Properties

Label 475.2.b.b.324.1
Level 475475
Weight 22
Character 475.324
Analytic conductor 3.7933.793
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(324,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 475=5219 475 = 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 475.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-8,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.792894096013.79289409601
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.1827904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6+9x4+14x2+1 x^{6} + 9x^{4} + 14x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 324.1
Root 0.273891i0.273891i of defining polynomial
Character χ\chi == 475.324
Dual form 475.2.b.b.324.6

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2.37720iq2+1.27389iq33.65109q4+3.02830q60.726109iq7+3.92498iq8+1.37720q90.273891q114.65109iq125.95328iq131.72611q14+2.02830q165.27389iq173.27389iq181.00000q19+0.924984q21+0.651093iq223.67939iq235.00000q2414.1522q26+5.57608iq27+2.65109iq28+2.27389q29+3.19887q31+3.02830iq320.348907iq3312.5371q345.02830q368.12386iq37+2.37720iq38+7.58383q399.43380q412.19887iq42+9.81100iq43+1.00000q448.74666q4612.1599iq47+2.58383iq48+6.47277q49+6.71836q51+21.7360iq52+5.69781iq53+13.2555q54+2.84997q561.27389iq575.40550iq58+4.20662q590.103312q617.60437iq621.00000iq63+11.2555q640.829422q66+11.7827iq67+19.2555iq68+4.68714q69+5.75441q71+5.40550iq72+6.67939iq7319.3121q74+3.65109q76+0.198875iq7718.0283iq783.87826q792.97170q81+22.4260iq820.488265iq833.37720q84+23.3227q86+2.89669iq871.07502iq88+16.4338q894.32273q91+13.4338iq92+4.07502iq9328.9066q943.85772q96+4.44447iq9715.3871iq980.377203q99+O(q100)q-2.37720i q^{2} +1.27389i q^{3} -3.65109 q^{4} +3.02830 q^{6} -0.726109i q^{7} +3.92498i q^{8} +1.37720 q^{9} -0.273891 q^{11} -4.65109i q^{12} -5.95328i q^{13} -1.72611 q^{14} +2.02830 q^{16} -5.27389i q^{17} -3.27389i q^{18} -1.00000 q^{19} +0.924984 q^{21} +0.651093i q^{22} -3.67939i q^{23} -5.00000 q^{24} -14.1522 q^{26} +5.57608i q^{27} +2.65109i q^{28} +2.27389 q^{29} +3.19887 q^{31} +3.02830i q^{32} -0.348907i q^{33} -12.5371 q^{34} -5.02830 q^{36} -8.12386i q^{37} +2.37720i q^{38} +7.58383 q^{39} -9.43380 q^{41} -2.19887i q^{42} +9.81100i q^{43} +1.00000 q^{44} -8.74666 q^{46} -12.1599i q^{47} +2.58383i q^{48} +6.47277 q^{49} +6.71836 q^{51} +21.7360i q^{52} +5.69781i q^{53} +13.2555 q^{54} +2.84997 q^{56} -1.27389i q^{57} -5.40550i q^{58} +4.20662 q^{59} -0.103312 q^{61} -7.60437i q^{62} -1.00000i q^{63} +11.2555 q^{64} -0.829422 q^{66} +11.7827i q^{67} +19.2555i q^{68} +4.68714 q^{69} +5.75441 q^{71} +5.40550i q^{72} +6.67939i q^{73} -19.3121 q^{74} +3.65109 q^{76} +0.198875i q^{77} -18.0283i q^{78} -3.87826 q^{79} -2.97170 q^{81} +22.4260i q^{82} -0.488265i q^{83} -3.37720 q^{84} +23.3227 q^{86} +2.89669i q^{87} -1.07502i q^{88} +16.4338 q^{89} -4.32273 q^{91} +13.4338i q^{92} +4.07502i q^{93} -28.9066 q^{94} -3.85772 q^{96} +4.44447i q^{97} -15.3871i q^{98} -0.377203 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q8q46q62q9+2q1114q1412q166q1912q2130q2422q26+10q292q3110q346q36+22q39+2q41+6q4424q46++8q99+O(q100) 6 q - 8 q^{4} - 6 q^{6} - 2 q^{9} + 2 q^{11} - 14 q^{14} - 12 q^{16} - 6 q^{19} - 12 q^{21} - 30 q^{24} - 22 q^{26} + 10 q^{29} - 2 q^{31} - 10 q^{34} - 6 q^{36} + 22 q^{39} + 2 q^{41} + 6 q^{44} - 24 q^{46}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/475Z)×\left(\mathbb{Z}/475\mathbb{Z}\right)^\times.

nn 7777 401401
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 2.37720i − 1.68094i −0.541861 0.840468i 0.682280π-0.682280\pi
0.541861 0.840468i 0.317720π-0.317720\pi
33 1.27389i 0.735481i 0.929928 + 0.367741i 0.119869π0.119869\pi
−0.929928 + 0.367741i 0.880131π0.880131\pi
44 −3.65109 −1.82555
55 0 0
66 3.02830 1.23630
77 − 0.726109i − 0.274444i −0.990540 0.137222i 0.956183π-0.956183\pi
0.990540 0.137222i 0.0438173π-0.0438173\pi
88 3.92498i 1.38769i
99 1.37720 0.459068
1010 0 0
1111 −0.273891 −0.0825811 −0.0412906 0.999147i 0.513147π-0.513147\pi
−0.0412906 + 0.999147i 0.513147π0.513147\pi
1212 − 4.65109i − 1.34266i
1313 − 5.95328i − 1.65114i −0.564298 0.825571i 0.690853π-0.690853\pi
0.564298 0.825571i 0.309147π-0.309147\pi
1414 −1.72611 −0.461322
1515 0 0
1616 2.02830 0.507074
1717 − 5.27389i − 1.27911i −0.768747 0.639553i 0.779119π-0.779119\pi
0.768747 0.639553i 0.220881π-0.220881\pi
1818 − 3.27389i − 0.771663i
1919 −1.00000 −0.229416
2020 0 0
2121 0.924984 0.201848
2222 0.651093i 0.138814i
2323 − 3.67939i − 0.767206i −0.923498 0.383603i 0.874683π-0.874683\pi
0.923498 0.383603i 0.125317π-0.125317\pi
2424 −5.00000 −1.02062
2525 0 0
2626 −14.1522 −2.77547
2727 5.57608i 1.07312i
2828 2.65109i 0.501010i
2929 2.27389 0.422251 0.211125 0.977459i 0.432287π-0.432287\pi
0.211125 + 0.977459i 0.432287π0.432287\pi
3030 0 0
3131 3.19887 0.574535 0.287267 0.957850i 0.407253π-0.407253\pi
0.287267 + 0.957850i 0.407253π0.407253\pi
3232 3.02830i 0.535332i
3333 − 0.348907i − 0.0607368i
3434 −12.5371 −2.15010
3535 0 0
3636 −5.02830 −0.838049
3737 − 8.12386i − 1.33555i −0.744361 0.667777i 0.767246π-0.767246\pi
0.744361 0.667777i 0.232754π-0.232754\pi
3838 2.37720i 0.385633i
3939 7.58383 1.21438
4040 0 0
