Properties

Label 475.2.e.d
Level 475475
Weight 22
Character orbit 475.e
Analytic conductor 3.7933.793
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 475=5219 475 = 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 475.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.792894096013.79289409601
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+7x48x3+43x242x+49 x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β5β3β1)q3+(β5+β42β3+3)q4+(2β52β4+β3++3)q6+(β41)q7++(3β53β4+2β3++5)q99+O(q100) q + \beta_1 q^{2} + (\beta_{5} - \beta_{3} - \beta_1) q^{3} + ( - \beta_{5} + \beta_{4} - 2 \beta_{3} + \cdots - 3) q^{4} + (2 \beta_{5} - 2 \beta_{4} + \beta_{3} + \cdots + 3) q^{6} + (\beta_{4} - 1) q^{7}+ \cdots + (3 \beta_{5} - 3 \beta_{4} + 2 \beta_{3} + \cdots + 5) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+q2+q37q4+6q64q7+12q84q910q11+8q1215q137q143q16+q1728q18+12q218q22+4q23+21q2410q26++13q99+O(q100) 6 q + q^{2} + q^{3} - 7 q^{4} + 6 q^{6} - 4 q^{7} + 12 q^{8} - 4 q^{9} - 10 q^{11} + 8 q^{12} - 15 q^{13} - 7 q^{14} - 3 q^{16} + q^{17} - 28 q^{18} + 12 q^{21} - 8 q^{22} + 4 q^{23} + 21 q^{24} - 10 q^{26}+ \cdots + 13 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+7x48x3+43x242x+49 x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν5+7ν449ν3+43ν242ν+294)/259 ( -\nu^{5} + 7\nu^{4} - 49\nu^{3} + 43\nu^{2} - 42\nu + 294 ) / 259 Copy content Toggle raw display
β3\beta_{3}== (6ν5+5ν435ν3ν2215ν49)/259 ( -6\nu^{5} + 5\nu^{4} - 35\nu^{3} - \nu^{2} - 215\nu - 49 ) / 259 Copy content Toggle raw display
β4\beta_{4}== (5ν5+35ν4+14ν3+215ν2210ν+952)/259 ( -5\nu^{5} + 35\nu^{4} + 14\nu^{3} + 215\nu^{2} - 210\nu + 952 ) / 259 Copy content Toggle raw display
β5\beta_{5}== (18ν5+22ν4+105ν3+3ν2+608ν+147)/259 ( 18\nu^{5} + 22\nu^{4} + 105\nu^{3} + 3\nu^{2} + 608\nu + 147 ) / 259 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β44β3+β25 -\beta_{5} + \beta_{4} - 4\beta_{3} + \beta_{2} - 5 Copy content Toggle raw display
ν3\nu^{3}== β45β2+2 \beta_{4} - 5\beta_{2} + 2 Copy content Toggle raw display
ν4\nu^{4}== 7β5+21β3+β1 7\beta_{5} + 21\beta_{3} + \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 6β56β425β3+29β235β119 6\beta_{5} - 6\beta_{4} - 25\beta_{3} + 29\beta_{2} - 35\beta _1 - 19 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/475Z)×\left(\mathbb{Z}/475\mathbb{Z}\right)^\times.

nn 7777 401401
χ(n)\chi(n) 11 1β3-1 - \beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
26.1
−1.25351 2.17114i
0.610938 + 1.05818i
1.14257 + 1.97899i
−1.25351 + 2.17114i
0.610938 1.05818i
1.14257 1.97899i
−1.25351 2.17114i 0.610938 + 1.05818i −2.14257 + 3.71104i 0 1.53163 2.65287i 0.221876 5.72889 0.753509 1.30512i 0
26.2 0.610938 + 1.05818i 1.14257 + 1.97899i 0.253509 0.439091i 0 −1.39608 + 2.41808i 1.28514 3.06327 −1.11094 + 1.92420i 0
26.3 1.14257 + 1.97899i −1.25351 2.17114i −1.61094 + 2.79023i 0 2.86445 4.96137i −3.50702 −2.79216 −1.64257 + 2.84502i 0
201.1 −1.25351 + 2.17114i 0.610938 1.05818i −2.14257 3.71104i 0 1.53163 + 2.65287i 0.221876 5.72889 0.753509 + 1.30512i 0
201.2 0.610938 1.05818i 1.14257 1.97899i 0.253509 + 0.439091i 0 −1.39608 2.41808i 1.28514 3.06327 −1.11094 1.92420i 0
