Properties

Label 475.2.j.b.49.4
Level $475$
Weight $2$
Character 475.49
Analytic conductor $3.793$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(49,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.50712647503417344.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 13x^{10} + 119x^{8} - 552x^{6} + 1863x^{4} - 2450x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.4
Root \(1.05818 + 0.610938i\) of defining polynomial
Character \(\chi\) \(=\) 475.49
Dual form 475.2.j.b.349.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05818 + 0.610938i) q^{2} +(-1.97899 - 1.14257i) q^{3} +(-0.253509 - 0.439091i) q^{4} +(-1.39608 - 2.41808i) q^{6} +1.28514i q^{7} -3.06327i q^{8} +(1.11094 + 1.92420i) q^{9} +O(q^{10})\) \(q+(1.05818 + 0.610938i) q^{2} +(-1.97899 - 1.14257i) q^{3} +(-0.253509 - 0.439091i) q^{4} +(-1.39608 - 2.41808i) q^{6} +1.28514i q^{7} -3.06327i q^{8} +(1.11094 + 1.92420i) q^{9} +0.285142 q^{11} +1.15861i q^{12} +(-4.33013 + 2.50000i) q^{13} +(-0.785142 + 1.35991i) q^{14} +(1.36445 - 2.36329i) q^{16} +(-5.40046 - 3.11796i) q^{17} +2.71486i q^{18} +(-2.92771 - 3.22932i) q^{19} +(1.46837 - 2.54329i) q^{21} +(0.301731 + 0.174204i) q^{22} +(-4.53443 + 2.61796i) q^{23} +(-3.50000 + 6.06218i) q^{24} -6.10938 q^{26} +1.77812i q^{27} +(0.564295 - 0.325796i) q^{28} +(0.642571 + 1.11297i) q^{29} -1.22188 q^{31} +(-2.41808 + 1.39608i) q^{32} +(-0.564295 - 0.325796i) q^{33} +(-3.80976 - 6.59869i) q^{34} +(0.563266 - 0.975606i) q^{36} -10.8695i q^{37} +(-1.12512 - 5.20584i) q^{38} +11.4257 q^{39} +(0.420695 - 0.728665i) q^{41} +(3.10758 - 1.79416i) q^{42} +(4.28749 + 2.47539i) q^{43} +(-0.0722863 - 0.125204i) q^{44} -6.39764 q^{46} +(-4.96137 + 2.86445i) q^{47} +(-5.40046 + 3.11796i) q^{48} +5.34841 q^{49} +(7.12498 + 12.3408i) q^{51} +(2.19546 + 1.26755i) q^{52} +(10.7062 - 6.18122i) q^{53} +(-1.08632 + 1.88157i) q^{54} +3.93673 q^{56} +(2.10419 + 9.73591i) q^{57} +1.57028i q^{58} +(2.86445 - 4.96137i) q^{59} +(-2.22889 - 3.86056i) q^{61} +(-1.29296 - 0.746491i) q^{62} +(-2.47287 + 1.42771i) q^{63} -8.86946 q^{64} +(-0.398082 - 0.689498i) q^{66} +(0.853869 - 0.492981i) q^{67} +3.16172i q^{68} +11.9648 q^{69} +(1.46135 - 2.53113i) q^{71} +(5.89434 - 3.40310i) q^{72} +(0.661718 + 0.382043i) q^{73} +(6.64057 - 11.5018i) q^{74} +(-0.675762 + 2.10419i) q^{76} +0.366449i q^{77} +(12.0904 + 6.98040i) q^{78} +(-7.72889 + 13.3868i) q^{79} +(5.36445 - 9.29150i) q^{81} +(0.890339 - 0.514037i) q^{82} +1.66563i q^{83} -1.48898 q^{84} +(3.02461 + 5.23879i) q^{86} -2.93673i q^{87} -0.873467i q^{88} +(-8.01404 - 13.8807i) q^{89} +(-3.21286 - 5.56483i) q^{91} +(2.29904 + 1.32735i) q^{92} +(2.41808 + 1.39608i) q^{93} -7.00000 q^{94} +6.38049 q^{96} +(10.1697 + 5.87147i) q^{97} +(5.65956 + 3.26755i) q^{98} +(0.316776 + 0.548672i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 14 q^{4} + 12 q^{6} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 14 q^{4} + 12 q^{6} + 8 q^{9} - 20 q^{11} + 14 q^{14} - 6 q^{16} + 24 q^{21} - 42 q^{24} - 20 q^{26} - 4 q^{29} - 4 q^{31} - 50 q^{34} - 6 q^{36} + 20 q^{39} + 4 q^{41} - 36 q^{44} - 96 q^{46} + 28 q^{49} + 12 q^{51} + 20 q^{54} + 60 q^{56} + 12 q^{59} + 18 q^{61} + 32 q^{64} - 58 q^{66} + 20 q^{69} + 58 q^{71} - 14 q^{74} - 38 q^{76} - 48 q^{79} + 42 q^{81} + 112 q^{84} + 64 q^{86} - 28 q^{89} + 20 q^{91} - 84 q^{94} + 68 q^{96} - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.05818 + 0.610938i 0.748243 + 0.431998i 0.825059 0.565047i \(-0.191142\pi\)
