Properties

Label 475.2.b.b.324.1
Level $475$
Weight $2$
Character 475.324
Analytic conductor $3.793$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(324,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1827904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.1
Root \(0.273891i\) of defining polynomial
Character \(\chi\) \(=\) 475.324
Dual form 475.2.b.b.324.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37720i q^{2} +1.27389i q^{3} -3.65109 q^{4} +3.02830 q^{6} -0.726109i q^{7} +3.92498i q^{8} +1.37720 q^{9} -0.273891 q^{11} -4.65109i q^{12} -5.95328i q^{13} -1.72611 q^{14} +2.02830 q^{16} -5.27389i q^{17} -3.27389i q^{18} -1.00000 q^{19} +0.924984 q^{21} +0.651093i q^{22} -3.67939i q^{23} -5.00000 q^{24} -14.1522 q^{26} +5.57608i q^{27} +2.65109i q^{28} +2.27389 q^{29} +3.19887 q^{31} +3.02830i q^{32} -0.348907i q^{33} -12.5371 q^{34} -5.02830 q^{36} -8.12386i q^{37} +2.37720i q^{38} +7.58383 q^{39} -9.43380 q^{41} -2.19887i q^{42} +9.81100i q^{43} +1.00000 q^{44} -8.74666 q^{46} -12.1599i q^{47} +2.58383i q^{48} +6.47277 q^{49} +6.71836 q^{51} +21.7360i q^{52} +5.69781i q^{53} +13.2555 q^{54} +2.84997 q^{56} -1.27389i q^{57} -5.40550i q^{58} +4.20662 q^{59} -0.103312 q^{61} -7.60437i q^{62} -1.00000i q^{63} +11.2555 q^{64} -0.829422 q^{66} +11.7827i q^{67} +19.2555i q^{68} +4.68714 q^{69} +5.75441 q^{71} +5.40550i q^{72} +6.67939i q^{73} -19.3121 q^{74} +3.65109 q^{76} +0.198875i q^{77} -18.0283i q^{78} -3.87826 q^{79} -2.97170 q^{81} +22.4260i q^{82} -0.488265i q^{83} -3.37720 q^{84} +23.3227 q^{86} +2.89669i q^{87} -1.07502i q^{88} +16.4338 q^{89} -4.32273 q^{91} +13.4338i q^{92} +4.07502i q^{93} -28.9066 q^{94} -3.85772 q^{96} +4.44447i q^{97} -15.3871i q^{98} -0.377203 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{4} - 6 q^{6} - 2 q^{9} + 2 q^{11} - 14 q^{14} - 12 q^{16} - 6 q^{19} - 12 q^{21} - 30 q^{24} - 22 q^{26} + 10 q^{29} - 2 q^{31} - 10 q^{34} - 6 q^{36} + 22 q^{39} + 2 q^{41} + 6 q^{44} - 24 q^{46}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.37720i − 1.68094i −0.541861 0.840468i \(-0.682280\pi\)
0.541861 0.840468i \(-0.317720\pi\)
\(3\) 1.27389i 0.735481i 0.929928 + 0.367741i \(0.119869\pi\)
−0.929928 + 0.367741i \(0.880131\pi\)
\(4\) −3.65109 −1.82555
\(5\) 0 0
\(6\) 3.02830 1.23630
\(7\) − 0.726109i − 0.274444i −0.990540 0.137222i \(-0.956183\pi\)
0.990540 0.137222i \(-0.0438173\pi\)
\(8\) 3.92498i 1.38769i
\(9\) 1.37720 0.459068
\(10\) 0 0
\(11\) −0.273891 −0.0825811 −0.0412906 0.999147i \(-0.513147\pi\)
−0.0412906 + 0.999147i \(0.513147\pi\)
\(12\) − 4.65109i − 1.34266i
\(13\) − 5.95328i − 1.65114i −0.564298 0.825571i \(-0.690853\pi\)
0.564298 0.825571i \(-0.309147\pi\)
\(14\) −1.72611 −0.461322
\(15\) 0 0
\(16\) 2.02830 0.507074
\(17\) − 5.27389i − 1.27911i −0.768747 0.639553i \(-0.779119\pi\)
0.768747 0.639553i \(-0.220881\pi\)
\(18\) − 3.27389i − 0.771663i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.924984 0.201848
\(22\) 0.651093i 0.138814i
\(23\) − 3.67939i − 0.767206i −0.923498 0.383603i \(-0.874683\pi\)
0.923498 0.383603i \(-0.125317\pi\)
\(24\) −5.00000 −1.02062
\(25\) 0 0
\(26\) −14.1522 −2.77547
\(27\) 5.57608i 1.07312i
\(28\) 2.65109i 0.501010i
\(29\) 2.27389 0.422251 0.211125 0.977459i \(-0.432287\pi\)
0.211125 + 0.977459i \(0.432287\pi\)
\(30\) 0 0
\(31\) 3.19887 0.574535 0.287267 0.957850i \(-0.407253\pi\)
0.287267 + 0.957850i \(0.407253\pi\)
\(32\) 3.02830i 0.535332i
\(33\) − 0.348907i − 0.0607368i
\(34\) −12.5371 −2.15010
\(35\) 0 0
\(36\) −5.02830 −0.838049
\(37\) − 8.12386i − 1.33555i −0.744361 0.667777i \(-0.767246\pi\)
0.744361 0.667777i \(-0.232754\pi\)
\(38\) 2.37720i 0.385633i
\(39\) 7.58383 1.21438
\(40\) 0 0
\(41\) −9.43380 −1.47331 −0.736656 0.676268i \(-0.763596\pi\)
−0.736656 + 0.676268i \(0.763596\pi\)
\(42\) − 2.19887i − 0.339294i
\(43\) 9.81100i 1.49616i 0.663607 + 0.748082i \(0.269025\pi\)
−0.663607 + 0.748082i \(0.730975\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −8.74666 −1.28962
\(47\) − 12.1599i − 1.77370i −0.462053 0.886852i \(-0.652887\pi\)
0.462053 0.886852i \(-0.347113\pi\)
\(48\) 2.58383i 0.372943i
\(49\) 6.47277 0.924681
\(50\) 0 0
\(51\) 6.71836 0.940758
\(52\) 21.7360i 3.01424i
\(53\) 5.69781i 0.782655i 0.920252 + 0.391327i \(0.127984\pi\)
−0.920252 + 0.391327i \(0.872016\pi\)
\(54\) 13.2555 1.80384
\(55\) 0 0
\(56\) 2.84997 0.380843
\(57\) − 1.27389i − 0.168731i
\(58\) − 5.40550i − 0.709777i
\(59\) 4.20662 0.547656 0.273828 0.961779i \(-0.411710\pi\)
0.273828 + 0.961779i \(0.411710\pi\)
\(60\) 0 0
\(61\) −0.103312 −0.0132278 −0.00661389 0.999978i \(-0.502105\pi\)
−0.00661389 + 0.999978i \(0.502105\pi\)
\(62\) − 7.60437i − 0.965756i
\(63\) − 1.00000i − 0.125988i
\(64\) 11.2555 1.40693
\(65\) 0 0
\(66\) −0.829422 −0.102095
\(67\) 11.7827i 1.43949i 0.694241 + 0.719743i \(0.255740\pi\)
−0.694241 + 0.719743i \(0.744260\pi\)
\(68\) 19.2555i 2.33507i
\(69\) 4.68714 0.564265
\(70\) 0 0