201.3 1.14257 1.97899i −1.25351 + 2.17114i −1.61094 2.79023i 0 2.86445 + 4.96137i −3.50702 −2.79216 −1.64257 2.84502i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.e.d 6
5.b even 2 1 95.2.e.b 6
5.c odd 4 2 475.2.j.b 12
15.d odd 2 1 855.2.k.g 6
19.c even 3 1 inner 475.2.e.d 6
19.c even 3 1 9025.2.a.z 3
19.d odd 6 1 9025.2.a.ba 3
20.d odd 2 1 1520.2.q.j 6
95.h odd 6 1 1805.2.a.g 3
95.i even 6 1 95.2.e.b 6
95.i even 6 1 1805.2.a.h 3
95.m odd 12 2 475.2.j.b 12
285.n odd 6 1 855.2.k.g 6
380.p odd 6 1 1520.2.q.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.e.b 6 5.b even 2 1
95.2.e.b 6 95.i even 6 1
475.2.e.d 6 1.a even 1 1 trivial
475.2.e.d 6 19.c even 3 1 inner
475.2.j.b 12 5.c odd 4 2
475.2.j.b 12 95.m odd 12 2
855.2.k.g 6 15.d odd 2 1
855.2.k.g 6 285.n odd 6 1
1520.2.q.j 6 20.d odd 2 1
1520.2.q.j 6 380.p odd 6 1
1805.2.a.g 3 95.h odd 6 1
1805.2.a.h 3 95.i even 6 1
9025.2.a.z 3 19.c even 3 1
9025.2.a.ba 3 19.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26T25+7T248T23+43T2242T2+49 T_{2}^{6} - T_{2}^{5} + 7T_{2}^{4} - 8T_{2}^{3} + 43T_{2}^{2} - 42T_{2} + 49 acting on S2new(475,[χ])S_{2}^{\mathrm{new}}(475, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6T5++49 T^{6} - T^{5} + \cdots + 49 Copy content Toggle raw display
33 T6T5++49 T^{6} - T^{5} + \cdots + 49 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 (T3+2T25T+1)2 (T^{3} + 2 T^{2} - 5 T + 1)^{2} Copy content Toggle raw display
1111 (T3+5T2+2T1)2 (T^{3} + 5 T^{2} + 2 T - 1)^{2} Copy content Toggle raw display
1313 (T2+5T+25)3 (T^{2} + 5 T + 25)^{3} Copy content Toggle raw display
1717 T6T5++49 T^{6} - T^{5} + \cdots + 49 Copy content Toggle raw display
1919 T6+133T3+6859 T^{6} + 133T^{3} + 6859 Copy content Toggle raw display
2323 T64T5++2401 T^{6} - 4 T^{5} + \cdots + 2401 Copy content Toggle raw display
2929 T62T5++1 T^{6} - 2 T^{5} + \cdots + 1 Copy content Toggle raw display
3131 (T3+T26T7)2 (T^{3} + T^{2} - 6 T - 7)^{2} Copy content Toggle raw display
3737 (T32T2++227)2 (T^{3} - 2 T^{2} + \cdots + 227)^{2} Copy content Toggle raw display
4141 T62T5++1369 T^{6} - 2 T^{5} + \cdots + 1369 Copy content Toggle raw display
4343 T6+T5++14641 T^{6} + T^{5} + \cdots + 14641 Copy content Toggle raw display
4747 T66T5++2401 T^{6} - 6 T^{5} + \cdots + 2401 Copy content Toggle raw display
5353 T611T5++96721 T^{6} - 11 T^{5} + \cdots + 96721 Copy content Toggle raw display
5959 T6+6T5++2401 T^{6} + 6 T^{5} + \cdots + 2401 Copy content Toggle raw display
6161 T69T5++2401 T^{6} - 9 T^{5} + \cdots + 2401 Copy content Toggle raw display
6767 T6+20T5++7744 T^{6} + 20 T^{5} + \cdots + 7744 Copy content Toggle raw display
7171 T629T5++218089 T^{6} - 29 T^{5} + \cdots + 218089 Copy content Toggle raw display
7373 T6+22T5++5929 T^{6} + 22 T^{5} + \cdots + 5929 Copy content Toggle raw display
7979 T624T5++61504 T^{6} - 24 T^{5} + \cdots + 61504 Copy content Toggle raw display
8383 (T33T254T77)2 (T^{3} - 3 T^{2} - 54 T - 77)^{2} Copy content Toggle raw display
8989 T614T5++3136 T^{6} - 14 T^{5} + \cdots + 3136 Copy content Toggle raw display
9797 T67T5++14641 T^{6} - 7 T^{5} + \cdots + 14641 Copy content Toggle raw display
show more
show less