Properties

Label 475.2.a.e.1.1
Level 475475
Weight 22
Character 475.1
Self dual yes
Analytic conductor 3.7933.793
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 475=5219 475 = 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.792894096013.79289409601
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.169.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x1 x^{3} - x^{2} - 4x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.37720-1.37720 of defining polynomial
Character χ\chi == 475.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.37720q21.27389q3+3.65109q4+3.02830q60.726109q73.92498q81.37720q90.273891q114.65109q12+5.95328q13+1.72611q14+2.02830q165.27389q17+3.27389q18+1.00000q19+0.924984q21+0.651093q22+3.67939q23+5.00000q2414.1522q26+5.57608q272.65109q282.27389q29+3.19887q31+3.02830q32+0.348907q33+12.5371q345.02830q368.12386q372.37720q387.58383q399.43380q412.19887q429.81100q431.00000q448.74666q4612.1599q472.58383q486.47277q49+6.71836q51+21.7360q525.69781q5313.2555q54+2.84997q561.27389q57+5.40550q584.20662q590.103312q617.60437q62+1.00000q6311.2555q640.829422q66+11.7827q6719.2555q684.68714q69+5.75441q71+5.40550q726.67939q73+19.3121q74+3.65109q76+0.198875q77+18.0283q78+3.87826q792.97170q81+22.4260q82+0.488265q83+3.37720q84+23.3227q86+2.89669q87+1.07502q8816.4338q894.32273q91+13.4338q924.07502q93+28.9066q943.85772q96+4.44447q97+15.3871q98+0.377203q99+O(q100)q-2.37720 q^{2} -1.27389 q^{3} +3.65109 q^{4} +3.02830 q^{6} -0.726109 q^{7} -3.92498 q^{8} -1.37720 q^{9} -0.273891 q^{11} -4.65109 q^{12} +5.95328 q^{13} +1.72611 q^{14} +2.02830 q^{16} -5.27389 q^{17} +3.27389 q^{18} +1.00000 q^{19} +0.924984 q^{21} +0.651093 q^{22} +3.67939 q^{23} +5.00000 q^{24} -14.1522 q^{26} +5.57608 q^{27} -2.65109 q^{28} -2.27389 q^{29} +3.19887 q^{31} +3.02830 q^{32} +0.348907 q^{33} +12.5371 q^{34} -5.02830 q^{36} -8.12386 q^{37} -2.37720 q^{38} -7.58383 q^{39} -9.43380 q^{41} -2.19887 q^{42} -9.81100 q^{43} -1.00000 q^{44} -8.74666 q^{46} -12.1599 q^{47} -2.58383 q^{48} -6.47277 q^{49} +6.71836 q^{51} +21.7360 q^{52} -5.69781 q^{53} -13.2555 q^{54} +2.84997 q^{56} -1.27389 q^{57} +5.40550 q^{58} -4.20662 q^{59} -0.103312 q^{61} -7.60437 q^{62} +1.00000 q^{63} -11.2555 q^{64} -0.829422 q^{66} +11.7827 q^{67} -19.2555 q^{68} -4.68714 q^{69} +5.75441 q^{71} +5.40550 q^{72} -6.67939 q^{73} +19.3121 q^{74} +3.65109 q^{76} +0.198875 q^{77} +18.0283 q^{78} +3.87826 q^{79} -2.97170 q^{81} +22.4260 q^{82} +0.488265 q^{83} +3.37720 q^{84} +23.3227 q^{86} +2.89669 q^{87} +1.07502 q^{88} -16.4338 q^{89} -4.32273 q^{91} +13.4338 q^{92} -4.07502 q^{93} +28.9066 q^{94} -3.85772 q^{96} +4.44447 q^{97} +15.3871 q^{98} +0.377203 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q2q22q3+4q43q64q73q8+q9+q117q123q13+7q146q1614q17+8q18+3q196q215q228q23+15q24+4q99+O(q100) 3 q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 3 q^{6} - 4 q^{7} - 3 q^{8} + q^{9} + q^{11} - 7 q^{12} - 3 q^{13} + 7 q^{14} - 6 q^{16} - 14 q^{17} + 8 q^{18} + 3 q^{19} - 6 q^{21} - 5 q^{22} - 8 q^{23} + 15 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.37720 −1.68094 −0.840468 0.541861i 0.817720π-0.817720\pi
−0.840468 + 0.541861i 0.817720π0.817720\pi
33 −1.27389 −0.735481 −0.367741 0.929928i 0.619869π-0.619869\pi
−0.367741 + 0.929928i 0.619869π0.619869\pi
44 3.65109 1.82555
55 0 0
66 3.02830 1.23630
77 −0.726109 −0.274444 −0.137222 0.990540i 0.543817π-0.543817\pi
−0.137222 + 0.990540i 0.543817π0.543817\pi
88 −3.92498 −1.38769
99 −1.37720 −0.459068
1010 0 0
1111 −0.273891 −0.0825811 −0.0412906 0.999147i 0.513147π-0.513147\pi
−0.0412906 + 0.999147i 0.513147π0.513147\pi
1212 −4.65109 −1.34266
1313 5.95328 1.65114 0.825571 0.564298i 0.190853π-0.190853\pi
0.825571 + 0.564298i 0.190853π0.190853\pi
1414 1.72611 0.461322
1515 0 0
1616 2.02830 0.507074
1717 −5.27389 −1.27911 −0.639553 0.768747i 0.720881π-0.720881\pi
−0.639553 + 0.768747i 0.720881π0.720881\pi
1818 3.27389 0.771663
1919 1.00000 0.229416
2020 0 0
2121 0.924984 0.201848
2222 0.651093 0.138814
2323 3.67939 0.767206 0.383603 0.923498i 0.374683π-0.374683\pi
0.383603 + 0.923498i 0.374683π0.374683\pi
2424 5.00000 1.02062
2525 0 0
2626 −14.1522 −2.77547
2727 5.57608 1.07312
2828 −2.65109 −0.501010
2929 −2.27389 −0.422251 −0.211125 0.977459i 0.567713π-0.567713\pi
−0.211125 + 0.977459i 0.567713π0.567713\pi
3030 0 0
3131 3.19887 0.574535 0.287267 0.957850i 0.407253π-0.407253\pi
0.287267 + 0.957850i 0.407253π0.407253\pi
3232 3.02830 0.535332
3333 0.348907 0.0607368
3434 12.5371 2.15010
3535 0 0
3636 −5.02830 −0.838049
3737 −8.12386 −1.33555 −0.667777 0.744361i 0.732754π-0.732754\pi
−0.667777 + 0.744361i 0.732754π0.732754\pi
3838 −2.37720 −0.385633
3939 −7.58383 −1.21438
4040 0 0
4141 −9.43380 −1.47331 −0.736656 0.676268i 0.763596π-0.763596\pi
−0.736656 + 0.676268i 0.763596π0.763596\pi
4242 −2.19887 −0.339294
4343 −9.81100 −1.49616 −0.748082 0.663607i 0.769025π-0.769025\pi
−0.748082 + 0.663607i 0.769025π0.769025\pi
4444 −1.00000 −0.150756