\(71\) 5.75441 0.682922 0.341461 0.939896i \(-0.389078\pi\)
0.341461 + 0.939896i \(0.389078\pi\)
\(72\) 5.40550i 0.637044i
\(73\) 6.67939i 0.781763i 0.920441 + 0.390882i \(0.127830\pi\)
−0.920441 + 0.390882i \(0.872170\pi\)
\(74\) −19.3121 −2.24498
\(75\) 0 0
\(76\) 3.65109 0.418809
\(77\) 0.198875i 0.0226639i
\(78\) − 18.0283i − 2.04130i
\(79\) −3.87826 −0.436339 −0.218169 0.975911i \(-0.570009\pi\)
−0.218169 + 0.975911i \(0.570009\pi\)
\(80\) 0 0
\(81\) −2.97170 −0.330189
\(82\) 22.4260i 2.47654i
\(83\) − 0.488265i − 0.0535941i −0.999641 0.0267970i \(-0.991469\pi\)
0.999641 0.0267970i \(-0.00853078\pi\)
\(84\) −3.37720 −0.368483
\(85\) 0 0
\(86\) 23.3227 2.51495
\(87\) 2.89669i 0.310558i
\(88\) − 1.07502i − 0.114597i
\(89\) 16.4338 1.74198 0.870989 0.491302i \(-0.163479\pi\)
0.870989 + 0.491302i \(0.163479\pi\)
\(90\) 0 0
\(91\) −4.32273 −0.453146
\(92\) 13.4338i 1.40057i
\(93\) 4.07502i 0.422559i
\(94\) −28.9066 −2.98148
\(95\) 0 0
\(96\) −3.85772 −0.393727
\(97\) 4.44447i 0.451267i 0.974212 + 0.225634i \(0.0724453\pi\)
−0.974212 + 0.225634i \(0.927555\pi\)
\(98\) − 15.3871i − 1.55433i
\(99\) −0.377203 −0.0379103
\(100\) 0 0
\(101\) 4.38495 0.436319 0.218160 0.975913i \(-0.429995\pi\)
0.218160 + 0.975913i \(0.429995\pi\)
\(102\) − 15.9709i − 1.58136i
\(103\) 3.33048i 0.328162i 0.986447 + 0.164081i \(0.0524659\pi\)
−0.986447 + 0.164081i \(0.947534\pi\)
\(104\) 23.3665 2.29128
\(105\) 0 0
\(106\) 13.5449 1.31559
\(107\) − 16.4904i − 1.59419i −0.603857 0.797093i \(-0.706370\pi\)
0.603857 0.797093i \(-0.293630\pi\)
\(108\) − 20.3588i − 1.95902i
\(109\) −7.79045 −0.746190 −0.373095 0.927793i \(-0.621703\pi\)
−0.373095 + 0.927793i \(0.621703\pi\)
\(110\) 0 0
\(111\) 10.3489 0.982275
\(112\) − 1.47277i − 0.139163i
\(113\) − 0.142282i − 0.0133848i −0.999978 0.00669238i \(-0.997870\pi\)
0.999978 0.00669238i \(-0.00213027\pi\)
\(114\) −3.02830 −0.283626
\(115\) 0 0
\(116\) −8.30219 −0.770839
\(117\) − 8.19887i − 0.757986i
\(118\) − 10.0000i − 0.920575i
\(119\) −3.82942 −0.351043
\(120\) 0 0
\(121\) −10.9250 −0.993180
\(122\) 0.245594i 0.0222351i
\(123\) − 12.0176i − 1.08359i
\(124\) −11.6794 −1.04884
\(125\) 0 0
\(126\) −2.37720 −0.211778
\(127\) 15.1316i 1.34271i 0.741135 + 0.671357i \(0.234288\pi\)
−0.741135 + 0.671357i \(0.765712\pi\)
\(128\) − 20.6999i − 1.82963i
\(129\) −12.4981 −1.10040
\(130\) 0 0
\(131\) 5.58383 0.487861 0.243931 0.969793i \(-0.421563\pi\)
0.243931 + 0.969793i \(0.421563\pi\)
\(132\) 1.27389i 0.110878i
\(133\) 0.726109i 0.0629617i
\(134\) 28.0099 2.41968
\(135\) 0 0
\(136\) 20.6999 1.77500
\(137\) − 12.8294i − 1.09609i −0.836448 0.548046i \(-0.815372\pi\)
0.836448 0.548046i \(-0.184628\pi\)
\(138\) − 11.1423i − 0.948494i
\(139\) 15.2477 1.29329 0.646647 0.762789i \(-0.276171\pi\)
0.646647 + 0.762789i \(0.276171\pi\)
\(140\) 0 0
\(141\) 15.4904 1.30453
\(142\) − 13.6794i − 1.14795i
\(143\) 1.63055i 0.136353i
\(144\) 2.79338 0.232781
\(145\) 0 0
\(146\) 15.8783 1.31409
\(147\) 8.24559i 0.680085i
\(148\) 29.6610i 2.43812i
\(149\) −13.8315 −1.13312 −0.566562 0.824019i \(-0.691727\pi\)
−0.566562 + 0.824019i \(0.691727\pi\)
\(150\) 0 0
\(151\) −11.7077 −0.952758 −0.476379 0.879240i \(-0.658051\pi\)
−0.476379 + 0.879240i \(0.658051\pi\)
\(152\) − 3.92498i − 0.318358i
\(153\) − 7.26322i − 0.587196i
\(154\) 0.472765 0.0380965
\(155\) 0 0
\(156\) −27.6893 −2.21692
\(157\) 4.79045i 0.382320i 0.981559 + 0.191160i \(0.0612249\pi\)
−0.981559 + 0.191160i \(0.938775\pi\)
\(158\) 9.21942i 0.733458i
\(159\) −7.25839 −0.575628
\(160\) 0 0
\(161\) −2.67164 −0.210555
\(162\) 7.06434i 0.555027i
\(163\) 12.8011i 1.00266i 0.865256 + 0.501331i \(0.167156\pi\)
−0.865256 + 0.501331i \(0.832844\pi\)
\(164\) 34.4437 2.68960
\(165\) 0 0
\(166\) −1.16071 −0.0900882
\(167\) 20.9426i 1.62059i 0.586024 + 0.810294i \(0.300692\pi\)
−0.586024 + 0.810294i \(0.699308\pi\)
\(168\) 3.63055i 0.280103i
\(169\) −22.4415 −1.72627
\(170\) 0 0
\(171\) −1.37720 −0.105317
\(172\) − 35.8209i − 2.73132i
\(173\) 15.7282i 1.19580i 0.801572 + 0.597898i \(0.203997\pi\)
−0.801572 + 0.597898i \(0.796003\pi\)
\(174\) 6.88601 0.522027
\(175\) 0 0
\(176\) −0.555531 −0.0418747
\(177\) 5.35878i 0.402791i
\(178\) − 39.0665i − 2.92816i
\(179\) −3.41325 −0.255118 −0.127559 0.991831i \(-0.540714\pi\)
−0.127559 + 0.991831i \(0.540714\pi\)
\(180\) 0 0
\(181\) 23.5109 1.74755 0.873777 0.486327i \(-0.161664\pi\)
0.873777 + 0.486327i \(0.161664\pi\)
\(182\) 10.2760i 0.761709i
\(183\) − 0.131609i − 0.00972878i
\(184\) 14.4415 1.06464
\(185\) 0 0
\(186\) 9.68714 0.710296
\(187\) 1.44447i 0.105630i
\(188\) 44.3969i 3.23798i
\(189\) 4.04884 0.294510
\(190\) 0 0
\(191\) 12.4650 0.901937 0.450968 0.892540i \(-0.351079\pi\)
0.450968 + 0.892540i \(0.351079\pi\)
\(192\) 14.3382i 1.03477i
\(193\) 19.2993i 1.38919i 0.719400 + 0.694596i \(0.244417\pi\)
−0.719400 + 0.694596i \(0.755583\pi\)
\(194\) 10.5654 0.758552
\(195\) 0 0
\(196\) −23.6327 −1.68805
