
−0.686653 + 0.726986i \(0.740921\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.67836 + 4.63906i −0.375045 + 0.649598i
\(52\) 0 0
\(53\) −5.38961 9.33508i −0.740320 1.28227i −0.952350 0.305008i \(-0.901341\pi\)
0.212030 0.977263i \(-0.431993\pi\)
\(54\) 0 0
\(55\) −2.11546 −0.285249
\(56\) 0 0
\(57\) 11.6130i 1.53817i
\(58\) 0 0
\(59\) 4.30917 2.48790i 0.561006 0.323897i −0.192543 0.981289i \(-0.561674\pi\)
0.753549 + 0.657391i \(0.228340\pi\)
\(60\) 0 0
\(61\) 0.0241992 0.0419143i 0.00309840 0.00536658i −0.864472 0.502681i \(-0.832347\pi\)
0.867570 + 0.497314i \(0.165680\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.57882 + 5.21233i −0.816002 + 0.646510i
\(66\) 0 0
\(67\) 3.26412 1.88454i 0.398775 0.230233i −0.287180 0.957877i \(-0.592718\pi\)
0.685955 + 0.727644i \(0.259384\pi\)
\(68\) 0 0
\(69\) −3.93294 −0.473470
\(70\) 0 0
\(71\) 15.3381i 1.82029i −0.414287 0.910146i \(-0.635969\pi\)
0.414287 0.910146i \(-0.364031\pi\)
\(72\) 0 0
\(73\) −6.20904 + 3.58479i −0.726714 + 0.419568i −0.817219 0.576328i \(-0.804485\pi\)
0.0905050 + 0.995896i \(0.471152\pi\)
\(74\) 0 0
\(75\) 0.580826 1.00602i 0.0670680 0.116165i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.67300 15.0221i 0.975788 1.69011i 0.298479 0.954416i \(-0.403521\pi\)
0.677309 0.735699i \(-0.263146\pi\)
\(80\) 0 0
\(81\) 0.568726 + 0.985063i 0.0631918 + 0.109451i
\(82\) 0 0
\(83\) 12.1173i 1.33004i 0.746824 + 0.665022i \(0.231578\pi\)
−0.746824 + 0.665022i \(0.768422\pi\)
\(84\) 0 0
\(85\) 4.49971i 0.488062i
\(86\) 0 0
\(87\) 10.7457 + 18.6121i 1.15206 + 1.99542i
\(88\) 0 0
\(89\) −10.2030 5.89071i −1.08152 0.624414i −0.150212 0.988654i \(-0.547996\pi\)
−0.931305 + 0.364239i \(0.881329\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9.28917 5.36311i −0.963242 0.556128i
\(94\) 0 0
\(95\) 4.87751 + 8.44810i 0.500422 + 0.866756i
\(96\) 0 0
\(97\) 6.37298i 0.647079i −0.946215 0.323539i \(-0.895127\pi\)
0.946215 0.323539i \(-0.104873\pi\)
\(98\) 0 0
\(99\) 4.25291i 0.427434i
\(100\) 0 0
\(101\) −3.80482 6.59014i −0.378593 0.655743i 0.612264 0.790653i \(-0.290259\pi\)
−0.990858 + 0.134910i \(0.956925\pi\)
\(102\) 0 0
\(103\) 1.86255 3.22603i 0.183522 0.317870i −0.759555 0.650443i \(-0.774583\pi\)
0.943078 + 0.332573i \(0.107917\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.47384 7.74893i 0.432503 0.749117i −0.564585 0.825375i \(-0.690964\pi\)
0.997088 + 0.0762578i \(0.0242972\pi\)
\(108\) 0 0
\(109\) 0.232774 0.134392i 0.0222957 0.0128724i −0.488811 0.872390i \(-0.662569\pi\)
0.511106 + 0.859517i \(0.329236\pi\)
\(110\) 0 0
\(111\) 33.2385i 3.15486i
\(112\) 0 0
\(113\) 12.1718 1.14503 0.572513 0.819896i \(-0.305969\pi\)
0.572513 + 0.819896i \(0.305969\pi\)
\(114\) 0 0
\(115\) 2.86110 1.65186i 0.266799 0.154036i
\(116\) 0 0
\(117\) −10.4788 13.2260i −0.968769 1.22275i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.08710 + 8.81111i −0.462463 + 0.801010i
\(122\) 0 0
\(123\) −14.8762 + 8.58876i −1.34134 + 0.774422i
\(124\) 0 0
\(125\) 10.6638i 0.953796i
\(126\) 0 0
\(127\) −11.1742 −0.991550 −0.495775 0.868451i \(-0.665116\pi\)
−0.495775 + 0.868451i \(0.665116\pi\)
\(128\) 0 0
\(129\) 9.58404 + 16.6000i 0.843827 + 1.46155i
\(130\) 0 0
\(131\) −0.771285 + 1.33591i −0.0673875 + 0.116719i −0.897751 0.440504i \(-0.854800\pi\)
0.830363 + 0.557223i \(0.188133\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 9.38629 + 5.41917i 0.807843 + 0.466408i
\(136\) 0 0
\(137\) −13.2131 + 7.62856i −1.12887 + 0.651752i −0.943650 0.330945i \(-0.892632\pi\)
−0.185218 + 0.982697i \(0.559299\pi\)
\(138\) 0 0
\(139\) 9.49138 0.805048 0.402524 0.915409i \(-0.368133\pi\)
0.402524 + 0.915409i \(0.368133\pi\)
\(140\) 0 0
\(141\) 8.78383i 0.739732i
\(142\) 0 0
\(143\) −0.478042 3.24144i −0.0399758 0.271063i
\(144\) 0 0
\(145\) −15.6344 9.02650i −1.29836 0.749610i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.5473 + 9.55357i 1.35560 + 0.782659i 0.989028 0.147729i \(-0.0471964\pi\)
0.366577 + 0.930388i \(0.380530\pi\)
\(150\) 0 0
\(151\) −15.6251 + 9.02114i −1.27155 + 0.734130i −0.975280 0.220974i \(-0.929076\pi\)
−0.296271 + 0.955104i \(0.595743\pi\)
\(152\) 0 0
\(153\) 9.04619 0.731341
\(154\) 0 0
\(155\) 9.01014 0.723712
\(156\) 0 0
\(157\) 8.85894 + 15.3441i 0.707021 + 1.22460i 0.965957 + 0.258701i \(0.0832945\pi\)
−0.258937 + 0.965894i \(0.583372\pi\)
\(158\) 0 0
\(159\) −14.9361 + 25.8702i −1.18451 + 2.05164i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.992276 0.572891i −0.0777210 0.0448722i 0.460636 0.887589i \(-0.347621\pi\)
−0.538357 + 0.842717i \(0.680955\pi\)
