Properties

Label 475.2.a.e.1.1
Level $475$
Weight $2$
Character 475.1
Self dual yes
Analytic conductor $3.793$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.79289409601\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.169.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.37720\) of defining polynomial
Character \(\chi\) \(=\) 475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37720 q^{2} -1.27389 q^{3} +3.65109 q^{4} +3.02830 q^{6} -0.726109 q^{7} -3.92498 q^{8} -1.37720 q^{9} -0.273891 q^{11} -4.65109 q^{12} +5.95328 q^{13} +1.72611 q^{14} +2.02830 q^{16} -5.27389 q^{17} +3.27389 q^{18} +1.00000 q^{19} +0.924984 q^{21} +0.651093 q^{22} +3.67939 q^{23} +5.00000 q^{24} -14.1522 q^{26} +5.57608 q^{27} -2.65109 q^{28} -2.27389 q^{29} +3.19887 q^{31} +3.02830 q^{32} +0.348907 q^{33} +12.5371 q^{34} -5.02830 q^{36} -8.12386 q^{37} -2.37720 q^{38} -7.58383 q^{39} -9.43380 q^{41} -2.19887 q^{42} -9.81100 q^{43} -1.00000 q^{44} -8.74666 q^{46} -12.1599 q^{47} -2.58383 q^{48} -6.47277 q^{49} +6.71836 q^{51} +21.7360 q^{52} -5.69781 q^{53} -13.2555 q^{54} +2.84997 q^{56} -1.27389 q^{57} +5.40550 q^{58} -4.20662 q^{59} -0.103312 q^{61} -7.60437 q^{62} +1.00000 q^{63} -11.2555 q^{64} -0.829422 q^{66} +11.7827 q^{67} -19.2555 q^{68} -4.68714 q^{69} +5.75441 q^{71} +5.40550 q^{72} -6.67939 q^{73} +19.3121 q^{74} +3.65109 q^{76} +0.198875 q^{77} +18.0283 q^{78} +3.87826 q^{79} -2.97170 q^{81} +22.4260 q^{82} +0.488265 q^{83} +3.37720 q^{84} +23.3227 q^{86} +2.89669 q^{87} +1.07502 q^{88} -16.4338 q^{89} -4.32273 q^{91} +13.4338 q^{92} -4.07502 q^{93} +28.9066 q^{94} -3.85772 q^{96} +4.44447 q^{97} +15.3871 q^{98} +0.377203 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 3 q^{6} - 4 q^{7} - 3 q^{8} + q^{9} + q^{11} - 7 q^{12} - 3 q^{13} + 7 q^{14} - 6 q^{16} - 14 q^{17} + 8 q^{18} + 3 q^{19} - 6 q^{21} - 5 q^{22} - 8 q^{23} + 15 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.37720 −1.68094 −0.840468 0.541861i \(-0.817720\pi\)
−0.840468 + 0.541861i \(0.817720\pi\)
\(3\) −1.27389 −0.735481 −0.367741 0.929928i \(-0.619869\pi\)
−0.367741 + 0.929928i \(0.619869\pi\)
\(4\) 3.65109 1.82555
\(5\) 0 0
\(6\) 3.02830 1.23630
\(7\) −0.726109 −0.274444 −0.137222 0.990540i \(-0.543817\pi\)
−0.137222 + 0.990540i \(0.543817\pi\)
\(8\) −3.92498 −1.38769
\(9\) −1.37720 −0.459068
\(10\) 0 0
\(11\) −0.273891 −0.0825811 −0.0412906 0.999147i \(-0.513147\pi\)
−0.0412906 + 0.999147i \(0.513147\pi\)
\(12\) −4.65109 −1.34266
\(13\) 5.95328 1.65114 0.825571 0.564298i \(-0.190853\pi\)
0.825571 + 0.564298i \(0.190853\pi\)
\(14\) 1.72611 0.461322
\(15\) 0 0
\(16\) 2.02830 0.507074
\(17\) −5.27389 −1.27911 −0.639553 0.768747i \(-0.720881\pi\)
−0.639553 + 0.768747i \(0.720881\pi\)
\(18\) 3.27389 0.771663
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0.924984 0.201848
\(22\) 0.651093 0.138814
\(23\) 3.67939 0.767206 0.383603 0.923498i \(-0.374683\pi\)
0.383603 + 0.923498i \(0.374683\pi\)
\(24\) 5.00000 1.02062
\(25\) 0 0
\(26\) −14.1522 −2.77547
\(27\) 5.57608 1.07312
\(28\) −2.65109 −0.501010
\(29\) −2.27389 −0.422251 −0.211125 0.977459i \(-0.567713\pi\)
−0.211125 + 0.977459i \(0.567713\pi\)
\(30\) 0 0
\(31\) 3.19887 0.574535 0.287267 0.957850i \(-0.407253\pi\)
0.287267 + 0.957850i \(0.407253\pi\)
\(32\) 3.02830 0.535332
\(33\) 0.348907 0.0607368
\(34\) 12.5371 2.15010
\(35\) 0 0
\(36\) −5.02830 −0.838049
\(37\) −8.12386 −1.33555 −0.667777 0.744361i \(-0.732754\pi\)
−0.667777 + 0.744361i \(0.732754\pi\)
\(38\) −2.37720 −0.385633
\(39\) −7.58383 −1.21438
\(40\) 0 0
\(41\) −9.43380 −1.47331 −0.736656 0.676268i \(-0.763596\pi\)
−0.736656 + 0.676268i \(0.763596\pi\)
\(42\) −2.19887 −0.339294
\(43\) −9.81100 −1.49616 −0.748082 0.663607i \(-0.769025\pi\)
−0.748082 + 0.663607i \(0.769025\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −8.74666 −1.28962
\(47\) −12.1599 −1.77370 −0.886852 0.462053i \(-0.847113\pi\)
−0.886852 + 0.462053i \(0.847113\pi\)
\(48\) −2.58383 −0.372943
\(49\) −6.47277 −0.924681
\(50\) 0 0
\(51\) 6.71836 0.940758
\(52\) 21.7360 3.01424
\(53\) −5.69781 −0.782655 −0.391327 0.920252i \(-0.627984\pi\)
−0.391327 + 0.920252i \(0.627984\pi\)
\(54\) −13.2555 −1.80384
\(55\) 0 0
\(56\) 2.84997 0.380843
\(57\) −1.27389 −0.168731
\(58\) 5.40550 0.709777
\(59\) −4.20662 −0.547656 −0.273828 0.961779i \(-0.588290\pi\)
−0.273828 + 0.961779i \(0.588290\pi\)
\(60\) 0 0
\(61\) −0.103312 −0.0132278 −0.00661389 0.999978i \(-0.502105\pi\)
−0.00661389 + 0.999978i \(0.502105\pi\)
\(62\) −7.60437 −0.965756
\(63\) 1.00000 0.125988
\(64\) −11.2555 −1.40693
\(65\) 0 0
\(66\) −0.829422 −0.102095
\(67\) 11.7827 1.43949 0.719743 0.694241i \(-0.244260\pi\)
0.719743 + 0.694241i \(0.244260\pi\)
\(68\) −19.2555 −2.33507
\(69\) −4.68714 −0.564265
\(70\) 0 0