4141 −9.43380 −1.47331 −0.736656 0.676268i 0.763596π-0.763596\pi
−0.736656 + 0.676268i 0.763596π0.763596\pi
4242 − 2.19887i − 0.339294i
4343 9.81100i 1.49616i 0.663607 + 0.748082i 0.269025π0.269025\pi
−0.663607 + 0.748082i 0.730975π0.730975\pi
4444 1.00000 0.150756
4545 0 0
4646 −8.74666 −1.28962
4747 − 12.1599i − 1.77370i −0.462053 0.886852i 0.652887π-0.652887\pi
0.462053 0.886852i 0.347113π-0.347113\pi
4848 2.58383i 0.372943i
4949 6.47277 0.924681
5050 0 0
5151 6.71836 0.940758
5252 21.7360i 3.01424i
5353 5.69781i 0.782655i 0.920252 + 0.391327i 0.127984π0.127984\pi
−0.920252 + 0.391327i 0.872016π0.872016\pi
5454 13.2555 1.80384
5555 0 0
5656 2.84997 0.380843
5757 − 1.27389i − 0.168731i
5858 − 5.40550i − 0.709777i
5959 4.20662 0.547656 0.273828 0.961779i 0.411710π-0.411710\pi
0.273828 + 0.961779i 0.411710π0.411710\pi
6060 0 0
6161 −0.103312 −0.0132278 −0.00661389 0.999978i 0.502105π-0.502105\pi
−0.00661389 + 0.999978i 0.502105π0.502105\pi
6262 − 7.60437i − 0.965756i
6363 − 1.00000i − 0.125988i
6464 11.2555 1.40693
6565 0 0
6666 −0.829422 −0.102095
6767 11.7827i 1.43949i 0.694241 + 0.719743i 0.255740π0.255740\pi
−0.694241 + 0.719743i 0.744260π0.744260\pi
6868 19.2555i 2.33507i
6969 4.68714 0.564265
7070 0 0
7171 5.75441 0.682922 0.341461 0.939896i 0.389078π-0.389078\pi
0.341461 + 0.939896i 0.389078π0.389078\pi
7272 5.40550i 0.637044i
7373 6.67939i 0.781763i 0.920441 + 0.390882i 0.127830π0.127830\pi
−0.920441 + 0.390882i 0.872170π0.872170\pi
7474 −19.3121 −2.24498
7575 0 0
7676 3.65109 0.418809
7777 0.198875i 0.0226639i
7878 − 18.0283i − 2.04130i
7979 −3.87826 −0.436339 −0.218169 0.975911i 0.570009π-0.570009\pi
−0.218169 + 0.975911i 0.570009π0.570009\pi
8080 0 0
8181 −2.97170 −0.330189
8282 22.4260i 2.47654i
8383 − 0.488265i − 0.0535941i −0.999641 0.0267970i 0.991469π-0.991469\pi
0.999641 0.0267970i 0.00853078π-0.00853078\pi
8484 −3.37720 −0.368483
8585 0 0
8686 23.3227 2.51495
8787 2.89669i 0.310558i
8888 − 1.07502i − 0.114597i
8989 16.4338 1.74198 0.870989 0.491302i 0.163479π-0.163479\pi
0.870989 + 0.491302i 0.163479π0.163479\pi
9090 0 0
9191 −4.32273 −0.453146
9292 13.4338i 1.40057i
9393 4.07502i 0.422559i
9494 −28.9066 −2.98148
9595 0 0
9696 −3.85772 −0.393727
9797 4.44447i 0.451267i 0.974212 + 0.225634i 0.0724453π0.0724453\pi
−0.974212 + 0.225634i 0.927555π0.927555\pi
9898 − 15.3871i − 1.55433i
9999 −0.377203 −0.0379103
100100 0 0
101101 4.38495 0.436319 0.218160 0.975913i 0.429995π-0.429995\pi
0.218160 + 0.975913i 0.429995π0.429995\pi
102102 − 15.9709i − 1.58136i
103103 3.33048i 0.328162i 0.986447 + 0.164081i 0.0524659π0.0524659\pi
−0.986447 + 0.164081i 0.947534π0.947534\pi
104104 23.3665 2.29128
105105 0 0
106106 13.5449 1.31559
107107 − 16.4904i − 1.59419i −0.603857 0.797093i 0.706370π-0.706370\pi
0.603857 0.797093i 0.293630π-0.293630\pi
108108 − 20.3588i − 1.95902i
109109 −7.79045 −0.746190 −0.373095 0.927793i 0.621703π-0.621703\pi
−0.373095 + 0.927793i 0.621703π0.621703\pi
110110 0 0
111111 10.3489 0.982275
112112 − 1.47277i − 0.139163i
113113 − 0.142282i − 0.0133848i −0.999978 0.00669238i 0.997870π-0.997870\pi
0.999978 0.00669238i 0.00213027π-0.00213027\pi
114114 −3.02830 −0.283626
115115 0 0
116116 −8.30219 −0.770839
117117 − 8.19887i − 0.757986i
118118 − 10.0000i − 0.920575i
119119 −3.82942 −0.351043
120120 0 0
121121 −10.9250 −0.993180
122122 0.245594i 0.0222351i
123123 − 12.0176i − 1.08359i
124124 −11.6794 −1.04884
125125 0 0
126126 −2.37720 −0.211778
127127 15.1316i 1.34271i 0.741135 + 0.671357i 0.234288π0.234288\pi
−0.741135 + 0.671357i 0.765712π0.765712\pi
128128 − 20.6999i − 1.82963i
129129 −12.4981 −1.10040
130130 0 0
131131 5.58383 0.487861 0.243931 0.969793i 0.421563π-0.421563\pi
0.243931 + 0.969793i 0.421563π0.421563\pi
132132 1.27389i 0.110878i
133133 0.726109i 0.0629617i
134134 28.0099 2.41968
135135 0 0
136136 20.6999 1.77500
137137 − 12.8294i − 1.09609i −0.836448 0.548046i 0.815372π-0.815372\pi
0.836448 0.548046i 0.184628π-0.184628\pi
138138 − 11.1423i − 0.948494i
139139 15.2477 1.29329 0.646647 0.762789i 0.276171π-0.276171\pi
0.646647 + 0.762789i 0.276171π0.276171\pi
140140 0 0
141141 15.4904 1.30453
142142 − 13.6794i − 1.14795i
143143 1.63055i 0.136353i
144144 2.79338 0.232781
145145 0 0
146146 15.8783 1.31409
147147 8.24559i 0.680085i
148148 29.6610i 2.43812i
149149 −13.8315 −1.13312 −0.566562 0.824019i 0.691727π-0.691727\pi
−0.566562 + 0.824019i 0.691727π0.691727\pi
150150 0 0
151151 −11.7077 −0.952758 −0.476379 0.879240i 0.658051π-0.658051\pi
−0.476379 + 0.879240i 0.658051π0.658051\pi
152152 − 3.92498i − 0.318358i
153153 − 7.26322i − 0.587196i
154154 0.472765 0.0380965
155155 0 0
156156 −27.6893 −2.21692
157157 4.79045i 0.382320i 0.981559 + 0.191160i 0.0612249π0.0612249\pi
−0.981559 + 0.191160i 0.938775π0.938775\pi
158158 9.21942i 0.733458i
159159 −7.25839 −0.575628
160160 0 0
161161 −2.67164 −0.210555
162162 7.06434i 0.555027i
163163 12.8011i 1.00266i 0.865256 + 0.501331i 0.167156π0.167156\pi
−0.865256 + 0.501331i 0.832844π0.832844\pi
164164 34.4437 2.68960
165165 0 0
166166 −1.16071 −0.0900882
167167 20.9426i 1.62059i 0.586024 + 0.810294i 0.300692π0.300692\pi
−0.586024 + 0.810294i 0.699308π0.699308\pi
168168 3.63055i 0.280103i