\(164\) 0 0
\(165\) 2.93127 + 5.07712i 0.228199 + 0.395253i
\(166\) 0 0
\(167\) 1.10532i 0.0855321i 0.999085 + 0.0427660i \(0.0136170\pi\)
−0.999085 + 0.0427660i \(0.986383\pi\)
\(168\) 0 0
\(169\) −9.47330 8.90262i −0.728715 0.684817i
\(170\) 0 0
\(171\) −16.9840 + 9.80572i −1.29880 + 0.749862i
\(172\) 0 0
\(173\) −9.30232 + 16.1121i −0.707242 + 1.22498i 0.258634 + 0.965975i \(0.416728\pi\)
−0.965876 + 0.259004i \(0.916606\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.9419 6.89468i −0.897611 0.518236i
\(178\) 0 0
\(179\) −4.22169 7.31218i −0.315544 0.546538i 0.664009 0.747724i \(-0.268854\pi\)
−0.979553 + 0.201187i \(0.935520\pi\)
\(180\) 0 0
\(181\) 19.3506 1.43832 0.719159 0.694845i \(-0.244527\pi\)
0.719159 + 0.694845i \(0.244527\pi\)
\(182\) 0 0
\(183\) −0.134126 −0.00991488
\(184\) 0 0
\(185\) −13.9603 24.1800i −1.02639 1.77775i
\(186\) 0 0
\(187\) 1.52120 + 0.878266i 0.111241 + 0.0642252i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.81802 + 10.0771i −0.420977 + 0.729154i −0.996035 0.0889586i \(-0.971646\pi\)
0.575058 + 0.818113i \(0.304979\pi\)
\(192\) 0 0
\(193\) −14.5543 + 8.40291i −1.04764 + 0.604855i −0.921987 0.387220i \(-0.873435\pi\)
−0.125652 + 0.992074i \(0.540102\pi\)
\(194\) 0 0
\(195\) 21.6255 + 8.56677i 1.54863 + 0.613479i
\(196\) 0 0
\(197\) 6.56344i 0.467626i 0.972282 + 0.233813i \(0.0751204\pi\)
−0.972282 + 0.233813i \(0.924880\pi\)
\(198\) 0 0
\(199\) −13.0736 22.6441i −0.926763 1.60520i −0.788701 0.614777i \(-0.789246\pi\)
−0.138062 0.990424i \(-0.544087\pi\)
\(200\) 0 0
\(201\) −9.04580 5.22259i −0.638041 0.368373i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 7.21466 12.4962i 0.503894 0.872769i
\(206\) 0 0
\(207\) 3.32088 + 5.75194i 0.230817 + 0.399787i
\(208\) 0 0
\(209\) −3.80803 −0.263407
\(210\) 0 0
\(211\) 1.82820 0.125859 0.0629294 0.998018i \(-0.479956\pi\)
0.0629294 + 0.998018i \(0.479956\pi\)
\(212\) 0 0
\(213\) −36.8114 + 21.2531i −2.52227 + 1.45624i
\(214\) 0 0
\(215\) −13.9442 8.05070i −0.950988 0.549053i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 17.2070 + 9.93449i 1.16274 + 0.671310i
\(220\) 0 0
\(221\) 6.89473 1.01682i 0.463790 0.0683988i
\(222\) 0 0
\(223\) 8.98815i 0.601891i 0.953641 + 0.300946i \(0.0973023\pi\)
−0.953641 + 0.300946i \(0.902698\pi\)
\(224\) 0 0
\(225\) −1.96175 −0.130783
\(226\) 0 0
\(227\) 9.04580 5.22259i 0.600391 0.346636i −0.168805 0.985650i \(-0.553991\pi\)
0.769195 + 0.639014i \(0.220657\pi\)
\(228\) 0 0
\(229\) −17.6251 10.1759i −1.16470 0.672440i −0.212274 0.977210i \(-0.568087\pi\)
−0.952426 + 0.304771i \(0.901420\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.3310 + 19.6259i −0.742320 + 1.28574i 0.209116 + 0.977891i \(0.432941\pi\)
−0.951436 + 0.307846i \(0.900392\pi\)
\(234\) 0 0
\(235\) −3.68926 6.38998i −0.240661 0.416837i
\(236\) 0 0
\(237\) −48.0707 −3.12253
\(238\) 0 0
\(239\) 20.0159i 1.29472i −0.762185 0.647360i \(-0.775873\pi\)
0.762185 0.647360i \(-0.224127\pi\)
\(240\) 0 0
\(241\) 18.9122 10.9190i 1.21824 0.703353i 0.253701 0.967283i \(-0.418352\pi\)
0.964542 + 0.263929i \(0.0850186\pi\)
\(242\) 0 0
\(243\) 8.55984 14.8261i 0.549114 0.951093i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −11.8425 + 9.38268i −0.753520 + 0.597006i
\(248\) 0 0
\(249\) 29.0815 16.7902i 1.84297 1.06404i
\(250\) 0 0
\(251\) −10.7713 −0.679878 −0.339939 0.940448i \(-0.610406\pi\)
−0.339939 + 0.940448i \(0.610406\pi\)
\(252\) 0 0
\(253\) 1.28966i 0.0810801i
\(254\) 0 0
\(255\) −10.7993 + 6.23499i −0.676279 + 0.390450i
\(256\) 0 0
\(257\) −8.65443 + 14.9899i −0.539848 + 0.935045i 0.459063 + 0.888404i \(0.348185\pi\)
−0.998912 + 0.0466412i \(0.985148\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 18.1468 31.4312i 1.12326 1.94555i
\(262\) 0 0
\(263\) 2.68705 + 4.65411i 0.165691 + 0.286985i 0.936900 0.349597i \(-0.113681\pi\)
−0.771210 + 0.636581i \(0.780348\pi\)
\(264\) 0 0
\(265\) 25.0931i 1.54146i
\(266\) 0 0
\(267\) 32.6497i 1.99813i
\(268\) 0 0
\(269\) 8.54257 + 14.7962i 0.520850 + 0.902138i 0.999706 + 0.0242449i \(0.00771816\pi\)
−0.478856 + 0.877893i \(0.658949\pi\)
\(270\) 0 0
\(271\) 15.9740 + 9.22259i 0.970351 + 0.560233i 0.899343 0.437243i \(-0.144045\pi\)
0.0710081 + 0.997476i \(0.477378\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.329886 0.190460i −0.0198929 0.0114852i
\(276\) 0 0
\(277\) 4.17882 + 7.23793i 0.251081 + 0.434885i 0.963824 0.266540i \(-0.0858806\pi\)
−0.712743 + 0.701426i \(0.752547\pi\)
\(278\) 0 0
\(279\) 18.1140i 1.08445i
\(280\) 0 0
\(281\) 9.28966i 0.554174i −0.960845 0.277087i \(-0.910631\pi\)