\(71\) 5.75441 0.682922 0.341461 0.939896i \(-0.389078\pi\)
0.341461 + 0.939896i \(0.389078\pi\)
\(72\) 5.40550 0.637044
\(73\) −6.67939 −0.781763 −0.390882 0.920441i \(-0.627830\pi\)
−0.390882 + 0.920441i \(0.627830\pi\)
\(74\) 19.3121 2.24498
\(75\) 0 0
\(76\) 3.65109 0.418809
\(77\) 0.198875 0.0226639
\(78\) 18.0283 2.04130
\(79\) 3.87826 0.436339 0.218169 0.975911i \(-0.429991\pi\)
0.218169 + 0.975911i \(0.429991\pi\)
\(80\) 0 0
\(81\) −2.97170 −0.330189
\(82\) 22.4260 2.47654
\(83\) 0.488265 0.0535941 0.0267970 0.999641i \(-0.491469\pi\)
0.0267970 + 0.999641i \(0.491469\pi\)
\(84\) 3.37720 0.368483
\(85\) 0 0
\(86\) 23.3227 2.51495
\(87\) 2.89669 0.310558
\(88\) 1.07502 0.114597
\(89\) −16.4338 −1.74198 −0.870989 0.491302i \(-0.836521\pi\)
−0.870989 + 0.491302i \(0.836521\pi\)
\(90\) 0 0
\(91\) −4.32273 −0.453146
\(92\) 13.4338 1.40057
\(93\) −4.07502 −0.422559
\(94\) 28.9066 2.98148
\(95\) 0 0
\(96\) −3.85772 −0.393727
\(97\) 4.44447 0.451267 0.225634 0.974212i \(-0.427555\pi\)
0.225634 + 0.974212i \(0.427555\pi\)
\(98\) 15.3871 1.55433
\(99\) 0.377203 0.0379103
\(100\) 0 0
\(101\) 4.38495 0.436319 0.218160 0.975913i \(-0.429995\pi\)
0.218160 + 0.975913i \(0.429995\pi\)
\(102\) −15.9709 −1.58136
\(103\) −3.33048 −0.328162 −0.164081 0.986447i \(-0.552466\pi\)
−0.164081 + 0.986447i \(0.552466\pi\)
\(104\) −23.3665 −2.29128
\(105\) 0 0
\(106\) 13.5449 1.31559
\(107\) −16.4904 −1.59419 −0.797093 0.603857i \(-0.793630\pi\)
−0.797093 + 0.603857i \(0.793630\pi\)
\(108\) 20.3588 1.95902
\(109\) 7.79045 0.746190 0.373095 0.927793i \(-0.378297\pi\)
0.373095 + 0.927793i \(0.378297\pi\)
\(110\) 0 0
\(111\) 10.3489 0.982275
\(112\) −1.47277 −0.139163
\(113\) 0.142282 0.0133848 0.00669238 0.999978i \(-0.497870\pi\)
0.00669238 + 0.999978i \(0.497870\pi\)
\(114\) 3.02830 0.283626
\(115\) 0 0
\(116\) −8.30219 −0.770839
\(117\) −8.19887 −0.757986
\(118\) 10.0000 0.920575
\(119\) 3.82942 0.351043
\(120\) 0 0
\(121\) −10.9250 −0.993180
\(122\) 0.245594 0.0222351
\(123\) 12.0176 1.08359
\(124\) 11.6794 1.04884
\(125\) 0 0
\(126\) −2.37720 −0.211778
\(127\) 15.1316 1.34271 0.671357 0.741135i \(-0.265712\pi\)
0.671357 + 0.741135i \(0.265712\pi\)
\(128\) 20.6999 1.82963
\(129\) 12.4981 1.10040
\(130\) 0 0
\(131\) 5.58383 0.487861 0.243931 0.969793i \(-0.421563\pi\)
0.243931 + 0.969793i \(0.421563\pi\)
\(132\) 1.27389 0.110878
\(133\) −0.726109 −0.0629617
\(134\) −28.0099 −2.41968
\(135\) 0 0
\(136\) 20.6999 1.77500
\(137\) −12.8294 −1.09609 −0.548046 0.836448i \(-0.684628\pi\)
−0.548046 + 0.836448i \(0.684628\pi\)
\(138\) 11.1423 0.948494
\(139\) −15.2477 −1.29329 −0.646647 0.762789i \(-0.723829\pi\)
−0.646647 + 0.762789i \(0.723829\pi\)
\(140\) 0 0
\(141\) 15.4904 1.30453
\(142\) −13.6794 −1.14795
\(143\) −1.63055 −0.136353
\(144\) −2.79338 −0.232781
\(145\) 0 0
\(146\) 15.8783 1.31409
\(147\) 8.24559 0.680085
\(148\) −29.6610 −2.43812
\(149\) 13.8315 1.13312 0.566562 0.824019i \(-0.308273\pi\)
0.566562 + 0.824019i \(0.308273\pi\)
\(150\) 0 0
\(151\) −11.7077 −0.952758 −0.476379 0.879240i \(-0.658051\pi\)
−0.476379 + 0.879240i \(0.658051\pi\)
\(152\) −3.92498 −0.318358
\(153\) 7.26322 0.587196
\(154\) −0.472765 −0.0380965
\(155\) 0 0
\(156\) −27.6893 −2.21692
\(157\) 4.79045 0.382320 0.191160 0.981559i \(-0.438775\pi\)
0.191160 + 0.981559i \(0.438775\pi\)
\(158\) −9.21942 −0.733458
\(159\) 7.25839 0.575628
\(160\) 0 0
\(161\) −2.67164 −0.210555
\(162\) 7.06434 0.555027
\(163\) −12.8011 −1.00266 −0.501331 0.865256i \(-0.667156\pi\)
−0.501331 + 0.865256i \(0.667156\pi\)
\(164\) −34.4437 −2.68960
\(165\) 0 0
\(166\) −1.16071 −0.0900882
\(167\) 20.9426 1.62059 0.810294 0.586024i \(-0.199308\pi\)
0.810294 + 0.586024i \(0.199308\pi\)
\(168\) −3.63055 −0.280103
\(169\) 22.4415 1.72627
\(170\) 0 0
\(171\) −1.37720 −0.105317
\(172\) −35.8209 −2.73132
\(173\) −15.7282 −1.19580 −0.597898 0.801572i \(-0.703997\pi\)
−0.597898 + 0.801572i \(0.703997\pi\)
\(174\) −6.88601 −0.522027
\(175\) 0 0
\(176\) −0.555531 −0.0418747
\(177\) 5.35878 0.402791
\(178\) 39.0665 2.92816
\(179\) 3.41325 0.255118 0.127559 0.991831i \(-0.459286\pi\)
0.127559 + 0.991831i \(0.459286\pi\)
\(180\) 0 0
\(181\) 23.5109 1.74755 0.873777 0.486327i \(-0.161664\pi\)
0.873777 + 0.486327i \(0.161664\pi\)
\(182\) 10.2760 0.761709
\(183\) 0.131609 0.00972878
\(184\) −14.4415 −1.06464
\(185\) 0 0
\(186\) 9.68714 0.710296
\(187\) 1.44447 0.105630
\(188\) −44.3969 −3.23798
\(189\) −4.04884 −0.294510
\(190\) 0 0
\(191\) 12.4650 0.901937 0.450968 0.892540i \(-0.351079\pi\)
0.450968 + 0.892540i \(0.351079\pi\)
\(192\) 14.3382 1.03477
\(193\) −19.2993 −1.38919 −0.694596 0.719400i \(-0.744417\pi\)
−0.694596 + 0.719400i \(0.744417\pi\)
\(194\) −10.5654 −0.758552
\(195\) 0 0
\(196\) −23.6327 −1.68805