169169 −22.4415 −1.72627
170170 0 0
171171 −1.37720 −0.105317
172172 − 35.8209i − 2.73132i
173173 15.7282i 1.19580i 0.801572 + 0.597898i 0.203997π0.203997\pi
−0.801572 + 0.597898i 0.796003π0.796003\pi
174174 6.88601 0.522027
175175 0 0
176176 −0.555531 −0.0418747
177177 5.35878i 0.402791i
178178 − 39.0665i − 2.92816i
179179 −3.41325 −0.255118 −0.127559 0.991831i 0.540714π-0.540714\pi
−0.127559 + 0.991831i 0.540714π0.540714\pi
180180 0 0
181181 23.5109 1.74755 0.873777 0.486327i 0.161664π-0.161664\pi
0.873777 + 0.486327i 0.161664π0.161664\pi
182182 10.2760i 0.761709i
183183 − 0.131609i − 0.00972878i
184184 14.4415 1.06464
185185 0 0
186186 9.68714 0.710296
187187 1.44447i 0.105630i
188188 44.3969i 3.23798i
189189 4.04884 0.294510
190190 0 0
191191 12.4650 0.901937 0.450968 0.892540i 0.351079π-0.351079\pi
0.450968 + 0.892540i 0.351079π0.351079\pi
192192 14.3382i 1.03477i
193193 19.2993i 1.38919i 0.719400 + 0.694596i 0.244417π0.244417\pi
−0.719400 + 0.694596i 0.755583π0.755583\pi
194194 10.5654 0.758552
195195 0 0
196196 −23.6327 −1.68805
197197 − 6.63055i − 0.472407i −0.971704 0.236203i 0.924097π-0.924097\pi
0.971704 0.236203i 0.0759032π-0.0759032\pi
198198 0.896688i 0.0637248i
199199 23.0849 1.63644 0.818222 0.574902i 0.194960π-0.194960\pi
0.818222 + 0.574902i 0.194960π0.194960\pi
200200 0 0
201201 −15.0099 −1.05871
202202 − 10.4239i − 0.733425i
203203 − 1.65109i − 0.115884i
204204 −24.5294 −1.71740
205205 0 0
206206 7.91723 0.551620
207207 − 5.06727i − 0.352199i
208208 − 12.0750i − 0.837252i
209209 0.273891 0.0189454
210210 0 0
211211 −7.54778 −0.519611 −0.259805 0.965661i 0.583658π-0.583658\pi
−0.259805 + 0.965661i 0.583658π0.583658\pi
212212 − 20.8032i − 1.42877i
213213 7.33048i 0.502276i
214214 −39.2010 −2.67973
215215 0 0
216216 −21.8860 −1.48915
217217 − 2.32273i − 0.157677i
218218 18.5195i 1.25430i
219219 −8.50881 −0.574972
220220 0 0
221221 −31.3969 −2.11199
222222 − 24.6015i − 1.65114i
223223 − 1.09344i − 0.0732221i −0.999330 0.0366111i 0.988344π-0.988344\pi
0.999330 0.0366111i 0.0116563π-0.0116563\pi
224224 2.19887 0.146918
225225 0 0
226226 −0.338233 −0.0224989
227227 20.1316i 1.33618i 0.744080 + 0.668091i 0.232888π0.232888\pi
−0.744080 + 0.668091i 0.767112π0.767112\pi
228228 4.65109i 0.308026i
229229 5.51656 0.364545 0.182272 0.983248i 0.441655π-0.441655\pi
0.182272 + 0.983248i 0.441655π0.441655\pi
230230 0 0
231231 −0.253344 −0.0166688
232232 8.92498i 0.585954i
233233 − 18.1805i − 1.19104i −0.803340 0.595520i 0.796946π-0.796946\pi
0.803340 0.595520i 0.203054π-0.203054\pi
234234 −19.4904 −1.27413
235235 0 0
236236 −15.3588 −0.999771
237237 − 4.94048i − 0.320919i
238238 9.10331i 0.590080i
239239 −21.9164 −1.41766 −0.708828 0.705381i 0.750776π-0.750776\pi
−0.708828 + 0.705381i 0.750776π0.750776\pi
240240 0 0
241241 −28.1882 −1.81576 −0.907881 0.419228i 0.862301π-0.862301\pi
−0.907881 + 0.419228i 0.862301π0.862301\pi
242242 25.9709i 1.66947i
243243 12.9426i 0.830269i
244244 0.377203 0.0241479
245245 0 0
246246 −28.5683 −1.82145
247247 5.95328i 0.378798i
248248 12.5555i 0.797277i
249249 0.621996 0.0394174
250250 0 0
251251 9.00987 0.568698 0.284349 0.958721i 0.408223π-0.408223\pi
0.284349 + 0.958721i 0.408223π0.408223\pi
252252 3.65109i 0.229997i
253253 1.00775i 0.0633567i
254254 35.9709 2.25702
255255 0 0
256256 −26.6970 −1.66856
257257 − 6.86064i − 0.427955i −0.976839 0.213978i 0.931358π-0.931358\pi
0.976839 0.213978i 0.0686419π-0.0686419\pi
258258 29.7106i 1.84970i
259259 −5.89881 −0.366534
260260 0 0
261261 3.13161 0.193842
262262 − 13.2739i − 0.820064i
263263 − 9.25547i − 0.570717i −0.958421 0.285358i 0.907887π-0.907887\pi
0.958421 0.285358i 0.0921126π-0.0921126\pi
264264 1.36945 0.0842840
265265 0 0
266266 1.72611 0.105835
267267 20.9349i 1.28119i
268268 − 43.0197i − 2.62785i
269269 −0.498939 −0.0304208 −0.0152104 0.999884i 0.504842π-0.504842\pi
−0.0152104 + 0.999884i 0.504842π0.504842\pi
270270 0 0
271271 3.71061 0.225403 0.112702 0.993629i 0.464050π-0.464050\pi
0.112702 + 0.993629i 0.464050π0.464050\pi
272272 − 10.6970i − 0.648602i
273273 − 5.50669i − 0.333280i
274274 −30.4981 −1.84246
275275 0 0
276276 −17.1132 −1.03009
277277 − 4.58675i − 0.275591i −0.990461 0.137796i 0.955998π-0.955998\pi
0.990461 0.137796i 0.0440017π-0.0440017\pi
278278 − 36.2469i − 2.17395i
279279 4.40550 0.263750
280280 0 0
281281 27.2653 1.62651 0.813257 0.581905i 0.197692π-0.197692\pi
0.813257 + 0.581905i 0.197692π0.197692\pi
282282 − 36.8238i − 2.19283i
283283 − 10.2661i − 0.610259i −0.952311 0.305129i 0.901300π-0.901300\pi
0.952311 0.305129i 0.0986997π-0.0986997\pi
284284 −21.0099 −1.24671
285285 0 0
286286 3.87614 0.229201
287287 6.84997i 0.404341i
288288 4.17058i 0.245754i
289289 −10.8139 −0.636113
290290 0 0
291291 −5.66177 −0.331899
292292 − 24.3871i − 1.42715i
293293 − 1.87051i − 0.109277i −0.998506 0.0546383i 0.982599π-0.982599\pi
0.998506 0.0546383i 0.0174006π-0.0174006\pi
294294 19.6015 1.14318
295295 0 0
296296 31.8860 1.85334
297297 − 1.52723i − 0.0886192i
298298 32.8804i 1.90471i
299299 −21.9044 −1.26677
300300 0 0
301301 7.12386 0.410612
302302 27.8315i 1.60153i
303303 5.58595i 0.320904i
304304 −2.02830 −0.116331
305305 0 0
306306 −17.2661 −0.987040
