Properties

Label 4732.2.a.s.1.5
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.17707\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17707 q^{3} +1.46614 q^{5} -1.00000 q^{7} -1.61452 q^{9} -2.75012 q^{11} +1.72574 q^{15} +4.79948 q^{17} +1.97179 q^{19} -1.17707 q^{21} -2.93781 q^{23} -2.85043 q^{25} -5.43159 q^{27} -5.46889 q^{29} -3.90020 q^{31} -3.23707 q^{33} -1.46614 q^{35} -2.16723 q^{37} -9.44655 q^{41} +11.6086 q^{43} -2.36711 q^{45} -10.3753 q^{47} +1.00000 q^{49} +5.64930 q^{51} +1.24369 q^{53} -4.03207 q^{55} +2.32092 q^{57} +4.56755 q^{59} +8.39800 q^{61} +1.61452 q^{63} -3.75711 q^{67} -3.45799 q^{69} -9.90743 q^{71} -5.93768 q^{73} -3.35514 q^{75} +2.75012 q^{77} -12.8697 q^{79} -1.54979 q^{81} +0.811244 q^{83} +7.03671 q^{85} -6.43725 q^{87} +9.67958 q^{89} -4.59079 q^{93} +2.89092 q^{95} +9.51440 q^{97} +4.44012 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} - 8 q^{7} + 14 q^{9} - 12 q^{11} - 12 q^{15} + 2 q^{17} - 6 q^{19} + 22 q^{25} - 6 q^{27} + 22 q^{29} - 14 q^{31} + 28 q^{33} + 6 q^{35} - 12 q^{37} - 4 q^{41} + 6 q^{43} - 20 q^{45} - 42 q^{47}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17707 0.679579 0.339790 0.940501i \(-0.389644\pi\)
0.339790 + 0.940501i \(0.389644\pi\)
\(4\) 0 0
\(5\) 1.46614 0.655678 0.327839 0.944734i \(-0.393680\pi\)
0.327839 + 0.944734i \(0.393680\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.61452 −0.538172
\(10\) 0 0
\(11\) −2.75012 −0.829193 −0.414597 0.910005i \(-0.636077\pi\)
−0.414597 + 0.910005i \(0.636077\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.72574 0.445585
\(16\) 0 0
\(17\) 4.79948 1.16404 0.582022 0.813173i \(-0.302262\pi\)
0.582022 + 0.813173i \(0.302262\pi\)
\(18\) 0 0
\(19\) 1.97179 0.452359 0.226179 0.974086i \(-0.427376\pi\)
0.226179 + 0.974086i \(0.427376\pi\)
\(20\) 0 0
\(21\) −1.17707 −0.256857
\(22\) 0 0
\(23\) −2.93781 −0.612575 −0.306288 0.951939i \(-0.599087\pi\)
−0.306288 + 0.951939i \(0.599087\pi\)
\(24\) 0 0
\(25\) −2.85043 −0.570086
\(26\) 0 0
\(27\) −5.43159 −1.04531
\(28\) 0 0
\(29\) −5.46889 −1.01555 −0.507774 0.861490i \(-0.669531\pi\)
−0.507774 + 0.861490i \(0.669531\pi\)
\(30\) 0 0
\(31\) −3.90020 −0.700497 −0.350248 0.936657i \(-0.613903\pi\)
−0.350248 + 0.936657i \(0.613903\pi\)
\(32\) 0 0
\(33\) −3.23707 −0.563502
\(34\) 0 0
\(35\) −1.46614 −0.247823
\(36\) 0 0
\(37\) −2.16723 −0.356290 −0.178145 0.984004i \(-0.557010\pi\)
−0.178145 + 0.984004i \(0.557010\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.44655 −1.47530 −0.737652 0.675181i \(-0.764065\pi\)
−0.737652 + 0.675181i \(0.764065\pi\)
\(42\) 0 0
\(43\) 11.6086 1.77029 0.885144 0.465316i \(-0.154059\pi\)
0.885144 + 0.465316i \(0.154059\pi\)
\(44\) 0 0
\(45\) −2.36711 −0.352868
\(46\) 0 0
\(47\) −10.3753 −1.51339 −0.756693 0.653770i \(-0.773186\pi\)
−0.756693 + 0.653770i \(0.773186\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.64930 0.791061
\(52\) 0 0
\(53\) 1.24369 0.170835 0.0854173 0.996345i \(-0.472778\pi\)
0.0854173 + 0.996345i \(0.472778\pi\)
\(54\) 0 0
\(55\) −4.03207 −0.543684
\(56\) 0 0
\(57\) 2.32092 0.307414
\(58\) 0 0
\(59\) 4.56755 0.594644 0.297322 0.954777i \(-0.403906\pi\)
0.297322 + 0.954777i \(0.403906\pi\)
\(60\) 0 0
\(61\) 8.39800 1.07525 0.537627 0.843183i \(-0.319321\pi\)
0.537627 + 0.843183i \(0.319321\pi\)
\(62\) 0 0
\(63\) 1.61452 0.203410
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.75711 −0.459005 −0.229502 0.973308i \(-0.573710\pi\)
−0.229502 + 0.973308i \(0.573710\pi\)
\(68\) 0 0
\(69\) −3.45799 −0.416293
\(70\) 0 0
\(71\) −9.90743 −1.17580 −0.587898 0.808935i \(-0.700044\pi\)
−0.587898 + 0.808935i \(0.700044\pi\)
\(72\) 0 0
\(73\) −5.93768 −0.694953 −0.347477 0.937689i \(-0.612961\pi\)
−0.347477 + 0.937689i \(0.612961\pi\)
\(74\) 0 0
\(75\) −3.35514 −0.387419
\(76\) 0 0
\(77\) 2.75012 0.313406
\(78\) 0 0
\(79\) −12.8697 −1.44795 −0.723975 0.689826i \(-0.757687\pi\)
−0.723975 + 0.689826i \(0.757687\pi\)
\(80\) 0 0
\(81\) −1.54979 −0.172199
\(82\) 0 0
\(83\) 0.811244 0.0890456 0.0445228 0.999008i \(-0.485823\pi\)
0.0445228 + 0.999008i \(0.485823\pi\)
\(84\) 0 0
\(85\) 7.03671 0.763239
\(86\) 0 0
\(87\) −6.43725 −0.690145
\(88\) 0 0