\(197\) −6.63055 −0.472407 −0.236203 0.971704i \(-0.575903\pi\)
−0.236203 + 0.971704i \(0.575903\pi\)
\(198\) −0.896688 −0.0637248
\(199\) −23.0849 −1.63644 −0.818222 0.574902i \(-0.805040\pi\)
−0.818222 + 0.574902i \(0.805040\pi\)
\(200\) 0 0
\(201\) −15.0099 −1.05871
\(202\) −10.4239 −0.733425
\(203\) 1.65109 0.115884
\(204\) 24.5294 1.71740
\(205\) 0 0
\(206\) 7.91723 0.551620
\(207\) −5.06727 −0.352199
\(208\) 12.0750 0.837252
\(209\) −0.273891 −0.0189454
\(210\) 0 0
\(211\) −7.54778 −0.519611 −0.259805 0.965661i \(-0.583658\pi\)
−0.259805 + 0.965661i \(0.583658\pi\)
\(212\) −20.8032 −1.42877
\(213\) −7.33048 −0.502276
\(214\) 39.2010 2.67973
\(215\) 0 0
\(216\) −21.8860 −1.48915
\(217\) −2.32273 −0.157677
\(218\) −18.5195 −1.25430
\(219\) 8.50881 0.574972
\(220\) 0 0
\(221\) −31.3969 −2.11199
\(222\) −24.6015 −1.65114
\(223\) 1.09344 0.0732221 0.0366111 0.999330i \(-0.488344\pi\)
0.0366111 + 0.999330i \(0.488344\pi\)
\(224\) −2.19887 −0.146918
\(225\) 0 0
\(226\) −0.338233 −0.0224989
\(227\) 20.1316 1.33618 0.668091 0.744080i \(-0.267112\pi\)
0.668091 + 0.744080i \(0.267112\pi\)
\(228\) −4.65109 −0.308026
\(229\) −5.51656 −0.364545 −0.182272 0.983248i \(-0.558345\pi\)
−0.182272 + 0.983248i \(0.558345\pi\)
\(230\) 0 0
\(231\) −0.253344 −0.0166688
\(232\) 8.92498 0.585954
\(233\) 18.1805 1.19104 0.595520 0.803340i \(-0.296946\pi\)
0.595520 + 0.803340i \(0.296946\pi\)
\(234\) 19.4904 1.27413
\(235\) 0 0
\(236\) −15.3588 −0.999771
\(237\) −4.94048 −0.320919
\(238\) −9.10331 −0.590080
\(239\) 21.9164 1.41766 0.708828 0.705381i \(-0.249224\pi\)
0.708828 + 0.705381i \(0.249224\pi\)
\(240\) 0 0
\(241\) −28.1882 −1.81576 −0.907881 0.419228i \(-0.862301\pi\)
−0.907881 + 0.419228i \(0.862301\pi\)
\(242\) 25.9709 1.66947
\(243\) −12.9426 −0.830269
\(244\) −0.377203 −0.0241479
\(245\) 0 0
\(246\) −28.5683 −1.82145
\(247\) 5.95328 0.378798
\(248\) −12.5555 −0.797277
\(249\) −0.621996 −0.0394174
\(250\) 0 0
\(251\) 9.00987 0.568698 0.284349 0.958721i \(-0.408223\pi\)
0.284349 + 0.958721i \(0.408223\pi\)
\(252\) 3.65109 0.229997
\(253\) −1.00775 −0.0633567
\(254\) −35.9709 −2.25702
\(255\) 0 0
\(256\) −26.6970 −1.66856
\(257\) −6.86064 −0.427955 −0.213978 0.976839i \(-0.568642\pi\)
−0.213978 + 0.976839i \(0.568642\pi\)
\(258\) −29.7106 −1.84970
\(259\) 5.89881 0.366534
\(260\) 0 0
\(261\) 3.13161 0.193842
\(262\) −13.2739 −0.820064
\(263\) 9.25547 0.570717 0.285358 0.958421i \(-0.407887\pi\)
0.285358 + 0.958421i \(0.407887\pi\)
\(264\) −1.36945 −0.0842840
\(265\) 0 0
\(266\) 1.72611 0.105835
\(267\) 20.9349 1.28119
\(268\) 43.0197 2.62785
\(269\) 0.498939 0.0304208 0.0152104 0.999884i \(-0.495158\pi\)
0.0152104 + 0.999884i \(0.495158\pi\)
\(270\) 0 0
\(271\) 3.71061 0.225403 0.112702 0.993629i \(-0.464050\pi\)
0.112702 + 0.993629i \(0.464050\pi\)
\(272\) −10.6970 −0.648602
\(273\) 5.50669 0.333280
\(274\) 30.4981 1.84246
\(275\) 0 0
\(276\) −17.1132 −1.03009
\(277\) −4.58675 −0.275591 −0.137796 0.990461i \(-0.544002\pi\)
−0.137796 + 0.990461i \(0.544002\pi\)
\(278\) 36.2469 2.17395
\(279\) −4.40550 −0.263750
\(280\) 0 0
\(281\) 27.2653 1.62651 0.813257 0.581905i \(-0.197692\pi\)
0.813257 + 0.581905i \(0.197692\pi\)
\(282\) −36.8238 −2.19283
\(283\) 10.2661 0.610259 0.305129 0.952311i \(-0.401300\pi\)
0.305129 + 0.952311i \(0.401300\pi\)
\(284\) 21.0099 1.24671
\(285\) 0 0
\(286\) 3.87614 0.229201
\(287\) 6.84997 0.404341
\(288\) −4.17058 −0.245754
\(289\) 10.8139 0.636113
\(290\) 0 0
\(291\) −5.66177 −0.331899
\(292\) −24.3871 −1.42715
\(293\) 1.87051 0.109277 0.0546383 0.998506i \(-0.482599\pi\)
0.0546383 + 0.998506i \(0.482599\pi\)
\(294\) −19.6015 −1.14318
\(295\) 0 0
\(296\) 31.8860 1.85334
\(297\) −1.52723 −0.0886192
\(298\) −32.8804 −1.90471
\(299\) 21.9044 1.26677
\(300\) 0 0
\(301\) 7.12386 0.410612
\(302\) 27.8315 1.60153
\(303\) −5.58595 −0.320904
\(304\) 2.02830 0.116331
\(305\) 0 0
\(306\) −17.2661 −0.987040
\(307\) −0.227171 −0.0129653 −0.00648266 0.999979i \(-0.502064\pi\)
−0.00648266 + 0.999979i \(0.502064\pi\)
\(308\) 0.726109 0.0413739
\(309\) 4.24267 0.241357
\(310\) 0 0
\(311\) 20.9554 1.18827 0.594136 0.804365i \(-0.297494\pi\)
0.594136 + 0.804365i \(0.297494\pi\)
\(312\) 29.7664 1.68519
\(313\) 11.2349 0.635035 0.317518 0.948252i \(-0.397151\pi\)
0.317518 + 0.948252i \(0.397151\pi\)
\(314\) −11.3879 −0.642655
\(315\) 0 0
\(316\) 14.1599 0.796557
\(317\) −18.6228 −1.04596 −0.522980 0.852345i \(-0.675180\pi\)
−0.522980 + 0.852345i \(0.675180\pi\)
\(318\) −17.2547 −0.967594
\(319\) 0.622797 0.0348699
\(320\) 0 0
\(321\) 21.0069 1.17249
\(322\) 6.35103 0.353929
\(323\) −5.27389 −0.293447
\(324\) −10.8500 −0.602776
\(325\) 0 0
\(326\) 30.4309 1.68541
\(327\) −9.92418 −0.548809
\(328\) 37.0275 2.04450
\(329\) 8.82942 0.486782
\(330\) 0 0