−0.0768155 + 0.997045i \(0.524475\pi\)
\(3\) −1.97899 1.14257i −1.14257 0.659664i −0.195505 0.980703i \(-0.562635\pi\)
−0.947066 + 0.321039i \(0.895968\pi\)
\(4\) −0.253509 0.439091i −0.126755 0.219546i
\(5\) 0 0
\(6\) −1.39608 2.41808i −0.569948 0.987178i
\(7\) 1.28514i 0.485738i 0.970059 + 0.242869i \(0.0780886\pi\)
−0.970059 + 0.242869i \(0.921911\pi\)
\(8\) 3.06327i 1.08303i
\(9\) 1.11094 + 1.92420i 0.370313 + 0.641400i
\(10\) 0 0
\(11\) 0.285142 0.0859737 0.0429868 0.999076i \(-0.486313\pi\)
0.0429868 + 0.999076i \(0.486313\pi\)
\(12\) 1.15861i 0.334462i
\(13\) −4.33013 + 2.50000i −1.20096 + 0.693375i −0.960769 0.277350i \(-0.910544\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) −0.785142 + 1.35991i −0.209838 + 0.363450i
\(15\) 0 0
\(16\) 1.36445 2.36329i 0.341112 0.590823i
\(17\) −5.40046 3.11796i −1.30980 0.756216i −0.327741 0.944768i \(-0.606287\pi\)
−0.982063 + 0.188552i \(0.939621\pi\)
\(18\) 2.71486i 0.639898i
\(19\) −2.92771 3.22932i −0.671664 0.740856i
\(20\) 0 0
\(21\) 1.46837 2.54329i 0.320424 0.554990i
\(22\) 0.301731 + 0.174204i 0.0643292 + 0.0371405i
\(23\) −4.53443 + 2.61796i −0.945495 + 0.545882i −0.891679 0.452669i \(-0.850472\pi\)
−0.0538163 + 0.998551i \(0.517139\pi\)
\(24\) −3.50000 + 6.06218i −0.714435 + 1.23744i
\(25\) 0 0
\(26\) −6.10938 −1.19815
\(27\) 1.77812i 0.342200i
\(28\) 0.564295 0.325796i 0.106642 0.0615696i
\(29\) 0.642571 + 1.11297i 0.119322 + 0.206673i 0.919499 0.393091i \(-0.128594\pi\)
−0.800177 + 0.599764i \(0.795261\pi\)
\(30\) 0 0
\(31\) −1.22188 −0.219455 −0.109728 0.993962i \(-0.534998\pi\)
−0.109728 + 0.993962i \(0.534998\pi\)
\(32\) −2.41808 + 1.39608i −0.427461 + 0.246795i
\(33\) −0.564295 0.325796i −0.0982311 0.0567137i
\(34\) −3.80976 6.59869i −0.653368 1.13167i
\(35\) 0 0
\(36\) 0.563266 0.975606i 0.0938777 0.162601i
\(37\) 10.8695i 1.78693i −0.449134 0.893464i \(-0.648267\pi\)
0.449134 0.893464i \(-0.351733\pi\)
\(38\) −1.12512 5.20584i −0.182519 0.844498i
\(39\) 11.4257 1.82958
\(40\) 0 0
\(41\) 0.420695 0.728665i 0.0657015 0.113798i −0.831303 0.555819i \(-0.812405\pi\)
0.897005 + 0.442020i \(0.145738\pi\)
\(42\) 3.10758 1.79416i 0.479510 0.276845i
\(43\) 4.28749 + 2.47539i 0.653837 + 0.377493i 0.789925 0.613204i \(-0.210120\pi\)
−0.136088 + 0.990697i \(0.543453\pi\)
\(44\) −0.0722863 0.125204i −0.0108976 0.0188751i
\(45\) 0 0
\(46\) −6.39764 −0.943280
\(47\) −4.96137 + 2.86445i −0.723690 + 0.417823i −0.816109 0.577898i \(-0.803873\pi\)
0.0924193 + 0.995720i \(0.470540\pi\)
\(48\) −5.40046 + 3.11796i −0.779489 + 0.450038i
\(49\) 5.34841 0.764058
\(50\) 0 0
\(51\) 7.12498 + 12.3408i 0.997696 + 1.72806i
\(52\) 2.19546 + 1.26755i 0.304455 + 0.175777i
\(53\) 10.7062 6.18122i 1.47061 0.849056i 0.471153 0.882051i \(-0.343838\pi\)
0.999456 + 0.0329952i \(0.0105046\pi\)
\(54\) −1.08632 + 1.88157i −0.147830 + 0.256049i
\(55\) 0 0