\(89\) 9.67958 1.02603 0.513017 0.858379i \(-0.328528\pi\)
0.513017 + 0.858379i \(0.328528\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.59079 −0.476043
\(94\) 0 0
\(95\) 2.89092 0.296602
\(96\) 0 0
\(97\) 9.51440 0.966041 0.483020 0.875609i \(-0.339540\pi\)
0.483020 + 0.875609i \(0.339540\pi\)
\(98\) 0 0
\(99\) 4.44012 0.446249
\(100\) 0 0
\(101\) 10.3663 1.03148 0.515742 0.856744i \(-0.327516\pi\)
0.515742 + 0.856744i \(0.327516\pi\)
\(102\) 0 0
\(103\) 7.81778 0.770309 0.385155 0.922852i \(-0.374148\pi\)
0.385155 + 0.922852i \(0.374148\pi\)
\(104\) 0 0
\(105\) −1.72574 −0.168415
\(106\) 0 0
\(107\) −9.76845 −0.944351 −0.472176 0.881505i \(-0.656531\pi\)
−0.472176 + 0.881505i \(0.656531\pi\)
\(108\) 0 0
\(109\) −12.9827 −1.24352 −0.621758 0.783209i \(-0.713581\pi\)
−0.621758 + 0.783209i \(0.713581\pi\)
\(110\) 0 0
\(111\) −2.55097 −0.242127
\(112\) 0 0
\(113\) −11.0423 −1.03877 −0.519386 0.854540i \(-0.673839\pi\)
−0.519386 + 0.854540i \(0.673839\pi\)
\(114\) 0 0
\(115\) −4.30724 −0.401652
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.79948 −0.439968
\(120\) 0 0
\(121\) −3.43683 −0.312439
\(122\) 0 0
\(123\) −11.1192 −1.00259
\(124\) 0 0
\(125\) −11.5098 −1.02947
\(126\) 0 0
\(127\) −15.6532 −1.38899 −0.694497 0.719496i \(-0.744373\pi\)
−0.694497 + 0.719496i \(0.744373\pi\)
\(128\) 0 0
\(129\) 13.6640 1.20305
\(130\) 0 0
\(131\) −3.84949 −0.336332 −0.168166 0.985759i \(-0.553784\pi\)
−0.168166 + 0.985759i \(0.553784\pi\)
\(132\) 0 0
\(133\) −1.97179 −0.170976
\(134\) 0 0
\(135\) −7.96348 −0.685387
\(136\) 0 0
\(137\) −6.34437 −0.542036 −0.271018 0.962574i \(-0.587360\pi\)
−0.271018 + 0.962574i \(0.587360\pi\)
\(138\) 0 0
\(139\) −10.2971 −0.873386 −0.436693 0.899611i \(-0.643850\pi\)
−0.436693 + 0.899611i \(0.643850\pi\)
\(140\) 0 0
\(141\) −12.2124 −1.02847
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −8.01817 −0.665873
\(146\) 0 0
\(147\) 1.17707 0.0970827
\(148\) 0 0
\(149\) −20.4015 −1.67136 −0.835678 0.549220i \(-0.814925\pi\)
−0.835678 + 0.549220i \(0.814925\pi\)
\(150\) 0 0
\(151\) −22.8050 −1.85584 −0.927922 0.372774i \(-0.878407\pi\)
−0.927922 + 0.372774i \(0.878407\pi\)
\(152\) 0 0
\(153\) −7.74884 −0.626456
\(154\) 0 0
\(155\) −5.71824 −0.459300
\(156\) 0 0
\(157\) 14.6229 1.16703 0.583516 0.812102i \(-0.301677\pi\)
0.583516 + 0.812102i \(0.301677\pi\)
\(158\) 0 0
\(159\) 1.46391 0.116096
\(160\) 0 0
\(161\) 2.93781 0.231532
\(162\) 0 0
\(163\) −0.858968 −0.0672795 −0.0336398 0.999434i \(-0.510710\pi\)
−0.0336398 + 0.999434i \(0.510710\pi\)
\(164\) 0 0
\(165\) −4.74601 −0.369476
\(166\) 0 0
\(167\) 5.24059 0.405529 0.202764 0.979228i \(-0.435007\pi\)
0.202764 + 0.979228i \(0.435007\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −3.18348 −0.243447
\(172\) 0 0
\(173\) 19.3657 1.47235 0.736174 0.676792i \(-0.236630\pi\)
0.736174 + 0.676792i \(0.236630\pi\)
\(174\) 0 0
\(175\) 2.85043 0.215472
\(176\) 0 0
\(177\) 5.37631 0.404108
\(178\) 0 0
\(179\) 7.91929 0.591916 0.295958 0.955201i \(-0.404361\pi\)
0.295958 + 0.955201i \(0.404361\pi\)
\(180\) 0 0
\(181\) 18.5469 1.37858 0.689288 0.724487i \(-0.257923\pi\)
0.689288 + 0.724487i \(0.257923\pi\)
\(182\) 0 0
\(183\) 9.88499 0.730720
\(184\) 0 0
\(185\) −3.17746 −0.233612
\(186\) 0 0
\(187\) −13.1992 −0.965218
\(188\) 0 0
\(189\) 5.43159 0.395090
\(190\) 0 0
\(191\) 15.9759 1.15598 0.577989 0.816045i \(-0.303838\pi\)
0.577989 + 0.816045i \(0.303838\pi\)
\(192\) 0 0
\(193\) −13.5305 −0.973945 −0.486972 0.873417i \(-0.661899\pi\)
−0.486972 + 0.873417i \(0.661899\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.27550 −0.0908753 −0.0454377 0.998967i \(-0.514468\pi\)
−0.0454377 + 0.998967i \(0.514468\pi\)
\(198\) 0 0
\(199\) −1.69720 −0.120311 −0.0601555 0.998189i \(-0.519160\pi\)
−0.0601555 + 0.998189i \(0.519160\pi\)
\(200\) 0 0
\(201\) −4.42237 −0.311930
\(202\) 0 0
\(203\) 5.46889 0.383841
\(204\) 0 0
\(205\) −13.8500 −0.967325
\(206\) 0 0
\(207\) 4.74314 0.329671
\(208\) 0 0
\(209\) −5.42266 −0.375093
\(210\) 0 0
\(211\) 0.0338871 0.00233289 0.00116644 0.999999i \(-0.499629\pi\)
0.00116644 + 0.999999i \(0.499629\pi\)
\(212\) 0 0
\(213\) −11.6617 −0.799046
\(214\) 0 0
\(215\) 17.0198 1.16074
\(216\) 0 0
\(217\) 3.90020 0.264763