0.960845 0.277087i \(-0.0893691\pi\)
\(282\) 0 0
\(283\) −0.957136 1.65781i −0.0568958 0.0985465i 0.836175 0.548463i \(-0.184787\pi\)
−0.893070 + 0.449917i \(0.851454\pi\)
\(284\) 0 0
\(285\) 13.5170 23.4121i 0.800676 1.38681i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.63188 11.4867i 0.390110 0.675691i
\(290\) 0 0
\(291\) −15.2952 + 8.83068i −0.896620 + 0.517664i
\(292\) 0 0
\(293\) 11.6473i 0.680443i −0.940345 0.340221i \(-0.889498\pi\)
0.940345 0.340221i \(-0.110502\pi\)
\(294\) 0 0
\(295\) 11.5832 0.674402
\(296\) 0 0
\(297\) −3.66409 + 2.11546i −0.212612 + 0.122752i
\(298\) 0 0
\(299\) 3.17761 + 4.01067i 0.183766 + 0.231943i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −10.5442 + 18.2631i −0.605750 + 1.04919i
\(304\) 0 0
\(305\) 0.0975728 0.0563337i 0.00558700 0.00322566i
\(306\) 0 0
\(307\) 5.53131i 0.315689i −0.987464 0.157844i \(-0.949546\pi\)
0.987464 0.157844i \(-0.0504544\pi\)
\(308\) 0 0
\(309\) −10.3233 −0.587272
\(310\) 0 0
\(311\) 9.62450 + 16.6701i 0.545755 + 0.945276i 0.998559 + 0.0536657i \(0.0170905\pi\)
−0.452804 + 0.891610i \(0.649576\pi\)
\(312\) 0 0
\(313\) −10.4466 + 18.0940i −0.590476 + 1.02273i 0.403692 + 0.914895i \(0.367727\pi\)
−0.994168 + 0.107840i \(0.965607\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00601 + 3.46757i 0.337331 + 0.194758i 0.659091 0.752063i \(-0.270941\pi\)
−0.321760 + 0.946821i \(0.604274\pi\)
\(318\) 0 0
\(319\) 6.10312 3.52364i 0.341709 0.197286i
\(320\) 0 0
\(321\) −24.7966 −1.38401
\(322\) 0 0
\(323\) 8.09989i 0.450690i
\(324\) 0 0
\(325\) −1.49518 + 0.220507i −0.0829378 + 0.0122315i
\(326\) 0 0
\(327\) −0.645083 0.372439i −0.0356732 0.0205959i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −24.8061 14.3218i −1.36346 0.787197i −0.373382 0.927678i \(-0.621802\pi\)
−0.990083 + 0.140481i \(0.955135\pi\)
\(332\) 0 0
\(333\) 48.6114 28.0658i 2.66389 1.53800i
\(334\) 0 0
\(335\) 8.77408 0.479379
\(336\) 0 0
\(337\) −10.1234 −0.551457 −0.275728 0.961236i \(-0.588919\pi\)
−0.275728 + 0.961236i \(0.588919\pi\)
\(338\) 0 0
\(339\) −16.8658 29.2124i −0.916022 1.58660i
\(340\) 0 0
\(341\) −1.75863 + 3.04603i −0.0952350 + 0.164952i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.92892 4.57777i −0.426879 0.246459i
\(346\) 0 0
\(347\) 3.09126 + 5.35422i 0.165948 + 0.287430i 0.936991 0.349352i \(-0.113598\pi\)
−0.771044 + 0.636782i \(0.780265\pi\)
\(348\) 0 0
\(349\) 18.1738i 0.972821i 0.873730 + 0.486411i \(0.161694\pi\)
−0.873730 + 0.486411i \(0.838306\pi\)
\(350\) 0 0
\(351\) −6.18252 + 15.6068i −0.329999 + 0.833031i
\(352\) 0 0
\(353\) 24.4771 14.1319i 1.30279 0.752164i 0.321905 0.946772i \(-0.395677\pi\)
0.980881 + 0.194608i \(0.0623435\pi\)
\(354\) 0 0
\(355\) 17.8528 30.9220i 0.947529 1.64117i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.2051 + 13.3974i 1.22472 + 0.707090i 0.965920 0.258841i \(-0.0833407\pi\)
0.258797 + 0.965932i \(0.416674\pi\)
\(360\) 0 0
\(361\) −0.720024 1.24712i −0.0378960 0.0656378i
\(362\) 0 0
\(363\) 28.1956 1.47989
\(364\) 0 0
\(365\) −16.6902 −0.873603
\(366\) 0 0
\(367\) −7.44659 12.8979i −0.388709 0.673263i 0.603568 0.797312i \(-0.293745\pi\)
−0.992276 + 0.124049i \(0.960412\pi\)
\(368\) 0 0
\(369\) 25.1222 + 14.5043i 1.30781 + 0.755065i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −13.2880 + 23.0155i −0.688026 + 1.19170i 0.284449 + 0.958691i \(0.408189\pi\)
−0.972475 + 0.233005i \(0.925144\pi\)
\(374\) 0 0
\(375\) −25.5931 + 14.7762i −1.32162 + 0.763038i
\(376\) 0 0
\(377\) 10.2980 25.9957i 0.530373 1.33885i
\(378\) 0 0
\(379\) 0.349711i 0.0179634i 0.999960 + 0.00898172i \(0.00285901\pi\)
−0.999960 + 0.00898172i \(0.997141\pi\)
\(380\) 0 0
\(381\) 15.4834 + 26.8181i 0.793241 + 1.37393i
\(382\) 0 0
\(383\) 24.5923 + 14.1984i 1.25661 + 0.725504i 0.972414 0.233262i \(-0.0749400\pi\)
0.284196 + 0.958766i \(0.408273\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.1851 28.0334i 0.822735 1.42502i
\(388\) 0 0
\(389\) 3.07093 + 5.31901i 0.155703 + 0.269685i 0.933315 0.359060i \(-0.116903\pi\)
−0.777612 + 0.628744i \(0.783569\pi\)
\(390\) 0 0
\(391\) −2.74317 −0.138728
\(392\) 0 0
\(393\) 4.27490 0.215640
\(394\) 0 0
\(395\) 34.9701 20.1900i 1.75953 1.01587i
\(396\) 0 0
\(397\) 6.32520 + 3.65186i 0.317453 + 0.183281i 0.650257 0.759715i \(-0.274661\pi\)
−0.332804 + 0.942996i \(0.607995\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.92794 + 3.42250i 0.296027 + 0.170912i 0.640657 0.767827i \(-0.278662\pi\)
−0.344629 + 0.938739i \(0.611995\pi\)
\(402\) 0 0
\(403\) 2.03607 + 13.8059i 0.101424 + 0.687721i
