gp: [N,k,chi] = [9025,2,Mod(1,9025)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9025.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,1,1,7,0,-6,-2,-6,4,0,-5,-4,-15,-7]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
5 5 5
+ 1 +1 + 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 9025 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(9025)) S 2 n e w ( Γ 0 ( 9 0 2 5 ) ) :
T 2 3 − T 2 2 − 6 T 2 + 7 T_{2}^{3} - T_{2}^{2} - 6T_{2} + 7 T 2 3 − T 2 2 − 6 T 2 + 7
T2^3 - T2^2 - 6*T2 + 7
T 3 3 − T 3 2 − 6 T 3 + 7 T_{3}^{3} - T_{3}^{2} - 6T_{3} + 7 T 3 3 − T 3 2 − 6 T 3 + 7
T3^3 - T3^2 - 6*T3 + 7
T 7 3 + 2 T 7 2 − 5 T 7 + 1 T_{7}^{3} + 2T_{7}^{2} - 5T_{7} + 1 T 7 3 + 2 T 7 2 − 5 T 7 + 1
T7^3 + 2*T7^2 - 5*T7 + 1
T 11 3 + 5 T 11 2 + 2 T 11 − 1 T_{11}^{3} + 5T_{11}^{2} + 2T_{11} - 1 T 1 1 3 + 5 T 1 1 2 + 2 T 1 1 − 1
T11^3 + 5*T11^2 + 2*T11 - 1
T 29 3 − 2 T 29 2 − 5 T 29 − 1 T_{29}^{3} - 2T_{29}^{2} - 5T_{29} - 1 T 2 9 3 − 2 T 2 9 2 − 5 T 2 9 − 1
T29^3 - 2*T29^2 - 5*T29 - 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 − T 2 − 6 T + 7 T^{3} - T^{2} - 6T + 7 T 3 − T 2 − 6 T + 7
T^3 - T^2 - 6*T + 7
3 3 3
T 3 − T 2 − 6 T + 7 T^{3} - T^{2} - 6T + 7 T 3 − T 2 − 6 T + 7
T^3 - T^2 - 6*T + 7
5 5 5
T 3 T^{3} T 3
T^3
7 7 7
T 3 + 2 T 2 + ⋯ + 1 T^{3} + 2 T^{2} + \cdots + 1 T 3 + 2 T 2 + ⋯ + 1
T^3 + 2*T^2 - 5*T + 1
11 11 1 1
T 3 + 5 T 2 + ⋯ − 1 T^{3} + 5 T^{2} + \cdots - 1 T 3 + 5 T 2 + ⋯ − 1
T^3 + 5*T^2 + 2*T - 1
13 13 1 3
( T + 5 ) 3 (T + 5)^{3} ( T + 5 ) 3
(T + 5)^3
17 17 1 7
T 3 + T 2 − 44 T − 7 T^{3} + T^{2} - 44T - 7 T 3 + T 2 − 4 4 T − 7
T^3 + T^2 - 44*T - 7
19 19 1 9
T 3 T^{3} T 3
T^3
23 23 2 3
T 3 + 4 T 2 + ⋯ − 49 T^{3} + 4 T^{2} + \cdots - 49 T 3 + 4 T 2 + ⋯ − 4 9
T^3 + 4*T^2 - 39*T - 49
29 29 2 9
T 3 − 2 T 2 + ⋯ − 1 T^{3} - 2 T^{2} + \cdots - 1 T 3 − 2 T 2 + ⋯ − 1
T^3 - 2*T^2 - 5*T - 1
31 31 3 1
T 3 − T 2 − 6 T + 7 T^{3} - T^{2} - 6T + 7 T 3 − T 2 − 6 T + 7
T^3 - T^2 - 6*T + 7
37 37 3 7
T 3 + 2 T 2 + ⋯ − 227 T^{3} + 2 T^{2} + \cdots - 227 T 3 + 2 T 2 + ⋯ − 2 2 7
T^3 + 2*T^2 - 119*T - 227
41 41 4 1
T 3 − 2 T 2 + ⋯ + 37 T^{3} - 2 T^{2} + \cdots + 37 T 3 − 2 T 2 + ⋯ + 3 7
T^3 - 2*T^2 - 43*T + 37
43 43 4 3
T 3 − T 2 + ⋯ + 121 T^{3} - T^{2} + \cdots + 121 T 3 − T 2 + ⋯ + 1 2 1
T^3 - T^2 - 44*T + 121
47 47 4 7
T 3 + 6 T 2 + ⋯ − 49 T^{3} + 6 T^{2} + \cdots - 49 T 3 + 6 T 2 + ⋯ − 4 9
T^3 + 6*T^2 - 7*T - 49
53 53 5 3
T 3 − 11 T 2 + ⋯ + 311 T^{3} - 11 T^{2} + \cdots + 311 T 3 − 1 1 T 2 + ⋯ + 3 1 1
T^3 - 11*T^2 - 42*T + 311
59 59 5 9
T 3 + 6 T 2 + ⋯ − 49 T^{3} + 6 T^{2} + \cdots - 49 T 3 + 6 T 2 + ⋯ − 4 9
T^3 + 6*T^2 - 7*T - 49
61 61 6 1
T 3 + 9 T 2 + ⋯ − 49 T^{3} + 9 T^{2} + \cdots - 49 T 3 + 9 T 2 + ⋯ − 4 9
T^3 + 9*T^2 - 49*T - 49
67 67 6 7
T 3 + 20 T 2 + ⋯ + 88 T^{3} + 20 T^{2} + \cdots + 88 T 3 + 2 0 T 2 + ⋯ + 8 8
T^3 + 20*T^2 + 108*T + 88
71 71 7 1
T 3 − 29 T 2 + ⋯ − 467 T^{3} - 29 T^{2} + \cdots - 467 T 3 − 2 9 T 2 + ⋯ − 4 6 7
T^3 - 29*T^2 + 236*T - 467
73 73 7 3
T 3 − 22 T 2 + ⋯ − 77 T^{3} - 22 T^{2} + \cdots - 77 T 3 − 2 2 T 2 + ⋯ − 7 7
T^3 - 22*T^2 + 117*T - 77
79 79 7 9
T 3 − 24 T 2 + ⋯ + 248 T^{3} - 24 T^{2} + \cdots + 248 T 3 − 2 4 T 2 + ⋯ + 2 4 8
T^3 - 24*T^2 + 116*T + 248
83 83 8 3
T 3 − 3 T 2 + ⋯ − 77 T^{3} - 3 T^{2} + \cdots - 77 T 3 − 3 T 2 + ⋯ − 7 7
T^3 - 3*T^2 - 54*T - 77
89 89 8 9
T 3 − 14 T 2 + ⋯ + 56 T^{3} - 14 T^{2} + \cdots + 56 T 3 − 1 4 T 2 + ⋯ + 5 6
T^3 - 14*T^2 - 36*T + 56
97 97 9 7
T 3 − 7 T 2 + ⋯ + 121 T^{3} - 7 T^{2} + \cdots + 121 T 3 − 7 T 2 + ⋯ + 1 2 1
T^3 - 7*T^2 - 66*T + 121
show more
show less