\(218\) 0 0
\(219\) −6.98904 −0.472276
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.1213 1.48135 0.740676 0.671862i \(-0.234505\pi\)
0.740676 + 0.671862i \(0.234505\pi\)
\(224\) 0 0
\(225\) 4.60207 0.306804
\(226\) 0 0
\(227\) 2.07867 0.137966 0.0689832 0.997618i \(-0.478025\pi\)
0.0689832 + 0.997618i \(0.478025\pi\)
\(228\) 0 0
\(229\) 4.60929 0.304591 0.152295 0.988335i \(-0.451333\pi\)
0.152295 + 0.988335i \(0.451333\pi\)
\(230\) 0 0
\(231\) 3.23707 0.212984
\(232\) 0 0
\(233\) 27.6690 1.81266 0.906328 0.422576i \(-0.138874\pi\)
0.906328 + 0.422576i \(0.138874\pi\)
\(234\) 0 0
\(235\) −15.2116 −0.992295
\(236\) 0 0
\(237\) −15.1484 −0.983997
\(238\) 0 0
\(239\) −4.72236 −0.305464 −0.152732 0.988268i \(-0.548807\pi\)
−0.152732 + 0.988268i \(0.548807\pi\)
\(240\) 0 0
\(241\) 6.16812 0.397323 0.198662 0.980068i \(-0.436341\pi\)
0.198662 + 0.980068i \(0.436341\pi\)
\(242\) 0 0
\(243\) 14.4706 0.928287
\(244\) 0 0
\(245\) 1.46614 0.0936683
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.954887 0.0605135
\(250\) 0 0
\(251\) −9.50340 −0.599850 −0.299925 0.953963i \(-0.596962\pi\)
−0.299925 + 0.953963i \(0.596962\pi\)
\(252\) 0 0
\(253\) 8.07933 0.507943
\(254\) 0 0
\(255\) 8.28267 0.518681
\(256\) 0 0
\(257\) −16.9509 −1.05737 −0.528684 0.848818i \(-0.677315\pi\)
−0.528684 + 0.848818i \(0.677315\pi\)
\(258\) 0 0
\(259\) 2.16723 0.134665
\(260\) 0 0
\(261\) 8.82962 0.546539
\(262\) 0 0
\(263\) −7.66825 −0.472845 −0.236422 0.971650i \(-0.575975\pi\)
−0.236422 + 0.971650i \(0.575975\pi\)
\(264\) 0 0
\(265\) 1.82343 0.112013
\(266\) 0 0
\(267\) 11.3935 0.697271
\(268\) 0 0
\(269\) −8.12363 −0.495307 −0.247653 0.968849i \(-0.579659\pi\)
−0.247653 + 0.968849i \(0.579659\pi\)
\(270\) 0 0
\(271\) 2.10302 0.127749 0.0638746 0.997958i \(-0.479654\pi\)
0.0638746 + 0.997958i \(0.479654\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.83903 0.472711
\(276\) 0 0
\(277\) −6.14676 −0.369323 −0.184661 0.982802i \(-0.559119\pi\)
−0.184661 + 0.982802i \(0.559119\pi\)
\(278\) 0 0
\(279\) 6.29694 0.376988
\(280\) 0 0
\(281\) −17.5826 −1.04889 −0.524445 0.851444i \(-0.675727\pi\)
−0.524445 + 0.851444i \(0.675727\pi\)
\(282\) 0 0
\(283\) 0.349504 0.0207759 0.0103879 0.999946i \(-0.496693\pi\)
0.0103879 + 0.999946i \(0.496693\pi\)
\(284\) 0 0
\(285\) 3.40280 0.201565
\(286\) 0 0
\(287\) 9.44655 0.557612
\(288\) 0 0
\(289\) 6.03500 0.355000
\(290\) 0 0
\(291\) 11.1991 0.656501
\(292\) 0 0
\(293\) 1.68707 0.0985595 0.0492798 0.998785i \(-0.484307\pi\)
0.0492798 + 0.998785i \(0.484307\pi\)
\(294\) 0 0
\(295\) 6.69667 0.389895
\(296\) 0 0
\(297\) 14.9375 0.866764
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −11.6086 −0.669106
\(302\) 0 0
\(303\) 12.2018 0.700975
\(304\) 0 0
\(305\) 12.3126 0.705020
\(306\) 0 0
\(307\) −15.8850 −0.906606 −0.453303 0.891357i \(-0.649754\pi\)
−0.453303 + 0.891357i \(0.649754\pi\)
\(308\) 0 0
\(309\) 9.20205 0.523486
\(310\) 0 0
\(311\) 5.73424 0.325159 0.162579 0.986695i \(-0.448019\pi\)
0.162579 + 0.986695i \(0.448019\pi\)
\(312\) 0 0
\(313\) 10.3701 0.586155 0.293078 0.956089i \(-0.405321\pi\)
0.293078 + 0.956089i \(0.405321\pi\)
\(314\) 0 0
\(315\) 2.36711 0.133371
\(316\) 0 0
\(317\) 20.0766 1.12761 0.563807 0.825907i \(-0.309336\pi\)
0.563807 + 0.825907i \(0.309336\pi\)
\(318\) 0 0
\(319\) 15.0401 0.842085
\(320\) 0 0
\(321\) −11.4981 −0.641761
\(322\) 0 0
\(323\) 9.46355 0.526566
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −15.2815 −0.845068
\(328\) 0 0
\(329\) 10.3753 0.572006
\(330\) 0 0
\(331\) −22.6980 −1.24759 −0.623797 0.781586i \(-0.714411\pi\)
−0.623797 + 0.781586i \(0.714411\pi\)
\(332\) 0 0
\(333\) 3.49902 0.191745
\(334\) 0 0
\(335\) −5.50846 −0.300959
\(336\) 0 0
\(337\) 31.8134 1.73299 0.866493 0.499189i \(-0.166369\pi\)
0.866493 + 0.499189i \(0.166369\pi\)
\(338\) 0 0
\(339\) −12.9975 −0.705927
\(340\) 0 0
\(341\) 10.7260 0.580847
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −5.06990 −0.272954
\(346\) 0 0
\(347\) 33.5527 1.80121 0.900603 0.434644i \(-0.143126\pi\)
0.900603 + 0.434644i \(0.143126\pi\)
\(348\) 0 0
\(349\) −22.4496 −1.20170 −0.600850 0.799362i \(-0.705171\pi\)