\(404\) 0 0
\(405\) 2.64789i 0.131575i
\(406\) 0 0
\(407\) 10.8993 0.540258
\(408\) 0 0
\(409\) 2.73918 1.58147i 0.135444 0.0781985i −0.430747 0.902473i \(-0.641750\pi\)
0.566191 + 0.824274i \(0.308417\pi\)
\(410\) 0 0
\(411\) 36.6172 + 21.1409i 1.80619 + 1.04281i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −14.1040 + 24.4288i −0.692337 + 1.19916i
\(416\) 0 0
\(417\) −13.1517 22.7793i −0.644040 1.11551i
\(418\) 0 0
\(419\) −27.1522 −1.32647 −0.663236 0.748410i \(-0.730817\pi\)
−0.663236 + 0.748410i \(0.730817\pi\)
\(420\) 0 0
\(421\) 26.6238i 1.29757i 0.760973 + 0.648783i \(0.224722\pi\)
−0.760973 + 0.648783i \(0.775278\pi\)
\(422\) 0 0
\(423\) 12.8464 7.41687i 0.624613 0.360621i
\(424\) 0 0
\(425\) 0.405119 0.701686i 0.0196511 0.0340368i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −7.11707 + 5.63878i −0.343615 + 0.272243i
\(430\) 0 0
\(431\) 14.3299 8.27339i 0.690249 0.398515i −0.113456 0.993543i \(-0.536192\pi\)
0.803705 + 0.595028i \(0.202859\pi\)
\(432\) 0 0
\(433\) 10.9994 0.528598 0.264299 0.964441i \(-0.414859\pi\)
0.264299 + 0.964441i \(0.414859\pi\)
\(434\) 0 0
\(435\) 50.0300i 2.39876i
\(436\) 0 0
\(437\) 5.15025 2.97350i 0.246370 0.142242i
\(438\) 0 0
\(439\) 12.8012 22.1723i 0.610968 1.05823i −0.380109 0.924942i \(-0.624114\pi\)
0.991078 0.133287i \(-0.0425531\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.2139 19.4231i 0.532789 0.922817i −0.466478 0.884533i \(-0.654477\pi\)
0.999267 0.0382843i \(-0.0121893\pi\)
\(444\) 0 0
\(445\) −13.7131 23.7517i −0.650062 1.12594i
\(446\) 0 0
\(447\) 52.9513i 2.50451i
\(448\) 0 0
\(449\) 4.49918i 0.212329i −0.994349 0.106165i \(-0.966143\pi\)
0.994349 0.106165i \(-0.0338570\pi\)
\(450\) 0 0
\(451\) 2.81636 + 4.87807i 0.132617 + 0.229700i
\(452\) 0 0
\(453\) 43.3015 + 25.0002i 2.03448 + 1.17461i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −34.7656 20.0719i −1.62627 0.938926i −0.985193 0.171446i \(-0.945156\pi\)
−0.641073 0.767480i \(-0.721511\pi\)
\(458\) 0 0
\(459\) −4.49971 7.79372i −0.210028 0.363780i
\(460\) 0 0
\(461\) 9.66748i 0.450259i −0.974329 0.225130i \(-0.927719\pi\)
0.974329 0.225130i \(-0.0722806\pi\)
\(462\) 0 0
\(463\) 22.7513i 1.05734i −0.848827 0.528671i \(-0.822690\pi\)
0.848827 0.528671i \(-0.177310\pi\)
\(464\) 0 0
\(465\) −12.4848 21.6244i −0.578971 1.00281i
\(466\) 0 0
\(467\) 12.4037 21.4839i 0.573976 0.994155i −0.422176 0.906514i \(-0.638734\pi\)
0.996152 0.0876415i \(-0.0279330\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 24.5507 42.5230i 1.13123 1.95936i
\(472\) 0 0
\(473\) 5.44335 3.14272i 0.250286 0.144502i
\(474\) 0 0
\(475\) 1.75653i 0.0805953i
\(476\) 0 0
\(477\) 50.4470 2.30981
\(478\) 0 0
\(479\) 34.9807 20.1961i 1.59831 0.922783i 0.606493 0.795089i \(-0.292576\pi\)
0.991814 0.127694i \(-0.0407577\pi\)
\(480\) 0 0
\(481\) 33.8954 26.8550i 1.54550 1.22448i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.41787 12.8481i 0.336828 0.583404i
\(486\) 0 0
\(487\) −9.16196 + 5.28966i −0.415168 + 0.239697i −0.693008 0.720930i \(-0.743715\pi\)
0.277840 + 0.960627i \(0.410382\pi\)
\(488\) 0 0
\(489\) 3.17529i 0.143591i
\(490\) 0 0
\(491\) −13.8186 −0.623623 −0.311812 0.950144i \(-0.600936\pi\)
−0.311812 + 0.950144i \(0.600936\pi\)
\(492\) 0 0
\(493\) 7.49498 + 12.9817i 0.337557 + 0.584666i
\(494\) 0 0
\(495\) 4.95020 8.57401i 0.222495 0.385373i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −11.1169 6.41832i −0.497659 0.287324i 0.230087 0.973170i \(-0.426099\pi\)
−0.727746 + 0.685846i \(0.759432\pi\)
\(500\) 0 0
\(501\) 2.65277 1.53158i 0.118517 0.0684258i
\(502\) 0 0
\(503\) −19.3882 −0.864475 −0.432238 0.901760i \(-0.642276\pi\)
−0.432238 + 0.901760i \(0.642276\pi\)
\(504\) 0 0
\(505\) 17.7146i 0.788287i
\(506\) 0 0
\(507\) −8.23971 + 35.0718i −0.365938 + 1.55759i
\(508\) 0 0
\(509\) −7.99675 4.61693i −0.354450 0.204642i 0.312194 0.950019i \(-0.398936\pi\)
−0.666643 + 0.745377i \(0.732270\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 16.8962 + 9.75502i 0.745985 + 0.430695i
\(514\) 0 0
\(515\) 7.50991 4.33585i 0.330926 0.191060i
\(516\) 0 0
\(517\) 2.88032 0.126676
\(518\) 0 0
\(519\) 51.5587 2.26318
\(520\) 0 0
\(521\) −19.7951 34.2861i −0.867239 1.50210i −0.864807 0.502104i \(-0.832559\pi\)
−0.00243169 0.999997i \(-0.500774\pi\)
\(522\) 0 0
\(523\) −15.1960 + 26.3202i −0.664474 + 1.15090i 0.314953 + 0.949107i \(0.398011\pi\)
−0.979428 + 0.201796i \(0.935322\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.47908 3.74070i −0.282233 0.162947i
\(528\) 0 0
\(529\) 10.4930 + 18.1744i 0.456216 + 0.790190i
