Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(26,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 475.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 6.0.3518667.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 95) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 |
|
−1.25351 | − | 2.17114i | 0.610938 | + | 1.05818i | −2.14257 | + | 3.71104i | 0 | 1.53163 | − | 2.65287i | 0.221876 | 5.72889 | 0.753509 | − | 1.30512i | 0 | ||||||||||||||||||||||||||
26.2 | 0.610938 | + | 1.05818i | 1.14257 | + | 1.97899i | 0.253509 | − | 0.439091i | 0 | −1.39608 | + | 2.41808i | 1.28514 | 3.06327 | −1.11094 | + | 1.92420i | 0 | |||||||||||||||||||||||||||
26.3 | 1.14257 | + | 1.97899i | −1.25351 | − | 2.17114i | −1.61094 | + | 2.79023i | 0 | 2.86445 | − | 4.96137i | −3.50702 | −2.79216 | −1.64257 | + | 2.84502i | 0 | |||||||||||||||||||||||||||
201.1 | −1.25351 | + | 2.17114i | 0.610938 | − | 1.05818i | −2.14257 | − | 3.71104i | 0 | 1.53163 | + | 2.65287i | 0.221876 | 5.72889 | 0.753509 | + | 1.30512i | 0 | |||||||||||||||||||||||||||
201.2 | 0.610938 | − | 1.05818i | 1.14257 | − | 1.97899i | 0.253509 | + | 0.439091i | 0 | −1.39608 | − | 2.41808i | 1.28514 | 3.06327 | −1.11094 | − | 1.92420i | 0 | |||||||||||||||||||||||||||
201.3 | 1.14257 | − | 1.97899i | −1.25351 | + | 2.17114i | −1.61094 | − | 2.79023i | 0 | 2.86445 | + | 4.96137i | −3.50702 | −2.79216 | −1.64257 | − | 2.84502i | 0 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.e.d | 6 | |
5.b | even | 2 | 1 | 95.2.e.b | ✓ | 6 | |
5.c | odd | 4 | 2 | 475.2.j.b | 12 | ||
15.d | odd | 2 | 1 | 855.2.k.g | 6 | ||
19.c | even | 3 | 1 | inner | 475.2.e.d | 6 | |
19.c | even | 3 | 1 | 9025.2.a.z | 3 | ||
19.d | odd | 6 | 1 | 9025.2.a.ba | 3 | ||
20.d | odd | 2 | 1 | 1520.2.q.j | 6 | ||
95.h | odd | 6 | 1 | 1805.2.a.g | 3 | ||
95.i | even | 6 | 1 | 95.2.e.b | ✓ | 6 | |
95.i | even | 6 | 1 | 1805.2.a.h | 3 | ||
95.m | odd | 12 | 2 | 475.2.j.b | 12 | ||
285.n | odd | 6 | 1 | 855.2.k.g | 6 | ||
380.p | odd | 6 | 1 | 1520.2.q.j | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.e.b | ✓ | 6 | 5.b | even | 2 | 1 | |
95.2.e.b | ✓ | 6 | 95.i | even | 6 | 1 | |
475.2.e.d | 6 | 1.a | even | 1 | 1 | trivial | |
475.2.e.d | 6 | 19.c | even | 3 | 1 | inner | |
475.2.j.b | 12 | 5.c | odd | 4 | 2 | ||
475.2.j.b | 12 | 95.m | odd | 12 | 2 | ||
855.2.k.g | 6 | 15.d | odd | 2 | 1 | ||
855.2.k.g | 6 | 285.n | odd | 6 | 1 | ||
1520.2.q.j | 6 | 20.d | odd | 2 | 1 | ||
1520.2.q.j | 6 | 380.p | odd | 6 | 1 | ||
1805.2.a.g | 3 | 95.h | odd | 6 | 1 | ||
1805.2.a.h | 3 | 95.i | even | 6 | 1 | ||
9025.2.a.z | 3 | 19.c | even | 3 | 1 | ||
9025.2.a.ba | 3 | 19.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .