Properties

Label 9025.2.a.ba
Level 90259025
Weight 22
Character orbit 9025.a
Self dual yes
Analytic conductor 72.06572.065
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 9025=52192 9025 = 5^{2} \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,1,7,0,-6,-2,-6,4,0,-5,-4,-15,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 72.064987824272.0649878242
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.361.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x26x+7 x^{3} - x^{2} - 6x + 7 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2β1+1)q2+β2q3+(β1+2)q4+(β2β12)q6+(β21)q7+(2β2β11)q8+(β2β1+2)q9++(4β2+β16)q99+O(q100) q + ( - \beta_{2} - \beta_1 + 1) q^{2} + \beta_{2} q^{3} + (\beta_1 + 2) q^{4} + (\beta_{2} - \beta_1 - 2) q^{6} + (\beta_{2} - 1) q^{7} + ( - 2 \beta_{2} - \beta_1 - 1) q^{8} + ( - \beta_{2} - \beta_1 + 2) q^{9}+ \cdots + (4 \beta_{2} + \beta_1 - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+q2+q3+7q46q62q76q8+4q95q114q1215q137q14+3q16q17+14q18+12q218q224q2321q245q26+13q99+O(q100) 3 q + q^{2} + q^{3} + 7 q^{4} - 6 q^{6} - 2 q^{7} - 6 q^{8} + 4 q^{9} - 5 q^{11} - 4 q^{12} - 15 q^{13} - 7 q^{14} + 3 q^{16} - q^{17} + 14 q^{18} + 12 q^{21} - 8 q^{22} - 4 q^{23} - 21 q^{24} - 5 q^{26}+ \cdots - 13 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x26x+7 x^{3} - x^{2} - 6x + 7 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.28514
−2.50702
1.22188
−2.50702 1.22188 4.28514 0 −3.06327 0.221876 −5.72889 −1.50702 0
1.2 1.22188 2.28514 −0.507019 0 2.79216 1.28514 −3.06327 2.22188 0
1.3 2.28514 −2.50702 3.22188 0 −5.72889 −3.50702 2.79216 3.28514 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9025.2.a.ba 3
5.b even 2 1 1805.2.a.g 3
19.b odd 2 1 9025.2.a.z 3
19.d odd 6 2 475.2.e.d 6
95.d odd 2 1 1805.2.a.h 3
95.h odd 6 2 95.2.e.b 6
95.l even 12 4 475.2.j.b 12
285.q even 6 2 855.2.k.g 6
380.s even 6 2 1520.2.q.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.e.b 6 95.h odd 6 2
475.2.e.d 6 19.d odd 6 2
475.2.j.b 12 95.l even 12 4
855.2.k.g 6 285.q even 6 2
1520.2.q.j 6 380.s even 6 2
1805.2.a.g 3 5.b even 2 1
1805.2.a.h 3 95.d odd 2 1
9025.2.a.z 3 19.b odd 2 1
9025.2.a.ba 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(9025))S_{2}^{\mathrm{new}}(\Gamma_0(9025)):

T23T226T2+7 T_{2}^{3} - T_{2}^{2} - 6T_{2} + 7 Copy content Toggle raw display
T33T326T3+7 T_{3}^{3} - T_{3}^{2} - 6T_{3} + 7 Copy content Toggle raw display
T73+2T725T7+1 T_{7}^{3} + 2T_{7}^{2} - 5T_{7} + 1 Copy content Toggle raw display
T113+5T112+2T111 T_{11}^{3} + 5T_{11}^{2} + 2T_{11} - 1 Copy content Toggle raw display
T2932T2925T291 T_{29}^{3} - 2T_{29}^{2} - 5T_{29} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3T26T+7 T^{3} - T^{2} - 6T + 7 Copy content Toggle raw display
33 T3T26T+7 T^{3} - T^{2} - 6T + 7 Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3+2T2++1 T^{3} + 2 T^{2} + \cdots + 1 Copy content Toggle raw display
1111 T3+5T2+1 T^{3} + 5 T^{2} + \cdots - 1 Copy content Toggle raw display
1313 (T+5)3 (T + 5)^{3} Copy content Toggle raw display
1717 T3+T244T7 T^{3} + T^{2} - 44T - 7 Copy content Toggle raw display
1919 T3 T^{3} Copy content Toggle raw display
2323 T3+4T2+49 T^{3} + 4 T^{2} + \cdots - 49 Copy content Toggle raw display
2929 T32T2+1 T^{3} - 2 T^{2} + \cdots - 1 Copy content Toggle raw display
3131 T3T26T+7 T^{3} - T^{2} - 6T + 7 Copy content Toggle raw display
3737 T3+2T2+227 T^{3} + 2 T^{2} + \cdots - 227 Copy content Toggle raw display
4141 T32T2++37 T^{3} - 2 T^{2} + \cdots + 37 Copy content Toggle raw display
4343 T3T2++121 T^{3} - T^{2} + \cdots + 121 Copy content Toggle raw display
4747 T3+6T2+49 T^{3} + 6 T^{2} + \cdots - 49 Copy content Toggle raw display
5353 T311T2++311 T^{3} - 11 T^{2} + \cdots + 311 Copy content Toggle raw display
5959 T3+6T2+49 T^{3} + 6 T^{2} + \cdots - 49 Copy content Toggle raw display
6161 T3+9T2+49 T^{3} + 9 T^{2} + \cdots - 49 Copy content Toggle raw display
6767 T3+20T2++88 T^{3} + 20 T^{2} + \cdots + 88 Copy content Toggle raw display
7171 T329T2+467 T^{3} - 29 T^{2} + \cdots - 467 Copy content Toggle raw display
7373 T322T2+77 T^{3} - 22 T^{2} + \cdots - 77 Copy content Toggle raw display
7979 T324T2++248 T^{3} - 24 T^{2} + \cdots + 248 Copy content Toggle raw display
8383 T33T2+77 T^{3} - 3 T^{2} + \cdots - 77 Copy content Toggle raw display
8989 T314T2++56 T^{3} - 14 T^{2} + \cdots + 56 Copy content Toggle raw display
9797 T37T2++121 T^{3} - 7 T^{2} + \cdots + 121 Copy content Toggle raw display
show more
show less