4545 0 0
4646 −8.74666 −1.28962
4747 −12.1599 −1.77370 −0.886852 0.462053i 0.847113π-0.847113\pi
−0.886852 + 0.462053i 0.847113π0.847113\pi
4848 −2.58383 −0.372943
4949 −6.47277 −0.924681
5050 0 0
5151 6.71836 0.940758
5252 21.7360 3.01424
5353 −5.69781 −0.782655 −0.391327 0.920252i 0.627984π-0.627984\pi
−0.391327 + 0.920252i 0.627984π0.627984\pi
5454 −13.2555 −1.80384
5555 0 0
5656 2.84997 0.380843
5757 −1.27389 −0.168731
5858 5.40550 0.709777
5959 −4.20662 −0.547656 −0.273828 0.961779i 0.588290π-0.588290\pi
−0.273828 + 0.961779i 0.588290π0.588290\pi
6060 0 0
6161 −0.103312 −0.0132278 −0.00661389 0.999978i 0.502105π-0.502105\pi
−0.00661389 + 0.999978i 0.502105π0.502105\pi
6262 −7.60437 −0.965756
6363 1.00000 0.125988
6464 −11.2555 −1.40693
6565 0 0
6666 −0.829422 −0.102095
6767 11.7827 1.43949 0.719743 0.694241i 0.244260π-0.244260\pi
0.719743 + 0.694241i 0.244260π0.244260\pi
6868 −19.2555 −2.33507
6969 −4.68714 −0.564265
7070 0 0
7171 5.75441 0.682922 0.341461 0.939896i 0.389078π-0.389078\pi
0.341461 + 0.939896i 0.389078π0.389078\pi
7272 5.40550 0.637044
7373 −6.67939 −0.781763 −0.390882 0.920441i 0.627830π-0.627830\pi
−0.390882 + 0.920441i 0.627830π0.627830\pi
7474 19.3121 2.24498
7575 0 0
7676 3.65109 0.418809
7777 0.198875 0.0226639
7878 18.0283 2.04130
7979 3.87826 0.436339 0.218169 0.975911i 0.429991π-0.429991\pi
0.218169 + 0.975911i 0.429991π0.429991\pi
8080 0 0
8181 −2.97170 −0.330189
8282 22.4260 2.47654
8383 0.488265 0.0535941 0.0267970 0.999641i 0.491469π-0.491469\pi
0.0267970 + 0.999641i 0.491469π0.491469\pi
8484 3.37720 0.368483
8585 0 0
8686 23.3227 2.51495
8787 2.89669 0.310558
8888 1.07502 0.114597
8989 −16.4338 −1.74198 −0.870989 0.491302i 0.836521π-0.836521\pi
−0.870989 + 0.491302i 0.836521π0.836521\pi
9090 0 0
9191 −4.32273 −0.453146
9292 13.4338 1.40057
9393 −4.07502 −0.422559
9494 28.9066 2.98148
9595 0 0
9696 −3.85772 −0.393727
9797 4.44447 0.451267 0.225634 0.974212i 0.427555π-0.427555\pi
0.225634 + 0.974212i 0.427555π0.427555\pi
9898 15.3871 1.55433
9999 0.377203 0.0379103
100100 0 0
101101 4.38495 0.436319 0.218160 0.975913i 0.429995π-0.429995\pi
0.218160 + 0.975913i 0.429995π0.429995\pi
102102 −15.9709 −1.58136
103103 −3.33048 −0.328162 −0.164081 0.986447i 0.552466π-0.552466\pi
−0.164081 + 0.986447i 0.552466π0.552466\pi
104104 −23.3665 −2.29128
105105 0 0
106106 13.5449 1.31559
107107 −16.4904 −1.59419 −0.797093 0.603857i 0.793630π-0.793630\pi
−0.797093 + 0.603857i 0.793630π0.793630\pi
108108 20.3588 1.95902
109109 7.79045 0.746190 0.373095 0.927793i 0.378297π-0.378297\pi
0.373095 + 0.927793i 0.378297π0.378297\pi
110110 0 0
111111 10.3489 0.982275
112112 −1.47277 −0.139163
113113 0.142282 0.0133848 0.00669238 0.999978i 0.497870π-0.497870\pi
0.00669238 + 0.999978i 0.497870π0.497870\pi
114114 3.02830 0.283626
115115 0 0
116116 −8.30219 −0.770839
117117 −8.19887 −0.757986
118118 10.0000 0.920575
119119 3.82942 0.351043
120120 0 0
121121 −10.9250 −0.993180
122122 0.245594 0.0222351
123123 12.0176 1.08359
124124 11.6794 1.04884
125125 0 0
126126 −2.37720 −0.211778
127127 15.1316 1.34271 0.671357 0.741135i 0.265712π-0.265712\pi
0.671357 + 0.741135i 0.265712π0.265712\pi
128128 20.6999 1.82963
129129 12.4981 1.10040
130130 0 0
131131 5.58383 0.487861 0.243931 0.969793i 0.421563π-0.421563\pi
0.243931 + 0.969793i 0.421563π0.421563\pi
132132 1.27389 0.110878
133133 −0.726109 −0.0629617
134134 −28.0099 −2.41968
135135 0 0
136136 20.6999 1.77500
137137 −12.8294 −1.09609 −0.548046 0.836448i 0.684628π-0.684628\pi
−0.548046 + 0.836448i 0.684628π0.684628\pi
138138 11.1423 0.948494
139139 −15.2477 −1.29329 −0.646647 0.762789i 0.723829π-0.723829\pi
−0.646647 + 0.762789i 0.723829π0.723829\pi
140140 0 0
141141 15.4904 1.30453
142142 −13.6794 −1.14795
143143 −1.63055 −0.136353
144144 −2.79338 −0.232781
145145 0 0
146146 15.8783 1.31409
147147 8.24559 0.680085
148148 −29.6610 −2.43812
149149 13.8315 1.13312 0.566562 0.824019i 0.308273π-0.308273\pi
0.566562 + 0.824019i 0.308273π0.308273\pi
150150 0 0
151151 −11.7077 −0.952758 −0.476379 0.879240i 0.658051π-0.658051\pi
−0.476379 + 0.879240i 0.658051π0.658051\pi
152152 −3.92498 −0.318358
153153 7.26322 0.587196
154154 −0.472765 −0.0380965
155155 0 0
156156 −27.6893 −2.21692
157157 4.79045 0.382320 0.191160 0.981559i 0.438775π-0.438775\pi
0.191160 + 0.981559i 0.438775π0.438775\pi
158158 −9.21942 −0.733458
159159 7.25839 0.575628
160160 0 0
161161 −2.67164 −0.210555
162162 7.06434 0.555027
163163 −12.8011 −1.00266 −0.501331 0.865256i 0.667156π-0.667156\pi
−0.501331 + 0.865256i 0.667156π0.667156\pi
164164 −34.4437 −2.68960
165165 0 0
166166 −1.16071 −0.0900882
167167 20.9426 1.62059 0.810294 0.586024i 0.199308π-0.199308\pi
0.810294 + 0.586024i 0.199308π0.199308\pi
168168 −3.63055 −0.280103
169169 22.4415 1.72627
170170 0 0
171171 −1.37720 −0.105317
172172 −35.8209 −2.73132
173173 −15.7282 −1.19580 −0.597898 0.801572i 0.703997π-0.703997\pi
−0.597898 + 0.801572i 0.703997π0.703997\pi
174174 −6.88601 −0.522027