\(331\) −14.1054 −0.775305 −0.387652 0.921806i \(-0.626714\pi\)
−0.387652 + 0.921806i \(0.626714\pi\)
\(332\) 1.78270 0.0978385
\(333\) 11.1882 0.613110
\(334\) −49.7848 −2.72410
\(335\) 0 0
\(336\) 1.87614 0.102352
\(337\) −22.9709 −1.25130 −0.625652 0.780102i \(-0.715167\pi\)
−0.625652 + 0.780102i \(0.715167\pi\)
\(338\) −53.3481 −2.90175
\(339\) −0.181252 −0.00984424
\(340\) 0 0
\(341\) −0.876142 −0.0474457
\(342\) 3.27389 0.177032
\(343\) 9.78270 0.528216
\(344\) 38.5080 2.07621
\(345\) 0 0
\(346\) 37.3892 2.01006
\(347\) 3.93273 0.211120 0.105560 0.994413i \(-0.466336\pi\)
0.105560 + 0.994413i \(0.466336\pi\)
\(348\) 10.5761 0.566937
\(349\) −34.4252 −1.84274 −0.921371 0.388685i \(-0.872929\pi\)
−0.921371 + 0.388685i \(0.872929\pi\)
\(350\) 0 0
\(351\) 33.1960 1.77187
\(352\) −0.829422 −0.0442083
\(353\) 4.25547 0.226496 0.113248 0.993567i \(-0.463875\pi\)
0.113248 + 0.993567i \(0.463875\pi\)
\(354\) −12.7389 −0.677065
\(355\) 0 0
\(356\) −60.0013 −3.18006
\(357\) −4.87826 −0.258185
\(358\) −8.11399 −0.428837
\(359\) −20.2944 −1.07110 −0.535550 0.844504i \(-0.679896\pi\)
−0.535550 + 0.844504i \(0.679896\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −55.8903 −2.93753
\(363\) 13.9172 0.730465
\(364\) −15.7827 −0.827238
\(365\) 0 0
\(366\) −0.312860 −0.0163535
\(367\) −3.85289 −0.201119 −0.100560 0.994931i \(-0.532063\pi\)
−0.100560 + 0.994931i \(0.532063\pi\)
\(368\) 7.46289 0.389030
\(369\) 12.9922 0.676350
\(370\) 0 0
\(371\) 4.13724 0.214795
\(372\) −14.8783 −0.771402
\(373\) −14.6356 −0.757802 −0.378901 0.925437i \(-0.623698\pi\)
−0.378901 + 0.925437i \(0.623698\pi\)
\(374\) −3.43380 −0.177557
\(375\) 0 0
\(376\) 47.7274 2.46135
\(377\) −13.5371 −0.697197
\(378\) 9.62492 0.495052
\(379\) −22.0099 −1.13057 −0.565286 0.824895i \(-0.691234\pi\)
−0.565286 + 0.824895i \(0.691234\pi\)
\(380\) 0 0
\(381\) −19.2760 −0.987540
\(382\) −29.6319 −1.51610
\(383\) 3.08569 0.157671 0.0788357 0.996888i \(-0.474880\pi\)
0.0788357 + 0.996888i \(0.474880\pi\)
\(384\) −26.3695 −1.34566
\(385\) 0 0
\(386\) 45.8783 2.33514
\(387\) 13.5117 0.686840
\(388\) 16.2272 0.823810
\(389\) 8.77203 0.444760 0.222380 0.974960i \(-0.428618\pi\)
0.222380 + 0.974960i \(0.428618\pi\)
\(390\) 0 0
\(391\) −19.4047 −0.981338
\(392\) 25.4055 1.28317
\(393\) −7.11319 −0.358813
\(394\) 15.7622 0.794086
\(395\) 0 0
\(396\) 1.37720 0.0692070
\(397\) 1.59450 0.0800257 0.0400129 0.999199i \(-0.487260\pi\)
0.0400129 + 0.999199i \(0.487260\pi\)
\(398\) 54.8775 2.75076
\(399\) 0.924984 0.0463071
\(400\) 0 0
\(401\) −17.5526 −0.876535 −0.438268 0.898844i \(-0.644408\pi\)
−0.438268 + 0.898844i \(0.644408\pi\)
\(402\) 35.6815 1.77963
\(403\) 19.0438 0.948639
\(404\) 16.0099 0.796521
\(405\) 0 0
\(406\) −3.92498 −0.194794
\(407\) 2.22505 0.110292
\(408\) −26.3695 −1.30548
\(409\) 36.6815 1.81378 0.906892 0.421363i \(-0.138448\pi\)
0.906892 + 0.421363i \(0.138448\pi\)
\(410\) 0 0
\(411\) 16.3433 0.806155
\(412\) −12.1599 −0.599076
\(413\) 3.05447 0.150301
\(414\) 12.0459 0.592025
\(415\) 0 0
\(416\) 18.0283 0.883910
\(417\) 19.4239 0.951194
\(418\) 0.651093 0.0318460
\(419\) −18.8187 −0.919356 −0.459678 0.888086i \(-0.652035\pi\)
−0.459678 + 0.888086i \(0.652035\pi\)
\(420\) 0 0
\(421\) −33.7819 −1.64643 −0.823215 0.567730i \(-0.807822\pi\)
−0.823215 + 0.567730i \(0.807822\pi\)
\(422\) 17.9426 0.873432
\(423\) 16.7467 0.814250
\(424\) 22.3638 1.08608
\(425\) 0 0
\(426\) 17.4260 0.844295
\(427\) 0.0750160 0.00363028
\(428\) −60.2079 −2.91026
\(429\) 2.07714 0.100285
\(430\) 0 0
\(431\) −12.7651 −0.614872 −0.307436 0.951569i \(-0.599471\pi\)
−0.307436 + 0.951569i \(0.599471\pi\)
\(432\) 11.3099 0.544150
\(433\) 16.0771 0.772618 0.386309 0.922369i \(-0.373750\pi\)
0.386309 + 0.922369i \(0.373750\pi\)
\(434\) 5.52161 0.265046
\(435\) 0 0
\(436\) 28.4437 1.36220
\(437\) 3.67939 0.176009
\(438\) −20.2272 −0.966492
\(439\) 1.36945 0.0653604 0.0326802 0.999466i \(-0.489596\pi\)
0.0326802 + 0.999466i \(0.489596\pi\)
\(440\) 0 0
\(441\) 8.91431 0.424491
\(442\) 74.6369 3.55012
\(443\) −4.62280 −0.219636 −0.109818 0.993952i \(-0.535027\pi\)
−0.109818 + 0.993952i \(0.535027\pi\)
\(444\) 37.7848 1.79319
\(445\) 0 0
\(446\) −2.59933 −0.123082
\(447\) −17.6199 −0.833391
\(448\) 8.17270 0.386124
\(449\) 23.2555 1.09749 0.548747 0.835989i \(-0.315105\pi\)
0.548747 + 0.835989i \(0.315105\pi\)
\(450\) 0 0
\(451\) 2.58383 0.121668
\(452\) 0.519485 0.0244345
\(453\) 14.9143 0.700735
\(454\) −47.8569 −2.24604
\(455\) 0 0
\(456\) 5.00000 0.234146
\(457\) 35.8443 1.67673 0.838364 0.545111i \(-0.183513\pi\)
0.838364 + 0.545111i \(0.183513\pi\)
\(458\) 13.1140 0.612776
\(459\) −29.4076 −1.37263
\(460\) 0 0
\(461\) −14.8812 −0.693086 −0.346543 0.938034i \(-0.612645\pi\)
−0.346543 + 0.938034i \(0.612645\pi\)
\(462\) 0.602251 0.0280193