\(197\) − 6.63055i − 0.472407i −0.971704 0.236203i \(-0.924097\pi\)
0.971704 0.236203i \(-0.0759032\pi\)
\(198\) 0.896688i 0.0637248i
\(199\) 23.0849 1.63644 0.818222 0.574902i \(-0.194960\pi\)
0.818222 + 0.574902i \(0.194960\pi\)
\(200\) 0 0
\(201\) −15.0099 −1.05871
\(202\) − 10.4239i − 0.733425i
\(203\) − 1.65109i − 0.115884i
\(204\) −24.5294 −1.71740
\(205\) 0 0
\(206\) 7.91723 0.551620
\(207\) − 5.06727i − 0.352199i
\(208\) − 12.0750i − 0.837252i
\(209\) 0.273891 0.0189454
\(210\) 0 0
\(211\) −7.54778 −0.519611 −0.259805 0.965661i \(-0.583658\pi\)
−0.259805 + 0.965661i \(0.583658\pi\)
\(212\) − 20.8032i − 1.42877i
\(213\) 7.33048i 0.502276i
\(214\) −39.2010 −2.67973
\(215\) 0 0
\(216\) −21.8860 −1.48915
\(217\) − 2.32273i − 0.157677i
\(218\) 18.5195i 1.25430i
\(219\) −8.50881 −0.574972
\(220\) 0 0
\(221\) −31.3969 −2.11199
\(222\) − 24.6015i − 1.65114i
\(223\) − 1.09344i − 0.0732221i −0.999330 0.0366111i \(-0.988344\pi\)
0.999330 0.0366111i \(-0.0116563\pi\)
\(224\) 2.19887 0.146918
\(225\) 0 0
\(226\) −0.338233 −0.0224989
\(227\) 20.1316i 1.33618i 0.744080 + 0.668091i \(0.232888\pi\)
−0.744080 + 0.668091i \(0.767112\pi\)
\(228\) 4.65109i 0.308026i
\(229\) 5.51656 0.364545 0.182272 0.983248i \(-0.441655\pi\)
0.182272 + 0.983248i \(0.441655\pi\)
\(230\) 0 0
\(231\) −0.253344 −0.0166688
\(232\) 8.92498i 0.585954i
\(233\) − 18.1805i − 1.19104i −0.803340 0.595520i \(-0.796946\pi\)
0.803340 0.595520i \(-0.203054\pi\)
\(234\) −19.4904 −1.27413
\(235\) 0 0
\(236\) −15.3588 −0.999771
\(237\) − 4.94048i − 0.320919i
\(238\) 9.10331i 0.590080i
\(239\) −21.9164 −1.41766 −0.708828 0.705381i \(-0.750776\pi\)
−0.708828 + 0.705381i \(0.750776\pi\)
\(240\) 0 0
\(241\) −28.1882 −1.81576 −0.907881 0.419228i \(-0.862301\pi\)
−0.907881 + 0.419228i \(0.862301\pi\)
\(242\) 25.9709i 1.66947i
\(243\) 12.9426i 0.830269i
\(244\) 0.377203 0.0241479
\(245\) 0 0
\(246\) −28.5683 −1.82145
\(247\) 5.95328i 0.378798i
\(248\) 12.5555i 0.797277i
\(249\) 0.621996 0.0394174
\(250\) 0 0
\(251\) 9.00987 0.568698 0.284349 0.958721i \(-0.408223\pi\)
0.284349 + 0.958721i \(0.408223\pi\)
\(252\) 3.65109i 0.229997i
\(253\) 1.00775i 0.0633567i
\(254\) 35.9709 2.25702
\(255\) 0 0
\(256\) −26.6970 −1.66856
\(257\) − 6.86064i − 0.427955i −0.976839 0.213978i \(-0.931358\pi\)
0.976839 0.213978i \(-0.0686419\pi\)
\(258\) 29.7106i 1.84970i
\(259\) −5.89881 −0.366534
\(260\) 0 0
\(261\) 3.13161 0.193842
\(262\) − 13.2739i − 0.820064i
\(263\) − 9.25547i − 0.570717i −0.958421 0.285358i \(-0.907887\pi\)
0.958421 0.285358i \(-0.0921126\pi\)
\(264\) 1.36945 0.0842840
\(265\) 0 0
\(266\) 1.72611 0.105835
\(267\) 20.9349i 1.28119i
\(268\) − 43.0197i − 2.62785i
\(269\) −0.498939 −0.0304208 −0.0152104 0.999884i \(-0.504842\pi\)
−0.0152104 + 0.999884i \(0.504842\pi\)
\(270\) 0 0
\(271\) 3.71061 0.225403 0.112702 0.993629i \(-0.464050\pi\)
0.112702 + 0.993629i \(0.464050\pi\)
\(272\) − 10.6970i − 0.648602i
\(273\) − 5.50669i − 0.333280i
\(274\) −30.4981 −1.84246
\(275\) 0 0
\(276\) −17.1132 −1.03009
\(277\) − 4.58675i − 0.275591i −0.990461 0.137796i \(-0.955998\pi\)
0.990461 0.137796i \(-0.0440017\pi\)
\(278\) − 36.2469i − 2.17395i
\(279\) 4.40550 0.263750
\(280\) 0 0
\(281\) 27.2653 1.62651 0.813257 0.581905i \(-0.197692\pi\)
0.813257 + 0.581905i \(0.197692\pi\)
\(282\) − 36.8238i − 2.19283i
\(283\) − 10.2661i − 0.610259i −0.952311 0.305129i \(-0.901300\pi\)
0.952311 0.305129i \(-0.0986997\pi\)
\(284\) −21.0099 −1.24671
\(285\) 0 0
\(286\) 3.87614 0.229201
\(287\) 6.84997i 0.404341i
\(288\) 4.17058i 0.245754i
\(289\) −10.8139 −0.636113
\(290\) 0 0
\(291\) −5.66177 −0.331899
\(292\) − 24.3871i − 1.42715i
\(293\) − 1.87051i − 0.109277i −0.998506 0.0546383i \(-0.982599\pi\)
0.998506 0.0546383i \(-0.0174006\pi\)
\(294\) 19.6015 1.14318
\(295\) 0 0
\(296\) 31.8860 1.85334
\(297\) − 1.52723i − 0.0886192i
\(298\) 32.8804i 1.90471i
\(299\) −21.9044 −1.26677
\(300\) 0 0
\(301\) 7.12386 0.410612
\(302\) 27.8315i 1.60153i
\(303\) 5.58595i 0.320904i
\(304\) −2.02830 −0.116331
\(305\) 0 0
\(306\) −17.2661 −0.987040
\(307\) − 0.227171i − 0.0129653i −0.999979 0.00648266i \(-0.997936\pi\)
0.999979 0.00648266i \(-0.00206351\pi\)
\(308\) − 0.726109i − 0.0413739i
\(309\) −4.24267 −0.241357
\(310\) 0 0
\(311\) 20.9554 1.18827 0.594136 0.804365i \(-0.297494\pi\)
0.594136 + 0.804365i \(0.297494\pi\)
\(312\) 29.7664i 1.68519i
\(313\) − 11.2349i − 0.635035i −0.948252 0.317518i \(-0.897151\pi\)
0.948252 0.317518i \(-0.102849\pi\)
\(314\) 11.3879 0.642655
\(315\) 0 0
\(316\) 14.1599 0.796557
\(317\) − 18.6228i − 1.04596i −0.852345 0.522980i \(-0.824820\pi\)
0.852345 0.522980i \(-0.175180\pi\)
\(318\) 17.2547i 0.967594i
\(319\) −0.622797 −0.0348699
\(320\) 0 0
\(321\) 21.0069 1.17249
\(322\) 6.35103i 0.353929i
\(323\) 5.27389i 0.293447i
\(324\) 10.8500 0.602776
\(325\) 0 0
\(326\) 30.4309 1.68541
\(327\) − 9.92418i − 0.548809i
\(328\) − 37.0275i − 2.04450i
\(329\) −8.82942 −0.486782
\(330\) 0 0