−0.600850 + 0.799362i \(0.705171\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.3207 −1.08156 −0.540782 0.841163i \(-0.681871\pi\)
−0.540782 + 0.841163i \(0.681871\pi\)
\(354\) 0 0
\(355\) −14.5257 −0.770944
\(356\) 0 0
\(357\) −5.64930 −0.298993
\(358\) 0 0
\(359\) −32.5948 −1.72029 −0.860144 0.510052i \(-0.829626\pi\)
−0.860144 + 0.510052i \(0.829626\pi\)
\(360\) 0 0
\(361\) −15.1121 −0.795371
\(362\) 0 0
\(363\) −4.04537 −0.212327
\(364\) 0 0
\(365\) −8.70548 −0.455666
\(366\) 0 0
\(367\) −15.1385 −0.790222 −0.395111 0.918633i \(-0.629294\pi\)
−0.395111 + 0.918633i \(0.629294\pi\)
\(368\) 0 0
\(369\) 15.2516 0.793967
\(370\) 0 0
\(371\) −1.24369 −0.0645694
\(372\) 0 0
\(373\) −33.0340 −1.71043 −0.855217 0.518270i \(-0.826576\pi\)
−0.855217 + 0.518270i \(0.826576\pi\)
\(374\) 0 0
\(375\) −13.5478 −0.699607
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.9858 −0.667033 −0.333517 0.942744i \(-0.608235\pi\)
−0.333517 + 0.942744i \(0.608235\pi\)
\(380\) 0 0
\(381\) −18.4248 −0.943931
\(382\) 0 0
\(383\) −22.6435 −1.15703 −0.578514 0.815673i \(-0.696367\pi\)
−0.578514 + 0.815673i \(0.696367\pi\)
\(384\) 0 0
\(385\) 4.03207 0.205493
\(386\) 0 0
\(387\) −18.7422 −0.952720
\(388\) 0 0
\(389\) −3.51171 −0.178051 −0.0890254 0.996029i \(-0.528375\pi\)
−0.0890254 + 0.996029i \(0.528375\pi\)
\(390\) 0 0
\(391\) −14.0999 −0.713065
\(392\) 0 0
\(393\) −4.53110 −0.228564
\(394\) 0 0
\(395\) −18.8687 −0.949389
\(396\) 0 0
\(397\) 17.9590 0.901334 0.450667 0.892692i \(-0.351186\pi\)
0.450667 + 0.892692i \(0.351186\pi\)
\(398\) 0 0
\(399\) −2.32092 −0.116191
\(400\) 0 0
\(401\) 9.18476 0.458665 0.229333 0.973348i \(-0.426346\pi\)
0.229333 + 0.973348i \(0.426346\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.27221 −0.112907
\(406\) 0 0
\(407\) 5.96014 0.295433
\(408\) 0 0
\(409\) 33.1849 1.64089 0.820444 0.571727i \(-0.193727\pi\)
0.820444 + 0.571727i \(0.193727\pi\)
\(410\) 0 0
\(411\) −7.46773 −0.368356
\(412\) 0 0
\(413\) −4.56755 −0.224754
\(414\) 0 0
\(415\) 1.18940 0.0583853
\(416\) 0 0
\(417\) −12.1203 −0.593535
\(418\) 0 0
\(419\) −14.7409 −0.720142 −0.360071 0.932925i \(-0.617248\pi\)
−0.360071 + 0.932925i \(0.617248\pi\)
\(420\) 0 0
\(421\) 26.7288 1.30268 0.651341 0.758785i \(-0.274207\pi\)
0.651341 + 0.758785i \(0.274207\pi\)
\(422\) 0 0
\(423\) 16.7510 0.814463
\(424\) 0 0
\(425\) −13.6806 −0.663606
\(426\) 0 0
\(427\) −8.39800 −0.406408
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.1684 0.489793 0.244897 0.969549i \(-0.421246\pi\)
0.244897 + 0.969549i \(0.421246\pi\)
\(432\) 0 0
\(433\) −13.0280 −0.626085 −0.313043 0.949739i \(-0.601348\pi\)
−0.313043 + 0.949739i \(0.601348\pi\)
\(434\) 0 0
\(435\) −9.43791 −0.452513
\(436\) 0 0
\(437\) −5.79273 −0.277104
\(438\) 0 0
\(439\) 21.6571 1.03364 0.516819 0.856095i \(-0.327116\pi\)
0.516819 + 0.856095i \(0.327116\pi\)
\(440\) 0 0
\(441\) −1.61452 −0.0768817
\(442\) 0 0
\(443\) 26.2812 1.24866 0.624330 0.781161i \(-0.285372\pi\)
0.624330 + 0.781161i \(0.285372\pi\)
\(444\) 0 0
\(445\) 14.1916 0.672748
\(446\) 0 0
\(447\) −24.0139 −1.13582
\(448\) 0 0
\(449\) −15.1500 −0.714975 −0.357487 0.933918i \(-0.616366\pi\)
−0.357487 + 0.933918i \(0.616366\pi\)
\(450\) 0 0
\(451\) 25.9792 1.22331
\(452\) 0 0
\(453\) −26.8430 −1.26119
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.4632 1.42501 0.712505 0.701667i \(-0.247560\pi\)
0.712505 + 0.701667i \(0.247560\pi\)
\(458\) 0 0
\(459\) −26.0688 −1.21679
\(460\) 0 0
\(461\) 30.4655 1.41892 0.709461 0.704745i \(-0.248939\pi\)
0.709461 + 0.704745i \(0.248939\pi\)
\(462\) 0 0
\(463\) 10.4617 0.486197 0.243099 0.970002i \(-0.421836\pi\)
0.243099 + 0.970002i \(0.421836\pi\)
\(464\) 0 0
\(465\) −6.73075 −0.312131
\(466\) 0 0
\(467\) −15.2825 −0.707190 −0.353595 0.935399i \(-0.615041\pi\)
−0.353595 + 0.935399i \(0.615041\pi\)
\(468\) 0 0
\(469\) 3.75711 0.173487
\(470\) 0 0
\(471\) 17.2121 0.793090
\(472\) 0 0
\(473\) −31.9250 −1.46791
\(474\) 0 0
\(475\) −5.62044 −0.257884
\(476\) 0 0
\(477\) −2.00797 −0.0919384
\(478\) 0 0
\(479\) −19.5909 −0.895129 −0.447564 0.894252i \(-0.647708\pi\)
−0.447564 + 0.894252i \(0.647708\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.45799 0.157344
\(484\) 0 0
\(485\) 13.9494 0.633412
\(486\) 0 0