175175 0 0
176176 −0.555531 −0.0418747
177177 5.35878 0.402791
178178 39.0665 2.92816
179179 3.41325 0.255118 0.127559 0.991831i 0.459286π-0.459286\pi
0.127559 + 0.991831i 0.459286π0.459286\pi
180180 0 0
181181 23.5109 1.74755 0.873777 0.486327i 0.161664π-0.161664\pi
0.873777 + 0.486327i 0.161664π0.161664\pi
182182 10.2760 0.761709
183183 0.131609 0.00972878
184184 −14.4415 −1.06464
185185 0 0
186186 9.68714 0.710296
187187 1.44447 0.105630
188188 −44.3969 −3.23798
189189 −4.04884 −0.294510
190190 0 0
191191 12.4650 0.901937 0.450968 0.892540i 0.351079π-0.351079\pi
0.450968 + 0.892540i 0.351079π0.351079\pi
192192 14.3382 1.03477
193193 −19.2993 −1.38919 −0.694596 0.719400i 0.744417π-0.744417\pi
−0.694596 + 0.719400i 0.744417π0.744417\pi
194194 −10.5654 −0.758552
195195 0 0
196196 −23.6327 −1.68805
197197 −6.63055 −0.472407 −0.236203 0.971704i 0.575903π-0.575903\pi
−0.236203 + 0.971704i 0.575903π0.575903\pi
198198 −0.896688 −0.0637248
199199 −23.0849 −1.63644 −0.818222 0.574902i 0.805040π-0.805040\pi
−0.818222 + 0.574902i 0.805040π0.805040\pi
200200 0 0
201201 −15.0099 −1.05871
202202 −10.4239 −0.733425
203203 1.65109 0.115884
204204 24.5294 1.71740
205205 0 0
206206 7.91723 0.551620
207207 −5.06727 −0.352199
208208 12.0750 0.837252
209209 −0.273891 −0.0189454
210210 0 0
211211 −7.54778 −0.519611 −0.259805 0.965661i 0.583658π-0.583658\pi
−0.259805 + 0.965661i 0.583658π0.583658\pi
212212 −20.8032 −1.42877
213213 −7.33048 −0.502276
214214 39.2010 2.67973
215215 0 0
216216 −21.8860 −1.48915
217217 −2.32273 −0.157677
218218 −18.5195 −1.25430
219219 8.50881 0.574972
220220 0 0
221221 −31.3969 −2.11199
222222 −24.6015 −1.65114
223223 1.09344 0.0732221 0.0366111 0.999330i 0.488344π-0.488344\pi
0.0366111 + 0.999330i 0.488344π0.488344\pi
224224 −2.19887 −0.146918
225225 0 0
226226 −0.338233 −0.0224989
227227 20.1316 1.33618 0.668091 0.744080i 0.267112π-0.267112\pi
0.668091 + 0.744080i 0.267112π0.267112\pi
228228 −4.65109 −0.308026
229229 −5.51656 −0.364545 −0.182272 0.983248i 0.558345π-0.558345\pi
−0.182272 + 0.983248i 0.558345π0.558345\pi
230230 0 0
231231 −0.253344 −0.0166688
232232 8.92498 0.585954
233233 18.1805 1.19104 0.595520 0.803340i 0.296946π-0.296946\pi
0.595520 + 0.803340i 0.296946π0.296946\pi
234234 19.4904 1.27413
235235 0 0
236236 −15.3588 −0.999771
237237 −4.94048 −0.320919
238238 −9.10331 −0.590080
239239 21.9164 1.41766 0.708828 0.705381i 0.249224π-0.249224\pi
0.708828 + 0.705381i 0.249224π0.249224\pi
240240 0 0
241241 −28.1882 −1.81576 −0.907881 0.419228i 0.862301π-0.862301\pi
−0.907881 + 0.419228i 0.862301π0.862301\pi
242242 25.9709 1.66947
243243 −12.9426 −0.830269
244244 −0.377203 −0.0241479
245245 0 0
246246 −28.5683 −1.82145
247247 5.95328 0.378798
248248 −12.5555 −0.797277
249249 −0.621996 −0.0394174
250250 0 0
251251 9.00987 0.568698 0.284349 0.958721i 0.408223π-0.408223\pi
0.284349 + 0.958721i 0.408223π0.408223\pi
252252 3.65109 0.229997
253253 −1.00775 −0.0633567
254254 −35.9709 −2.25702
255255 0 0
256256 −26.6970 −1.66856
257257 −6.86064 −0.427955 −0.213978 0.976839i 0.568642π-0.568642\pi
−0.213978 + 0.976839i 0.568642π0.568642\pi
258258 −29.7106 −1.84970
259259 5.89881 0.366534
260260 0 0
261261 3.13161 0.193842
262262 −13.2739 −0.820064
263263 9.25547 0.570717 0.285358 0.958421i 0.407887π-0.407887\pi
0.285358 + 0.958421i 0.407887π0.407887\pi
264264 −1.36945 −0.0842840
265265 0 0
266266 1.72611 0.105835
267267 20.9349 1.28119
268268 43.0197 2.62785
269269 0.498939 0.0304208 0.0152104 0.999884i 0.495158π-0.495158\pi
0.0152104 + 0.999884i 0.495158π0.495158\pi
270270 0 0
271271 3.71061 0.225403 0.112702 0.993629i 0.464050π-0.464050\pi
0.112702 + 0.993629i 0.464050π0.464050\pi
272272 −10.6970 −0.648602
273273 5.50669 0.333280
274274 30.4981 1.84246
275275 0 0
276276 −17.1132 −1.03009
277277 −4.58675 −0.275591 −0.137796 0.990461i 0.544002π-0.544002\pi
−0.137796 + 0.990461i 0.544002π0.544002\pi
278278 36.2469 2.17395
279279 −4.40550 −0.263750
280280 0 0
281281 27.2653 1.62651 0.813257 0.581905i 0.197692π-0.197692\pi
0.813257 + 0.581905i 0.197692π0.197692\pi
282282 −36.8238 −2.19283
283283 10.2661 0.610259 0.305129 0.952311i 0.401300π-0.401300\pi
0.305129 + 0.952311i 0.401300π0.401300\pi
284284 21.0099 1.24671
285285 0 0
286286 3.87614 0.229201
287287 6.84997 0.404341
288288 −4.17058 −0.245754
289289 10.8139 0.636113
290290 0 0
291291 −5.66177 −0.331899
292292 −24.3871 −1.42715
293293 1.87051 0.109277 0.0546383 0.998506i 0.482599π-0.482599\pi
0.0546383 + 0.998506i 0.482599π0.482599\pi
294294 −19.6015 −1.14318
295295 0 0
296296 31.8860 1.85334
297297 −1.52723 −0.0886192
298298 −32.8804 −1.90471
299299 21.9044 1.26677
300300 0 0
301301 7.12386 0.410612
302302 27.8315 1.60153
303303 −5.58595 −0.320904
304304 2.02830 0.116331
305305 0 0
306306 −17.2661 −0.987040
307307 −0.227171 −0.0129653 −0.00648266 0.999979i 0.502064π-0.502064\pi
−0.00648266 + 0.999979i 0.502064π0.502064\pi
308308 0.726109 0.0413739
309309 4.24267 0.241357
310310 0 0