\(331\) −14.1054 −0.775305 −0.387652 0.921806i \(-0.626714\pi\)
−0.387652 + 0.921806i \(0.626714\pi\)
\(332\) 1.78270i 0.0978385i
\(333\) − 11.1882i − 0.613110i
\(334\) 49.7848 2.72410
\(335\) 0 0
\(336\) 1.87614 0.102352
\(337\) − 22.9709i − 1.25130i −0.780102 0.625652i \(-0.784833\pi\)
0.780102 0.625652i \(-0.215167\pi\)
\(338\) 53.3481i 2.90175i
\(339\) 0.181252 0.00984424
\(340\) 0 0
\(341\) −0.876142 −0.0474457
\(342\) 3.27389i 0.177032i
\(343\) − 9.78270i − 0.528216i
\(344\) −38.5080 −2.07621
\(345\) 0 0
\(346\) 37.3892 2.01006
\(347\) 3.93273i 0.211120i 0.994413 + 0.105560i \(0.0336635\pi\)
−0.994413 + 0.105560i \(0.966336\pi\)
\(348\) − 10.5761i − 0.566937i
\(349\) 34.4252 1.84274 0.921371 0.388685i \(-0.127071\pi\)
0.921371 + 0.388685i \(0.127071\pi\)
\(350\) 0 0
\(351\) 33.1960 1.77187
\(352\) − 0.829422i − 0.0442083i
\(353\) − 4.25547i − 0.226496i −0.993567 0.113248i \(-0.963875\pi\)
0.993567 0.113248i \(-0.0361254\pi\)
\(354\) 12.7389 0.677065
\(355\) 0 0
\(356\) −60.0013 −3.18006
\(357\) − 4.87826i − 0.258185i
\(358\) 8.11399i 0.428837i
\(359\) 20.2944 1.07110 0.535550 0.844504i \(-0.320104\pi\)
0.535550 + 0.844504i \(0.320104\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) − 55.8903i − 2.93753i
\(363\) − 13.9172i − 0.730465i
\(364\) 15.7827 0.827238
\(365\) 0 0
\(366\) −0.312860 −0.0163535
\(367\) − 3.85289i − 0.201119i −0.994931 0.100560i \(-0.967937\pi\)
0.994931 0.100560i \(-0.0320633\pi\)
\(368\) − 7.46289i − 0.389030i
\(369\) −12.9922 −0.676350
\(370\) 0 0
\(371\) 4.13724 0.214795
\(372\) − 14.8783i − 0.771402i
\(373\) 14.6356i 0.757802i 0.925437 + 0.378901i \(0.123698\pi\)
−0.925437 + 0.378901i \(0.876302\pi\)
\(374\) 3.43380 0.177557
\(375\) 0 0
\(376\) 47.7274 2.46135
\(377\) − 13.5371i − 0.697197i
\(378\) − 9.62492i − 0.495052i
\(379\) 22.0099 1.13057 0.565286 0.824895i \(-0.308766\pi\)
0.565286 + 0.824895i \(0.308766\pi\)
\(380\) 0 0
\(381\) −19.2760 −0.987540
\(382\) − 29.6319i − 1.51610i
\(383\) − 3.08569i − 0.157671i −0.996888 0.0788357i \(-0.974880\pi\)
0.996888 0.0788357i \(-0.0251202\pi\)
\(384\) 26.3695 1.34566
\(385\) 0 0
\(386\) 45.8783 2.33514
\(387\) 13.5117i 0.686840i
\(388\) − 16.2272i − 0.823810i
\(389\) −8.77203 −0.444760 −0.222380 0.974960i \(-0.571382\pi\)
−0.222380 + 0.974960i \(0.571382\pi\)
\(390\) 0 0
\(391\) −19.4047 −0.981338
\(392\) 25.4055i 1.28317i
\(393\) 7.11319i 0.358813i
\(394\) −15.7622 −0.794086
\(395\) 0 0
\(396\) 1.37720 0.0692070
\(397\) 1.59450i 0.0800257i 0.999199 + 0.0400129i \(0.0127399\pi\)
−0.999199 + 0.0400129i \(0.987260\pi\)
\(398\) − 54.8775i − 2.75076i
\(399\) −0.924984 −0.0463071
\(400\) 0 0
\(401\) −17.5526 −0.876535 −0.438268 0.898844i \(-0.644408\pi\)
−0.438268 + 0.898844i \(0.644408\pi\)
\(402\) 35.6815i 1.77963i
\(403\) − 19.0438i − 0.948639i
\(404\) −16.0099 −0.796521
\(405\) 0 0
\(406\) −3.92498 −0.194794
\(407\) 2.22505i 0.110292i
\(408\) 26.3695i 1.30548i
\(409\) −36.6815 −1.81378 −0.906892 0.421363i \(-0.861552\pi\)
−0.906892 + 0.421363i \(0.861552\pi\)
\(410\) 0 0
\(411\) 16.3433 0.806155
\(412\) − 12.1599i − 0.599076i
\(413\) − 3.05447i − 0.150301i
\(414\) −12.0459 −0.592025
\(415\) 0 0
\(416\) 18.0283 0.883910
\(417\) 19.4239i 0.951194i
\(418\) − 0.651093i − 0.0318460i
\(419\) 18.8187 0.919356 0.459678 0.888086i \(-0.347965\pi\)
0.459678 + 0.888086i \(0.347965\pi\)
\(420\) 0 0
\(421\) −33.7819 −1.64643 −0.823215 0.567730i \(-0.807822\pi\)
−0.823215 + 0.567730i \(0.807822\pi\)
\(422\) 17.9426i 0.873432i
\(423\) − 16.7467i − 0.814250i
\(424\) −22.3638 −1.08608
\(425\) 0 0
\(426\) 17.4260 0.844295
\(427\) 0.0750160i 0.00363028i
\(428\) 60.2079i 2.91026i
\(429\) −2.07714 −0.100285
\(430\) 0 0
\(431\) −12.7651 −0.614872 −0.307436 0.951569i \(-0.599471\pi\)
−0.307436 + 0.951569i \(0.599471\pi\)
\(432\) 11.3099i 0.544150i
\(433\) − 16.0771i − 0.772618i −0.922369 0.386309i \(-0.873750\pi\)
0.922369 0.386309i \(-0.126250\pi\)
\(434\) −5.52161 −0.265046
\(435\) 0 0
\(436\) 28.4437 1.36220
\(437\) 3.67939i 0.176009i
\(438\) 20.2272i 0.966492i
\(439\) −1.36945 −0.0653604 −0.0326802 0.999466i \(-0.510404\pi\)
−0.0326802 + 0.999466i \(0.510404\pi\)
\(440\) 0 0
\(441\) 8.91431 0.424491
\(442\) 74.6369i 3.55012i
\(443\) 4.62280i 0.219636i 0.993952 + 0.109818i \(0.0350268\pi\)
−0.993952 + 0.109818i \(0.964973\pi\)
\(444\) −37.7848 −1.79319
\(445\) 0 0
\(446\) −2.59933 −0.123082
\(447\) − 17.6199i − 0.833391i
\(448\) − 8.17270i − 0.386124i
\(449\) −23.2555 −1.09749 −0.548747 0.835989i \(-0.684895\pi\)
−0.548747 + 0.835989i \(0.684895\pi\)
\(450\) 0 0
\(451\) 2.58383 0.121668
\(452\) 0.519485i 0.0244345i
\(453\) − 14.9143i − 0.700735i
\(454\) 47.8569 2.24604
\(455\) 0 0
\(456\) 5.00000 0.234146
\(457\) 35.8443i 1.67673i 0.545111 + 0.838364i \(0.316487\pi\)
−0.545111 + 0.838364i \(0.683513\pi\)
\(458\) − 13.1140i − 0.612776i
\(459\) 29.4076 1.37263
\(460\) 0 0
\(461\) −14.8812 −0.693086 −0.346543 0.938034i \(-0.612645\pi\)
−0.346543 + 0.938034i \(0.612645\pi\)