307307 − 0.227171i − 0.0129653i −0.999979 0.00648266i 0.997936π-0.997936\pi
0.999979 0.00648266i 0.00206351π-0.00206351\pi
308308 − 0.726109i − 0.0413739i
309309 −4.24267 −0.241357
310310 0 0
311311 20.9554 1.18827 0.594136 0.804365i 0.297494π-0.297494\pi
0.594136 + 0.804365i 0.297494π0.297494\pi
312312 29.7664i 1.68519i
313313 − 11.2349i − 0.635035i −0.948252 0.317518i 0.897151π-0.897151\pi
0.948252 0.317518i 0.102849π-0.102849\pi
314314 11.3879 0.642655
315315 0 0
316316 14.1599 0.796557
317317 − 18.6228i − 1.04596i −0.852345 0.522980i 0.824820π-0.824820\pi
0.852345 0.522980i 0.175180π-0.175180\pi
318318 17.2547i 0.967594i
319319 −0.622797 −0.0348699
320320 0 0
321321 21.0069 1.17249
322322 6.35103i 0.353929i
323323 5.27389i 0.293447i
324324 10.8500 0.602776
325325 0 0
326326 30.4309 1.68541
327327 − 9.92418i − 0.548809i
328328 − 37.0275i − 2.04450i
329329 −8.82942 −0.486782
330330 0 0
331331 −14.1054 −0.775305 −0.387652 0.921806i 0.626714π-0.626714\pi
−0.387652 + 0.921806i 0.626714π0.626714\pi
332332 1.78270i 0.0978385i
333333 − 11.1882i − 0.613110i
334334 49.7848 2.72410
335335 0 0
336336 1.87614 0.102352
337337 − 22.9709i − 1.25130i −0.780102 0.625652i 0.784833π-0.784833\pi
0.780102 0.625652i 0.215167π-0.215167\pi
338338 53.3481i 2.90175i
339339 0.181252 0.00984424
340340 0 0
341341 −0.876142 −0.0474457
342342 3.27389i 0.177032i
343343 − 9.78270i − 0.528216i
344344 −38.5080 −2.07621
345345 0 0
346346 37.3892 2.01006
347347 3.93273i 0.211120i 0.994413 + 0.105560i 0.0336635π0.0336635\pi
−0.994413 + 0.105560i 0.966336π0.966336\pi
348348 − 10.5761i − 0.566937i
349349 34.4252 1.84274 0.921371 0.388685i 0.127071π-0.127071\pi
0.921371 + 0.388685i 0.127071π0.127071\pi
350350 0 0
351351 33.1960 1.77187
352352 − 0.829422i − 0.0442083i
353353 − 4.25547i − 0.226496i −0.993567 0.113248i 0.963875π-0.963875\pi
0.993567 0.113248i 0.0361254π-0.0361254\pi
354354 12.7389 0.677065
355355 0 0
356356 −60.0013 −3.18006
357357 − 4.87826i − 0.258185i
358358 8.11399i 0.428837i
359359 20.2944 1.07110 0.535550 0.844504i 0.320104π-0.320104\pi
0.535550 + 0.844504i 0.320104π0.320104\pi
360360 0 0
361361 1.00000 0.0526316
362362 − 55.8903i − 2.93753i
363363 − 13.9172i − 0.730465i
364364 15.7827 0.827238
365365 0 0
366366 −0.312860 −0.0163535
367367 − 3.85289i − 0.201119i −0.994931 0.100560i 0.967937π-0.967937\pi
0.994931 0.100560i 0.0320633π-0.0320633\pi
368368 − 7.46289i − 0.389030i
369369 −12.9922 −0.676350
370370 0 0
371371 4.13724 0.214795
372372 − 14.8783i − 0.771402i
373373 14.6356i 0.757802i 0.925437 + 0.378901i 0.123698π0.123698\pi
−0.925437 + 0.378901i 0.876302π0.876302\pi
374374 3.43380 0.177557
375375 0 0
376376 47.7274 2.46135
377377 − 13.5371i − 0.697197i
378378 − 9.62492i − 0.495052i
379379 22.0099 1.13057 0.565286 0.824895i 0.308766π-0.308766\pi
0.565286 + 0.824895i 0.308766π0.308766\pi
380380 0 0
381381 −19.2760 −0.987540
382382 − 29.6319i − 1.51610i
383383 − 3.08569i − 0.157671i −0.996888 0.0788357i 0.974880π-0.974880\pi
0.996888 0.0788357i 0.0251202π-0.0251202\pi
384384 26.3695 1.34566
385385 0 0
386386 45.8783 2.33514
387387 13.5117i 0.686840i
388388 − 16.2272i − 0.823810i
389389 −8.77203 −0.444760 −0.222380 0.974960i 0.571382π-0.571382\pi
−0.222380 + 0.974960i 0.571382π0.571382\pi
390390 0 0
391391 −19.4047 −0.981338
392392 25.4055i 1.28317i
393393 7.11319i 0.358813i
394394 −15.7622 −0.794086
395395 0 0
396396 1.37720 0.0692070
397397 1.59450i 0.0800257i 0.999199 + 0.0400129i 0.0127399π0.0127399\pi
−0.999199 + 0.0400129i 0.987260π0.987260\pi
398398 − 54.8775i − 2.75076i
399399 −0.924984 −0.0463071
400400 0 0
401401 −17.5526 −0.876535 −0.438268 0.898844i 0.644408π-0.644408\pi
−0.438268 + 0.898844i 0.644408π0.644408\pi
402402 35.6815i 1.77963i
403403 − 19.0438i − 0.948639i
404404 −16.0099 −0.796521
405405 0 0
406406 −3.92498 −0.194794
407407 2.22505i 0.110292i
408408 26.3695i 1.30548i
409409 −36.6815 −1.81378 −0.906892 0.421363i 0.861552π-0.861552\pi
−0.906892 + 0.421363i 0.861552π0.861552\pi
410410 0 0
411411 16.3433 0.806155
412412 − 12.1599i − 0.599076i
413413 − 3.05447i − 0.150301i
414414 −12.0459 −0.592025
415415 0 0
416416 18.0283 0.883910
417417 19.4239i 0.951194i
418418 − 0.651093i − 0.0318460i
419419 18.8187 0.919356 0.459678 0.888086i 0.347965π-0.347965\pi
0.459678 + 0.888086i 0.347965π0.347965\pi
420420 0 0
421421 −33.7819 −1.64643 −0.823215 0.567730i 0.807822π-0.807822\pi
−0.823215 + 0.567730i 0.807822π0.807822\pi
422422 17.9426i 0.873432i
423423 − 16.7467i − 0.814250i
424424 −22.3638 −1.08608
425425 0 0
426426 17.4260 0.844295
427427 0.0750160i 0.00363028i
428428 60.2079i 2.91026i
429429 −2.07714 −0.100285
430430 0 0
431431 −12.7651 −0.614872 −0.307436 0.951569i 0.599471π-0.599471\pi
−0.307436 + 0.951569i 0.599471π0.599471\pi
432432 11.3099i 0.544150i
433433 − 16.0771i − 0.772618i −0.922369 0.386309i 0.873750π-0.873750\pi
0.922369 0.386309i 0.126250π-0.126250\pi
434434 −5.52161 −0.265046
435435 0 0
436436 28.4437 1.36220
437437 3.67939i 0.176009i
438438 20.2272i 0.966492i
439439 −1.36945 −0.0653604 −0.0326802 0.999466i 0.510404π-0.510404\pi
−0.0326802 + 0.999466i 0.510404π0.510404\pi
440440 0 0
441441 8.91431 0.424491
442442 74.6369i 3.55012i
443443 4.62280i 0.219636i 0.993952 + 0.109818i 0.0350268π0.0350268\pi