\(530\) 0 0
\(531\) 23.2869i 1.01056i
\(532\) 0 0
\(533\) 20.7777 + 8.23092i 0.899982 + 0.356521i
\(534\) 0 0
\(535\) 18.0388 10.4147i 0.779886 0.450267i
\(536\) 0 0
\(537\) −11.6995 + 20.2641i −0.504871 + 0.874462i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.6528 + 9.61451i 0.715961 + 0.413360i 0.813264 0.581895i \(-0.197688\pi\)
−0.0973035 + 0.995255i \(0.531022\pi\)
\(542\) 0 0
\(543\) −26.8130 46.4415i −1.15066 1.99300i
\(544\) 0 0
\(545\) 0.625706 0.0268023
\(546\) 0 0
\(547\) −8.33845 −0.356526 −0.178263 0.983983i \(-0.557048\pi\)
−0.178263 + 0.983983i \(0.557048\pi\)
\(548\) 0 0
\(549\) 0.113253 + 0.196160i 0.00483352 + 0.00837190i
\(550\) 0 0
\(551\) −28.1433 16.2486i −1.19895 0.692212i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −38.6881 + 67.0098i −1.64222 + 2.84441i
\(556\) 0 0
\(557\) 32.2699 18.6310i 1.36732 0.789422i 0.376735 0.926321i \(-0.377047\pi\)
0.990585 + 0.136899i \(0.0437135\pi\)
\(558\) 0 0
\(559\) 9.18473 23.1855i 0.388473 0.980640i
\(560\) 0 0
\(561\) 4.86785i 0.205521i
\(562\) 0 0
\(563\) 4.51376 + 7.81807i 0.190232 + 0.329492i 0.945327 0.326123i \(-0.105743\pi\)
−0.755095 + 0.655616i \(0.772409\pi\)
\(564\) 0 0
\(565\) 24.5387 + 14.1674i 1.03235 + 0.596028i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.4280 33.6503i 0.814465 1.41069i −0.0952467 0.995454i \(-0.530364\pi\)
0.909712 0.415241i \(-0.136303\pi\)
\(570\) 0 0
\(571\) 6.72546 + 11.6488i 0.281452 + 0.487489i 0.971743 0.236043i \(-0.0758508\pi\)
−0.690291 + 0.723532i \(0.742517\pi\)
\(572\) 0 0
\(573\) 32.2468 1.34713
\(574\) 0 0
\(575\) 0.594881 0.0248083
\(576\) 0 0
\(577\) −9.97375 + 5.75835i −0.415213 + 0.239723i −0.693027 0.720912i \(-0.743723\pi\)
0.277814 + 0.960635i \(0.410390\pi\)
\(578\) 0 0
\(579\) 40.3340 + 23.2869i 1.67623 + 0.967769i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.48314 + 4.89774i 0.351336 + 0.202844i
\(584\) 0 0
\(585\) −5.73115 38.8610i −0.236954 1.60670i
\(586\) 0 0
\(587\) 46.4498i 1.91719i −0.284776 0.958594i \(-0.591919\pi\)
0.284776 0.958594i \(-0.408081\pi\)
\(588\) 0 0
\(589\) 16.2191 0.668296
\(590\) 0 0
\(591\) 15.7523 9.09459i 0.647963 0.374101i
\(592\) 0 0
\(593\) −7.37025 4.25522i −0.302660 0.174741i 0.340977 0.940072i \(-0.389242\pi\)
−0.643637 + 0.765331i \(0.722575\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −36.2307 + 62.7534i −1.48282 + 2.56832i
\(598\) 0 0
\(599\) −8.99758 15.5843i −0.367631 0.636756i 0.621563 0.783364i \(-0.286498\pi\)
−0.989195 + 0.146608i \(0.953164\pi\)
\(600\) 0 0
\(601\) −10.0809 −0.411210 −0.205605 0.978635i \(-0.565916\pi\)
−0.205605 + 0.978635i \(0.565916\pi\)
\(602\) 0 0
\(603\) 17.6394i 0.718331i
\(604\) 0 0
\(605\) −20.5115 + 11.8423i −0.833911 + 0.481459i
\(606\) 0 0
\(607\) −19.9119 + 34.4885i −0.808201 + 1.39985i 0.105908 + 0.994376i \(0.466225\pi\)
−0.914109 + 0.405469i \(0.867108\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.95745 7.09689i 0.362379 0.287109i
\(612\) 0 0
\(613\) 5.31613 3.06927i 0.214717 0.123967i −0.388785 0.921329i \(-0.627105\pi\)
0.603502 + 0.797362i \(0.293772\pi\)
\(614\) 0 0
\(615\) −39.9878 −1.61246
\(616\) 0 0
\(617\) 28.3968i 1.14321i −0.820528 0.571606i \(-0.806321\pi\)
0.820528 0.571606i \(-0.193679\pi\)
\(618\) 0 0
\(619\) −8.61834 + 4.97580i −0.346400 + 0.199994i −0.663099 0.748532i \(-0.730759\pi\)
0.316698 + 0.948526i \(0.397426\pi\)
\(620\) 0 0
\(621\) 3.30371 5.72220i 0.132573 0.229624i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 13.4601 23.3135i 0.538403 0.932542i
\(626\) 0 0
\(627\) 5.27657 + 9.13928i 0.210726 + 0.364988i
\(628\) 0 0
\(629\) 23.1834i 0.924383i
\(630\) 0 0
\(631\) 46.4171i 1.84783i 0.382592 + 0.923917i \(0.375031\pi\)
−0.382592 + 0.923917i \(0.624969\pi\)
\(632\) 0 0
\(633\) −2.53324 4.38770i −0.100687 0.174395i
\(634\) 0 0
\(635\) −22.5275 13.0063i −0.893978 0.516138i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 62.1654 + 35.8912i 2.45923 + 1.41984i
\(640\) 0 0
\(641\) 9.60261 + 16.6322i 0.379280 + 0.656932i 0.990958 0.134175i \(-0.0428383\pi\)
−0.611678 + 0.791107i \(0.709505\pi\)
\(642\) 0 0
\(643\) 7.98776i 0.315006i −0.987518 0.157503i \(-0.949656\pi\)
0.987518 0.157503i \(-0.0503445\pi\)
\(644\) 0 0
\(645\) 44.6216i 1.75697i
\(646\) 0 0
\(647\) −11.2827 19.5423i −0.443570 0.768285i 0.554382 0.832263i \(-0.312955\pi\)
−0.997951 + 0.0639773i \(0.979621\pi\)
\(648\) 0 0
\(649\) −2.26085 + 3.91591i −0.0887461 + 0.153713i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.8723 22.2955i 0.503732 0.872489i −0.496259 0.868175i \(-0.665293\pi\)