\(463\) 29.9554 1.39215 0.696073 0.717971i \(-0.254929\pi\)
0.696073 + 0.717971i \(0.254929\pi\)
\(464\) −4.61212 −0.214112
\(465\) 0 0
\(466\) −43.2186 −2.00206
\(467\) 6.73598 0.311704 0.155852 0.987780i \(-0.450188\pi\)
0.155852 + 0.987780i \(0.450188\pi\)
\(468\) −29.9349 −1.38374
\(469\) −8.55553 −0.395058
\(470\) 0 0
\(471\) −6.10251 −0.281189
\(472\) 16.5109 0.759977
\(473\) 2.68714 0.123555
\(474\) 11.7445 0.539444
\(475\) 0 0
\(476\) 13.9816 0.640845
\(477\) 7.84704 0.359291
\(478\) −52.0998 −2.38299
\(479\) 16.6978 0.762943 0.381471 0.924381i \(-0.375418\pi\)
0.381471 + 0.924381i \(0.375418\pi\)
\(480\) 0 0
\(481\) −48.3636 −2.20519
\(482\) 67.0091 3.05218
\(483\) 3.40338 0.154859
\(484\) −39.8881 −1.81310
\(485\) 0 0
\(486\) 30.7672 1.39563
\(487\) −3.64042 −0.164963 −0.0824816 0.996593i \(-0.526285\pi\)
−0.0824816 + 0.996593i \(0.526285\pi\)
\(488\) 0.405499 0.0183561
\(489\) 16.3072 0.737439
\(490\) 0 0
\(491\) −33.3249 −1.50393 −0.751965 0.659203i \(-0.770894\pi\)
−0.751965 + 0.659203i \(0.770894\pi\)
\(492\) 43.8775 1.97815
\(493\) 11.9922 0.540104
\(494\) −14.1522 −0.636736
\(495\) 0 0
\(496\) 6.48827 0.291332
\(497\) −4.17833 −0.187424
\(498\) 1.47861 0.0662582
\(499\) −37.9914 −1.70073 −0.850365 0.526193i \(-0.823619\pi\)
−0.850365 + 0.526193i \(0.823619\pi\)
\(500\) 0 0
\(501\) −26.6786 −1.19191
\(502\) −21.4183 −0.955945
\(503\) 42.1826 1.88083 0.940414 0.340032i \(-0.110438\pi\)
0.940414 + 0.340032i \(0.110438\pi\)
\(504\) −3.92498 −0.174833
\(505\) 0 0
\(506\) 2.39563 0.106499
\(507\) −28.5881 −1.26964
\(508\) 55.2469 2.45119
\(509\) −21.9971 −0.975003 −0.487502 0.873122i \(-0.662092\pi\)
−0.487502 + 0.873122i \(0.662092\pi\)
\(510\) 0 0
\(511\) 4.84997 0.214550
\(512\) 22.0643 0.975115
\(513\) 5.57608 0.246190
\(514\) 16.3091 0.719365
\(515\) 0 0
\(516\) 45.6319 2.00883
\(517\) 3.33048 0.146474
\(518\) −14.0227 −0.616121
\(519\) 20.0360 0.879485
\(520\) 0 0
\(521\) 20.0977 0.880496 0.440248 0.897876i \(-0.354891\pi\)
0.440248 + 0.897876i \(0.354891\pi\)
\(522\) −7.44447 −0.325836
\(523\) 4.64817 0.203250 0.101625 0.994823i \(-0.467596\pi\)
0.101625 + 0.994823i \(0.467596\pi\)
\(524\) 20.3871 0.890614
\(525\) 0 0
\(526\) −22.0021 −0.959338
\(527\) −16.8705 −0.734891
\(528\) 0.707686 0.0307981
\(529\) −9.46209 −0.411395
\(530\) 0 0
\(531\) 5.79338 0.251411
\(532\) −2.65109 −0.114939
\(533\) −56.1620 −2.43265
\(534\) −49.7664 −2.15360
\(535\) 0 0
\(536\) −46.2469 −1.99756
\(537\) −4.34811 −0.187635
\(538\) −1.18608 −0.0511355
\(539\) 1.77283 0.0763612
\(540\) 0 0
\(541\) 20.0673 0.862759 0.431380 0.902171i \(-0.358027\pi\)
0.431380 + 0.902171i \(0.358027\pi\)
\(542\) −8.82087 −0.378889
\(543\) −29.9504 −1.28529
\(544\) −15.9709 −0.684747
\(545\) 0 0
\(546\) −13.0905 −0.560222
\(547\) 37.2010 1.59060 0.795300 0.606216i \(-0.207313\pi\)
0.795300 + 0.606216i \(0.207313\pi\)
\(548\) −46.8414 −2.00097
\(549\) 0.142282 0.00607245
\(550\) 0 0
\(551\) −2.27389 −0.0968710
\(552\) 18.3969 0.783026
\(553\) −2.81604 −0.119750
\(554\) 10.9036 0.463251
\(555\) 0 0
\(556\) −55.6708 −2.36097
\(557\) −44.8393 −1.89990 −0.949951 0.312399i \(-0.898867\pi\)
−0.949951 + 0.312399i \(0.898867\pi\)
\(558\) 10.4728 0.443347
\(559\) −58.4076 −2.47038
\(560\) 0 0
\(561\) −1.84010 −0.0776889
\(562\) −64.8152 −2.73407
\(563\) 21.9172 0.923701 0.461851 0.886958i \(-0.347186\pi\)
0.461851 + 0.886958i \(0.347186\pi\)
\(564\) 56.5569 2.38147
\(565\) 0 0
\(566\) −24.4047 −1.02581
\(567\) 2.15778 0.0906183
\(568\) −22.5860 −0.947685
\(569\) 9.90656 0.415305 0.207652 0.978203i \(-0.433418\pi\)
0.207652 + 0.978203i \(0.433418\pi\)
\(570\) 0 0
\(571\) 17.6404 0.738229 0.369114 0.929384i \(-0.379661\pi\)
0.369114 + 0.929384i \(0.379661\pi\)
\(572\) −5.95328 −0.248919
\(573\) −15.8791 −0.663357
\(574\) −16.2838 −0.679671
\(575\) 0 0
\(576\) 15.5011 0.645878
\(577\) 12.7048 0.528906 0.264453 0.964399i \(-0.414809\pi\)
0.264453 + 0.964399i \(0.414809\pi\)
\(578\) −25.7069 −1.06927
\(579\) 24.5851 1.02172
\(580\) 0 0
\(581\) −0.354534 −0.0147085
\(582\) 13.4592 0.557900
\(583\) 1.56058 0.0646325
\(584\) 26.2165 1.08485
\(585\) 0 0
\(586\) −4.44659 −0.183687
\(587\) −15.0438 −0.620924 −0.310462 0.950586i \(-0.600484\pi\)
−0.310462 + 0.950586i \(0.600484\pi\)
\(588\) 30.1054 1.24153
\(589\) 3.19887 0.131807
\(590\) 0 0
\(591\) 8.44659 0.347446
\(592\) −16.4776 −0.677225
\(593\) 16.4231 0.674417 0.337208 0.941430i \(-0.390517\pi\)
0.337208 + 0.941430i \(0.390517\pi\)
\(594\) 3.63055 0.148963
\(595\) 0 0
\(596\) 50.5003 2.06857
\(597\) 29.4076 1.20357
\(598\) −52.0713 −2.12935
\(599\) −19.1260 −0.781466 −0.390733 0.920504i \(-0.627778\pi\)
−0.390733 + 0.920504i \(0.627778\pi\)
\(600\) 0 0
\(601\) 31.4124 1.28134 0.640670 0.767816i \(-0.278657\pi\)
0.640670 + 0.767816i \(0.278657\pi\)
\(602\) −16.9349 −0.690213
\(603\) −16.2272 −0.660821
\(604\) −42.7459 −1.73930
\(605\) 0 0
\(606\) 13.2789 0.539420
\(607\) 41.5315 1.68571 0.842855 0.538140i \(-0.180873\pi\)
0.842855 + 0.538140i \(0.180873\pi\)
\(608\) 3.02830 0.122814
\(609\) −2.10331 −0.0852305
\(610\) 0 0
\(611\) −72.3913 −2.92864
\(612\) 26.5187 1.07195
\(613\) −21.7274 −0.877563 −0.438781 0.898594i \(-0.644590\pi\)
−0.438781 + 0.898594i \(0.644590\pi\)
\(614\) 0.540031 0.0217939
\(615\) 0 0
\(616\) −0.780579 −0.0314504
\(617\) −33.6065 −1.35295 −0.676473 0.736467i \(-0.736493\pi\)
−0.676473 + 0.736467i \(0.736493\pi\)
\(618\) −10.0857 −0.405706
\(619\) −27.6036 −1.10948 −0.554741 0.832023i \(-0.687183\pi\)
−0.554741 + 0.832023i \(0.687183\pi\)
\(620\) 0 0
\(621\) 20.5166 0.823301
\(622\) −49.8152 −1.99741
\(623\) 11.9327 0.478075
\(624\) −15.3822 −0.615783
\(625\) 0 0
\(626\) −26.7077 −1.06745
\(627\) 0.348907 0.0139340
\(628\) 17.4904 0.697942
\(629\) 42.8443 1.70832
\(630\) 0 0
\(631\) 1.94048 0.0772495 0.0386247 0.999254i \(-0.487702\pi\)
0.0386247 + 0.999254i \(0.487702\pi\)
\(632\) −15.2221 −0.605504
\(633\) 9.61505 0.382164
\(634\) 44.2702 1.75819
\(635\) 0 0
\(636\) 26.5011 1.05084
\(637\) −38.5342 −1.52678
\(638\) −1.48052 −0.0586142
\(639\) −7.92498 −0.313508
\(640\) 0 0
\(641\) 1.01975 0.0402775 0.0201388 0.999797i \(-0.493589\pi\)
0.0201388 + 0.999797i \(0.493589\pi\)
\(642\) −49.9378 −1.97089
\(643\) −36.9866 −1.45861 −0.729305 0.684189i \(-0.760156\pi\)
−0.729305 + 0.684189i \(0.760156\pi\)
\(644\) −9.75441 −0.384377
\(645\) 0 0
\(646\) 12.5371 0.493266
\(647\) −24.1182 −0.948186 −0.474093 0.880475i \(-0.657224\pi\)
−0.474093 + 0.880475i \(0.657224\pi\)
\(648\) 11.6639 0.458201
\(649\) 1.15215 0.0452260
\(650\) 0 0
\(651\) 2.95891 0.115969
\(652\) −46.7381 −1.83041
\(653\) −37.2603 −1.45811 −0.729054 0.684456i \(-0.760040\pi\)
−0.729054 + 0.684456i \(0.760040\pi\)
\(654\) 23.5918 0.922512
\(655\) 0 0
\(656\) −19.1345 −0.747078
\(657\) 9.19887 0.358882
\(658\) −20.9893 −0.818249
\(659\) 21.4386 0.835130 0.417565 0.908647i \(-0.362884\pi\)
0.417565 + 0.908647i \(0.362884\pi\)
\(660\) 0 0
\(661\) 0.783503 0.0304747 0.0152374 0.999884i \(-0.495150\pi\)
0.0152374 + 0.999884i \(0.495150\pi\)
\(662\) 33.5315 1.30324
\(663\) 39.9963 1.55333
\(664\) −1.91643 −0.0743720
\(665\) 0 0
\(666\) −26.5966 −1.03060
\(667\) −8.36653 −0.323953
\(668\) 76.4634 2.95846
\(669\) −1.39292 −0.0538535
\(670\) 0 0
\(671\) 0.0282963 0.00109237
\(672\) 2.80113 0.108056
\(673\) 50.1903 1.93469 0.967347 0.253454i \(-0.0815667\pi\)
0.967347 + 0.253454i \(0.0815667\pi\)
\(674\) 54.6065 2.10336
\(675\) 0 0
\(676\) 81.9362 3.15139
\(677\) 29.8804 1.14840 0.574198 0.818716i \(-0.305314\pi\)
0.574198 + 0.818716i \(0.305314\pi\)
\(678\) 0.430872 0.0165475
\(679\) −3.22717 −0.123847
\(680\) 0 0
\(681\) −25.6455 −0.982736
\(682\) 2.08277 0.0797532
\(683\) −12.3326 −0.471894 −0.235947 0.971766i \(-0.575819\pi\)
−0.235947 + 0.971766i \(0.575819\pi\)
\(684\) −5.02830 −0.192262
\(685\) 0 0
\(686\) −23.2555 −0.887898
\(687\) 7.02750 0.268116
\(688\) −19.8996 −0.758666
\(689\) −33.9207 −1.29227
\(690\) 0 0
\(691\) 3.62200 0.137787 0.0688936 0.997624i \(-0.478053\pi\)
0.0688936 + 0.997624i \(0.478053\pi\)
\(692\) −57.4252 −2.18298
\(693\) −0.273891 −0.0104042
\(694\) −9.34891 −0.354880
\(695\) 0 0
\(696\) −11.3695 −0.430958
\(697\) 49.7528 1.88452
\(698\) 81.8358 3.09753
\(699\) −23.1599 −0.875988
\(700\) 0 0
\(701\) 34.1209 1.28873 0.644365 0.764718i \(-0.277122\pi\)
0.644365 + 0.764718i \(0.277122\pi\)
\(702\) −78.9135 −2.97840
\(703\) −8.12386 −0.306397
\(704\) 3.08277 0.116186
\(705\) 0 0
\(706\) −10.1161 −0.380725
\(707\) −3.18396 −0.119745
\(708\) 19.5654 0.735313
\(709\) −17.1209 −0.642990 −0.321495 0.946911i \(-0.604185\pi\)
−0.321495 + 0.946911i \(0.604185\pi\)
\(710\) 0 0
\(711\) −5.34116 −0.200309
\(712\) 64.5024 2.41733
\(713\) 11.7699 0.440786
\(714\) 11.5966 0.433993
\(715\) 0 0
\(716\) 12.4621 0.465730
\(717\) −27.9191 −1.04266
\(718\) 48.2440 1.80045
\(719\) −7.02750 −0.262081 −0.131041 0.991377i \(-0.541832\pi\)
−0.131041 + 0.991377i \(0.541832\pi\)
\(720\) 0 0
\(721\) 2.41830 0.0900620
\(722\) −2.37720 −0.0884703
\(723\) 35.9087 1.33546
\(724\) 85.8406 3.19024
\(725\) 0 0
\(726\) −33.0841 −1.22787
\(727\) 11.8938 0.441115 0.220558 0.975374i \(-0.429212\pi\)
0.220558 + 0.975374i \(0.429212\pi\)
\(728\) 16.9667 0.628826
\(729\) 25.4026 0.940836
\(730\) 0 0
\(731\) 51.7421 1.91375
\(732\) 0.480515 0.0177604
\(733\) −20.7154 −0.765142 −0.382571 0.923926i \(-0.624961\pi\)
−0.382571 + 0.923926i \(0.624961\pi\)
\(734\) 9.15910 0.338069
\(735\) 0 0
\(736\) 11.1423 0.410710
\(737\) −3.22717 −0.118874
\(738\) −30.8852 −1.13690
\(739\) 33.8620 1.24563 0.622816 0.782368i \(-0.285988\pi\)