−0.993952 + 0.109818i 0.964973π0.964973\pi
444444 −37.7848 −1.79319
445445 0 0
446446 −2.59933 −0.123082
447447 − 17.6199i − 0.833391i
448448 − 8.17270i − 0.386124i
449449 −23.2555 −1.09749 −0.548747 0.835989i 0.684895π-0.684895\pi
−0.548747 + 0.835989i 0.684895π0.684895\pi
450450 0 0
451451 2.58383 0.121668
452452 0.519485i 0.0244345i
453453 − 14.9143i − 0.700735i
454454 47.8569 2.24604
455455 0 0
456456 5.00000 0.234146
457457 35.8443i 1.67673i 0.545111 + 0.838364i 0.316487π0.316487\pi
−0.545111 + 0.838364i 0.683513π0.683513\pi
458458 − 13.1140i − 0.612776i
459459 29.4076 1.37263
460460 0 0
461461 −14.8812 −0.693086 −0.346543 0.938034i 0.612645π-0.612645\pi
−0.346543 + 0.938034i 0.612645π0.612645\pi
462462 0.602251i 0.0280193i
463463 − 29.9554i − 1.39215i −0.717971 0.696073i 0.754929π-0.754929\pi
0.717971 0.696073i 0.245071π-0.245071\pi
464464 4.61212 0.214112
465465 0 0
466466 −43.2186 −2.00206
467467 6.73598i 0.311704i 0.987780 + 0.155852i 0.0498123π0.0498123\pi
−0.987780 + 0.155852i 0.950188π0.950188\pi
468468 29.9349i 1.38374i
469469 8.55553 0.395058
470470 0 0
471471 −6.10251 −0.281189
472472 16.5109i 0.759977i
473473 − 2.68714i − 0.123555i
474474 −11.7445 −0.539444
475475 0 0
476476 13.9816 0.640845
477477 7.84704i 0.359291i
478478 52.0998i 2.38299i
479479 −16.6978 −0.762943 −0.381471 0.924381i 0.624582π-0.624582\pi
−0.381471 + 0.924381i 0.624582π0.624582\pi
480480 0 0
481481 −48.3636 −2.20519
482482 67.0091i 3.05218i
483483 − 3.40338i − 0.154859i
484484 39.8881 1.81310
485485 0 0
486486 30.7672 1.39563
487487 − 3.64042i − 0.164963i −0.996593 0.0824816i 0.973715π-0.973715\pi
0.996593 0.0824816i 0.0262846π-0.0262846\pi
488488 − 0.405499i − 0.0183561i
489489 −16.3072 −0.737439
490490 0 0
491491 −33.3249 −1.50393 −0.751965 0.659203i 0.770894π-0.770894\pi
−0.751965 + 0.659203i 0.770894π0.770894\pi
492492 43.8775i 1.97815i
493493 − 11.9922i − 0.540104i
494494 14.1522 0.636736
495495 0 0
496496 6.48827 0.291332
497497 − 4.17833i − 0.187424i
498498 − 1.47861i − 0.0662582i
499499 37.9914 1.70073 0.850365 0.526193i 0.176381π-0.176381\pi
0.850365 + 0.526193i 0.176381π0.176381\pi
500500 0 0
501501 −26.6786 −1.19191
502502 − 21.4183i − 0.955945i
503503 − 42.1826i − 1.88083i −0.340032 0.940414i 0.610438π-0.610438\pi
0.340032 0.940414i 0.389562π-0.389562\pi
504504 3.92498 0.174833
505505 0 0
506506 2.39563 0.106499
507507 − 28.5881i − 1.26964i
508508 − 55.2469i − 2.45119i
509509 21.9971 0.975003 0.487502 0.873122i 0.337908π-0.337908\pi
0.487502 + 0.873122i 0.337908π0.337908\pi
510510 0 0
511511 4.84997 0.214550
512512 22.0643i 0.975115i
513513 − 5.57608i − 0.246190i
514514 −16.3091 −0.719365
515515 0 0
516516 45.6319 2.00883
517517 3.33048i 0.146474i
518518 14.0227i 0.616121i
519519 −20.0360 −0.879485
520520 0 0
521521 20.0977 0.880496 0.440248 0.897876i 0.354891π-0.354891\pi
0.440248 + 0.897876i 0.354891π0.354891\pi
522522 − 7.44447i − 0.325836i
523523 − 4.64817i − 0.203250i −0.994823 0.101625i 0.967596π-0.967596\pi
0.994823 0.101625i 0.0324042π-0.0324042\pi
524524 −20.3871 −0.890614
525525 0 0
526526 −22.0021 −0.959338
527527 − 16.8705i − 0.734891i
528528 − 0.707686i − 0.0307981i
529529 9.46209 0.411395
530530 0 0
531531 5.79338 0.251411
532532 − 2.65109i − 0.114939i
533533 56.1620i 2.43265i
534534 49.7664 2.15360
535535 0 0
536536 −46.2469 −1.99756
537537 − 4.34811i − 0.187635i
538538 1.18608i 0.0511355i
539539 −1.77283 −0.0763612
540540 0 0
541541 20.0673 0.862759 0.431380 0.902171i 0.358027π-0.358027\pi
0.431380 + 0.902171i 0.358027π0.358027\pi
542542 − 8.82087i − 0.378889i
543543 29.9504i 1.28529i
544544 15.9709 0.684747
545545 0 0
546546 −13.0905 −0.560222
547547 37.2010i 1.59060i 0.606216 + 0.795300i 0.292687π0.292687\pi
−0.606216 + 0.795300i 0.707313π0.707313\pi
548548 46.8414i 2.00097i
549549 −0.142282 −0.00607245
550550 0 0
551551 −2.27389 −0.0968710
552552 18.3969i 0.783026i
553553 2.81604i 0.119750i
554554 −10.9036 −0.463251
555555 0 0
556556 −55.6708 −2.36097
557557 − 44.8393i − 1.89990i −0.312399 0.949951i 0.601133π-0.601133\pi
0.312399 0.949951i 0.398867π-0.398867\pi
558558 − 10.4728i − 0.443347i
559559 58.4076 2.47038
560560 0 0
561561 −1.84010 −0.0776889
562562 − 64.8152i − 2.73407i
563563 − 21.9172i − 0.923701i −0.886958 0.461851i 0.847186π-0.847186\pi
0.886958 0.461851i 0.152814π-0.152814\pi
564564 −56.5569 −2.38147
565565 0 0
566566 −24.4047 −1.02581
567567 2.15778i 0.0906183i
568568 22.5860i 0.947685i
569569 −9.90656 −0.415305 −0.207652 0.978203i 0.566582π-0.566582\pi
−0.207652 + 0.978203i 0.566582π0.566582\pi
570570 0 0
571571 17.6404 0.738229 0.369114 0.929384i 0.379661π-0.379661\pi
0.369114 + 0.929384i 0.379661π0.379661\pi
572572 − 5.95328i − 0.248919i
573573 15.8791i 0.663357i
574574 16.2838 0.679671
575575 0 0
576576 15.5011 0.645878
577577 12.7048i 0.528906i 0.964399 + 0.264453i 0.0851914π0.0851914\pi
−0.964399 + 0.264453i 0.914809π0.914809\pi
578578 25.7069i 1.06927i
579579 −24.5851 −1.02172
580580 0 0
581581 −0.354534 −0.0147085
582582 13.4592i 0.557900i
583583 − 1.56058i − 0.0646325i
584584 −26.2165 −1.08485
585585 0 0
586586 −4.44659 −0.183687
587587 − 15.0438i − 0.620924i −0.950586 0.310462i 0.899516π-0.899516\pi