311311 20.9554 1.18827 0.594136 0.804365i 0.297494π-0.297494\pi
0.594136 + 0.804365i 0.297494π0.297494\pi
312312 29.7664 1.68519
313313 11.2349 0.635035 0.317518 0.948252i 0.397151π-0.397151\pi
0.317518 + 0.948252i 0.397151π0.397151\pi
314314 −11.3879 −0.642655
315315 0 0
316316 14.1599 0.796557
317317 −18.6228 −1.04596 −0.522980 0.852345i 0.675180π-0.675180\pi
−0.522980 + 0.852345i 0.675180π0.675180\pi
318318 −17.2547 −0.967594
319319 0.622797 0.0348699
320320 0 0
321321 21.0069 1.17249
322322 6.35103 0.353929
323323 −5.27389 −0.293447
324324 −10.8500 −0.602776
325325 0 0
326326 30.4309 1.68541
327327 −9.92418 −0.548809
328328 37.0275 2.04450
329329 8.82942 0.486782
330330 0 0
331331 −14.1054 −0.775305 −0.387652 0.921806i 0.626714π-0.626714\pi
−0.387652 + 0.921806i 0.626714π0.626714\pi
332332 1.78270 0.0978385
333333 11.1882 0.613110
334334 −49.7848 −2.72410
335335 0 0
336336 1.87614 0.102352
337337 −22.9709 −1.25130 −0.625652 0.780102i 0.715167π-0.715167\pi
−0.625652 + 0.780102i 0.715167π0.715167\pi
338338 −53.3481 −2.90175
339339 −0.181252 −0.00984424
340340 0 0
341341 −0.876142 −0.0474457
342342 3.27389 0.177032
343343 9.78270 0.528216
344344 38.5080 2.07621
345345 0 0
346346 37.3892 2.01006
347347 3.93273 0.211120 0.105560 0.994413i 0.466336π-0.466336\pi
0.105560 + 0.994413i 0.466336π0.466336\pi
348348 10.5761 0.566937
349349 −34.4252 −1.84274 −0.921371 0.388685i 0.872929π-0.872929\pi
−0.921371 + 0.388685i 0.872929π0.872929\pi
350350 0 0
351351 33.1960 1.77187
352352 −0.829422 −0.0442083
353353 4.25547 0.226496 0.113248 0.993567i 0.463875π-0.463875\pi
0.113248 + 0.993567i 0.463875π0.463875\pi
354354 −12.7389 −0.677065
355355 0 0
356356 −60.0013 −3.18006
357357 −4.87826 −0.258185
358358 −8.11399 −0.428837
359359 −20.2944 −1.07110 −0.535550 0.844504i 0.679896π-0.679896\pi
−0.535550 + 0.844504i 0.679896π0.679896\pi
360360 0 0
361361 1.00000 0.0526316
362362 −55.8903 −2.93753
363363 13.9172 0.730465
364364 −15.7827 −0.827238
365365 0 0
366366 −0.312860 −0.0163535
367367 −3.85289 −0.201119 −0.100560 0.994931i 0.532063π-0.532063\pi
−0.100560 + 0.994931i 0.532063π0.532063\pi
368368 7.46289 0.389030
369369 12.9922 0.676350
370370 0 0
371371 4.13724 0.214795
372372 −14.8783 −0.771402
373373 −14.6356 −0.757802 −0.378901 0.925437i 0.623698π-0.623698\pi
−0.378901 + 0.925437i 0.623698π0.623698\pi
374374 −3.43380 −0.177557
375375 0 0
376376 47.7274 2.46135
377377 −13.5371 −0.697197
378378 9.62492 0.495052
379379 −22.0099 −1.13057 −0.565286 0.824895i 0.691234π-0.691234\pi
−0.565286 + 0.824895i 0.691234π0.691234\pi
380380 0 0
381381 −19.2760 −0.987540
382382 −29.6319 −1.51610
383383 3.08569 0.157671 0.0788357 0.996888i 0.474880π-0.474880\pi
0.0788357 + 0.996888i 0.474880π0.474880\pi
384384 −26.3695 −1.34566
385385 0 0
386386 45.8783 2.33514
387387 13.5117 0.686840
388388 16.2272 0.823810
389389 8.77203 0.444760 0.222380 0.974960i 0.428618π-0.428618\pi
0.222380 + 0.974960i 0.428618π0.428618\pi
390390 0 0
391391 −19.4047 −0.981338
392392 25.4055 1.28317
393393 −7.11319 −0.358813
394394 15.7622 0.794086
395395 0 0
396396 1.37720 0.0692070
397397 1.59450 0.0800257 0.0400129 0.999199i 0.487260π-0.487260\pi
0.0400129 + 0.999199i 0.487260π0.487260\pi
398398 54.8775 2.75076
399399 0.924984 0.0463071
400400 0 0
401401 −17.5526 −0.876535 −0.438268 0.898844i 0.644408π-0.644408\pi
−0.438268 + 0.898844i 0.644408π0.644408\pi
402402 35.6815 1.77963
403403 19.0438 0.948639
404404 16.0099 0.796521
405405 0 0
406406 −3.92498 −0.194794
407407 2.22505 0.110292
408408 −26.3695 −1.30548
409409 36.6815 1.81378 0.906892 0.421363i 0.138448π-0.138448\pi
0.906892 + 0.421363i 0.138448π0.138448\pi
410410 0 0
411411 16.3433 0.806155
412412 −12.1599 −0.599076
413413 3.05447 0.150301
414414 12.0459 0.592025
415415 0 0
416416 18.0283 0.883910
417417 19.4239 0.951194
418418 0.651093 0.0318460
419419 −18.8187 −0.919356 −0.459678 0.888086i 0.652035π-0.652035\pi
−0.459678 + 0.888086i 0.652035π0.652035\pi
420420 0 0
421421 −33.7819 −1.64643 −0.823215 0.567730i 0.807822π-0.807822\pi
−0.823215 + 0.567730i 0.807822π0.807822\pi
422422 17.9426 0.873432
423423 16.7467 0.814250
424424 22.3638 1.08608
425425 0 0
426426 17.4260 0.844295
427427 0.0750160 0.00363028
428428 −60.2079 −2.91026
429429 2.07714 0.100285
430430 0 0
431431 −12.7651 −0.614872 −0.307436 0.951569i 0.599471π-0.599471\pi
−0.307436 + 0.951569i 0.599471π0.599471\pi
432432 11.3099 0.544150
433433 16.0771 0.772618 0.386309 0.922369i 0.373750π-0.373750\pi
0.386309 + 0.922369i 0.373750π0.373750\pi
434434 5.52161 0.265046
435435 0 0
436436 28.4437 1.36220
437437 3.67939 0.176009
438438 −20.2272 −0.966492
439439 1.36945 0.0653604 0.0326802 0.999466i 0.489596π-0.489596\pi
0.0326802 + 0.999466i 0.489596π0.489596\pi
440440 0 0
441441 8.91431 0.424491
442442 74.6369 3.55012
443443 −4.62280 −0.219636 −0.109818 0.993952i 0.535027π-0.535027\pi
−0.109818 + 0.993952i 0.535027π0.535027\pi
444444 37.7848 1.79319
445445 0 0
446446 −2.59933 −0.123082
447447 −17.6199 −0.833391
448448 8.17270 0.386124
449449 23.2555 1.09749 0.548747 0.835989i 0.315105π-0.315105\pi
0.548747 + 0.835989i 0.315105π0.315105\pi
450450 0 0
451451 2.58383 0.121668
452452 0.519485 0.0244345
453453 14.9143 0.700735
454454 −47.8569 −2.24604
455455 0 0
456456 5.00000 0.234146
457457 35.8443 1.67673 0.838364 0.545111i 0.183513π-0.183513\pi
0.838364 + 0.545111i 0.183513π0.183513\pi
458458 13.1140 0.612776
459459 −29.4076 −1.37263
460460 0 0
461461 −14.8812 −0.693086 −0.346543 0.938034i 0.612645π-0.612645\pi
−0.346543 + 0.938034i 0.612645π0.612645\pi
462462 0.602251 0.0280193
463463 29.9554 1.39215 0.696073 0.717971i 0.254929π-0.254929\pi
0.696073 + 0.717971i 0.254929π0.254929\pi
464464 −4.61212 −0.214112
465465 0 0
466466 −43.2186 −2.00206
467467 6.73598 0.311704 0.155852 0.987780i 0.450188π-0.450188\pi
0.155852 + 0.987780i 0.450188π0.450188\pi
468468 −29.9349 −1.38374
469469 −8.55553 −0.395058
470470 0 0
471471 −6.10251 −0.281189
472472 16.5109 0.759977
473473 2.68714 0.123555
474474 11.7445 0.539444
475475 0 0
476476 13.9816 0.640845
477477 7.84704 0.359291
478478 −52.0998 −2.38299
479479 16.6978 0.762943 0.381471 0.924381i 0.375418π-0.375418\pi
0.381471 + 0.924381i 0.375418π0.375418\pi
480480 0 0
481481 −48.3636 −2.20519
482482 67.0091 3.05218
483483 3.40338 0.154859
484484 −39.8881 −1.81310
485485 0 0
486486 30.7672 1.39563
487487 −3.64042 −0.164963 −0.0824816 0.996593i 0.526285π-0.526285\pi
−0.0824816 + 0.996593i 0.526285π0.526285\pi
488488 0.405499 0.0183561
489489 16.3072 0.737439
490490 0 0
491491 −33.3249 −1.50393 −0.751965 0.659203i 0.770894π-0.770894\pi
−0.751965 + 0.659203i 0.770894π0.770894\pi
492492 43.8775 1.97815
493493 11.9922 0.540104
494494 −14.1522 −0.636736
495495 0 0
496496 6.48827 0.291332
497497 −4.17833 −0.187424
498498 1.47861 0.0662582
499499 −37.9914 −1.70073 −0.850365 0.526193i 0.823619π-0.823619\pi
−0.850365 + 0.526193i 0.823619π0.823619\pi
500500 0 0
501501 −26.6786 −1.19191
502502 −21.4183 −0.955945
503503 42.1826 1.88083 0.940414 0.340032i 0.110438π-0.110438\pi
0.940414 + 0.340032i 0.110438π0.110438\pi
504504 −3.92498 −0.174833
505505 0 0
506506 2.39563 0.106499
507507 −28.5881 −1.26964
508508 55.2469 2.45119
509509 −21.9971 −0.975003 −0.487502 0.873122i 0.662092π-0.662092\pi
−0.487502 + 0.873122i 0.662092π0.662092\pi
510510 0 0
511511 4.84997 0.214550
512512 22.0643 0.975115
513513 5.57608 0.246190
514514 16.3091 0.719365
515515 0 0
516516 45.6319 2.00883
517517 3.33048 0.146474
518518 −14.0227 −0.616121
519519 20.0360 0.879485
520520 0 0
521521 20.0977 0.880496 0.440248 0.897876i 0.354891π-0.354891\pi
0.440248 + 0.897876i 0.354891π0.354891\pi
522522 −7.44447 −0.325836
523523 4.64817 0.203250 0.101625 0.994823i 0.467596π-0.467596\pi
0.101625 + 0.994823i 0.467596π0.467596\pi
524524 20.3871 0.890614
525525 0 0
526526 −22.0021 −0.959338
527527 −16.8705 −0.734891
528528 0.707686 0.0307981
529529 −9.46209 −0.411395
530530 0 0
531531 5.79338 0.251411
532532 −2.65109 −0.114939
533533 −56.1620 −2.43265
534534 −49.7664 −2.15360
535535 0 0
536536 −46.2469 −1.99756
537537 −4.34811 −0.187635
538538 −1.18608 −0.0511355
539539 1.77283 0.0763612
540540 0 0
541541 20.0673 0.862759 0.431380 0.902171i 0.358027π-0.358027\pi
0.431380 + 0.902171i 0.358027π0.358027\pi
542542 −8.82087 −0.378889
543543 −29.9504 −1.28529
544544 −15.9709 −0.684747
545545 0 0
546546 −13.0905 −0.560222
547547 37.2010 1.59060 0.795300 0.606216i 0.207313π-0.207313\pi
0.795300 + 0.606216i 0.207313π0.207313\pi
548548 −46.8414 −2.00097
549549 0.142282 0.00607245
550550 0 0
551551 −2.27389 −0.0968710
552552 18.3969 0.783026
553553 −2.81604 −0.119750
554554 10.9036 0.463251
555555 0 0
556556 −55.6708 −2.36097
557557 −44.8393 −1.89990 −0.949951 0.312399i 0.898867π-0.898867\pi
−0.949951 + 0.312399i 0.898867π0.898867\pi
558558 10.4728 0.443347
559559 −58.4076 −2.47038
560560 0 0
561561 −1.84010 −0.0776889
562562 −64.8152 −2.73407
563563 21.9172 0.923701 0.461851 0.886958i 0.347186π-0.347186\pi
0.461851 + 0.886958i 0.347186π0.347186\pi
564564 56.5569 2.38147
565565 0 0
566566 −24.4047 −1.02581
567567 2.15778 0.0906183
568568 −22.5860 −0.947685
569569 9.90656 0.415305 0.207652 0.978203i 0.433418π-0.433418\pi
0.207652 + 0.978203i 0.433418π0.433418\pi
570570 0 0
571571 17.6404 0.738229 0.369114 0.929384i 0.379661π-0.379661\pi
0.369114 + 0.929384i 0.379661π0.379661\pi
572572 −5.95328 −0.248919
573573 −15.8791 −0.663357
574574 −16.2838 −0.679671
575575 0 0
576576 15.5011 0.645878
577577 12.7048 0.528906 0.264453 0.964399i 0.414809π-0.414809\pi
0.264453 + 0.964399i 0.414809π0.414809\pi
578578 −25.7069 −1.06927
579579 24.5851 1.02172
580580 0 0
581581 −0.354534 −0.0147085
582582 13.4592 0.557900
583583 1.56058 0.0646325
584584 26.2165 1.08485
585585 0 0
586586 −4.44659 −0.183687
587587 −15.0438 −0.620924 −0.310462 0.950586i 0.600484π-0.600484\pi
−0.310462 + 0.950586i 0.600484π0.600484\pi
588588 30.1054 1.24153
589589 3.19887 0.131807
590590 0 0
591591 8.44659 0.347446
592592 −16.4776 −0.677225
593593 16.4231 0.674417 0.337208 0.941430i 0.390517π-0.390517\pi
0.337208 + 0.941430i 0.390517π0.390517\pi
594594 3.63055 0.148963
595595 0 0
596596 50.5003 2.06857
597597 29.4076 1.20357
598598 −52.0713 −2.12935
599599 −19.1260 −0.781466 −0.390733 0.920504i 0.627778π-0.627778\pi
−0.390733 + 0.920504i 0.627778π0.627778\pi
600600 0 0
601601 31.4124 1.28134 0.640670 0.767816i 0.278657π-0.278657\pi
0.640670 + 0.767816i 0.278657π0.278657\pi
602602 −16.9349 −0.690213
603603 −16.2272 −0.660821
604604 −42.7459 −1.73930
605605 0 0
606606 13.2789 0.539420
607607 41.5315 1.68571 0.842855 0.538140i 0.180873π-0.180873\pi
0.842855 + 0.538140i 0.180873π0.180873\pi
608608 3.02830 0.122814
609609 −2.10331 −0.0852305
610610 0 0
611611 −72.3913 −2.92864
612612 26.5187 1.07195
613613 −21.7274 −0.877563 −0.438781 0.898594i 0.644590π-0.644590\pi
−0.438781 + 0.898594i 0.644590π0.644590\pi
614614 0.540031 0.0217939
615615 0 0
616616 −0.780579 −0.0314504
617617 −33.6065 −1.35295 −0.676473 0.736467i 0.736493π-0.736493\pi
−0.676473 + 0.736467i 0.736493π0.736493\pi
618618 −10.0857 −0.405706
619619 −27.6036 −1.10948 −0.554741 0.832023i 0.687183π-0.687183\pi
−0.554741 + 0.832023i 0.687183π0.687183\pi
620620 0 0
621621 20.5166 0.823301
622622 −49.8152 −1.99741
623623 11.9327 0.478075
624624 −15.3822 −0.615783
625625 0 0
626626 −26.7077 −1.06745
627627 0.348907 0.0139340
628628 17.4904 0.697942
629629 42.8443 1.70832
630630 0 0
631631 1.94048 0.0772495 0.0386247 0.999254i 0.487702π-0.487702\pi
0.0386247 + 0.999254i 0.487702π0.487702\pi
632632 −15.2221 −0.605504
633633 9.61505 0.382164
634634 44.2702 1.75819
635635 0 0
636636 26.5011 1.05084
637637 −38.5342 −1.52678
638638 −1.48052 −0.0586142
639639 −7.92498 −0.313508
640640 0 0
641641 1.01975 0.0402775 0.0201388 0.999797i 0.493589π-0.493589\pi
0.0201388 + 0.999797i 0.493589π0.493589\pi
642642 −49.9378 −1.97089
643643 −36.9866 −1.45861 −0.729305 0.684189i 0.760156π-0.760156\pi
−0.729305 + 0.684189i 0.760156π0.760156\pi
644644 −9.75441 −0.384377
645645 0 0
646646 12.5371 0.493266
647647 −24.1182 −0.948186 −0.474093 0.880475i 0.657224π-0.657224\pi
−0.474093 + 0.880475i 0.657224π0.657224\pi
648648 11.6639 0.458201
649649 1.15215 0.0452260
650650 0 0
651651 2.95891 0.115969
652652 −46.7381 −1.83041
653653 −37.2603 −1.45811 −0.729054 0.684456i 0.760040π-0.760040\pi
−0.729054 + 0.684456i 0.760040π0.760040\pi
654654 23.5918 0.922512
655655 0 0
656656 −19.1345 −0.747078
657657 9.19887 0.358882
658658 −20.9893 −0.818249
659659 21.4386 0.835130 0.417565 0.908647i 0.362884π-0.362884\pi
0.417565 + 0.908647i 0.362884π0.362884\pi
660660 0 0
661661 0.783503 0.0304747 0.0152374 0.999884i 0.495150π-0.495150\pi
0.0152374 + 0.999884i 0.495150π0.495150\pi
662662 33.5315 1.30324
663663 39.9963 1.55333
664664 −1.91643 −0.0743720
665665 0 0
666666 −26.5966 −1.03060
667667 −8.36653 −0.323953
668668 76.4634 2.95846
669669 −1.39292 −0.0538535
670670 0 0
671671 0.0282963 0.00109237
672672 2.80113 0.108056
673673 50.1903 1.93469 0.967347 0.253454i 0.0815667π-0.0815667\pi
0.967347 + 0.253454i 0.0815667π0.0815667\pi
674674 54.6065 2.10336
675675 0 0
676676 81.9362 3.15139
677677 29.8804 1.14840 0.574198 0.818716i 0.305314π-0.305314\pi
0.574198 + 0.818716i 0.305314π0.305314\pi
678678 0.430872 0.0165475
679679 −3.22717 −0.123847
680680 0 0
681681 −25.6455 −0.982736
682682 2.08277 0.0797532
683683 −12.3326 −0.471894 −0.235947 0.971766i 0.575819π-0.575819\pi
−0.235947 + 0.971766i 0.575819π0.575819\pi
684684 −5.02830 −0.192262
685685 0 0
686686 −23.2555 −0.887898
687687 7.02750 0.268116
688688 −19.8996 −0.758666
689689 −33.9207 −1.29227
690690 0 0
691691 3.62200 0.137787 0.0688936 0.997624i 0.478053π-0.478053\pi
0.0688936 + 0.997624i 0.478053π0.478053\pi
692692 −57.4252 −2.18298
693693 −0.273891 −0.0104042
694694 −9.34891 −0.354880
695695 0 0
696696 −11.3695 −0.430958
697697 49.7528 1.88452
698698 81.8358 3.09753
699699 −23.1599 −0.875988
700700 0 0
701701 34.1209 1.28873 0.644365 0.764718i 0.277122π-0.277122\pi
0.644365 + 0.764718i 0.277122π0.277122\pi
702702 −78.9135 −2.97840
703703 −8.12386 −0.306397
704704 3.08277 0.116186
705705 0 0
706706 −10.1161 −0.380725
707707 −3.18396 −0.119745
708708 19.5654 0.735313
709709 −17.1209 −0.642990 −0.321495 0.946911i 0.604185π-0.604185\pi
−0.321495 + 0.946911i 0.604185π0.604185\pi
710710 0 0
711711 −5.34116 −0.200309
712712 64.5024 2.41733
713713 11.7699 0.440786
714714 11.5966 0.433993
715715 0 0
716716 12.4621 0.465730
717717 −27.9191 −1.04266
718718 48.2440 1.80045
719719 −7.02750 −0.262081 −0.131041 0.991377i 0.541832π-0.541832\pi
−0.131041 + 0.991377i 0.541832π0.541832\pi
720720 0 0
721721 2.41830 0.0900620
722722 −2.37720 −0.0884703
723723 35.9087 1.33546
724724 85.8406 3.19024
725725 0 0
726726 −33.0841 −1.22787
727727 11.8938 0.441115 0.220558 0.975374i 0.429212π-0.429212\pi
0.220558 + 0.975374i 0.429212π0.429212\pi
728728 16.9667 0.628826
729729 25.4026 0.940836
730730 0 0
731731 51.7421 1.91375
732732 0.480515 0.0177604