0.622816 + 0.782368i \(0.285988\pi\)
\(740\) 0 0
\(741\) −7.58383 −0.278599
\(742\) −9.83505 −0.361056
\(743\) −42.7381 −1.56791 −0.783955 0.620818i \(-0.786800\pi\)
−0.783955 + 0.620818i \(0.786800\pi\)
\(744\) 15.9944 0.586382
\(745\) 0 0
\(746\) 34.7918 1.27382
\(747\) −0.672440 −0.0246033
\(748\) 5.27389 0.192833
\(749\) 11.9738 0.437514
\(750\) 0 0
\(751\) 11.9581 0.436358 0.218179 0.975909i \(-0.429988\pi\)
0.218179 + 0.975909i \(0.429988\pi\)
\(752\) −24.6639 −0.899400
\(753\) −11.4776 −0.418267
\(754\) 32.1805 1.17194
\(755\) 0 0
\(756\) −14.7827 −0.537642
\(757\) −29.1103 −1.05803 −0.529015 0.848612i \(-0.677439\pi\)
−0.529015 + 0.848612i \(0.677439\pi\)
\(758\) 52.3219 1.90042
\(759\) 1.28376 0.0465977
\(760\) 0 0
\(761\) −22.3014 −0.808425 −0.404212 0.914665i \(-0.632454\pi\)
−0.404212 + 0.914665i \(0.632454\pi\)
\(762\) 45.8230 1.65999
\(763\) −5.65672 −0.204787
\(764\) 45.5109 1.64653
\(765\) 0 0
\(766\) −7.33531 −0.265036
\(767\) −25.0432 −0.904258
\(768\) 34.0091 1.22720
\(769\) 3.95891 0.142762 0.0713809 0.997449i \(-0.477259\pi\)
0.0713809 + 0.997449i \(0.477259\pi\)
\(770\) 0 0
\(771\) 8.73971 0.314753
\(772\) −70.4634 −2.53603
\(773\) −27.8139 −1.00040 −0.500199 0.865911i \(-0.666740\pi\)
−0.500199 + 0.865911i \(0.666740\pi\)
\(774\) −32.1201 −1.15453
\(775\) 0 0
\(776\) −17.4445 −0.626220
\(777\) −7.51444 −0.269579
\(778\) −20.8529 −0.747612
\(779\) −9.43380 −0.338001
\(780\) 0 0
\(781\) −1.57608 −0.0563965
\(782\) 46.1289 1.64957
\(783\) −12.6794 −0.453124
\(784\) −13.1287 −0.468882
\(785\) 0 0
\(786\) 16.9095 0.603141
\(787\) 1.82460 0.0650398 0.0325199 0.999471i \(-0.489647\pi\)
0.0325199 + 0.999471i \(0.489647\pi\)
\(788\) −24.2087 −0.862401
\(789\) −11.7905 −0.419751
\(790\) 0 0
\(791\) −0.103312 −0.00367336
\(792\) −1.48052 −0.0526078
\(793\) −0.615047 −0.0218410
\(794\) −3.79045 −0.134518
\(795\) 0 0
\(796\) −84.2851 −2.98741
\(797\) 21.0360 0.745135 0.372567 0.928005i \(-0.378478\pi\)
0.372567 + 0.928005i \(0.378478\pi\)
\(798\) −2.19887 −0.0778393
\(799\) 64.1300 2.26876
\(800\) 0 0
\(801\) 22.6327 0.799686
\(802\) 41.7261 1.47340
\(803\) 1.82942 0.0645589
\(804\) −54.8024 −1.93273
\(805\) 0 0
\(806\) −45.2710 −1.59460
\(807\) −0.635593 −0.0223739
\(808\) −17.2109 −0.605476
\(809\) −0.0819654 −0.00288175 −0.00144088 0.999999i \(-0.500459\pi\)
−0.00144088 + 0.999999i \(0.500459\pi\)
\(810\) 0 0
\(811\) −6.72531 −0.236158 −0.118079 0.993004i \(-0.537674\pi\)
−0.118079 + 0.993004i \(0.537674\pi\)
\(812\) 6.02830 0.211552
\(813\) −4.72691 −0.165780
\(814\) −5.28939 −0.185393
\(815\) 0 0
\(816\) 13.6268 0.477034
\(817\) −9.81100 −0.343243
\(818\) −87.1994 −3.04886
\(819\) 5.95328 0.208024
\(820\) 0 0
\(821\) 30.9426 1.07990 0.539952 0.841696i \(-0.318442\pi\)
0.539952 + 0.841696i \(0.318442\pi\)
\(822\) −38.8513 −1.35509
\(823\) −26.5908 −0.926896 −0.463448 0.886124i \(-0.653388\pi\)
−0.463448 + 0.886124i \(0.653388\pi\)
\(824\) 13.0721 0.455388
\(825\) 0 0
\(826\) −7.26109 −0.252646
\(827\) 5.57900 0.194001 0.0970004 0.995284i \(-0.469075\pi\)
0.0970004 + 0.995284i \(0.469075\pi\)
\(828\) −18.5011 −0.642956
\(829\) 18.9765 0.659082 0.329541 0.944141i \(-0.393106\pi\)
0.329541 + 0.944141i \(0.393106\pi\)
\(830\) 0 0
\(831\) 5.84302 0.202692
\(832\) −67.0069 −2.32305
\(833\) 34.1367 1.18276
\(834\) −46.1746 −1.59890
\(835\) 0 0
\(836\) −1.00000 −0.0345857
\(837\) 17.8372 0.616543
\(838\) 44.7360 1.54538
\(839\) 12.9143 0.445852 0.222926 0.974835i \(-0.428439\pi\)
0.222926 + 0.974835i \(0.428439\pi\)
\(840\) 0 0
\(841\) −23.8294 −0.821704
\(842\) 80.3064 2.76754
\(843\) −34.7331 −1.19627
\(844\) −27.5577 −0.948574
\(845\) 0 0
\(846\) −39.8102 −1.36870
\(847\) 7.93273 0.272572
\(848\) −11.5569 −0.396864
\(849\) −13.0779 −0.448834
\(850\) 0 0
\(851\) −29.8908 −1.02464
\(852\) −26.7643 −0.916929
\(853\) −6.46077 −0.221213 −0.110606 0.993864i \(-0.535279\pi\)
−0.110606 + 0.993864i \(0.535279\pi\)
\(854\) −0.178328 −0.00610227
\(855\) 0 0
\(856\) 64.7245 2.21224
\(857\) 12.4055 0.423764 0.211882 0.977295i \(-0.432041\pi\)
0.211882 + 0.977295i \(0.432041\pi\)
\(858\) −4.93778 −0.168573
\(859\) 40.3425 1.37647 0.688234 0.725489i \(-0.258386\pi\)
0.688234 + 0.725489i \(0.258386\pi\)
\(860\) 0 0
\(861\) −8.72611 −0.297385
\(862\) 30.3452 1.03356
\(863\) −1.83235 −0.0623738 −0.0311869 0.999514i \(-0.509929\pi\)
−0.0311869 + 0.999514i \(0.509929\pi\)
\(864\) 16.8860 0.574474
\(865\) 0 0
\(866\) −38.2186 −1.29872
\(867\) −13.7758 −0.467849
\(868\) −8.48052 −0.287847
\(869\) −1.06222 −0.0360333
\(870\) 0 0
\(871\) 70.1457 2.37680
\(872\) −30.5774 −1.03548
\(873\) −6.12094 −0.207162
\(874\) −8.74666 −0.295860
\(875\) 0 0
\(876\) 31.0665 1.04964
\(877\) 8.14419 0.275010 0.137505 0.990501i \(-0.456092\pi\)
0.137505 + 0.990501i \(0.456092\pi\)