\(56\) 3.93673 0.526068
\(57\) 2.10419 + 9.73591i 0.278707 + 1.28955i
\(58\) 1.57028i 0.206189i
\(59\) 2.86445 4.96137i 0.372919 0.645915i −0.617094 0.786889i \(-0.711690\pi\)
0.990013 + 0.140974i \(0.0450235\pi\)
\(60\) 0 0
\(61\) −2.22889 3.86056i −0.285381 0.494294i 0.687321 0.726354i \(-0.258787\pi\)
−0.972701 + 0.232060i \(0.925453\pi\)
\(62\) −1.29296 0.746491i −0.164206 0.0948044i
\(63\) −2.47287 + 1.42771i −0.311553 + 0.179875i
\(64\) −8.86946 −1.10868
\(65\) 0 0
\(66\) −0.398082 0.689498i −0.0490005 0.0848713i
\(67\) 0.853869 0.492981i 0.104317 0.0602273i −0.446934 0.894567i \(-0.647484\pi\)
0.551251 + 0.834340i \(0.314151\pi\)
\(68\) 3.16172i 0.383415i
\(69\) 11.9648 1.44039
\(70\) 0 0
\(71\) 1.46135 2.53113i 0.173430 0.300390i −0.766187 0.642618i \(-0.777848\pi\)
0.939617 + 0.342228i \(0.111182\pi\)
\(72\) 5.89434 3.40310i 0.694655 0.401059i
\(73\) 0.661718 + 0.382043i 0.0774483 + 0.0447148i 0.538224 0.842802i \(-0.319095\pi\)
−0.460776 + 0.887517i \(0.652429\pi\)
\(74\) 6.64057 11.5018i 0.771951 1.33706i
\(75\) 0 0
\(76\) −0.675762 + 2.10419i −0.0775152 + 0.241368i
\(77\) 0.366449i 0.0417607i
\(78\) 12.0904 + 6.98040i 1.36897 + 0.790375i
\(79\) −7.72889 + 13.3868i −0.869569 + 1.50614i −0.00713043 + 0.999975i \(0.502270\pi\)
−0.862438 + 0.506162i \(0.831064\pi\)
\(80\) 0 0
\(81\) 5.36445 9.29150i 0.596050 1.03239i
\(82\) 0.890339 0.514037i 0.0983215 0.0567659i
\(83\) 1.66563i 0.182826i 0.995813 + 0.0914132i \(0.0291384\pi\)
−0.995813 + 0.0914132i \(0.970862\pi\)
\(84\) −1.48898 −0.162461
\(85\) 0 0
\(86\) 3.02461 + 5.23879i 0.326153 + 0.564913i
\(87\) 2.93673i 0.314851i
\(88\) 0.873467i 0.0931119i
\(89\) −8.01404 13.8807i −0.849486 1.47135i −0.881667 0.471871i \(-0.843579\pi\)
0.0321812 0.999482i \(-0.489755\pi\)
\(90\) 0 0
\(91\) −3.21286 5.56483i −0.336799 0.583353i
\(92\) 2.29904 + 1.32735i 0.239692 + 0.138386i
\(93\) 2.41808 + 1.39608i 0.250743 + 0.144767i
\(94\) −7.00000 −0.721995
\(95\) 0 0
\(96\) 6.38049 0.651206
\(97\) 10.1697 + 5.87147i 1.03257 + 0.596157i 0.917721 0.397225i \(-0.130027\pi\)
0.114853 + 0.993382i \(0.463360\pi\)
\(98\) 5.65956 + 3.26755i 0.571702 + 0.330072i
\(99\) 0.316776 + 0.548672i 0.0318371 + 0.0551436i
\(100\) 0 0
\(101\) 3.95935 + 6.85779i 0.393970 + 0.682376i 0.992969 0.118374i \(-0.0377681\pi\)
−0.598999 + 0.800750i \(0.704435\pi\)
\(102\) 17.4117i 1.72401i
\(103\) 12.8202i 1.26322i −0.775288 0.631608i \(-0.782395\pi\)
0.775288 0.631608i \(-0.217605\pi\)
\(104\) 7.65817 + 13.2643i 0.750945 + 1.30067i
\(105\) 0 0
\(106\) 15.1054 1.46716
\(107\) 13.8062i 1.33470i −0.744746 0.667348i \(-0.767429\pi\)
0.744746 0.667348i \(-0.232571\pi\)
\(108\) 0.780758 0.450771i 0.0751285 0.0433755i
\(109\) −4.60192 + 7.97076i −0.440784 + 0.763460i −0.997748 0.0670767i \(-0.978633\pi\)
0.556964 + 0.830537i \(0.311966\pi\)
\(110\) 0 0
\(111\) −12.4191 + 21.5106i −1.17877 + 2.04169i
\(112\) 3.03717 + 1.75351i 0.286985 + 0.165691i
\(113\) 17.3273i 1.63001i −0.579453 0.815005i \(-0.696734\pi\)
0.579453 0.815005i \(-0.303266\pi\)
\(114\) −3.72143 + 11.5878i −0.348544 + 1.08530i
\(115\) 0 0
\(116\) 0.325796 0.564295i 0.0302494 0.0523934i
\(117\) −9.62101 5.55469i −0.889462 0.513531i