\(487\) 6.39343 0.289714 0.144857 0.989453i \(-0.453728\pi\)
0.144857 + 0.989453i \(0.453728\pi\)
\(488\) 0 0
\(489\) −1.01106 −0.0457218
\(490\) 0 0
\(491\) −22.2520 −1.00422 −0.502109 0.864805i \(-0.667442\pi\)
−0.502109 + 0.864805i \(0.667442\pi\)
\(492\) 0 0
\(493\) −26.2478 −1.18214
\(494\) 0 0
\(495\) 6.50984 0.292595
\(496\) 0 0
\(497\) 9.90743 0.444409
\(498\) 0 0
\(499\) 30.0165 1.34372 0.671862 0.740677i \(-0.265495\pi\)
0.671862 + 0.740677i \(0.265495\pi\)
\(500\) 0 0
\(501\) 6.16852 0.275589
\(502\) 0 0
\(503\) −35.0031 −1.56071 −0.780356 0.625336i \(-0.784962\pi\)
−0.780356 + 0.625336i \(0.784962\pi\)
\(504\) 0 0
\(505\) 15.1984 0.676322
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.95401 −0.441204 −0.220602 0.975364i \(-0.570802\pi\)
−0.220602 + 0.975364i \(0.570802\pi\)
\(510\) 0 0
\(511\) 5.93768 0.262668
\(512\) 0 0
\(513\) −10.7099 −0.472855
\(514\) 0 0
\(515\) 11.4620 0.505075
\(516\) 0 0
\(517\) 28.5332 1.25489
\(518\) 0 0
\(519\) 22.7947 1.00058
\(520\) 0 0
\(521\) −7.75549 −0.339774 −0.169887 0.985464i \(-0.554340\pi\)
−0.169887 + 0.985464i \(0.554340\pi\)
\(522\) 0 0
\(523\) 4.84825 0.211999 0.105999 0.994366i \(-0.466196\pi\)
0.105999 + 0.994366i \(0.466196\pi\)
\(524\) 0 0
\(525\) 3.35514 0.146430
\(526\) 0 0
\(527\) −18.7189 −0.815409
\(528\) 0 0
\(529\) −14.3693 −0.624752
\(530\) 0 0
\(531\) −7.37438 −0.320021
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −14.3219 −0.619191
\(536\) 0 0
\(537\) 9.32153 0.402254
\(538\) 0 0
\(539\) −2.75012 −0.118456
\(540\) 0 0
\(541\) 28.2030 1.21254 0.606271 0.795258i \(-0.292665\pi\)
0.606271 + 0.795258i \(0.292665\pi\)
\(542\) 0 0
\(543\) 21.8309 0.936852
\(544\) 0 0
\(545\) −19.0345 −0.815346
\(546\) 0 0
\(547\) −1.10083 −0.0470680 −0.0235340 0.999723i \(-0.507492\pi\)
−0.0235340 + 0.999723i \(0.507492\pi\)
\(548\) 0 0
\(549\) −13.5587 −0.578671
\(550\) 0 0
\(551\) −10.7835 −0.459392
\(552\) 0 0
\(553\) 12.8697 0.547274
\(554\) 0 0
\(555\) −3.74008 −0.158758
\(556\) 0 0
\(557\) 20.7862 0.880738 0.440369 0.897817i \(-0.354848\pi\)
0.440369 + 0.897817i \(0.354848\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −15.5363 −0.655942
\(562\) 0 0
\(563\) 33.5659 1.41463 0.707316 0.706897i \(-0.249906\pi\)
0.707316 + 0.706897i \(0.249906\pi\)
\(564\) 0 0
\(565\) −16.1896 −0.681100
\(566\) 0 0
\(567\) 1.54979 0.0650850
\(568\) 0 0
\(569\) −8.90865 −0.373470 −0.186735 0.982410i \(-0.559791\pi\)
−0.186735 + 0.982410i \(0.559791\pi\)
\(570\) 0 0
\(571\) −29.3722 −1.22919 −0.614594 0.788844i \(-0.710680\pi\)
−0.614594 + 0.788844i \(0.710680\pi\)
\(572\) 0 0
\(573\) 18.8047 0.785578
\(574\) 0 0
\(575\) 8.37401 0.349221
\(576\) 0 0
\(577\) 34.5820 1.43967 0.719834 0.694146i \(-0.244218\pi\)
0.719834 + 0.694146i \(0.244218\pi\)
\(578\) 0 0
\(579\) −15.9263 −0.661873
\(580\) 0 0
\(581\) −0.811244 −0.0336561
\(582\) 0 0
\(583\) −3.42031 −0.141655
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 38.2900 1.58040 0.790199 0.612850i \(-0.209977\pi\)
0.790199 + 0.612850i \(0.209977\pi\)
\(588\) 0 0
\(589\) −7.69036 −0.316876
\(590\) 0 0
\(591\) −1.50134 −0.0617570
\(592\) 0 0
\(593\) 44.1937 1.81482 0.907408 0.420250i \(-0.138058\pi\)
0.907408 + 0.420250i \(0.138058\pi\)
\(594\) 0 0
\(595\) −7.03671 −0.288477
\(596\) 0 0
\(597\) −1.99771 −0.0817608
\(598\) 0 0
\(599\) −18.1168 −0.740232 −0.370116 0.928986i \(-0.620682\pi\)
−0.370116 + 0.928986i \(0.620682\pi\)
\(600\) 0 0
\(601\) −34.7627 −1.41800 −0.709001 0.705208i \(-0.750854\pi\)
−0.709001 + 0.705208i \(0.750854\pi\)
\(602\) 0 0
\(603\) 6.06592 0.247023
\(604\) 0 0
\(605\) −5.03887 −0.204859
\(606\) 0 0
\(607\) 17.6284 0.715514 0.357757 0.933815i \(-0.383542\pi\)
0.357757 + 0.933815i \(0.383542\pi\)
\(608\) 0 0
\(609\) 6.43725 0.260850
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −7.00516 −0.282936 −0.141468 0.989943i \(-0.545182\pi\)
−0.141468 + 0.989943i \(0.545182\pi\)
\(614\) 0 0
\(615\) −16.3023 −0.657374
\(616\) 0 0
\(617\) −25.1516 −1.01257 −0.506283 0.862367i \(-0.668981\pi\)
−0.506283 + 0.862367i \(0.668981\pi\)
\(618\) 0 0
\(619\) 5.30877 0.213377 0.106689 0.994292i \(-0.465975\pi\)
0.106689 + 0.994292i \(0.465975\pi\)
\(620\) 0 0
\(621\) 15.9570 0.640331