0.999991 0.00431465i \(-0.00137340\pi\)
\(654\) 0 0
\(655\) −3.10987 + 1.79548i −0.121513 + 0.0701554i
\(656\) 0 0
\(657\) 33.5538i 1.30906i
\(658\) 0 0
\(659\) −43.3529 −1.68879 −0.844396 0.535720i \(-0.820040\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(660\) 0 0
\(661\) −4.73653 + 2.73464i −0.184230 + 0.106365i −0.589278 0.807930i \(-0.700588\pi\)
0.405049 + 0.914295i \(0.367255\pi\)
\(662\) 0 0
\(663\) −11.9940 15.1384i −0.465809 0.587927i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.50286 + 9.53124i −0.213072 + 0.369051i
\(668\) 0 0
\(669\) 21.5716 12.4544i 0.834006 0.481514i
\(670\) 0 0
\(671\) 0.0439815i 0.00169789i
\(672\) 0 0
\(673\) 7.17601 0.276615 0.138307 0.990389i \(-0.455834\pi\)
0.138307 + 0.990389i \(0.455834\pi\)
\(674\) 0 0
\(675\) 0.975801 + 1.69014i 0.0375586 + 0.0650534i
\(676\) 0 0
\(677\) −0.304524 + 0.527451i −0.0117038 + 0.0202716i −0.871818 0.489830i \(-0.837059\pi\)
0.860114 + 0.510102i \(0.170392\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −25.0685 14.4733i −0.960627 0.554618i
\(682\) 0 0
\(683\) −29.6841 + 17.1381i −1.13583 + 0.655773i −0.945395 0.325926i \(-0.894324\pi\)
−0.190437 + 0.981699i \(0.560991\pi\)
\(684\) 0 0
\(685\) −35.5173 −1.35704
\(686\) 0 0
\(687\) 56.4004i 2.15181i
\(688\) 0 0
\(689\) 38.4492 5.67041i 1.46480 0.216025i
\(690\) 0 0
\(691\) 18.5372 + 10.7025i 0.705189 + 0.407141i 0.809277 0.587427i \(-0.199859\pi\)
−0.104088 + 0.994568i \(0.533192\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.1349 + 11.0475i 0.725829 + 0.419057i
\(696\) 0 0
\(697\) −10.3759 + 5.99055i −0.393017 + 0.226908i
\(698\) 0 0
\(699\) 62.8030 2.37543
\(700\) 0 0
\(701\) −34.1562 −1.29006 −0.645031 0.764156i \(-0.723156\pi\)
−0.645031 + 0.764156i \(0.723156\pi\)
\(702\) 0 0
\(703\) −25.1299 43.5263i −0.947793 1.64163i
\(704\) 0 0
\(705\) −10.2240 + 17.7085i −0.385058 + 0.666940i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 21.3278 + 12.3136i 0.800981 + 0.462447i 0.843814 0.536636i \(-0.180305\pi\)
−0.0428331 + 0.999082i \(0.513638\pi\)
\(710\) 0 0
\(711\) 40.5898 + 70.3036i 1.52224 + 2.63659i
\(712\) 0 0
\(713\) 5.49289i 0.205710i
\(714\) 0 0
\(715\) 2.80915 7.09126i 0.105056 0.265198i
\(716\) 0 0
\(717\) −48.0382 + 27.7348i −1.79402 + 1.03578i
\(718\) 0 0
\(719\) 9.30452 16.1159i 0.347000 0.601022i −0.638715 0.769444i \(-0.720534\pi\)
0.985715 + 0.168422i \(0.0538670\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −52.4112 30.2596i −1.94919 1.12537i
\(724\) 0 0
\(725\) −1.62535 2.81519i −0.0603641 0.104554i
\(726\) 0 0
\(727\) −29.3061 −1.08690 −0.543451 0.839441i \(-0.682883\pi\)
−0.543451 + 0.839441i \(0.682883\pi\)
\(728\) 0 0
\(729\) −44.0312 −1.63078
\(730\) 0 0
\(731\) 6.68475 + 11.5783i 0.247244 + 0.428240i
\(732\) 0 0
\(733\) −13.1519 7.59327i −0.485778 0.280464i 0.237043 0.971499i \(-0.423822\pi\)
−0.722821 + 0.691035i \(0.757155\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.71255 + 2.96623i −0.0630826 + 0.109262i
\(738\) 0 0
\(739\) 13.7292 7.92655i 0.505036 0.291583i −0.225755 0.974184i \(-0.572485\pi\)
0.730791 + 0.682601i \(0.239151\pi\)
\(740\) 0 0
\(741\) 38.9279 + 15.4210i 1.43005 + 0.566504i
\(742\) 0 0
\(743\) 17.0404i 0.625151i 0.949893 + 0.312575i \(0.101192\pi\)
−0.949893 + 0.312575i \(0.898808\pi\)
\(744\) 0 0
\(745\) 22.2399 + 38.5206i 0.814805 + 1.41128i
\(746\) 0 0
\(747\) −49.1116 28.3546i −1.79690 1.03744i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.09829 10.5625i 0.222530 0.385433i −0.733046 0.680179i \(-0.761902\pi\)
0.955575 + 0.294747i \(0.0952352\pi\)
\(752\) 0 0
\(753\) 14.9252 + 25.8511i 0.543903 + 0.942067i
\(754\) 0 0
\(755\) −42.0008 −1.52857
\(756\) 0 0
\(757\) 8.90080 0.323505 0.161753 0.986831i \(-0.448285\pi\)
0.161753 + 0.986831i \(0.448285\pi\)
\(758\) 0 0
\(759\) 3.09518 1.78700i 0.112348 0.0648641i
\(760\) 0 0
\(761\) −21.2435 12.2650i −0.770078 0.444605i 0.0628244 0.998025i \(-0.479989\pi\)
−0.832902 + 0.553420i \(0.813323\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 18.2374 + 10.5294i 0.659375 + 0.380690i
\(766\) 0 0
\(767\) 2.61752 + 17.7485i 0.0945132 + 0.640862i
\(768\) 0 0
\(769\) 31.7896i 1.14636i 0.819429 + 0.573180i \(0.194291\pi\)
−0.819429 + 0.573180i \(0.805709\pi\)
\(770\) 0 0
\(771\) 47.9678 1.72752
\(772\) 0 0
\(773\) −2.85229 + 1.64677i −0.102590 + 0.0592302i −0.550417 0.834890i \(-0.685531\pi\)
0.447827 + 0.894120i \(0.352198\pi\)
\(774\) 0 0
\(775\) 1.40505 + 0.811203i 0.0504707 + 0.0291393i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.9871 22.4943i 0.465310 0.805940i
\(780\) 0 0