\(118\) 6.06218 3.50000i 0.558069 0.322201i
\(119\) 4.00702 6.94036i 0.367323 0.636222i
\(120\) 0 0
\(121\) −10.9187 −0.992609
\(122\) 5.44687i 0.493136i
\(123\) −1.66510 + 0.961348i −0.150137 + 0.0866818i
\(124\) 0.309757 + 0.536515i 0.0278170 + 0.0481805i
\(125\) 0 0
\(126\) −3.48898 −0.310823
\(127\) −8.08111 + 4.66563i −0.717082 + 0.414008i −0.813678 0.581316i \(-0.802538\pi\)
0.0965956 + 0.995324i \(0.469205\pi\)
\(128\) −4.54929 2.62653i −0.402104 0.232155i
\(129\) −5.65661 9.79753i −0.498037 0.862625i
\(130\) 0 0
\(131\) −6.21286 + 10.7610i −0.542820 + 0.940191i 0.455921 + 0.890020i \(0.349310\pi\)
−0.998741 + 0.0501711i \(0.984023\pi\)
\(132\) 0.330369i 0.0287549i
\(133\) 4.15013 3.76253i 0.359862 0.326253i
\(134\) 1.20472 0.104072
\(135\) 0 0
\(136\) −9.55113 + 16.5430i −0.819003 + 1.41855i
\(137\) 16.0519 9.26755i 1.37140 0.791780i 0.380298 0.924864i \(-0.375821\pi\)
0.991105 + 0.133084i \(0.0424880\pi\)
\(138\) 12.6609 + 7.30976i 1.07776 + 0.622248i
\(139\) −3.00702 5.20831i −0.255052 0.441763i 0.709858 0.704345i \(-0.248759\pi\)
−0.964910 + 0.262582i \(0.915426\pi\)
\(140\) 0 0
\(141\) 13.0913 1.10249
\(142\) 3.09273 1.78559i 0.259536 0.149843i
\(143\) −1.23470 + 0.712856i −0.103251 + 0.0596120i
\(144\) 6.06327 0.505272
\(145\) 0 0
\(146\) 0.466810 + 0.808538i 0.0386334 + 0.0669151i
\(147\) −10.5845 6.11094i −0.872991 0.504022i
\(148\) −4.77268 + 2.75551i −0.392312 + 0.226502i
\(149\) −3.39608 + 5.88218i −0.278218 + 0.481887i −0.970942 0.239315i \(-0.923077\pi\)
0.692724 + 0.721203i \(0.256410\pi\)
\(150\) 0 0
\(151\) −15.8875 −1.29291 −0.646453 0.762953i \(-0.723749\pi\)
−0.646453 + 0.762953i \(0.723749\pi\)
\(152\) −9.89226 + 8.96837i −0.802368 + 0.727431i
\(153\) 13.8554i 1.12014i
\(154\) −0.223877 + 0.387767i −0.0180406 + 0.0312472i
\(155\) 0 0
\(156\) −2.89652 5.01693i −0.231908 0.401676i
\(157\) 6.50127 + 3.75351i 0.518858 + 0.299563i 0.736467 0.676473i \(-0.236493\pi\)
−0.217609 + 0.976036i \(0.569826\pi\)
\(158\) −16.3571 + 9.44375i −1.30130 + 0.751305i
\(159\) −28.2500 −2.24037
\(160\) 0 0
\(161\) −3.36445 5.82739i −0.265156 0.459263i
\(162\) 11.3531 6.55469i 0.891980 0.514985i
\(163\) 21.8202i 1.70909i 0.519375 + 0.854546i \(0.326165\pi\)
−0.519375 + 0.854546i \(0.673835\pi\)
\(164\) −0.426600 −0.0333119
\(165\) 0 0
\(166\) −1.01760 + 1.76253i −0.0789808 + 0.136799i
\(167\) −9.77322 + 5.64257i −0.756274 + 0.436635i −0.827957 0.560792i \(-0.810497\pi\)
0.0716821 + 0.997428i \(0.477163\pi\)
\(168\) −7.79076 4.49800i −0.601070 0.347028i
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 2.96135 9.22108i 0.226460 0.705154i
\(172\) 2.51013i 0.191396i
\(173\) 5.07095 + 2.92771i 0.385537 + 0.222590i 0.680225 0.733004i \(-0.261882\pi\)
−0.294688 + 0.955594i \(0.595216\pi\)
\(174\) 1.79416 3.10758i 0.136015 0.235585i
\(175\) 0 0
\(176\) 0.389062 0.673875i 0.0293266 0.0507952i
\(177\) −11.3374 + 6.54567i −0.852174 + 0.492003i
\(178\) 19.5843i 1.46791i
\(179\) 18.7922 1.40459 0.702296 0.711885i \(-0.252158\pi\)
0.702296 + 0.711885i \(0.252158\pi\)
\(180\) 0 0
\(181\) −6.67265 11.5574i −0.495974 0.859052i 0.504015 0.863695i \(-0.331856\pi\)
−0.999989 + 0.00464265i \(0.998522\pi\)
\(182\) 7.85142i 0.581986i
\(183\) 10.1867i 0.753021i
\(184\) 8.01950 + 13.8902i 0.591205 + 1.02400i
\(185\) 0 0
\(186\) 1.70584 + 2.95460i 0.125078 + 0.216642i
\(187\) −1.53990 0.889062i −0.112609 0.0650146i
\(188\) 2.51551 + 1.45233i 0.183462 + 0.105922i
\(189\) −2.28514 −0.166220
\(190\) 0 0
\(191\) −0.668743 −0.0483885 −0.0241943 0.999707i \(-0.507702\pi\)
−0.0241943 + 0.999707i \(0.507702\pi\)
\(192\) 17.5526 + 10.1340i 1.26675 + 0.731358i
\(193\) 3.25979 + 1.88204i 0.234645 + 0.135472i 0.612713 0.790305i \(-0.290078\pi\)
−0.378068 + 0.925778i \(0.623411\pi\)
\(194\) 7.17420 + 12.4261i 0.515078 + 0.892141i
\(195\) 0 0
\(196\) −1.35587 2.34844i −0.0968480 0.167746i
\(197\) 14.6164i 1.04138i −0.853747 0.520688i \(-0.825676\pi\)
0.853747 0.520688i \(-0.174324\pi\)
\(198\) 0.774121i 0.0550144i
\(199\) 5.76053 + 9.97753i 0.408353 + 0.707288i 0.994705 0.102768i \(-0.0327699\pi\)
−0.586352 + 0.810056i \(0.699437\pi\)
\(200\) 0 0
\(201\) −2.25307 −0.158919
\(202\) 9.67566i 0.680777i
\(203\) −1.43032 + 0.825796i −0.100389 + 0.0579595i
\(204\) 3.61250 6.25703i 0.252925 0.438079i
\(205\) 0 0
\(206\) 7.83237 13.5661i 0.545707 0.945192i
\(207\) −10.0750 5.81678i −0.700257 0.404294i
\(208\) 13.6445i 0.946074i
\(209\) −0.834816 0.920816i −0.0577454 0.0636941i
\(210\) 0 0
\(211\) 8.57028 14.8442i 0.590003 1.02191i −0.404229 0.914658i \(-0.632460\pi\)
0.994231 0.107257i \(-0.0342067\pi\)
\(212\) −5.42824 3.13400i −0.372813 0.215244i
\(213\) −5.78399 + 3.33939i −0.396313 + 0.228811i
\(214\) 8.43473 14.6094i 0.576586 0.998677i
\(215\) 0 0
\(216\) 5.44687 0.370612
\(217\) 1.57028i 0.106598i
\(218\) −9.73928 + 5.62297i −0.659627 + 0.380836i
\(219\) −0.873023 1.51212i −0.0589934 0.102180i
\(220\) 0 0
\(221\) 31.1796 2.09736
\(222\) −26.2833 + 15.1746i −1.76402 + 1.01846i
\(223\) −1.31997 0.762085i −0.0883918 0.0510330i 0.455153 0.890413i \(-0.349585\pi\)
−0.543544 + 0.839380i \(0.682918\pi\)
\(224\) −1.79416 3.10758i −0.119878 0.207634i
\(225\) 0 0
\(226\) 10.5859 18.3353i 0.704162 1.21964i
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 3.74152 3.39208i 0.247788 0.224646i
\(229\) −18.4397 −1.21853 −0.609266 0.792966i \(-0.708536\pi\)
−0.609266 + 0.792966i \(0.708536\pi\)
\(230\) 0 0
\(231\) 0.418694 0.725199i 0.0275480 0.0477146i
\(232\) 3.40931 1.96837i 0.223832 0.129230i
\(233\) −11.0087 6.35587i −0.721203 0.416387i 0.0939920 0.995573i \(-0.470037\pi\)
−0.815195 + 0.579186i \(0.803371\pi\)
\(234\) −6.78714 11.7557i −0.443689 0.768493i
\(235\) 0 0
\(236\) −2.90466 −0.189077
\(237\) 30.5908 17.6616i 1.98709 1.14725i
\(238\) 8.48026 4.89608i 0.549694 0.317366i
\(239\) 10.8343 0.700811 0.350405 0.936598i \(-0.386044\pi\)
0.350405 + 0.936598i \(0.386044\pi\)
\(240\) 0 0
\(241\) 4.93673 + 8.55067i 0.318003 + 0.550797i 0.980071 0.198646i \(-0.0636545\pi\)
−0.662068 + 0.749444i \(0.730321\pi\)
\(242\) −11.5539 6.67065i −0.742713 0.428805i
\(243\) −16.6127 + 9.59134i −1.06570 + 0.615285i
\(244\) −1.13009 + 1.95738i −0.0723467 + 0.125308i
\(245\) 0 0
\(246\) −2.34930 −0.149786
\(247\) 20.7507 + 6.66407i 1.32033 + 0.424025i
\(248\) 3.74293i 0.237676i
\(249\) 1.90310 3.29626i 0.120604 0.208892i
\(250\) 0 0