\(622\) 0 0
\(623\) −9.67958 −0.387804
\(624\) 0 0
\(625\) −2.62289 −0.104916
\(626\) 0 0
\(627\) −6.38282 −0.254905
\(628\) 0 0
\(629\) −10.4016 −0.414738
\(630\) 0 0
\(631\) −21.9584 −0.874151 −0.437076 0.899425i \(-0.643986\pi\)
−0.437076 + 0.899425i \(0.643986\pi\)
\(632\) 0 0
\(633\) 0.0398874 0.00158538
\(634\) 0 0
\(635\) −22.9497 −0.910732
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 15.9957 0.632780
\(640\) 0 0
\(641\) 29.2954 1.15710 0.578549 0.815648i \(-0.303619\pi\)
0.578549 + 0.815648i \(0.303619\pi\)
\(642\) 0 0
\(643\) 44.3931 1.75069 0.875346 0.483496i \(-0.160633\pi\)
0.875346 + 0.483496i \(0.160633\pi\)
\(644\) 0 0
\(645\) 20.0334 0.788815
\(646\) 0 0
\(647\) 2.88866 0.113565 0.0567824 0.998387i \(-0.481916\pi\)
0.0567824 + 0.998387i \(0.481916\pi\)
\(648\) 0 0
\(649\) −12.5613 −0.493075
\(650\) 0 0
\(651\) 4.59079 0.179927
\(652\) 0 0
\(653\) −18.8390 −0.737229 −0.368614 0.929582i \(-0.620168\pi\)
−0.368614 + 0.929582i \(0.620168\pi\)
\(654\) 0 0
\(655\) −5.64390 −0.220525
\(656\) 0 0
\(657\) 9.58649 0.374004
\(658\) 0 0
\(659\) 26.2632 1.02307 0.511535 0.859263i \(-0.329077\pi\)
0.511535 + 0.859263i \(0.329077\pi\)
\(660\) 0 0
\(661\) 33.0289 1.28468 0.642338 0.766421i \(-0.277964\pi\)
0.642338 + 0.766421i \(0.277964\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.89092 −0.112105
\(666\) 0 0
\(667\) 16.0665 0.622099
\(668\) 0 0
\(669\) 26.0382 1.00670
\(670\) 0 0
\(671\) −23.0955 −0.891592
\(672\) 0 0
\(673\) −4.60997 −0.177701 −0.0888507 0.996045i \(-0.528319\pi\)
−0.0888507 + 0.996045i \(0.528319\pi\)
\(674\) 0 0
\(675\) 15.4824 0.595917
\(676\) 0 0
\(677\) −0.757520 −0.0291138 −0.0145569 0.999894i \(-0.504634\pi\)
−0.0145569 + 0.999894i \(0.504634\pi\)
\(678\) 0 0
\(679\) −9.51440 −0.365129
\(680\) 0 0
\(681\) 2.44674 0.0937591
\(682\) 0 0
\(683\) −40.0568 −1.53273 −0.766366 0.642405i \(-0.777937\pi\)
−0.766366 + 0.642405i \(0.777937\pi\)
\(684\) 0 0
\(685\) −9.30173 −0.355401
\(686\) 0 0
\(687\) 5.42544 0.206994
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 15.3280 0.583106 0.291553 0.956555i \(-0.405828\pi\)
0.291553 + 0.956555i \(0.405828\pi\)
\(692\) 0 0
\(693\) −4.44012 −0.168666
\(694\) 0 0
\(695\) −15.0970 −0.572660
\(696\) 0 0
\(697\) −45.3385 −1.71732
\(698\) 0 0
\(699\) 32.5682 1.23184
\(700\) 0 0
\(701\) 15.1453 0.572032 0.286016 0.958225i \(-0.407669\pi\)
0.286016 + 0.958225i \(0.407669\pi\)
\(702\) 0 0
\(703\) −4.27331 −0.161171
\(704\) 0 0
\(705\) −17.9050 −0.674343
\(706\) 0 0
\(707\) −10.3663 −0.389864
\(708\) 0 0
\(709\) 11.0785 0.416063 0.208032 0.978122i \(-0.433294\pi\)
0.208032 + 0.978122i \(0.433294\pi\)
\(710\) 0 0
\(711\) 20.7783 0.779246
\(712\) 0 0
\(713\) 11.4580 0.429107
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5.55853 −0.207587
\(718\) 0 0
\(719\) 34.5299 1.28775 0.643874 0.765132i \(-0.277326\pi\)
0.643874 + 0.765132i \(0.277326\pi\)
\(720\) 0 0
\(721\) −7.81778 −0.291149
\(722\) 0 0
\(723\) 7.26028 0.270013
\(724\) 0 0
\(725\) 15.5887 0.578950
\(726\) 0 0
\(727\) −13.5521 −0.502621 −0.251311 0.967907i \(-0.580862\pi\)
−0.251311 + 0.967907i \(0.580862\pi\)
\(728\) 0 0
\(729\) 21.6822 0.803043
\(730\) 0 0
\(731\) 55.7150 2.06070
\(732\) 0 0
\(733\) −12.5720 −0.464357 −0.232179 0.972673i \(-0.574585\pi\)
−0.232179 + 0.972673i \(0.574585\pi\)
\(734\) 0 0
\(735\) 1.72574 0.0636550
\(736\) 0 0
\(737\) 10.3325 0.380603
\(738\) 0 0
\(739\) 51.2157 1.88400 0.942000 0.335614i \(-0.108944\pi\)
0.942000 + 0.335614i \(0.108944\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.6367 −0.867148 −0.433574 0.901118i \(-0.642748\pi\)
−0.433574 + 0.901118i \(0.642748\pi\)
\(744\) 0 0
\(745\) −29.9115 −1.09587
\(746\) 0 0
\(747\) −1.30977 −0.0479218
\(748\) 0 0
\(749\) 9.76845 0.356931
\(750\) 0 0
\(751\) −50.3119 −1.83591 −0.917954 0.396686i \(-0.870160\pi\)
−0.917954 + 0.396686i \(0.870160\pi\)
\(752\) 0 0
\(753\) −11.1861 −0.407645
\(754\) 0 0
\(755\) −33.4353 −1.21684
\(756\) 0 0
\(757\) 33.7267 1.22582 0.612909 0.790153i \(-0.289999\pi\)
0.612909 + 0.790153i \(0.289999\pi\)
\(758\) 0 0
\(759\) 9.50990 0.345188
\(760\) 0 0
\(761\) −27.8570 −1.00982 −0.504908 0.863173i \(-0.668474\pi\)
−0.504908 + 0.863173i \(0.668474\pi\)