0.950586 0.310462i 0.100484π-0.100484\pi
588588 − 30.1054i − 1.24153i
589589 −3.19887 −0.131807
590590 0 0
591591 8.44659 0.347446
592592 − 16.4776i − 0.677225i
593593 − 16.4231i − 0.674417i −0.941430 0.337208i 0.890517π-0.890517\pi
0.941430 0.337208i 0.109483π-0.109483\pi
594594 −3.63055 −0.148963
595595 0 0
596596 50.5003 2.06857
597597 29.4076i 1.20357i
598598 52.0713i 2.12935i
599599 19.1260 0.781466 0.390733 0.920504i 0.372222π-0.372222\pi
0.390733 + 0.920504i 0.372222π0.372222\pi
600600 0 0
601601 31.4124 1.28134 0.640670 0.767816i 0.278657π-0.278657\pi
0.640670 + 0.767816i 0.278657π0.278657\pi
602602 − 16.9349i − 0.690213i
603603 16.2272i 0.660821i
604604 42.7459 1.73930
605605 0 0
606606 13.2789 0.539420
607607 41.5315i 1.68571i 0.538140 + 0.842855i 0.319127π0.319127\pi
−0.538140 + 0.842855i 0.680873π0.680873\pi
608608 − 3.02830i − 0.122814i
609609 2.10331 0.0852305
610610 0 0
611611 −72.3913 −2.92864
612612 26.5187i 1.07195i
613613 21.7274i 0.877563i 0.898594 + 0.438781i 0.144590π0.144590\pi
−0.898594 + 0.438781i 0.855410π0.855410\pi
614614 −0.540031 −0.0217939
615615 0 0
616616 −0.780579 −0.0314504
617617 − 33.6065i − 1.35295i −0.736467 0.676473i 0.763507π-0.763507\pi
0.736467 0.676473i 0.236493π-0.236493\pi
618618 10.0857i 0.405706i
619619 27.6036 1.10948 0.554741 0.832023i 0.312817π-0.312817\pi
0.554741 + 0.832023i 0.312817π0.312817\pi
620620 0 0
621621 20.5166 0.823301
622622 − 49.8152i − 1.99741i
623623 − 11.9327i − 0.478075i
624624 15.3822 0.615783
625625 0 0
626626 −26.7077 −1.06745
627627 0.348907i 0.0139340i
628628 − 17.4904i − 0.697942i
629629 −42.8443 −1.70832
630630 0 0
631631 1.94048 0.0772495 0.0386247 0.999254i 0.487702π-0.487702\pi
0.0386247 + 0.999254i 0.487702π0.487702\pi
632632 − 15.2221i − 0.605504i
633633 − 9.61505i − 0.382164i
634634 −44.2702 −1.75819
635635 0 0
636636 26.5011 1.05084
637637 − 38.5342i − 1.52678i
638638 1.48052i 0.0586142i
639639 7.92498 0.313508
640640 0 0
641641 1.01975 0.0402775 0.0201388 0.999797i 0.493589π-0.493589\pi
0.0201388 + 0.999797i 0.493589π0.493589\pi
642642 − 49.9378i − 1.97089i
643643 36.9866i 1.45861i 0.684189 + 0.729305i 0.260156π0.260156\pi
−0.684189 + 0.729305i 0.739844π0.739844\pi
644644 9.75441 0.384377
645645 0 0
646646 12.5371 0.493266
647647 − 24.1182i − 0.948186i −0.880475 0.474093i 0.842776π-0.842776\pi
0.880475 0.474093i 0.157224π-0.157224\pi
648648 − 11.6639i − 0.458201i
649649 −1.15215 −0.0452260
650650 0 0
651651 2.95891 0.115969
652652 − 46.7381i − 1.83041i
653653 37.2603i 1.45811i 0.684456 + 0.729054i 0.260040π0.260040\pi
−0.684456 + 0.729054i 0.739960π0.739960\pi
654654 −23.5918 −0.922512
655655 0 0
656656 −19.1345 −0.747078
657657 9.19887i 0.358882i
658658 20.9893i 0.818249i
659659 −21.4386 −0.835130 −0.417565 0.908647i 0.637116π-0.637116\pi
−0.417565 + 0.908647i 0.637116π0.637116\pi
660660 0 0
661661 0.783503 0.0304747 0.0152374 0.999884i 0.495150π-0.495150\pi
0.0152374 + 0.999884i 0.495150π0.495150\pi
662662 33.5315i 1.30324i
663663 − 39.9963i − 1.55333i
664664 1.91643 0.0743720
665665 0 0
666666 −26.5966 −1.03060
667667 − 8.36653i − 0.323953i
668668 − 76.4634i − 2.95846i
669669 1.39292 0.0538535
670670 0 0
671671 0.0282963 0.00109237
672672 2.80113i 0.108056i
673673 − 50.1903i − 1.93469i −0.253454 0.967347i 0.581567π-0.581567\pi
0.253454 0.967347i 0.418433π-0.418433\pi
674674 −54.6065 −2.10336
675675 0 0
676676 81.9362 3.15139
677677 29.8804i 1.14840i 0.818716 + 0.574198i 0.194686π0.194686\pi
−0.818716 + 0.574198i 0.805314π0.805314\pi
678678 − 0.430872i − 0.0165475i
679679 3.22717 0.123847
680680 0 0
681681 −25.6455 −0.982736
682682 2.08277i 0.0797532i
683683 12.3326i 0.471894i 0.971766 + 0.235947i 0.0758192π0.0758192\pi
−0.971766 + 0.235947i 0.924181π0.924181\pi
684684 5.02830 0.192262
685685 0 0
686686 −23.2555 −0.887898
687687 7.02750i 0.268116i
688688 19.8996i 0.758666i
689689 33.9207 1.29227
690690 0 0
691691 3.62200 0.137787 0.0688936 0.997624i 0.478053π-0.478053\pi
0.0688936 + 0.997624i 0.478053π0.478053\pi
692692 − 57.4252i − 2.18298i
693693 0.273891i 0.0104042i
694694 9.34891 0.354880
695695 0 0
696696 −11.3695 −0.430958
697697 49.7528i 1.88452i
698698 − 81.8358i − 3.09753i
699699 23.1599 0.875988
700700 0 0
701701 34.1209 1.28873 0.644365 0.764718i 0.277122π-0.277122\pi
0.644365 + 0.764718i 0.277122π0.277122\pi
702702 − 78.9135i − 2.97840i
703703 8.12386i 0.306397i
704704 −3.08277 −0.116186
705705 0 0
706706 −10.1161 −0.380725
707707 − 3.18396i − 0.119745i
708708 − 19.5654i − 0.735313i
709709 17.1209 0.642990 0.321495 0.946911i 0.395815π-0.395815\pi
0.321495 + 0.946911i 0.395815π0.395815\pi
710710 0 0
711711 −5.34116 −0.200309
712712 64.5024i 2.41733i
713713 − 11.7699i − 0.440786i
714714 −11.5966 −0.433993
715715 0 0
716716 12.4621 0.465730
717717 − 27.9191i − 1.04266i
718718 − 48.2440i − 1.80045i
719719 7.02750 0.262081 0.131041 0.991377i 0.458168π-0.458168\pi
0.131041 + 0.991377i 0.458168π0.458168\pi
720720 0 0
721721 2.41830 0.0900620
722722 − 2.37720i − 0.0884703i
723723 − 35.9087i − 1.33546i
724724 −85.8406 −3.19024
725725 0 0
726726 −33.0841 −1.22787
727727 11.8938i 0.441115i 0.975374 + 0.220558i 0.0707877π0.0707877\pi
−0.975374 + 0.220558i 0.929212π0.929212\pi