\(251\) −8.88550 15.3901i −0.560848 0.971417i −0.997423 0.0717492i \(-0.977142\pi\)
0.436575 0.899668i \(-0.356191\pi\)
\(252\) 1.25379 + 0.723877i 0.0789815 + 0.0456000i
\(253\) −1.29296 + 0.746491i −0.0812877 + 0.0469315i
\(254\) −11.4016 −0.715403
\(255\) 0 0
\(256\) 5.66017 + 9.80370i 0.353760 + 0.612731i
\(257\) −7.06556 + 4.07930i −0.440738 + 0.254460i −0.703911 0.710289i \(-0.748564\pi\)
0.263173 + 0.964749i \(0.415231\pi\)
\(258\) 13.8234i 0.860604i
\(259\) 13.9688 0.867980
\(260\) 0 0
\(261\) −1.42771 + 2.47287i −0.0883733 + 0.153067i
\(262\) −13.1486 + 7.59134i −0.812322 + 0.468995i
\(263\) −5.47087 3.15861i −0.337348 0.194768i 0.321750 0.946825i \(-0.395729\pi\)
−0.659099 + 0.752056i \(0.729062\pi\)
\(264\) −0.997999 + 1.72858i −0.0614226 + 0.106387i
\(265\) 0 0
\(266\) 6.69024 1.44594i 0.410205 0.0886565i
\(267\) 36.6264i 2.24150i
\(268\) −0.432927 0.249951i −0.0264452 0.0152682i
\(269\) 4.11951 7.13521i 0.251171 0.435041i −0.712677 0.701492i \(-0.752518\pi\)
0.963849 + 0.266451i \(0.0858510\pi\)
\(270\) 0 0
\(271\) 2.11094 3.65625i 0.128230 0.222101i −0.794761 0.606923i \(-0.792404\pi\)
0.922991 + 0.384821i \(0.125737\pi\)
\(272\) −14.7373 + 8.50858i −0.893579 + 0.515908i
\(273\) 14.6837i 0.888696i
\(274\) 22.6476 1.36819
\(275\) 0 0
\(276\) −3.03319 5.25364i −0.182577 0.316232i
\(277\) 9.83739i 0.591071i 0.955332 + 0.295536i \(0.0954981\pi\)
−0.955332 + 0.295536i \(0.904502\pi\)
\(278\) 7.34841i 0.440728i
\(279\) −1.35743 2.35114i −0.0812671 0.140759i
\(280\) 0 0
\(281\) −2.69024 4.65964i −0.160486 0.277971i 0.774557 0.632504i \(-0.217973\pi\)
−0.935043 + 0.354534i \(0.884640\pi\)
\(282\) 13.8529 + 7.99800i 0.824931 + 0.476274i
\(283\) 4.29965 + 2.48240i 0.255588 + 0.147564i 0.622320 0.782763i \(-0.286190\pi\)
−0.366732 + 0.930326i \(0.619524\pi\)
\(284\) −1.48186 −0.0879323
\(285\) 0 0
\(286\) −1.74204 −0.103009
\(287\) 0.936439 + 0.540653i 0.0552762 + 0.0319137i
\(288\) −5.37268 3.10192i −0.316588 0.182782i
\(289\) 10.9433 + 18.9544i 0.643724 + 1.11496i
\(290\) 0 0
\(291\) −13.4171 23.2392i −0.786526 1.36230i
\(292\) 0.387406i 0.0226712i
\(293\) 3.80620i 0.222360i −0.993800 0.111180i \(-0.964537\pi\)
0.993800 0.111180i \(-0.0354631\pi\)
\(294\) −7.46681 12.9329i −0.435473 0.754262i
\(295\) 0 0
\(296\) −33.2961 −1.93529
\(297\) 0.507019i 0.0294202i
\(298\) −7.18730 + 4.14959i −0.416349 + 0.240379i
\(299\) 13.0898 22.6722i 0.757002 1.31117i
\(300\) 0 0
\(301\) −3.18122 + 5.51004i −0.183363 + 0.317593i
\(302\) −16.8118 9.70628i −0.967409 0.558534i
\(303\) 18.0953i 1.03955i
\(304\) −11.6265 + 2.51281i −0.666827 + 0.144119i
\(305\) 0 0
\(306\) 8.46481 14.6615i 0.483901 0.838141i
\(307\) 0.497348 + 0.287144i 0.0283851 + 0.0163882i 0.514125 0.857715i \(-0.328117\pi\)
−0.485740 + 0.874103i \(0.661450\pi\)
\(308\) 0.160904 0.0928982i 0.00916838 0.00529336i
\(309\) −14.6480 + 25.3711i −0.833297 + 1.44331i
\(310\) 0 0
\(311\) −8.61640 −0.488591 −0.244296 0.969701i \(-0.578557\pi\)
−0.244296 + 0.969701i \(0.578557\pi\)
\(312\) 35.0000i 1.98148i
\(313\) −29.5517 + 17.0617i −1.67036 + 0.964385i −0.702930 + 0.711259i \(0.748125\pi\)
−0.967433 + 0.253126i \(0.918541\pi\)