\(781\) 6.96914 + 12.0709i 0.249375 + 0.431931i
\(782\) 0 0
\(783\) −36.1060 −1.29032
\(784\) 0 0
\(785\) 41.2457i 1.47212i
\(786\) 0 0
\(787\) −10.2421 + 5.91325i −0.365090 + 0.210785i −0.671311 0.741176i \(-0.734269\pi\)
0.306221 + 0.951960i \(0.400935\pi\)
\(788\) 0 0
\(789\) 7.44659 12.8979i 0.265105 0.459176i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.108367 + 0.136777i 0.00384822 + 0.00485710i
\(794\) 0 0
\(795\) −60.2235 + 34.7700i −2.13591 + 1.23317i
\(796\) 0 0
\(797\) 24.5512 0.869648 0.434824 0.900515i \(-0.356811\pi\)
0.434824 + 0.900515i \(0.356811\pi\)
\(798\) 0 0
\(799\) 6.12661i 0.216744i
\(800\) 0 0
\(801\) 47.7504 27.5687i 1.68718 0.974091i
\(802\) 0 0
\(803\) 3.25764 5.64239i 0.114960 0.199116i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 23.6739 41.0044i 0.833361 1.44342i
\(808\) 0 0
\(809\) −10.0979 17.4901i −0.355023 0.614918i 0.632099 0.774888i \(-0.282194\pi\)
−0.987122 + 0.159970i \(0.948860\pi\)
\(810\) 0 0
\(811\) 42.1330i 1.47949i 0.672888 + 0.739744i \(0.265053\pi\)
−0.672888 + 0.739744i \(0.734947\pi\)
\(812\) 0 0
\(813\) 51.1169i 1.79275i
\(814\) 0 0
\(815\) −1.33364 2.30993i −0.0467153 0.0809133i
\(816\) 0 0
\(817\) −25.1009 14.4920i −0.878170 0.507012i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 36.2745 + 20.9431i 1.26599 + 0.730919i 0.974226 0.225572i \(-0.0724252\pi\)
0.291762 + 0.956491i \(0.405759\pi\)
\(822\) 0 0
\(823\) −10.9658 18.9933i −0.382244 0.662066i 0.609139 0.793064i \(-0.291515\pi\)
−0.991383 + 0.130998i \(0.958182\pi\)
\(824\) 0 0
\(825\) 1.05564i 0.0367525i
\(826\) 0 0
\(827\) 35.5193i 1.23513i 0.786522 + 0.617563i \(0.211880\pi\)
−0.786522 + 0.617563i \(0.788120\pi\)
\(828\) 0 0
\(829\) −6.93654 12.0144i −0.240916 0.417279i 0.720059 0.693912i \(-0.244115\pi\)
−0.960975 + 0.276634i \(0.910781\pi\)
\(830\) 0 0
\(831\) 11.5807 20.0584i 0.401730 0.695818i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.28654 + 2.22835i −0.0445226 + 0.0771154i
\(836\) 0 0
\(837\) 15.6060 9.01014i 0.539423 0.311436i
\(838\) 0 0
\(839\) 3.89096i 0.134331i 0.997742 + 0.0671655i \(0.0213955\pi\)
−0.997742 + 0.0671655i \(0.978604\pi\)
\(840\) 0 0
\(841\) 31.1404 1.07381
\(842\) 0 0
\(843\) −22.2952 + 12.8721i −0.767888 + 0.443340i
\(844\) 0 0
\(845\) −8.73621 28.9745i −0.300535 0.996752i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.65250 + 4.59426i −0.0910335 + 0.157675i
\(850\) 0 0
\(851\) −14.7410 + 8.51070i −0.505314 + 0.291743i
\(852\) 0 0
\(853\) 22.8271i 0.781585i 0.920479 + 0.390792i \(0.127799\pi\)
−0.920479 + 0.390792i \(0.872201\pi\)
\(854\) 0 0
\(855\) −45.6537 −1.56132
\(856\) 0 0
\(857\) −12.3820 21.4463i −0.422962 0.732592i 0.573265 0.819370i \(-0.305676\pi\)
−0.996228 + 0.0867775i \(0.972343\pi\)
\(858\) 0 0
\(859\) −18.5156 + 32.0699i −0.631743 + 1.09421i 0.355452 + 0.934695i \(0.384327\pi\)
−0.987195 + 0.159517i \(0.949006\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.2516 + 13.4243i 0.791494 + 0.456969i 0.840488 0.541830i \(-0.182268\pi\)
−0.0489945 + 0.998799i \(0.515602\pi\)
\(864\) 0 0
\(865\) −37.5075 + 21.6550i −1.27529 + 0.736291i
\(866\) 0 0
\(867\) −36.7577 −1.24836
\(868\) 0 0
\(869\) 15.7630i 0.534722i
\(870\) 0 0
\(871\) 1.98272 + 13.4442i 0.0671820 + 0.455539i
\(872\) 0 0
\(873\) 25.8298 + 14.9129i 0.874207 + 0.504724i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.45539 4.30437i −0.251751 0.145348i 0.368815 0.929503i \(-0.379764\pi\)
−0.620566 + 0.784155i \(0.713097\pi\)
\(878\) 0 0
\(879\) −27.9536 + 16.1390i −0.942851 + 0.544355i
\(880\) 0 0
\(881\) 0.0606391 0.00204298 0.00102149 0.999999i \(-0.499675\pi\)
0.00102149 + 0.999999i \(0.499675\pi\)
\(882\) 0 0
\(883\) 27.3929 0.921844 0.460922 0.887441i \(-0.347519\pi\)
0.460922 + 0.887441i \(0.347519\pi\)
\(884\) 0 0
\(885\) −16.0502 27.7998i −0.539522 0.934480i
\(886\) 0 0
\(887\) −7.76296 + 13.4458i −0.260655 + 0.451467i −0.966416 0.256983i \(-0.917272\pi\)
0.705761 + 0.708450i \(0.250605\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.895164 0.516823i −0.0299891 0.0173142i
\(892\) 0 0
\(893\) −6.64101 11.5026i −0.222233 0.384919i
\(894\) 0 0
\(895\) 19.6554i 0.657009i
\(896\) 0 0
\(897\) 5.22259 13.1836i 0.174377 0.440189i
\(898\) 0 0
\(899\) −25.9943 + 15.0078i −0.866960 + 0.500539i
\(900\) 0 0
\(901\) −10.4178 + 18.0441i −0.347066 + 0.601137i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 39.0114 + 22.5232i 1.29678 + 0.748698i
\(906\) 0 0
\(907\) 10.2714 + 17.7905i 0.341055 + 0.590724i 0.984629 0.174660i \(-0.0558825\pi\)
−0.643574 + 0.765384i \(0.722549\pi\)