733733 −20.7154 −0.765142 −0.382571 0.923926i 0.624961π-0.624961\pi
−0.382571 + 0.923926i 0.624961π0.624961\pi
734734 9.15910 0.338069
735735 0 0
736736 11.1423 0.410710
737737 −3.22717 −0.118874
738738 −30.8852 −1.13690
739739 33.8620 1.24563 0.622816 0.782368i 0.285988π-0.285988\pi
0.622816 + 0.782368i 0.285988π0.285988\pi
740740 0 0
741741 −7.58383 −0.278599
742742 −9.83505 −0.361056
743743 −42.7381 −1.56791 −0.783955 0.620818i 0.786800π-0.786800\pi
−0.783955 + 0.620818i 0.786800π0.786800\pi
744744 15.9944 0.586382
745745 0 0
746746 34.7918 1.27382
747747 −0.672440 −0.0246033
748748 5.27389 0.192833
749749 11.9738 0.437514
750750 0 0
751751 11.9581 0.436358 0.218179 0.975909i 0.429988π-0.429988\pi
0.218179 + 0.975909i 0.429988π0.429988\pi
752752 −24.6639 −0.899400
753753 −11.4776 −0.418267
754754 32.1805 1.17194
755755 0 0
756756 −14.7827 −0.537642
757757 −29.1103 −1.05803 −0.529015 0.848612i 0.677439π-0.677439\pi
−0.529015 + 0.848612i 0.677439π0.677439\pi
758758 52.3219 1.90042
759759 1.28376 0.0465977
760760 0 0
761761 −22.3014 −0.808425 −0.404212 0.914665i 0.632454π-0.632454\pi
−0.404212 + 0.914665i 0.632454π0.632454\pi
762762 45.8230 1.65999
763763 −5.65672 −0.204787
764764 45.5109 1.64653
765765 0 0
766766 −7.33531 −0.265036
767767 −25.0432 −0.904258
768768 34.0091 1.22720
769769 3.95891 0.142762 0.0713809 0.997449i 0.477259π-0.477259\pi
0.0713809 + 0.997449i 0.477259π0.477259\pi
770770 0 0
771771 8.73971 0.314753
772772 −70.4634 −2.53603
773773 −27.8139 −1.00040 −0.500199 0.865911i 0.666740π-0.666740\pi
−0.500199 + 0.865911i 0.666740π0.666740\pi
774774 −32.1201 −1.15453
775775 0 0
776776 −17.4445 −0.626220
777777 −7.51444 −0.269579
778778 −20.8529 −0.747612
779779 −9.43380 −0.338001
780780 0 0
781781 −1.57608 −0.0563965
782782 46.1289 1.64957
783783 −12.6794 −0.453124
784784 −13.1287 −0.468882
785785 0 0
786786 16.9095 0.603141
787787 1.82460 0.0650398 0.0325199 0.999471i 0.489647π-0.489647\pi
0.0325199 + 0.999471i 0.489647π0.489647\pi
788788 −24.2087 −0.862401
789789 −11.7905 −0.419751
790790 0 0
791791 −0.103312 −0.00367336
792792 −1.48052 −0.0526078
793793 −0.615047 −0.0218410
794794 −3.79045 −0.134518
795795 0 0
796796 −84.2851 −2.98741
797797 21.0360 0.745135 0.372567 0.928005i 0.378478π-0.378478\pi
0.372567 + 0.928005i 0.378478π0.378478\pi
798798 −2.19887 −0.0778393
799799 64.1300 2.26876
800800 0 0
801801 22.6327 0.799686
802802 41.7261 1.47340
803803 1.82942 0.0645589
804804 −54.8024 −1.93273
805805 0 0
806806 −45.2710 −1.59460
807807 −0.635593 −0.0223739
808808 −17.2109 −0.605476
809809 −0.0819654 −0.00288175 −0.00144088 0.999999i 0.500459π-0.500459\pi
−0.00144088 + 0.999999i 0.500459π0.500459\pi
810810 0 0
811811 −6.72531 −0.236158 −0.118079 0.993004i 0.537674π-0.537674\pi
−0.118079 + 0.993004i 0.537674π0.537674\pi
812812 6.02830 0.211552
813813 −4.72691 −0.165780
814814 −5.28939 −0.185393
815815 0 0
816816 13.6268 0.477034
817817 −9.81100 −0.343243
818818 −87.1994 −3.04886
819819 5.95328 0.208024
820820 0 0
821821 30.9426 1.07990 0.539952 0.841696i 0.318442π-0.318442\pi
0.539952 + 0.841696i 0.318442π0.318442\pi
822822 −38.8513 −1.35509
823823 −26.5908 −0.926896 −0.463448 0.886124i 0.653388π-0.653388\pi
−0.463448 + 0.886124i 0.653388π0.653388\pi
824824 13.0721 0.455388
825825 0 0
826826 −7.26109 −0.252646
827827 5.57900 0.194001 0.0970004 0.995284i 0.469075π-0.469075\pi
0.0970004 + 0.995284i 0.469075π0.469075\pi
828828 −18.5011 −0.642956
829829 18.9765 0.659082 0.329541 0.944141i 0.393106π-0.393106\pi
0.329541 + 0.944141i 0.393106π0.393106\pi
830830 0 0
831831 5.84302 0.202692
832832 −67.0069 −2.32305
833833 34.1367 1.18276
834834 −46.1746 −1.59890
835835 0 0
836836 −1.00000 −0.0345857
837837 17.8372 0.616543
838838 44.7360 1.54538
839839 12.9143 0.445852 0.222926 0.974835i 0.428439π-0.428439\pi
0.222926 + 0.974835i 0.428439π0.428439\pi
840840 0 0
841841 −23.8294 −0.821704
842842 80.3064 2.76754
843843 −34.7331 −1.19627
844844 −27.5577 −0.948574
845845 0 0
846846 −39.8102 −1.36870
847847 7.93273 0.272572
848848 −11.5569 −0.396864
849849 −13.0779 −0.448834
850850 0 0
851851 −29.8908 −1.02464
852852 −26.7643 −0.916929
853853 −6.46077 −0.221213 −0.110606 0.993864i 0.535279π-0.535279\pi
−0.110606 + 0.993864i 0.535279π0.535279\pi
854854 −0.178328 −0.00610227
855855 0 0
856856 64.7245 2.21224
857857 12.4055 0.423764 0.211882 0.977295i 0.432041π-0.432041\pi
0.211882 + 0.977295i 0.432041π0.432041\pi
858858 −4.93778 −0.168573
859859 40.3425 1.37647 0.688234 0.725489i 0.258386π-0.258386\pi
0.688234 + 0.725489i 0.258386π0.258386\pi
860860 0 0
861861 −8.72611 −0.297385
862862 30.3452 1.03356
863863 −1.83235 −0.0623738 −0.0311869 0.999514i 0.509929π-0.509929\pi
−0.0311869 + 0.999514i 0.509929π0.509929\pi
864864 16.8860 0.574474
865865 0 0
866866 −38.2186 −1.29872
867867 −13.7758 −0.467849
868868 −8.48052 −0.287847
869869 −1.06222 −0.0360333
870870 0 0
871871 70.1457 2.37680
872872 −30.5774 −1.03548
873873 −6.12094 −0.207162
874874 −8.74666 −0.295860