\(314\) 4.58632 + 7.94375i 0.258821 + 0.448291i
\(315\) 0 0
\(316\) 7.83739 0.440887
\(317\) 9.59323 5.53865i 0.538809 0.311082i −0.205787 0.978597i \(-0.565975\pi\)
0.744596 + 0.667515i \(0.232642\pi\)
\(318\) −29.8934 17.2590i −1.67634 0.967835i
\(319\) 0.183224 + 0.317354i 0.0102586 + 0.0177684i
\(320\) 0 0
\(321\) −15.7746 + 27.3223i −0.880450 + 1.52498i
\(322\) 8.22188i 0.458187i
\(323\) 5.74213 + 26.5683i 0.319500 + 1.47830i
\(324\) −5.43975 −0.302208
\(325\) 0 0
\(326\) −13.3308 + 23.0896i −0.738325 + 1.27882i
\(327\) 18.2143 10.5160i 1.00725 0.581538i
\(328\) −2.23210 1.28870i −0.123247 0.0711566i
\(329\) −3.68122 6.37607i −0.202952 0.351524i
\(330\) 0 0
\(331\) 6.41168 0.352418 0.176209 0.984353i \(-0.443617\pi\)
0.176209 + 0.984353i \(0.443617\pi\)
\(332\) 0.731363 0.422252i 0.0401387 0.0231741i
\(333\) 20.9150 12.0753i 1.14614 0.661722i
\(334\) −13.7890 −0.754503
\(335\) 0 0
\(336\) −4.00702 6.94036i −0.218601 0.378628i
\(337\) −21.8820 12.6336i −1.19199 0.688193i −0.233229 0.972422i \(-0.574929\pi\)
−0.958757 + 0.284228i \(0.908263\pi\)
\(338\) 12.6981 7.33126i 0.690686 0.398768i
\(339\) −19.7976 + 34.2905i −1.07526 + 1.86240i
\(340\) 0 0
\(341\) −0.348409 −0.0188674
\(342\) 8.76714 7.94833i 0.474072 0.429796i
\(343\) 15.8695i 0.856871i
\(344\) 7.58276 13.1337i 0.408835 0.708123i
\(345\) 0 0
\(346\) 3.57730 + 6.19607i 0.192317 + 0.333103i
\(347\) 10.7461 + 6.20428i 0.576882 + 0.333063i 0.759893 0.650048i \(-0.225251\pi\)
−0.183011 + 0.983111i \(0.558584\pi\)
\(348\) −1.28949 + 0.744489i −0.0691241 + 0.0399088i
\(349\) −6.20384 −0.332084 −0.166042 0.986119i \(-0.553099\pi\)
−0.166042 + 0.986119i \(0.553099\pi\)
\(350\) 0 0
\(351\) −4.44531 7.69950i −0.237273 0.410969i
\(352\) −0.689498 + 0.398082i −0.0367504 + 0.0212178i
\(353\) 23.3484i 1.24271i −0.783529 0.621355i \(-0.786582\pi\)
0.783529 0.621355i \(-0.213418\pi\)
\(354\) −15.9960 −0.850178
\(355\) 0 0
\(356\) −4.06327 + 7.03778i −0.215353 + 0.373002i
\(357\) −15.8597 + 9.15661i −0.839385 + 0.484619i
\(358\) 19.8854 + 11.4808i 1.05098 + 0.606782i
\(359\) −18.8609 + 32.6680i −0.995440 + 1.72415i −0.415107 + 0.909773i \(0.636256\pi\)
−0.580333 + 0.814379i \(0.697078\pi\)
\(360\) 0 0
\(361\) −1.85698 + 18.9090i −0.0977360 + 0.995212i
\(362\) 16.3063i 0.857040i
\(363\) 21.6080 + 12.4754i 1.13413 + 0.654788i
\(364\) −1.62898 + 2.82147i −0.0853816 + 0.147885i
\(365\) 0 0
\(366\) −6.22343 + 10.7793i −0.325304 + 0.563443i
\(367\) −25.4678 + 14.7038i −1.32941 + 0.767534i −0.985208 0.171362i \(-0.945183\pi\)
−0.344200 + 0.938896i \(0.611850\pi\)
\(368\) 14.2883i 0.744827i
\(369\) 1.86946 0.0973204
\(370\) 0 0
\(371\) 7.94375 + 13.7590i 0.412419 + 0.714331i
\(372\) 1.41568i 0.0733995i
\(373\) 21.5491i 1.11577i −0.829918 0.557886i \(-0.811613\pi\)
0.829918 0.557886i \(-0.188387\pi\)
\(374\) −1.08632 1.88157i −0.0561725 0.0972935i
\(375\) 0 0
\(376\) 8.77457 + 15.1980i 0.452514 + 0.783777i
\(377\) −5.56483 3.21286i −0.286603 0.165471i
\(378\) −2.41808 1.39608i −0.124373 0.0718066i
\(379\) 19.3945 0.996230 0.498115 0.867111i \(-0.334026\pi\)
0.498115 + 0.867111i \(0.334026\pi\)
\(380\) 0 0
\(381\) 21.3233 1.09242
\(382\) −0.707648 0.408561i −0.0362064 0.0209038i