\(762\) 0 0
\(763\) 12.9827 0.470005
\(764\) 0 0
\(765\) −11.3609 −0.410754
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 45.9195 1.65590 0.827950 0.560801i \(-0.189507\pi\)
0.827950 + 0.560801i \(0.189507\pi\)
\(770\) 0 0
\(771\) −19.9523 −0.718566
\(772\) 0 0
\(773\) 29.5683 1.06350 0.531748 0.846902i \(-0.321535\pi\)
0.531748 + 0.846902i \(0.321535\pi\)
\(774\) 0 0
\(775\) 11.1172 0.399343
\(776\) 0 0
\(777\) 2.55097 0.0915155
\(778\) 0 0
\(779\) −18.6266 −0.667367
\(780\) 0 0
\(781\) 27.2466 0.974962
\(782\) 0 0
\(783\) 29.7048 1.06156
\(784\) 0 0
\(785\) 21.4392 0.765197
\(786\) 0 0
\(787\) −26.5408 −0.946076 −0.473038 0.881042i \(-0.656843\pi\)
−0.473038 + 0.881042i \(0.656843\pi\)
\(788\) 0 0
\(789\) −9.02604 −0.321335
\(790\) 0 0
\(791\) 11.0423 0.392619
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 2.14630 0.0761214
\(796\) 0 0
\(797\) −50.4099 −1.78561 −0.892806 0.450442i \(-0.851267\pi\)
−0.892806 + 0.450442i \(0.851267\pi\)
\(798\) 0 0
\(799\) −49.7958 −1.76165
\(800\) 0 0
\(801\) −15.6278 −0.552183
\(802\) 0 0
\(803\) 16.3294 0.576250
\(804\) 0 0
\(805\) 4.30724 0.151810
\(806\) 0 0
\(807\) −9.56205 −0.336600
\(808\) 0 0
\(809\) 11.1822 0.393146 0.196573 0.980489i \(-0.437019\pi\)
0.196573 + 0.980489i \(0.437019\pi\)
\(810\) 0 0
\(811\) −22.8117 −0.801027 −0.400513 0.916291i \(-0.631168\pi\)
−0.400513 + 0.916291i \(0.631168\pi\)
\(812\) 0 0
\(813\) 2.47539 0.0868157
\(814\) 0 0
\(815\) −1.25937 −0.0441137
\(816\) 0 0
\(817\) 22.8896 0.800806
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −45.7200 −1.59564 −0.797819 0.602897i \(-0.794013\pi\)
−0.797819 + 0.602897i \(0.794013\pi\)
\(822\) 0 0
\(823\) −48.8445 −1.70261 −0.851306 0.524669i \(-0.824189\pi\)
−0.851306 + 0.524669i \(0.824189\pi\)
\(824\) 0 0
\(825\) 9.22706 0.321245
\(826\) 0 0
\(827\) 39.2720 1.36562 0.682810 0.730596i \(-0.260757\pi\)
0.682810 + 0.730596i \(0.260757\pi\)
\(828\) 0 0
\(829\) 37.8209 1.31358 0.656788 0.754075i \(-0.271915\pi\)
0.656788 + 0.754075i \(0.271915\pi\)
\(830\) 0 0
\(831\) −7.23514 −0.250984
\(832\) 0 0
\(833\) 4.79948 0.166292
\(834\) 0 0
\(835\) 7.68344 0.265897
\(836\) 0 0
\(837\) 21.1843 0.732236
\(838\) 0 0
\(839\) −43.5636 −1.50398 −0.751991 0.659174i \(-0.770906\pi\)
−0.751991 + 0.659174i \(0.770906\pi\)
\(840\) 0 0
\(841\) 0.908780 0.0313372
\(842\) 0 0
\(843\) −20.6959 −0.712804
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.43683 0.118091
\(848\) 0 0
\(849\) 0.411389 0.0141188
\(850\) 0 0
\(851\) 6.36690 0.218254
\(852\) 0 0
\(853\) −3.80505 −0.130282 −0.0651412 0.997876i \(-0.520750\pi\)
−0.0651412 + 0.997876i \(0.520750\pi\)
\(854\) 0 0
\(855\) −4.66743 −0.159623
\(856\) 0 0
\(857\) −48.9717 −1.67284 −0.836420 0.548089i \(-0.815355\pi\)
−0.836420 + 0.548089i \(0.815355\pi\)
\(858\) 0 0
\(859\) 11.2339 0.383296 0.191648 0.981464i \(-0.438617\pi\)
0.191648 + 0.981464i \(0.438617\pi\)
\(860\) 0 0
\(861\) 11.1192 0.378942
\(862\) 0 0
\(863\) 21.5744 0.734400 0.367200 0.930142i \(-0.380316\pi\)
0.367200 + 0.930142i \(0.380316\pi\)
\(864\) 0 0
\(865\) 28.3929 0.965387
\(866\) 0 0
\(867\) 7.10359 0.241251
\(868\) 0 0
\(869\) 35.3931 1.20063
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −15.3611 −0.519896
\(874\) 0 0
\(875\) 11.5098 0.389104
\(876\) 0 0
\(877\) −20.1323 −0.679821 −0.339911 0.940458i \(-0.610397\pi\)
−0.339911 + 0.940458i \(0.610397\pi\)
\(878\) 0 0
\(879\) 1.98579 0.0669790
\(880\) 0 0
\(881\) 22.4408 0.756050 0.378025 0.925795i \(-0.376603\pi\)
0.378025 + 0.925795i \(0.376603\pi\)
\(882\) 0 0
\(883\) −28.8016 −0.969251 −0.484625 0.874722i \(-0.661044\pi\)
−0.484625 + 0.874722i \(0.661044\pi\)
\(884\) 0 0
\(885\) 7.88242 0.264965
\(886\) 0 0
\(887\) 25.0780 0.842037 0.421018 0.907052i \(-0.361673\pi\)
0.421018 + 0.907052i \(0.361673\pi\)
\(888\) 0 0
\(889\) 15.6532 0.524990
\(890\) 0 0
\(891\) 4.26211 0.142786
\(892\) 0 0
\(893\) −20.4578 −0.684594
\(894\) 0 0
\(895\) 11.6108 0.388106
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21.3298 0.711388
\(900\) 0 0
\(901\) 5.96909 0.198859
\(902\) 0 0
\(903\) −13.6640 −0.454711
\(904\) 0 0
\(905\) 27.1923 0.903903
\(906\) 0 0
\(907\) 1.14981 0.0381788 0.0190894 0.999818i \(-0.493923\pi\)