\(462\) 0.602251i 0.0280193i
\(463\) − 29.9554i − 1.39215i −0.717971 0.696073i \(-0.754929\pi\)
0.717971 0.696073i \(-0.245071\pi\)
\(464\) 4.61212 0.214112
\(465\) 0 0
\(466\) −43.2186 −2.00206
\(467\) 6.73598i 0.311704i 0.987780 + 0.155852i \(0.0498123\pi\)
−0.987780 + 0.155852i \(0.950188\pi\)
\(468\) 29.9349i 1.38374i
\(469\) 8.55553 0.395058
\(470\) 0 0
\(471\) −6.10251 −0.281189
\(472\) 16.5109i 0.759977i
\(473\) − 2.68714i − 0.123555i
\(474\) −11.7445 −0.539444
\(475\) 0 0
\(476\) 13.9816 0.640845
\(477\) 7.84704i 0.359291i
\(478\) 52.0998i 2.38299i
\(479\) −16.6978 −0.762943 −0.381471 0.924381i \(-0.624582\pi\)
−0.381471 + 0.924381i \(0.624582\pi\)
\(480\) 0 0
\(481\) −48.3636 −2.20519
\(482\) 67.0091i 3.05218i
\(483\) − 3.40338i − 0.154859i
\(484\) 39.8881 1.81310
\(485\) 0 0
\(486\) 30.7672 1.39563
\(487\) − 3.64042i − 0.164963i −0.996593 0.0824816i \(-0.973715\pi\)
0.996593 0.0824816i \(-0.0262846\pi\)
\(488\) − 0.405499i − 0.0183561i
\(489\) −16.3072 −0.737439
\(490\) 0 0
\(491\) −33.3249 −1.50393 −0.751965 0.659203i \(-0.770894\pi\)
−0.751965 + 0.659203i \(0.770894\pi\)
\(492\) 43.8775i 1.97815i
\(493\) − 11.9922i − 0.540104i
\(494\) 14.1522 0.636736
\(495\) 0 0
\(496\) 6.48827 0.291332
\(497\) − 4.17833i − 0.187424i
\(498\) − 1.47861i − 0.0662582i
\(499\) 37.9914 1.70073 0.850365 0.526193i \(-0.176381\pi\)
0.850365 + 0.526193i \(0.176381\pi\)
\(500\) 0 0
\(501\) −26.6786 −1.19191
\(502\) − 21.4183i − 0.955945i
\(503\) − 42.1826i − 1.88083i −0.340032 0.940414i \(-0.610438\pi\)
0.340032 0.940414i \(-0.389562\pi\)
\(504\) 3.92498 0.174833
\(505\) 0 0
\(506\) 2.39563 0.106499
\(507\) − 28.5881i − 1.26964i
\(508\) − 55.2469i − 2.45119i
\(509\) 21.9971 0.975003 0.487502 0.873122i \(-0.337908\pi\)
0.487502 + 0.873122i \(0.337908\pi\)
\(510\) 0 0
\(511\) 4.84997 0.214550
\(512\) 22.0643i 0.975115i
\(513\) − 5.57608i − 0.246190i
\(514\) −16.3091 −0.719365
\(515\) 0 0
\(516\) 45.6319 2.00883
\(517\) 3.33048i 0.146474i
\(518\) 14.0227i 0.616121i
\(519\) −20.0360 −0.879485
\(520\) 0 0
\(521\) 20.0977 0.880496 0.440248 0.897876i \(-0.354891\pi\)
0.440248 + 0.897876i \(0.354891\pi\)
\(522\) − 7.44447i − 0.325836i
\(523\) − 4.64817i − 0.203250i −0.994823 0.101625i \(-0.967596\pi\)
0.994823 0.101625i \(-0.0324042\pi\)
\(524\) −20.3871 −0.890614
\(525\) 0 0
\(526\) −22.0021 −0.959338
\(527\) − 16.8705i − 0.734891i
\(528\) − 0.707686i − 0.0307981i
\(529\) 9.46209 0.411395
\(530\) 0 0
\(531\) 5.79338 0.251411
\(532\) − 2.65109i − 0.114939i
\(533\) 56.1620i 2.43265i
\(534\) 49.7664 2.15360
\(535\) 0 0
\(536\) −46.2469 −1.99756
\(537\) − 4.34811i − 0.187635i
\(538\) 1.18608i 0.0511355i
\(539\) −1.77283 −0.0763612
\(540\) 0 0
\(541\) 20.0673 0.862759 0.431380 0.902171i \(-0.358027\pi\)
0.431380 + 0.902171i \(0.358027\pi\)
\(542\) − 8.82087i − 0.378889i
\(543\) 29.9504i 1.28529i
\(544\) 15.9709 0.684747
\(545\) 0 0
\(546\) −13.0905 −0.560222
\(547\) 37.2010i 1.59060i 0.606216 + 0.795300i \(0.292687\pi\)
−0.606216 + 0.795300i \(0.707313\pi\)
\(548\) 46.8414i 2.00097i
\(549\) −0.142282 −0.00607245
\(550\) 0 0
\(551\) −2.27389 −0.0968710
\(552\) 18.3969i 0.783026i
\(553\) 2.81604i 0.119750i
\(554\) −10.9036 −0.463251
\(555\) 0 0
\(556\) −55.6708 −2.36097
\(557\) − 44.8393i − 1.89990i −0.312399 0.949951i \(-0.601133\pi\)
0.312399 0.949951i \(-0.398867\pi\)
\(558\) − 10.4728i − 0.443347i
\(559\) 58.4076 2.47038
\(560\) 0 0
\(561\) −1.84010 −0.0776889
\(562\) − 64.8152i − 2.73407i
\(563\) − 21.9172i − 0.923701i −0.886958 0.461851i \(-0.847186\pi\)
0.886958 0.461851i \(-0.152814\pi\)
\(564\) −56.5569 −2.38147
\(565\) 0 0
\(566\) −24.4047 −1.02581
\(567\) 2.15778i 0.0906183i
\(568\) 22.5860i 0.947685i
\(569\) −9.90656 −0.415305 −0.207652 0.978203i \(-0.566582\pi\)
−0.207652 + 0.978203i \(0.566582\pi\)
\(570\) 0 0
\(571\) 17.6404 0.738229 0.369114 0.929384i \(-0.379661\pi\)
0.369114 + 0.929384i \(0.379661\pi\)
\(572\) − 5.95328i − 0.248919i
\(573\) 15.8791i 0.663357i
\(574\) 16.2838 0.679671
\(575\) 0 0
\(576\) 15.5011 0.645878
\(577\) 12.7048i 0.528906i 0.964399 + 0.264453i \(0.0851914\pi\)
−0.964399 + 0.264453i \(0.914809\pi\)
\(578\) 25.7069i 1.06927i
\(579\) −24.5851 −1.02172
\(580\) 0 0
\(581\) −0.354534 −0.0147085
\(582\) 13.4592i 0.557900i
\(583\) − 1.56058i − 0.0646325i
\(584\) −26.2165 −1.08485
\(585\) 0 0
\(586\) −4.44659 −0.183687
\(587\) − 15.0438i − 0.620924i −0.950586 0.310462i \(-0.899516\pi\)
0.950586 0.310462i \(-0.100484\pi\)
\(588\) − 30.1054i − 1.24153i
\(589\) −3.19887 −0.131807
\(590\) 0 0
\(591\) 8.44659 0.347446
\(592\) − 16.4776i − 0.677225i
\(593\) − 16.4231i − 0.674417i −0.941430 0.337208i \(-0.890517\pi\)
0.941430 0.337208i \(-0.109483\pi\)
\(594\) −3.63055 −0.148963
\(595\) 0 0
\(596\) 50.5003 2.06857
\(597\) 29.4076i 1.20357i
\(598\) 52.0713i 2.12935i
\(599\) 19.1260 0.781466 0.390733 0.920504i \(-0.372222\pi\)
0.390733 + 0.920504i \(0.372222\pi\)
\(600\) 0 0
\(601\) 31.4124 1.28134 0.640670 0.767816i \(-0.278657\pi\)