728728 − 16.9667i − 0.628826i
729729 −25.4026 −0.940836
730730 0 0
731731 51.7421 1.91375
732732 0.480515i 0.0177604i
733733 20.7154i 0.765142i 0.923926 + 0.382571i 0.124961π0.124961\pi
−0.923926 + 0.382571i 0.875039π0.875039\pi
734734 −9.15910 −0.338069
735735 0 0
736736 11.1423 0.410710
737737 − 3.22717i − 0.118874i
738738 30.8852i 1.13690i
739739 −33.8620 −1.24563 −0.622816 0.782368i 0.714012π-0.714012\pi
−0.622816 + 0.782368i 0.714012π0.714012\pi
740740 0 0
741741 −7.58383 −0.278599
742742 − 9.83505i − 0.361056i
743743 42.7381i 1.56791i 0.620818 + 0.783955i 0.286800π0.286800\pi
−0.620818 + 0.783955i 0.713200π0.713200\pi
744744 −15.9944 −0.586382
745745 0 0
746746 34.7918 1.27382
747747 − 0.672440i − 0.0246033i
748748 − 5.27389i − 0.192833i
749749 −11.9738 −0.437514
750750 0 0
751751 11.9581 0.436358 0.218179 0.975909i 0.429988π-0.429988\pi
0.218179 + 0.975909i 0.429988π0.429988\pi
752752 − 24.6639i − 0.899400i
753753 11.4776i 0.418267i
754754 −32.1805 −1.17194
755755 0 0
756756 −14.7827 −0.537642
757757 − 29.1103i − 1.05803i −0.848612 0.529015i 0.822561π-0.822561\pi
0.848612 0.529015i 0.177439π-0.177439\pi
758758 − 52.3219i − 1.90042i
759759 −1.28376 −0.0465977
760760 0 0
761761 −22.3014 −0.808425 −0.404212 0.914665i 0.632454π-0.632454\pi
−0.404212 + 0.914665i 0.632454π0.632454\pi
762762 45.8230i 1.65999i
763763 5.65672i 0.204787i
764764 −45.5109 −1.64653
765765 0 0
766766 −7.33531 −0.265036
767767 − 25.0432i − 0.904258i
768768 − 34.0091i − 1.22720i
769769 −3.95891 −0.142762 −0.0713809 0.997449i 0.522741π-0.522741\pi
−0.0713809 + 0.997449i 0.522741π0.522741\pi
770770 0 0
771771 8.73971 0.314753
772772 − 70.4634i − 2.53603i
773773 27.8139i 1.00040i 0.865911 + 0.500199i 0.166740π0.166740\pi
−0.865911 + 0.500199i 0.833260π0.833260\pi
774774 32.1201 1.15453
775775 0 0
776776 −17.4445 −0.626220
777777 − 7.51444i − 0.269579i
778778 20.8529i 0.747612i
779779 9.43380 0.338001
780780 0 0
781781 −1.57608 −0.0563965
782782 46.1289i 1.64957i
783783 12.6794i 0.453124i
784784 13.1287 0.468882
785785 0 0
786786 16.9095 0.603141
787787 1.82460i 0.0650398i 0.999471 + 0.0325199i 0.0103532π0.0103532\pi
−0.999471 + 0.0325199i 0.989647π0.989647\pi
788788 24.2087i 0.862401i
789789 11.7905 0.419751
790790 0 0
791791 −0.103312 −0.00367336
792792 − 1.48052i − 0.0526078i
793793 0.615047i 0.0218410i
794794 3.79045 0.134518
795795 0 0
796796 −84.2851 −2.98741
797797 21.0360i 0.745135i 0.928005 + 0.372567i 0.121522π0.121522\pi
−0.928005 + 0.372567i 0.878478π0.878478\pi
798798 2.19887i 0.0778393i
799799 −64.1300 −2.26876
800800 0 0
801801 22.6327 0.799686
802802 41.7261i 1.47340i
803803 − 1.82942i − 0.0645589i
804804 54.8024 1.93273
805805 0 0
806806 −45.2710 −1.59460
807807 − 0.635593i − 0.0223739i
808808 17.2109i 0.605476i
809809 0.0819654 0.00288175 0.00144088 0.999999i 0.499541π-0.499541\pi
0.00144088 + 0.999999i 0.499541π0.499541\pi
810810 0 0
811811 −6.72531 −0.236158 −0.118079 0.993004i 0.537674π-0.537674\pi
−0.118079 + 0.993004i 0.537674π0.537674\pi
812812 6.02830i 0.211552i
813813 4.72691i 0.165780i
814814 5.28939 0.185393
815815 0 0
816816 13.6268 0.477034
817817 − 9.81100i − 0.343243i
818818 87.1994i 3.04886i
819819 −5.95328 −0.208024
820820 0 0
821821 30.9426 1.07990 0.539952 0.841696i 0.318442π-0.318442\pi
0.539952 + 0.841696i 0.318442π0.318442\pi
822822 − 38.8513i − 1.35509i
823823 26.5908i 0.926896i 0.886124 + 0.463448i 0.153388π0.153388\pi
−0.886124 + 0.463448i 0.846612π0.846612\pi
824824 −13.0721 −0.455388
825825 0 0
826826 −7.26109 −0.252646
827827 5.57900i 0.194001i 0.995284 + 0.0970004i 0.0309248π0.0309248\pi
−0.995284 + 0.0970004i 0.969075π0.969075\pi
828828 18.5011i 0.642956i
829829 −18.9765 −0.659082 −0.329541 0.944141i 0.606894π-0.606894\pi
−0.329541 + 0.944141i 0.606894π0.606894\pi
830830 0 0
831831 5.84302 0.202692
832832 − 67.0069i − 2.32305i
833833 − 34.1367i − 1.18276i
834834 46.1746 1.59890
835835 0 0
836836 −1.00000 −0.0345857
837837 17.8372i 0.616543i
838838 − 44.7360i − 1.54538i
839839 −12.9143 −0.445852 −0.222926 0.974835i 0.571561π-0.571561\pi
−0.222926 + 0.974835i 0.571561π0.571561\pi
840840 0 0
841841 −23.8294 −0.821704
842842 80.3064i 2.76754i
843843 34.7331i 1.19627i
844844 27.5577 0.948574
845845 0 0
846846 −39.8102 −1.36870
847847 7.93273i 0.272572i
848848 11.5569i 0.396864i
849849 13.0779 0.448834
850850 0 0
851851 −29.8908 −1.02464
852852 − 26.7643i − 0.916929i
853853 6.46077i 0.221213i 0.993864 + 0.110606i 0.0352793π0.0352793\pi
−0.993864 + 0.110606i 0.964721π0.964721\pi
854854 0.178328 0.00610227
855855 0 0
856856 64.7245 2.21224
857857 12.4055i 0.423764i 0.977295 + 0.211882i 0.0679592π0.0679592\pi
−0.977295 + 0.211882i 0.932041π0.932041\pi
858858 4.93778i 0.168573i
859859 −40.3425 −1.37647 −0.688234 0.725489i 0.741614π-0.741614\pi
−0.688234 + 0.725489i 0.741614π0.741614\pi
860860 0 0
861861 −8.72611 −0.297385
862862 30.3452i 1.03356i
863863 1.83235i 0.0623738i 0.999514 + 0.0311869i 0.00992870π0.00992870\pi
−0.999514 + 0.0311869i 0.990071π0.990071\pi
864864 −16.8860 −0.574474
865865 0 0
866866 −38.2186 −1.29872
867867 − 13.7758i − 0.467849i
868868 8.48052i 0.287847i
869869 1.06222 0.0360333
870870 0 0
871871 70.1457 2.37680
872872 − 30.5774i − 1.03548i