\(908\) 0 0
\(909\) 35.6133 1.18122
\(910\) 0 0
\(911\) −26.9607 −0.893246 −0.446623 0.894722i \(-0.647374\pi\)
−0.446623 + 0.894722i \(0.647374\pi\)
\(912\) 0 0
\(913\) −5.50571 9.53618i −0.182213 0.315601i
\(914\) 0 0
\(915\) −0.270402 0.156117i −0.00893922 0.00516106i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −25.2039 + 43.6545i −0.831401 + 1.44003i 0.0655265 + 0.997851i \(0.479127\pi\)
−0.896927 + 0.442178i \(0.854206\pi\)
\(920\) 0 0
\(921\) −13.2752 + 7.66442i −0.437431 + 0.252551i
\(922\) 0 0
\(923\) 51.4149 + 20.3676i 1.69234 + 0.670407i
\(924\) 0 0
\(925\) 5.02753i 0.165304i
\(926\) 0 0
\(927\) 8.71677 + 15.0979i 0.286296 + 0.495880i
\(928\) 0 0
\(929\) −1.24809 0.720583i −0.0409484 0.0236415i 0.479386 0.877604i \(-0.340859\pi\)
−0.520334 + 0.853963i \(0.674193\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 26.6722 46.1977i 0.873210 1.51244i
\(934\) 0 0
\(935\) 2.04453 + 3.54122i 0.0668632 + 0.115810i
\(936\) 0 0
\(937\) −5.55565 −0.181495 −0.0907475 0.995874i \(-0.528926\pi\)
−0.0907475 + 0.995874i \(0.528926\pi\)
\(938\) 0 0
\(939\) 57.9009 1.88953
\(940\) 0 0
\(941\) 18.2844 10.5565i 0.596056 0.344133i −0.171432 0.985196i \(-0.554840\pi\)
0.767488 + 0.641063i \(0.221506\pi\)
\(942\) 0 0
\(943\) −7.61808 4.39830i −0.248079 0.143228i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −47.2427 27.2756i −1.53518 0.886338i −0.999111 0.0421655i \(-0.986574\pi\)
−0.536072 0.844172i \(-0.680092\pi\)
\(948\) 0 0
\(949\) −3.77156 25.5737i −0.122430 0.830157i
\(950\) 0 0
\(951\) 19.2193i 0.623227i
\(952\) 0 0
\(953\) 4.78814 0.155103 0.0775515 0.996988i \(-0.475290\pi\)
0.0775515 + 0.996988i \(0.475290\pi\)
\(954\) 0 0
\(955\) −23.4586 + 13.5438i −0.759103 + 0.438268i
\(956\) 0 0
\(957\) −16.9135 9.76501i −0.546736 0.315658i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −8.00968 + 13.8732i −0.258377 + 0.447522i
\(962\) 0 0
\(963\) 20.9377 + 36.2652i 0.674708 + 1.16863i
\(964\) 0 0
\(965\) −39.1225 −1.25940
\(966\) 0 0
\(967\) 15.9411i 0.512630i 0.966593 + 0.256315i \(0.0825085\pi\)
−0.966593 + 0.256315i \(0.917492\pi\)
\(968\) 0 0
\(969\) −19.4398 + 11.2236i −0.624496 + 0.360553i
\(970\) 0 0
\(971\) −3.71716 + 6.43831i −0.119289 + 0.206615i −0.919486 0.393122i \(-0.871395\pi\)
0.800197 + 0.599737i \(0.204728\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.60100 + 3.28290i 0.0832988 + 0.105137i
\(976\) 0 0
\(977\) −11.1034 + 6.41058i −0.355231 + 0.205093i −0.666987 0.745070i \(-0.732416\pi\)
0.311756 + 0.950162i \(0.399083\pi\)
\(978\) 0 0
\(979\) 10.7062 0.342173
\(980\) 0 0
\(981\) 1.25792i 0.0401622i
\(982\) 0 0
\(983\) 21.0334 12.1436i 0.670861 0.387322i −0.125542 0.992088i \(-0.540067\pi\)
0.796403 + 0.604767i \(0.206734\pi\)
\(984\) 0 0
\(985\) −7.63956 + 13.2321i −0.243417 + 0.421610i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.90798 + 8.50087i −0.156065 + 0.270312i
\(990\) 0 0
\(991\) 11.9867 + 20.7615i 0.380769 + 0.659512i 0.991172 0.132579i \(-0.0423258\pi\)
−0.610403 + 0.792091i \(0.708992\pi\)
\(992\) 0 0
\(993\) 79.3795i 2.51903i
\(994\) 0 0
\(995\) 60.8684i 1.92966i
\(996\) 0 0
\(997\) 11.6638 + 20.2022i 0.369395 + 0.639811i 0.989471 0.144731i \(-0.0462316\pi\)
−0.620076 + 0.784542i \(0.712898\pi\)
\(998\) 0 0
\(999\) −48.3601 27.9207i −1.53004 0.883372i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.y.f.961.2 16
7.2 even 3 364.2.g.a.337.7 8
7.3 odd 6 2548.2.y.e.753.8 16
7.4 even 3 inner 2548.2.y.f.753.1 16
7.5 odd 6 2548.2.g.g.2157.2 8
7.6 odd 2 2548.2.y.e.961.7 16
13.12 even 2 inner 2548.2.y.f.961.1 16
21.2 odd 6 3276.2.e.f.2521.6 8
28.23 odd 6 1456.2.k.d.337.1 8
91.12 odd 6 2548.2.g.g.2157.1 8
91.25 even 6 inner 2548.2.y.f.753.2 16
91.38 odd 6 2548.2.y.e.753.7 16
91.44 odd 12 4732.2.a.o.1.4 4
91.51 even 6 364.2.g.a.337.8 yes 8
91.86 odd 12 4732.2.a.p.1.4 4
91.90 odd 2 2548.2.y.e.961.8 16
273.233 odd 6 3276.2.e.f.2521.3 8
364.51 odd 6 1456.2.k.d.337.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.g.a.337.7 8 7.2 even 3
364.2.g.a.337.8 yes 8 91.51 even 6
1456.2.k.d.337.1 8 28.23 odd 6
1456.2.k.d.337.2 8 364.51 odd 6
2548.2.g.g.2157.1 8 91.12 odd 6
2548.2.g.g.2157.2 8 7.5 odd 6
2548.2.y.e.753.7 16 91.38 odd 6
2548.2.y.e.753.8 16 7.3 odd 6
2548.2.y.e.961.7 16 7.6 odd 2
2548.2.y.e.961.8 16 91.90 odd 2
2548.2.y.f.753.1 16 7.4 even 3 inner
2548.2.y.f.753.2 16 91.25 even 6 inner
2548.2.y.f.961.1 16 13.12 even 2 inner
2548.2.y.f.961.2 16 1.1 even 1 trivial
3276.2.e.f.2521.3 8 273.233 odd 6
3276.2.e.f.2521.6 8 21.2 odd 6
4732.2.a.o.1.4 4 91.44 odd 12
4732.2.a.p.1.4 4 91.86 odd 12