0.640670 + 0.767816i \(0.278657\pi\)
\(602\) − 16.9349i − 0.690213i
\(603\) 16.2272i 0.660821i
\(604\) 42.7459 1.73930
\(605\) 0 0
\(606\) 13.2789 0.539420
\(607\) 41.5315i 1.68571i 0.538140 + 0.842855i \(0.319127\pi\)
−0.538140 + 0.842855i \(0.680873\pi\)
\(608\) − 3.02830i − 0.122814i
\(609\) 2.10331 0.0852305
\(610\) 0 0
\(611\) −72.3913 −2.92864
\(612\) 26.5187i 1.07195i
\(613\) 21.7274i 0.877563i 0.898594 + 0.438781i \(0.144590\pi\)
−0.898594 + 0.438781i \(0.855410\pi\)
\(614\) −0.540031 −0.0217939
\(615\) 0 0
\(616\) −0.780579 −0.0314504
\(617\) − 33.6065i − 1.35295i −0.736467 0.676473i \(-0.763507\pi\)
0.736467 0.676473i \(-0.236493\pi\)
\(618\) 10.0857i 0.405706i
\(619\) 27.6036 1.10948 0.554741 0.832023i \(-0.312817\pi\)
0.554741 + 0.832023i \(0.312817\pi\)
\(620\) 0 0
\(621\) 20.5166 0.823301
\(622\) − 49.8152i − 1.99741i
\(623\) − 11.9327i − 0.478075i
\(624\) 15.3822 0.615783
\(625\) 0 0
\(626\) −26.7077 −1.06745
\(627\) 0.348907i 0.0139340i
\(628\) − 17.4904i − 0.697942i
\(629\) −42.8443 −1.70832
\(630\) 0 0
\(631\) 1.94048 0.0772495 0.0386247 0.999254i \(-0.487702\pi\)
0.0386247 + 0.999254i \(0.487702\pi\)
\(632\) − 15.2221i − 0.605504i
\(633\) − 9.61505i − 0.382164i
\(634\) −44.2702 −1.75819
\(635\) 0 0
\(636\) 26.5011 1.05084
\(637\) − 38.5342i − 1.52678i
\(638\) 1.48052i 0.0586142i
\(639\) 7.92498 0.313508
\(640\) 0 0
\(641\) 1.01975 0.0402775 0.0201388 0.999797i \(-0.493589\pi\)
0.0201388 + 0.999797i \(0.493589\pi\)
\(642\) − 49.9378i − 1.97089i
\(643\) 36.9866i 1.45861i 0.684189 + 0.729305i \(0.260156\pi\)
−0.684189 + 0.729305i \(0.739844\pi\)
\(644\) 9.75441 0.384377
\(645\) 0 0
\(646\) 12.5371 0.493266
\(647\) − 24.1182i − 0.948186i −0.880475 0.474093i \(-0.842776\pi\)
0.880475 0.474093i \(-0.157224\pi\)
\(648\) − 11.6639i − 0.458201i
\(649\) −1.15215 −0.0452260
\(650\) 0 0
\(651\) 2.95891 0.115969
\(652\) − 46.7381i − 1.83041i
\(653\) 37.2603i 1.45811i 0.684456 + 0.729054i \(0.260040\pi\)
−0.684456 + 0.729054i \(0.739960\pi\)
\(654\) −23.5918 −0.922512
\(655\) 0 0
\(656\) −19.1345 −0.747078
\(657\) 9.19887i 0.358882i
\(658\) 20.9893i 0.818249i
\(659\) −21.4386 −0.835130 −0.417565 0.908647i \(-0.637116\pi\)
−0.417565 + 0.908647i \(0.637116\pi\)
\(660\) 0 0
\(661\) 0.783503 0.0304747 0.0152374 0.999884i \(-0.495150\pi\)
0.0152374 + 0.999884i \(0.495150\pi\)
\(662\) 33.5315i 1.30324i
\(663\) − 39.9963i − 1.55333i
\(664\) 1.91643 0.0743720
\(665\) 0 0
\(666\) −26.5966 −1.03060
\(667\) − 8.36653i − 0.323953i
\(668\) − 76.4634i − 2.95846i
\(669\) 1.39292 0.0538535
\(670\) 0 0
\(671\) 0.0282963 0.00109237
\(672\) 2.80113i 0.108056i
\(673\) − 50.1903i − 1.93469i −0.253454 0.967347i \(-0.581567\pi\)
0.253454 0.967347i \(-0.418433\pi\)
\(674\) −54.6065 −2.10336
\(675\) 0 0
\(676\) 81.9362 3.15139
\(677\) 29.8804i 1.14840i 0.818716 + 0.574198i \(0.194686\pi\)
−0.818716 + 0.574198i \(0.805314\pi\)
\(678\) − 0.430872i − 0.0165475i
\(679\) 3.22717 0.123847
\(680\) 0 0
\(681\) −25.6455 −0.982736
\(682\) 2.08277i 0.0797532i
\(683\) 12.3326i 0.471894i 0.971766 + 0.235947i \(0.0758192\pi\)
−0.971766 + 0.235947i \(0.924181\pi\)
\(684\) 5.02830 0.192262
\(685\) 0 0
\(686\) −23.2555 −0.887898
\(687\) 7.02750i 0.268116i
\(688\) 19.8996i 0.758666i
\(689\) 33.9207 1.29227
\(690\) 0 0
\(691\) 3.62200 0.137787 0.0688936 0.997624i \(-0.478053\pi\)
0.0688936 + 0.997624i \(0.478053\pi\)
\(692\) − 57.4252i − 2.18298i
\(693\) 0.273891i 0.0104042i
\(694\) 9.34891 0.354880
\(695\) 0 0
\(696\) −11.3695 −0.430958
\(697\) 49.7528i 1.88452i
\(698\) − 81.8358i − 3.09753i
\(699\) 23.1599 0.875988
\(700\) 0 0
\(701\) 34.1209 1.28873 0.644365 0.764718i \(-0.277122\pi\)
0.644365 + 0.764718i \(0.277122\pi\)
\(702\) − 78.9135i − 2.97840i
\(703\) 8.12386i 0.306397i
\(704\) −3.08277 −0.116186
\(705\) 0 0
\(706\) −10.1161 −0.380725
\(707\) − 3.18396i − 0.119745i
\(708\) − 19.5654i − 0.735313i
\(709\) 17.1209 0.642990 0.321495 0.946911i \(-0.395815\pi\)
0.321495 + 0.946911i \(0.395815\pi\)
\(710\) 0 0
\(711\) −5.34116 −0.200309
\(712\) 64.5024i 2.41733i
\(713\) − 11.7699i − 0.440786i
\(714\) −11.5966 −0.433993
\(715\) 0 0
\(716\) 12.4621 0.465730
\(717\) − 27.9191i − 1.04266i
\(718\) − 48.2440i − 1.80045i
\(719\) 7.02750 0.262081 0.131041 0.991377i \(-0.458168\pi\)
0.131041 + 0.991377i \(0.458168\pi\)
\(720\) 0 0
\(721\) 2.41830 0.0900620
\(722\) − 2.37720i − 0.0884703i
\(723\) − 35.9087i − 1.33546i
\(724\) −85.8406 −3.19024
\(725\) 0 0
\(726\) −33.0841 −1.22787
\(727\) 11.8938i 0.441115i 0.975374 + 0.220558i \(0.0707877\pi\)
−0.975374 + 0.220558i \(0.929212\pi\)
\(728\) − 16.9667i − 0.628826i
\(729\) −25.4026 −0.940836
\(730\) 0 0
\(731\) 51.7421 1.91375
\(732\) 0.480515i 0.0177604i
\(733\) 20.7154i 0.765142i 0.923926 + 0.382571i \(0.124961\pi\)
−0.923926 + 0.382571i \(0.875039\pi\)
\(734\) −9.15910 −0.338069
\(735\) 0 0
\(736\) 11.1423 0.410710
\(737\) − 3.22717i − 0.118874i
\(738\) 30.8852i 1.13690i