873873 6.12094i 0.207162i
874874 8.74666 0.295860
875875 0 0
876876 31.0665 1.04964
877877 8.14419i 0.275010i 0.990501 + 0.137505i 0.0439083π0.0439083\pi
−0.990501 + 0.137505i 0.956092π0.956092\pi
878878 3.25547i 0.109867i
879879 2.38283 0.0803709
880880 0 0
881881 12.1706 0.410037 0.205019 0.978758i 0.434275π-0.434275\pi
0.205019 + 0.978758i 0.434275π0.434275\pi
882882 − 21.1911i − 0.713542i
883883 46.7614i 1.57364i 0.617179 + 0.786822i 0.288275π0.288275\pi
−0.617179 + 0.786822i 0.711725π0.711725\pi
884884 114.633 3.85553
885885 0 0
886886 10.9893 0.369194
887887 34.8804i 1.17117i 0.810611 + 0.585584i 0.199135π0.199135\pi
−0.810611 + 0.585584i 0.800865π0.800865\pi
888888 40.6193i 1.36309i
889889 10.9872 0.368499
890890 0 0
891891 0.813922 0.0272674
892892 3.99225i 0.133670i
893893 12.1599i 0.406916i
894894 −41.8860 −1.40088
895895 0 0
896896 −15.0304 −0.502131
897897 − 27.9039i − 0.931683i
898898 55.2830i 1.84482i
899899 7.27389 0.242598
900900 0 0
901901 30.0496 1.00110
902902 − 6.14228i − 0.204516i
903903 9.07502i 0.301998i
904904 0.558455 0.0185739
905905 0 0
906906 −35.4543 −1.17789
907907 25.5080i 0.846980i 0.905901 + 0.423490i 0.139195π0.139195\pi
−0.905901 + 0.423490i 0.860805π0.860805\pi
908908 − 73.5024i − 2.43926i
909909 6.03897 0.200300
910910 0 0
911911 −21.5032 −0.712432 −0.356216 0.934404i 0.615933π-0.615933\pi
−0.356216 + 0.934404i 0.615933π0.615933\pi
912912 − 2.58383i − 0.0855591i
913913 0.133731i 0.00442586i
914914 85.2093 2.81847
915915 0 0
916916 −20.1415 −0.665493
917917 − 4.05447i − 0.133890i
918918 − 69.9079i − 2.30730i
919919 −37.1386 −1.22509 −0.612544 0.790436i 0.709854π-0.709854\pi
−0.612544 + 0.790436i 0.709854π0.709854\pi
920920 0 0
921921 0.289391 0.00953575
922922 35.3756i 1.16503i
923923 − 34.2576i − 1.12760i
924924 0.924984 0.0304297
925925 0 0
926926 −71.2101 −2.34011
927927 4.58675i 0.150649i
928928 6.88601i 0.226044i
929929 3.36170 0.110294 0.0551469 0.998478i 0.482437π-0.482437\pi
0.0551469 + 0.998478i 0.482437π0.482437\pi
930930 0 0
931931 −6.47277 −0.212136
932932 66.3785i 2.17430i
933933 26.6949i 0.873951i
934934 16.0128 0.523955
935935 0 0
936936 32.1805 1.05185
937937 − 10.0694i − 0.328953i −0.986381 0.164476i 0.947407π-0.947407\pi
0.986381 0.164476i 0.0525934π-0.0525934\pi
938938 − 20.3382i − 0.664067i
939939 14.3121 0.467056
940940 0 0
941941 20.8139 0.678514 0.339257 0.940694i 0.389824π-0.389824\pi
0.339257 + 0.940694i 0.389824π0.389824\pi
942942 14.5069i 0.472661i
943943 34.7106i 1.13033i
944944 8.53228 0.277702
945945 0 0
946946 −6.38788 −0.207688
947947 30.4904i 0.990804i 0.868664 + 0.495402i 0.164979π0.164979\pi
−0.868664 + 0.495402i 0.835021π0.835021\pi
948948 18.0382i 0.585852i
949949 39.7643 1.29080
950950 0 0
951951 23.7234 0.769284
952952 − 15.0304i − 0.487139i
953953 7.58383i 0.245664i 0.992427 + 0.122832i 0.0391977π0.0391977\pi
−0.992427 + 0.122832i 0.960802π0.960802\pi
954954 18.6540 0.603946
955955 0 0
956956 80.0189 2.58800
957957 − 0.793375i − 0.0256462i
958958 39.6941i 1.28246i
959959 −9.31556 −0.300815
960960 0 0
961961 −20.7672 −0.669910
962962 114.970i 3.70678i
963963 − 22.7106i − 0.731839i
964964 102.918 3.31476
965965 0 0
966966 −8.09052 −0.260308
967967 − 54.6687i − 1.75803i −0.476797 0.879014i 0.658202π-0.658202\pi
0.476797 0.879014i 0.341798π-0.341798\pi
968968 − 42.8804i − 1.37823i
969969 −6.71836 −0.215825
970970 0 0
971971 −39.9632 −1.28248 −0.641239 0.767341i 0.721579π-0.721579\pi
−0.641239 + 0.767341i 0.721579π0.721579\pi
972972 − 47.2547i − 1.51569i
973973 − 11.0715i − 0.354936i
974974 −8.65402 −0.277293
975975 0 0
976976 −0.209548 −0.00670747
977977 − 15.2400i − 0.487570i −0.969829 0.243785i 0.921611π-0.921611\pi
0.969829 0.243785i 0.0783891π-0.0783891\pi
978978 38.7656i 1.23959i
979979 −4.50106 −0.143855
980980 0 0
981981 −10.7290 −0.342552
982982 79.2199i 2.52801i
983983 − 45.3609i − 1.44679i −0.690435 0.723394i 0.742581π-0.742581\pi
0.690435 0.723394i 0.257419π-0.257419\pi
984984 47.1690 1.50369
985985 0 0
986986 −28.5080 −0.907880
987987 − 11.2477i − 0.358019i
988988 − 21.7360i − 0.691514i
989989 36.0985 1.14787
990990 0 0
991991 −16.3537 −0.519493 −0.259747 0.965677i 0.583639π-0.583639\pi
−0.259747 + 0.965677i 0.583639π0.583639\pi
992992 9.68714i 0.307567i
993993 − 17.9688i − 0.570222i
994994 −9.93273 −0.315047
995995 0 0
996996 −2.27097 −0.0719583
997997 33.2037i 1.05157i 0.850617 + 0.525786i 0.176229π0.176229\pi
−0.850617 + 0.525786i 0.823771π0.823771\pi
998998 − 90.3134i − 2.85882i
999999 45.2993 1.43321
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.b.b.324.1 6
5.2 odd 4 475.2.a.g.1.3 yes 3
5.3 odd 4 475.2.a.e.1.1 3
5.4 even 2 inner 475.2.b.b.324.6 6
15.2 even 4 4275.2.a.ba.1.1 3
15.8 even 4 4275.2.a.bm.1.3 3
20.3 even 4 7600.2.a.cc.1.2 3
20.7 even 4 7600.2.a.bh.1.2 3
95.18 even 4 9025.2.a.bc.1.3 3
95.37 even 4 9025.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.1 3 5.3 odd 4
475.2.a.g.1.3 yes 3 5.2 odd 4
475.2.b.b.324.1 6 1.1 even 1 trivial
475.2.b.b.324.6 6 5.4 even 2 inner
4275.2.a.ba.1.1 3 15.2 even 4
4275.2.a.bm.1.3 3 15.8 even 4
7600.2.a.bh.1.2 3 20.7 even 4
7600.2.a.cc.1.2 3 20.3 even 4
9025.2.a.y.1.1 3 95.37 even 4
9025.2.a.bc.1.3 3 95.18 even 4