\(878\) −3.25547 −0.109867
\(879\) −2.38283 −0.0803709
\(880\) 0 0
\(881\) 12.1706 0.410037 0.205019 0.978758i \(-0.434275\pi\)
0.205019 + 0.978758i \(0.434275\pi\)
\(882\) −21.1911 −0.713542
\(883\) −46.7614 −1.57364 −0.786822 0.617179i \(-0.788275\pi\)
−0.786822 + 0.617179i \(0.788275\pi\)
\(884\) −114.633 −3.85553
\(885\) 0 0
\(886\) 10.9893 0.369194
\(887\) 34.8804 1.17117 0.585584 0.810611i \(-0.300865\pi\)
0.585584 + 0.810611i \(0.300865\pi\)
\(888\) −40.6193 −1.36309
\(889\) −10.9872 −0.368499
\(890\) 0 0
\(891\) 0.813922 0.0272674
\(892\) 3.99225 0.133670
\(893\) −12.1599 −0.406916
\(894\) 41.8860 1.40088
\(895\) 0 0
\(896\) −15.0304 −0.502131
\(897\) −27.9039 −0.931683
\(898\) −55.2830 −1.84482
\(899\) −7.27389 −0.242598
\(900\) 0 0
\(901\) 30.0496 1.00110
\(902\) −6.14228 −0.204516
\(903\) −9.07502 −0.301998
\(904\) −0.558455 −0.0185739
\(905\) 0 0
\(906\) −35.4543 −1.17789
\(907\) 25.5080 0.846980 0.423490 0.905901i \(-0.360805\pi\)
0.423490 + 0.905901i \(0.360805\pi\)
\(908\) 73.5024 2.43926
\(909\) −6.03897 −0.200300
\(910\) 0 0
\(911\) −21.5032 −0.712432 −0.356216 0.934404i \(-0.615933\pi\)
−0.356216 + 0.934404i \(0.615933\pi\)
\(912\) −2.58383 −0.0855591
\(913\) −0.133731 −0.00442586
\(914\) −85.2093 −2.81847
\(915\) 0 0
\(916\) −20.1415 −0.665493
\(917\) −4.05447 −0.133890
\(918\) 69.9079 2.30730
\(919\) 37.1386 1.22509 0.612544 0.790436i \(-0.290146\pi\)
0.612544 + 0.790436i \(0.290146\pi\)
\(920\) 0 0
\(921\) 0.289391 0.00953575
\(922\) 35.3756 1.16503
\(923\) 34.2576 1.12760
\(924\) −0.924984 −0.0304297
\(925\) 0 0
\(926\) −71.2101 −2.34011
\(927\) 4.58675 0.150649
\(928\) −6.88601 −0.226044
\(929\) −3.36170 −0.110294 −0.0551469 0.998478i \(-0.517563\pi\)
−0.0551469 + 0.998478i \(0.517563\pi\)
\(930\) 0 0
\(931\) −6.47277 −0.212136
\(932\) 66.3785 2.17430
\(933\) −26.6949 −0.873951
\(934\) −16.0128 −0.523955
\(935\) 0 0
\(936\) 32.1805 1.05185
\(937\) −10.0694 −0.328953 −0.164476 0.986381i \(-0.552593\pi\)
−0.164476 + 0.986381i \(0.552593\pi\)
\(938\) 20.3382 0.664067
\(939\) −14.3121 −0.467056
\(940\) 0 0
\(941\) 20.8139 0.678514 0.339257 0.940694i \(-0.389824\pi\)
0.339257 + 0.940694i \(0.389824\pi\)
\(942\) 14.5069 0.472661
\(943\) −34.7106 −1.13033
\(944\) −8.53228 −0.277702
\(945\) 0 0
\(946\) −6.38788 −0.207688
\(947\) 30.4904 0.990804 0.495402 0.868664i \(-0.335021\pi\)
0.495402 + 0.868664i \(0.335021\pi\)
\(948\) −18.0382 −0.585852
\(949\) −39.7643 −1.29080
\(950\) 0 0
\(951\) 23.7234 0.769284
\(952\) −15.0304 −0.487139
\(953\) −7.58383 −0.245664 −0.122832 0.992427i \(-0.539198\pi\)
−0.122832 + 0.992427i \(0.539198\pi\)
\(954\) −18.6540 −0.603946
\(955\) 0 0
\(956\) 80.0189 2.58800
\(957\) −0.793375 −0.0256462
\(958\) −39.6941 −1.28246
\(959\) 9.31556 0.300815
\(960\) 0 0
\(961\) −20.7672 −0.669910
\(962\) 114.970 3.70678
\(963\) 22.7106 0.731839
\(964\) −102.918 −3.31476
\(965\) 0 0
\(966\) −8.09052 −0.260308
\(967\) −54.6687 −1.75803 −0.879014 0.476797i \(-0.841798\pi\)
−0.879014 + 0.476797i \(0.841798\pi\)
\(968\) 42.8804 1.37823
\(969\) 6.71836 0.215825
\(970\) 0 0
\(971\) −39.9632 −1.28248 −0.641239 0.767341i \(-0.721579\pi\)
−0.641239 + 0.767341i \(0.721579\pi\)
\(972\) −47.2547 −1.51569
\(973\) 11.0715 0.354936
\(974\) 8.65402 0.277293
\(975\) 0 0
\(976\) −0.209548 −0.00670747
\(977\) −15.2400 −0.487570 −0.243785 0.969829i \(-0.578389\pi\)
−0.243785 + 0.969829i \(0.578389\pi\)
\(978\) −38.7656 −1.23959
\(979\) 4.50106 0.143855
\(980\) 0 0
\(981\) −10.7290 −0.342552
\(982\) 79.2199 2.52801
\(983\) 45.3609 1.44679 0.723394 0.690435i \(-0.242581\pi\)
0.723394 + 0.690435i \(0.242581\pi\)
\(984\) −47.1690 −1.50369
\(985\) 0 0
\(986\) −28.5080 −0.907880
\(987\) −11.2477 −0.358019
\(988\) 21.7360 0.691514
\(989\) −36.0985 −1.14787
\(990\) 0 0
\(991\) −16.3537 −0.519493 −0.259747 0.965677i \(-0.583639\pi\)
−0.259747 + 0.965677i \(0.583639\pi\)
\(992\) 9.68714 0.307567
\(993\) 17.9688 0.570222
\(994\) 9.93273 0.315047
\(995\) 0 0
\(996\) −2.27097 −0.0719583
\(997\) 33.2037 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(998\) 90.3134 2.85882
\(999\) −45.2993 −1.43321
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.a.e.1.1 3
3.2 odd 2 4275.2.a.bm.1.3 3
4.3 odd 2 7600.2.a.cc.1.2 3
5.2 odd 4 475.2.b.b.324.1 6
5.3 odd 4 475.2.b.b.324.6 6
5.4 even 2 475.2.a.g.1.3 yes 3
15.14 odd 2 4275.2.a.ba.1.1 3
19.18 odd 2 9025.2.a.bc.1.3 3
20.19 odd 2 7600.2.a.bh.1.2 3
95.94 odd 2 9025.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.1 3 1.1 even 1 trivial
475.2.a.g.1.3 yes 3 5.4 even 2
475.2.b.b.324.1 6 5.2 odd 4
475.2.b.b.324.6 6 5.3 odd 4
4275.2.a.ba.1.1 3 15.14 odd 2
4275.2.a.bm.1.3 3 3.2 odd 2
7600.2.a.bh.1.2 3 20.19 odd 2
7600.2.a.cc.1.2 3 4.3 odd 2
9025.2.a.y.1.1 3 95.94 odd 2
9025.2.a.bc.1.3 3 19.18 odd 2