\(739\) −33.8620 −1.24563 −0.622816 0.782368i \(-0.714012\pi\)
−0.622816 + 0.782368i \(0.714012\pi\)
\(740\) 0 0
\(741\) −7.58383 −0.278599
\(742\) − 9.83505i − 0.361056i
\(743\) 42.7381i 1.56791i 0.620818 + 0.783955i \(0.286800\pi\)
−0.620818 + 0.783955i \(0.713200\pi\)
\(744\) −15.9944 −0.586382
\(745\) 0 0
\(746\) 34.7918 1.27382
\(747\) − 0.672440i − 0.0246033i
\(748\) − 5.27389i − 0.192833i
\(749\) −11.9738 −0.437514
\(750\) 0 0
\(751\) 11.9581 0.436358 0.218179 0.975909i \(-0.429988\pi\)
0.218179 + 0.975909i \(0.429988\pi\)
\(752\) − 24.6639i − 0.899400i
\(753\) 11.4776i 0.418267i
\(754\) −32.1805 −1.17194
\(755\) 0 0
\(756\) −14.7827 −0.537642
\(757\) − 29.1103i − 1.05803i −0.848612 0.529015i \(-0.822561\pi\)
0.848612 0.529015i \(-0.177439\pi\)
\(758\) − 52.3219i − 1.90042i
\(759\) −1.28376 −0.0465977
\(760\) 0 0
\(761\) −22.3014 −0.808425 −0.404212 0.914665i \(-0.632454\pi\)
−0.404212 + 0.914665i \(0.632454\pi\)
\(762\) 45.8230i 1.65999i
\(763\) 5.65672i 0.204787i
\(764\) −45.5109 −1.64653
\(765\) 0 0
\(766\) −7.33531 −0.265036
\(767\) − 25.0432i − 0.904258i
\(768\) − 34.0091i − 1.22720i
\(769\) −3.95891 −0.142762 −0.0713809 0.997449i \(-0.522741\pi\)
−0.0713809 + 0.997449i \(0.522741\pi\)
\(770\) 0 0
\(771\) 8.73971 0.314753
\(772\) − 70.4634i − 2.53603i
\(773\) 27.8139i 1.00040i 0.865911 + 0.500199i \(0.166740\pi\)
−0.865911 + 0.500199i \(0.833260\pi\)
\(774\) 32.1201 1.15453
\(775\) 0 0
\(776\) −17.4445 −0.626220
\(777\) − 7.51444i − 0.269579i
\(778\) 20.8529i 0.747612i
\(779\) 9.43380 0.338001
\(780\) 0 0
\(781\) −1.57608 −0.0563965
\(782\) 46.1289i 1.64957i
\(783\) 12.6794i 0.453124i
\(784\) 13.1287 0.468882
\(785\) 0 0
\(786\) 16.9095 0.603141
\(787\) 1.82460i 0.0650398i 0.999471 + 0.0325199i \(0.0103532\pi\)
−0.999471 + 0.0325199i \(0.989647\pi\)
\(788\) 24.2087i 0.862401i
\(789\) 11.7905 0.419751
\(790\) 0 0
\(791\) −0.103312 −0.00367336
\(792\) − 1.48052i − 0.0526078i
\(793\) 0.615047i 0.0218410i
\(794\) 3.79045 0.134518
\(795\) 0 0
\(796\) −84.2851 −2.98741
\(797\) 21.0360i 0.745135i 0.928005 + 0.372567i \(0.121522\pi\)
−0.928005 + 0.372567i \(0.878478\pi\)
\(798\) 2.19887i 0.0778393i
\(799\) −64.1300 −2.26876
\(800\) 0 0
\(801\) 22.6327 0.799686
\(802\) 41.7261i 1.47340i
\(803\) − 1.82942i − 0.0645589i
\(804\) 54.8024 1.93273
\(805\) 0 0
\(806\) −45.2710 −1.59460
\(807\) − 0.635593i − 0.0223739i
\(808\) 17.2109i 0.605476i
\(809\) 0.0819654 0.00288175 0.00144088 0.999999i \(-0.499541\pi\)
0.00144088 + 0.999999i \(0.499541\pi\)
\(810\) 0 0
\(811\) −6.72531 −0.236158 −0.118079 0.993004i \(-0.537674\pi\)
−0.118079 + 0.993004i \(0.537674\pi\)
\(812\) 6.02830i 0.211552i
\(813\) 4.72691i 0.165780i
\(814\) 5.28939 0.185393
\(815\) 0 0
\(816\) 13.6268 0.477034
\(817\) − 9.81100i − 0.343243i
\(818\) 87.1994i 3.04886i
\(819\) −5.95328 −0.208024
\(820\) 0 0
\(821\) 30.9426 1.07990 0.539952 0.841696i \(-0.318442\pi\)
0.539952 + 0.841696i \(0.318442\pi\)
\(822\) − 38.8513i − 1.35509i
\(823\) 26.5908i 0.926896i 0.886124 + 0.463448i \(0.153388\pi\)
−0.886124 + 0.463448i \(0.846612\pi\)
\(824\) −13.0721 −0.455388
\(825\) 0 0
\(826\) −7.26109 −0.252646
\(827\) 5.57900i 0.194001i 0.995284 + 0.0970004i \(0.0309248\pi\)
−0.995284 + 0.0970004i \(0.969075\pi\)
\(828\) 18.5011i 0.642956i
\(829\) −18.9765 −0.659082 −0.329541 0.944141i \(-0.606894\pi\)
−0.329541 + 0.944141i \(0.606894\pi\)
\(830\) 0 0
\(831\) 5.84302 0.202692
\(832\) − 67.0069i − 2.32305i
\(833\) − 34.1367i − 1.18276i
\(834\) 46.1746 1.59890
\(835\) 0 0
\(836\) −1.00000 −0.0345857
\(837\) 17.8372i 0.616543i
\(838\) − 44.7360i − 1.54538i
\(839\) −12.9143 −0.445852 −0.222926 0.974835i \(-0.571561\pi\)
−0.222926 + 0.974835i \(0.571561\pi\)
\(840\) 0 0
\(841\) −23.8294 −0.821704
\(842\) 80.3064i 2.76754i
\(843\) 34.7331i 1.19627i
\(844\) 27.5577 0.948574
\(845\) 0 0
\(846\) −39.8102 −1.36870
\(847\) 7.93273i 0.272572i
\(848\) 11.5569i 0.396864i
\(849\) 13.0779 0.448834
\(850\) 0 0
\(851\) −29.8908 −1.02464
\(852\) − 26.7643i − 0.916929i
\(853\) 6.46077i 0.221213i 0.993864 + 0.110606i \(0.0352793\pi\)
−0.993864 + 0.110606i \(0.964721\pi\)
\(854\) 0.178328 0.00610227
\(855\) 0 0
\(856\) 64.7245 2.21224
\(857\) 12.4055i 0.423764i 0.977295 + 0.211882i \(0.0679592\pi\)
−0.977295 + 0.211882i \(0.932041\pi\)
\(858\) 4.93778i 0.168573i
\(859\) −40.3425 −1.37647 −0.688234 0.725489i \(-0.741614\pi\)
−0.688234 + 0.725489i \(0.741614\pi\)
\(860\) 0 0
\(861\) −8.72611 −0.297385
\(862\) 30.3452i 1.03356i
\(863\) 1.83235i 0.0623738i 0.999514 + 0.0311869i \(0.00992870\pi\)
−0.999514 + 0.0311869i \(0.990071\pi\)
\(864\) −16.8860 −0.574474
\(865\) 0 0
\(866\) −38.2186 −1.29872
\(867\) − 13.7758i − 0.467849i
\(868\) 8.48052i 0.287847i
\(869\) 1.06222 0.0360333
\(870\) 0 0
\(871\) 70.1457 2.37680
\(872\) − 30.5774i − 1.03548i
\(873\) 6.12094i 0.207162i
\(874\) 8.74666 0.295860
\(875\) 0 0
\(876\) 31.0665 1.04964
\(877\) 8.14419i 0.275010i 0.990501 + 0.137505i \(0.0439083\pi\)