875875 0 0
876876 31.0665 1.04964
877877 8.14419 0.275010 0.137505 0.990501i 0.456092π-0.456092\pi
0.137505 + 0.990501i 0.456092π0.456092\pi
878878 −3.25547 −0.109867
879879 −2.38283 −0.0803709
880880 0 0
881881 12.1706 0.410037 0.205019 0.978758i 0.434275π-0.434275\pi
0.205019 + 0.978758i 0.434275π0.434275\pi
882882 −21.1911 −0.713542
883883 −46.7614 −1.57364 −0.786822 0.617179i 0.788275π-0.788275\pi
−0.786822 + 0.617179i 0.788275π0.788275\pi
884884 −114.633 −3.85553
885885 0 0
886886 10.9893 0.369194
887887 34.8804 1.17117 0.585584 0.810611i 0.300865π-0.300865\pi
0.585584 + 0.810611i 0.300865π0.300865\pi
888888 −40.6193 −1.36309
889889 −10.9872 −0.368499
890890 0 0
891891 0.813922 0.0272674
892892 3.99225 0.133670
893893 −12.1599 −0.406916
894894 41.8860 1.40088
895895 0 0
896896 −15.0304 −0.502131
897897 −27.9039 −0.931683
898898 −55.2830 −1.84482
899899 −7.27389 −0.242598
900900 0 0
901901 30.0496 1.00110
902902 −6.14228 −0.204516
903903 −9.07502 −0.301998
904904 −0.558455 −0.0185739
905905 0 0
906906 −35.4543 −1.17789
907907 25.5080 0.846980 0.423490 0.905901i 0.360805π-0.360805\pi
0.423490 + 0.905901i 0.360805π0.360805\pi
908908 73.5024 2.43926
909909 −6.03897 −0.200300
910910 0 0
911911 −21.5032 −0.712432 −0.356216 0.934404i 0.615933π-0.615933\pi
−0.356216 + 0.934404i 0.615933π0.615933\pi
912912 −2.58383 −0.0855591
913913 −0.133731 −0.00442586
914914 −85.2093 −2.81847
915915 0 0
916916 −20.1415 −0.665493
917917 −4.05447 −0.133890
918918 69.9079 2.30730
919919 37.1386 1.22509 0.612544 0.790436i 0.290146π-0.290146\pi
0.612544 + 0.790436i 0.290146π0.290146\pi
920920 0 0
921921 0.289391 0.00953575
922922 35.3756 1.16503
923923 34.2576 1.12760
924924 −0.924984 −0.0304297
925925 0 0
926926 −71.2101 −2.34011
927927 4.58675 0.150649
928928 −6.88601 −0.226044
929929 −3.36170 −0.110294 −0.0551469 0.998478i 0.517563π-0.517563\pi
−0.0551469 + 0.998478i 0.517563π0.517563\pi
930930 0 0
931931 −6.47277 −0.212136
932932 66.3785 2.17430
933933 −26.6949 −0.873951
934934 −16.0128 −0.523955
935935 0 0
936936 32.1805 1.05185
937937 −10.0694 −0.328953 −0.164476 0.986381i 0.552593π-0.552593\pi
−0.164476 + 0.986381i 0.552593π0.552593\pi
938938 20.3382 0.664067
939939 −14.3121 −0.467056
940940 0 0
941941 20.8139 0.678514 0.339257 0.940694i 0.389824π-0.389824\pi
0.339257 + 0.940694i 0.389824π0.389824\pi
942942 14.5069 0.472661
943943 −34.7106 −1.13033
944944 −8.53228 −0.277702
945945 0 0
946946 −6.38788 −0.207688
947947 30.4904 0.990804 0.495402 0.868664i 0.335021π-0.335021\pi
0.495402 + 0.868664i 0.335021π0.335021\pi
948948 −18.0382 −0.585852
949949 −39.7643 −1.29080
950950 0 0
951951 23.7234 0.769284
952952 −15.0304 −0.487139
953953 −7.58383 −0.245664 −0.122832 0.992427i 0.539198π-0.539198\pi
−0.122832 + 0.992427i 0.539198π0.539198\pi
954954 −18.6540 −0.603946
955955 0 0
956956 80.0189 2.58800
957957 −0.793375 −0.0256462
958958 −39.6941 −1.28246
959959 9.31556 0.300815
960960 0 0
961961 −20.7672 −0.669910
962962 114.970 3.70678
963963 22.7106 0.731839
964964 −102.918 −3.31476
965965 0 0
966966 −8.09052 −0.260308
967967 −54.6687 −1.75803 −0.879014 0.476797i 0.841798π-0.841798\pi
−0.879014 + 0.476797i 0.841798π0.841798\pi
968968 42.8804 1.37823
969969 6.71836 0.215825
970970 0 0
971971 −39.9632 −1.28248 −0.641239 0.767341i 0.721579π-0.721579\pi
−0.641239 + 0.767341i 0.721579π0.721579\pi
972972 −47.2547 −1.51569
973973 11.0715 0.354936
974974 8.65402 0.277293
975975 0 0
976976 −0.209548 −0.00670747
977977 −15.2400 −0.487570 −0.243785 0.969829i 0.578389π-0.578389\pi
−0.243785 + 0.969829i 0.578389π0.578389\pi
978978 −38.7656 −1.23959
979979 4.50106 0.143855
980980 0 0
981981 −10.7290 −0.342552
982982 79.2199 2.52801
983983 45.3609 1.44679 0.723394 0.690435i 0.242581π-0.242581\pi
0.723394 + 0.690435i 0.242581π0.242581\pi
984984 −47.1690 −1.50369
985985 0 0
986986 −28.5080 −0.907880
987987 −11.2477 −0.358019
988988 21.7360 0.691514
989989 −36.0985 −1.14787
990990 0 0
991991 −16.3537 −0.519493 −0.259747 0.965677i 0.583639π-0.583639\pi
−0.259747 + 0.965677i 0.583639π0.583639\pi
992992 9.68714 0.307567
993993 17.9688 0.570222
994994 9.93273 0.315047
995995 0 0
996996 −2.27097 −0.0719583
997997 33.2037 1.05157 0.525786 0.850617i 0.323771π-0.323771\pi
0.525786 + 0.850617i 0.323771π0.323771\pi
998998 90.3134 2.85882
999999 −45.2993 −1.43321
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.a.e.1.1 3
3.2 odd 2 4275.2.a.bm.1.3 3
4.3 odd 2 7600.2.a.cc.1.2 3
5.2 odd 4 475.2.b.b.324.1 6
5.3 odd 4 475.2.b.b.324.6 6
5.4 even 2 475.2.a.g.1.3 yes 3
15.14 odd 2 4275.2.a.ba.1.1 3
19.18 odd 2 9025.2.a.bc.1.3 3
20.19 odd 2 7600.2.a.bh.1.2 3
95.94 odd 2 9025.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.1 3 1.1 even 1 trivial
475.2.a.g.1.3 yes 3 5.4 even 2
475.2.b.b.324.1 6 5.2 odd 4
475.2.b.b.324.6 6 5.3 odd 4
4275.2.a.ba.1.1 3 15.14 odd 2
4275.2.a.bm.1.3 3 3.2 odd 2
7600.2.a.bh.1.2 3 20.19 odd 2
7600.2.a.cc.1.2 3 4.3 odd 2
9025.2.a.y.1.1 3 95.94 odd 2
9025.2.a.bc.1.3 3 19.18 odd 2