0.0190894 + 0.999818i \(0.493923\pi\)
\(908\) 0 0
\(909\) −16.7365 −0.555116
\(910\) 0 0
\(911\) −12.7197 −0.421423 −0.210712 0.977548i \(-0.567578\pi\)
−0.210712 + 0.977548i \(0.567578\pi\)
\(912\) 0 0
\(913\) −2.23102 −0.0738360
\(914\) 0 0
\(915\) 14.4928 0.479117
\(916\) 0 0
\(917\) 3.84949 0.127121
\(918\) 0 0
\(919\) 44.9476 1.48268 0.741342 0.671127i \(-0.234190\pi\)
0.741342 + 0.671127i \(0.234190\pi\)
\(920\) 0 0
\(921\) −18.6977 −0.616111
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.17753 0.203116
\(926\) 0 0
\(927\) −12.6219 −0.414559
\(928\) 0 0
\(929\) 25.6144 0.840381 0.420190 0.907436i \(-0.361963\pi\)
0.420190 + 0.907436i \(0.361963\pi\)
\(930\) 0 0
\(931\) 1.97179 0.0646227
\(932\) 0 0
\(933\) 6.74957 0.220971
\(934\) 0 0
\(935\) −19.3518 −0.632872
\(936\) 0 0
\(937\) −33.0018 −1.07812 −0.539061 0.842267i \(-0.681221\pi\)
−0.539061 + 0.842267i \(0.681221\pi\)
\(938\) 0 0
\(939\) 12.2063 0.398339
\(940\) 0 0
\(941\) −34.2701 −1.11717 −0.558587 0.829446i \(-0.688656\pi\)
−0.558587 + 0.829446i \(0.688656\pi\)
\(942\) 0 0
\(943\) 27.7522 0.903734
\(944\) 0 0
\(945\) 7.96348 0.259052
\(946\) 0 0
\(947\) 26.7901 0.870560 0.435280 0.900295i \(-0.356649\pi\)
0.435280 + 0.900295i \(0.356649\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 23.6315 0.766303
\(952\) 0 0
\(953\) 59.5224 1.92812 0.964061 0.265682i \(-0.0855973\pi\)
0.964061 + 0.265682i \(0.0855973\pi\)
\(954\) 0 0
\(955\) 23.4230 0.757949
\(956\) 0 0
\(957\) 17.7032 0.572264
\(958\) 0 0
\(959\) 6.34437 0.204870
\(960\) 0 0
\(961\) −15.7884 −0.509304
\(962\) 0 0
\(963\) 15.7713 0.508223
\(964\) 0 0
\(965\) −19.8376 −0.638594
\(966\) 0 0
\(967\) −22.3740 −0.719501 −0.359750 0.933049i \(-0.617138\pi\)
−0.359750 + 0.933049i \(0.617138\pi\)
\(968\) 0 0
\(969\) 11.1392 0.357843
\(970\) 0 0
\(971\) −24.0032 −0.770301 −0.385150 0.922854i \(-0.625850\pi\)
−0.385150 + 0.922854i \(0.625850\pi\)
\(972\) 0 0
\(973\) 10.2971 0.330109
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.7043 0.854347 0.427174 0.904170i \(-0.359509\pi\)
0.427174 + 0.904170i \(0.359509\pi\)
\(978\) 0 0
\(979\) −26.6200 −0.850780
\(980\) 0 0
\(981\) 20.9608 0.669226
\(982\) 0 0
\(983\) −25.3231 −0.807682 −0.403841 0.914829i \(-0.632325\pi\)
−0.403841 + 0.914829i \(0.632325\pi\)
\(984\) 0 0
\(985\) −1.87006 −0.0595850
\(986\) 0 0
\(987\) 12.2124 0.388724
\(988\) 0 0
\(989\) −34.1037 −1.08443
\(990\) 0 0
\(991\) −14.2634 −0.453092 −0.226546 0.974000i \(-0.572743\pi\)
−0.226546 + 0.974000i \(0.572743\pi\)
\(992\) 0 0
\(993\) −26.7170 −0.847839
\(994\) 0 0
\(995\) −2.48833 −0.0788853
\(996\) 0 0
\(997\) −28.9565 −0.917062 −0.458531 0.888678i \(-0.651624\pi\)
−0.458531 + 0.888678i \(0.651624\pi\)
\(998\) 0 0
\(999\) 11.7715 0.372434
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.s.1.5 8
13.2 odd 12 364.2.u.a.225.4 16
13.5 odd 4 4732.2.g.k.337.9 16
13.7 odd 12 364.2.u.a.309.4 yes 16
13.8 odd 4 4732.2.g.k.337.10 16
13.12 even 2 4732.2.a.t.1.5 8
39.2 even 12 3276.2.cf.c.2773.6 16
39.20 even 12 3276.2.cf.c.1765.3 16
52.7 even 12 1456.2.cc.f.673.5 16
52.15 even 12 1456.2.cc.f.225.5 16
91.2 odd 12 2548.2.bb.d.1733.4 16
91.20 even 12 2548.2.u.c.1765.5 16
91.33 even 12 2548.2.bq.c.361.4 16
91.41 even 12 2548.2.u.c.589.5 16
91.46 odd 12 2548.2.bb.d.569.4 16
91.54 even 12 2548.2.bb.c.1733.5 16
91.59 even 12 2548.2.bb.c.569.5 16
91.67 odd 12 2548.2.bq.e.1941.5 16
91.72 odd 12 2548.2.bq.e.361.5 16
91.80 even 12 2548.2.bq.c.1941.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.4 16 13.2 odd 12
364.2.u.a.309.4 yes 16 13.7 odd 12
1456.2.cc.f.225.5 16 52.15 even 12
1456.2.cc.f.673.5 16 52.7 even 12
2548.2.u.c.589.5 16 91.41 even 12
2548.2.u.c.1765.5 16 91.20 even 12
2548.2.bb.c.569.5 16 91.59 even 12
2548.2.bb.c.1733.5 16 91.54 even 12
2548.2.bb.d.569.4 16 91.46 odd 12
2548.2.bb.d.1733.4 16 91.2 odd 12
2548.2.bq.c.361.4 16 91.33 even 12
2548.2.bq.c.1941.4 16 91.80 even 12
2548.2.bq.e.361.5 16 91.72 odd 12
2548.2.bq.e.1941.5 16 91.67 odd 12
3276.2.cf.c.1765.3 16 39.20 even 12
3276.2.cf.c.2773.6 16 39.2 even 12
4732.2.a.s.1.5 8 1.1 even 1 trivial
4732.2.a.t.1.5 8 13.12 even 2
4732.2.g.k.337.9 16 13.5 odd 4
4732.2.g.k.337.10 16 13.8 odd 4