−0.990501 + 0.137505i \(0.956092\pi\)
\(878\) 3.25547i 0.109867i
\(879\) 2.38283 0.0803709
\(880\) 0 0
\(881\) 12.1706 0.410037 0.205019 0.978758i \(-0.434275\pi\)
0.205019 + 0.978758i \(0.434275\pi\)
\(882\) − 21.1911i − 0.713542i
\(883\) 46.7614i 1.57364i 0.617179 + 0.786822i \(0.288275\pi\)
−0.617179 + 0.786822i \(0.711725\pi\)
\(884\) 114.633 3.85553
\(885\) 0 0
\(886\) 10.9893 0.369194
\(887\) 34.8804i 1.17117i 0.810611 + 0.585584i \(0.199135\pi\)
−0.810611 + 0.585584i \(0.800865\pi\)
\(888\) 40.6193i 1.36309i
\(889\) 10.9872 0.368499
\(890\) 0 0
\(891\) 0.813922 0.0272674
\(892\) 3.99225i 0.133670i
\(893\) 12.1599i 0.406916i
\(894\) −41.8860 −1.40088
\(895\) 0 0
\(896\) −15.0304 −0.502131
\(897\) − 27.9039i − 0.931683i
\(898\) 55.2830i 1.84482i
\(899\) 7.27389 0.242598
\(900\) 0 0
\(901\) 30.0496 1.00110
\(902\) − 6.14228i − 0.204516i
\(903\) 9.07502i 0.301998i
\(904\) 0.558455 0.0185739
\(905\) 0 0
\(906\) −35.4543 −1.17789
\(907\) 25.5080i 0.846980i 0.905901 + 0.423490i \(0.139195\pi\)
−0.905901 + 0.423490i \(0.860805\pi\)
\(908\) − 73.5024i − 2.43926i
\(909\) 6.03897 0.200300
\(910\) 0 0
\(911\) −21.5032 −0.712432 −0.356216 0.934404i \(-0.615933\pi\)
−0.356216 + 0.934404i \(0.615933\pi\)
\(912\) − 2.58383i − 0.0855591i
\(913\) 0.133731i 0.00442586i
\(914\) 85.2093 2.81847
\(915\) 0 0
\(916\) −20.1415 −0.665493
\(917\) − 4.05447i − 0.133890i
\(918\) − 69.9079i − 2.30730i
\(919\) −37.1386 −1.22509 −0.612544 0.790436i \(-0.709854\pi\)
−0.612544 + 0.790436i \(0.709854\pi\)
\(920\) 0 0
\(921\) 0.289391 0.00953575
\(922\) 35.3756i 1.16503i
\(923\) − 34.2576i − 1.12760i
\(924\) 0.924984 0.0304297
\(925\) 0 0
\(926\) −71.2101 −2.34011
\(927\) 4.58675i 0.150649i
\(928\) 6.88601i 0.226044i
\(929\) 3.36170 0.110294 0.0551469 0.998478i \(-0.482437\pi\)
0.0551469 + 0.998478i \(0.482437\pi\)
\(930\) 0 0
\(931\) −6.47277 −0.212136
\(932\) 66.3785i 2.17430i
\(933\) 26.6949i 0.873951i
\(934\) 16.0128 0.523955
\(935\) 0 0
\(936\) 32.1805 1.05185
\(937\) − 10.0694i − 0.328953i −0.986381 0.164476i \(-0.947407\pi\)
0.986381 0.164476i \(-0.0525934\pi\)
\(938\) − 20.3382i − 0.664067i
\(939\) 14.3121 0.467056
\(940\) 0 0
\(941\) 20.8139 0.678514 0.339257 0.940694i \(-0.389824\pi\)
0.339257 + 0.940694i \(0.389824\pi\)
\(942\) 14.5069i 0.472661i
\(943\) 34.7106i 1.13033i
\(944\) 8.53228 0.277702
\(945\) 0 0
\(946\) −6.38788 −0.207688
\(947\) 30.4904i 0.990804i 0.868664 + 0.495402i \(0.164979\pi\)
−0.868664 + 0.495402i \(0.835021\pi\)
\(948\) 18.0382i 0.585852i
\(949\) 39.7643 1.29080
\(950\) 0 0
\(951\) 23.7234 0.769284
\(952\) − 15.0304i − 0.487139i
\(953\) 7.58383i 0.245664i 0.992427 + 0.122832i \(0.0391977\pi\)
−0.992427 + 0.122832i \(0.960802\pi\)
\(954\) 18.6540 0.603946
\(955\) 0 0
\(956\) 80.0189 2.58800
\(957\) − 0.793375i − 0.0256462i
\(958\) 39.6941i 1.28246i
\(959\) −9.31556 −0.300815
\(960\) 0 0
\(961\) −20.7672 −0.669910
\(962\) 114.970i 3.70678i
\(963\) − 22.7106i − 0.731839i
\(964\) 102.918 3.31476
\(965\) 0 0
\(966\) −8.09052 −0.260308
\(967\) − 54.6687i − 1.75803i −0.476797 0.879014i \(-0.658202\pi\)
0.476797 0.879014i \(-0.341798\pi\)
\(968\) − 42.8804i − 1.37823i
\(969\) −6.71836 −0.215825
\(970\) 0 0
\(971\) −39.9632 −1.28248 −0.641239 0.767341i \(-0.721579\pi\)
−0.641239 + 0.767341i \(0.721579\pi\)
\(972\) − 47.2547i − 1.51569i
\(973\) − 11.0715i − 0.354936i
\(974\) −8.65402 −0.277293
\(975\) 0 0
\(976\) −0.209548 −0.00670747
\(977\) − 15.2400i − 0.487570i −0.969829 0.243785i \(-0.921611\pi\)
0.969829 0.243785i \(-0.0783891\pi\)
\(978\) 38.7656i 1.23959i
\(979\) −4.50106 −0.143855
\(980\) 0 0
\(981\) −10.7290 −0.342552
\(982\) 79.2199i 2.52801i
\(983\) − 45.3609i − 1.44679i −0.690435 0.723394i \(-0.742581\pi\)
0.690435 0.723394i \(-0.257419\pi\)
\(984\) 47.1690 1.50369
\(985\) 0 0
\(986\) −28.5080 −0.907880
\(987\) − 11.2477i − 0.358019i
\(988\) − 21.7360i − 0.691514i
\(989\) 36.0985 1.14787
\(990\) 0 0
\(991\) −16.3537 −0.519493 −0.259747 0.965677i \(-0.583639\pi\)
−0.259747 + 0.965677i \(0.583639\pi\)
\(992\) 9.68714i 0.307567i
\(993\) − 17.9688i − 0.570222i
\(994\) −9.93273 −0.315047
\(995\) 0 0
\(996\) −2.27097 −0.0719583
\(997\) 33.2037i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(998\) − 90.3134i − 2.85882i
\(999\) 45.2993 1.43321
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.b.b.324.1 6
5.2 odd 4 475.2.a.g.1.3 yes 3
5.3 odd 4 475.2.a.e.1.1 3
5.4 even 2 inner 475.2.b.b.324.6 6
15.2 even 4 4275.2.a.ba.1.1 3
15.8 even 4 4275.2.a.bm.1.3 3
20.3 even 4 7600.2.a.cc.1.2 3
20.7 even 4 7600.2.a.bh.1.2 3
95.18 even 4 9025.2.a.bc.1.3 3
95.37 even 4 9025.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.1 3 5.3 odd 4
475.2.a.g.1.3 yes 3 5.2 odd 4
475.2.b.b.324.1 6 1.1 even 1 trivial
475.2.b.b.324.6 6 5.4 even 2 inner
4275.2.a.ba.1.1 3 15.2 even 4
4275.2.a.bm.1.3 3 15.8 even 4
7600.2.a.bh.1.2 3 20.7 even 4
7600.2.a.cc.1.2 3 20.3 even 4
9025.2.a.y.1.1 3 95.37 even 4
9025.2.a.bc.1.3 3 95.18 even 4