\(383\) −16.3563 9.44331i −0.835767 0.482531i 0.0200559 0.999799i \(-0.493616\pi\)
−0.855823 + 0.517268i \(0.826949\pi\)
\(384\) 6.00200 + 10.3958i 0.306288 + 0.530507i
\(385\) 0 0
\(386\) 2.29962 + 3.98307i 0.117048 + 0.202733i
\(387\) 11.0000i 0.559161i
\(388\) 5.95389i 0.302263i
\(389\) −4.54021 7.86387i −0.230198 0.398714i 0.727668 0.685929i \(-0.240604\pi\)
−0.957866 + 0.287215i \(0.907271\pi\)
\(390\) 0 0
\(391\) 32.6507 1.65122
\(392\) 16.3836i 0.827497i
\(393\) 24.5904 14.1973i 1.24042 0.716157i
\(394\) 8.92972 15.4667i 0.449873 0.779202i
\(395\) 0 0
\(396\) 0.160611 0.278187i 0.00807101 0.0139794i
\(397\) 14.7190 + 8.49800i 0.738724 + 0.426502i 0.821605 0.570057i \(-0.193079\pi\)
−0.0828814 + 0.996559i \(0.526412\pi\)
\(398\) 14.0773i 0.705631i
\(399\) −12.5120 + 2.70419i −0.626385 + 0.135379i
\(400\) 0 0
\(401\) −0.795720 + 1.37823i −0.0397363 + 0.0688254i −0.885210 0.465192i \(-0.845985\pi\)
0.845473 + 0.534018i \(0.179318\pi\)
\(402\) −2.38414 1.37648i −0.118910 0.0686528i
\(403\) 5.29088 3.05469i 0.263557 0.152165i
\(404\) 2.00746 3.47703i 0.0998750 0.172989i
\(405\) 0 0
\(406\) −2.01804 −0.100154
\(407\) 3.09935i 0.153629i
\(408\) 37.8032 21.8257i 1.87154 1.08053i
\(409\) −0.998443 1.72935i −0.0493698 0.0855110i 0.840284 0.542146i \(-0.182388\pi\)
−0.889654 + 0.456635i \(0.849055\pi\)
\(410\) 0 0
\(411\) −42.3553 −2.08923
\(412\) −5.62925 + 3.25005i −0.277333 + 0.160118i
\(413\) 6.37607 + 3.68122i 0.313746 + 0.181141i
\(414\) −7.10738 12.3103i −0.349309 0.605020i
\(415\) 0 0
\(416\) 6.98040 12.0904i 0.342242 0.592781i
\(417\) 13.7429i 0.672994i
\(418\) −0.320820 1.48441i −0.0156918 0.0726046i
\(419\) 22.7781 1.11278 0.556392 0.830920i \(-0.312185\pi\)
0.556392 + 0.830920i \(0.312185\pi\)
\(420\) 0 0
\(421\) 6.92070 11.9870i 0.337294 0.584210i −0.646629 0.762805i \(-0.723822\pi\)
0.983923 + 0.178594i \(0.0571550\pi\)
\(422\) 18.1377 10.4718i 0.882931 0.509761i
\(423\) −11.0235 6.36445i −0.535983 0.309450i
\(424\) −18.9347 32.7959i −0.919552 1.59271i
\(425\) 0 0
\(426\) −8.16064 −0.395384
\(427\) 4.96137 2.86445i 0.240097 0.138620i
\(428\) −6.06218 + 3.50000i −0.293026 + 0.169179i
\(429\) 3.25796 0.157296
\(430\) 0 0
\(431\) −1.71987 2.97891i −0.0828435 0.143489i 0.821627 0.570026i \(-0.193067\pi\)
−0.904470 + 0.426537i \(0.859733\pi\)
\(432\) 4.20223 + 2.42616i 0.202180 + 0.116729i
\(433\) −7.96806 + 4.60036i −0.382920 + 0.221079i −0.679088 0.734057i \(-0.737625\pi\)
0.296168 + 0.955136i \(0.404291\pi\)
\(434\) 0.959347 1.66164i 0.0460501 0.0797612i
\(435\) 0 0
\(436\) 4.66652 0.223486
\(437\) 21.7297 + 6.97850i 1.03947 + 0.333827i
\(438\) 2.13345i 0.101940i
\(439\) −18.7550 + 32.4846i −0.895126 + 1.55040i −0.0614769 + 0.998109i \(0.519581\pi\)
−0.833649 + 0.552295i \(0.813752\pi\)
\(440\) 0 0
\(441\) 5.94175 + 10.2914i 0.282941 + 0.490067i
\(442\) 32.9935 + 19.0488i 1.56934 + 0.906058i
\(443\) 12.7122 7.33939i 0.603975 0.348705i −0.166629 0.986020i \(-0.553288\pi\)
0.770604 + 0.637315i \(0.219955\pi\)
\(444\) 12.5935 0.597660
\(445\) 0 0
\(446\) −0.931174 1.61284i −0.0440924 0.0763702i
\(447\) 13.4416 7.76053i 0.635767 0.367060i
\(448\) 11.3985i 0.538530i
\(449\) 7.39052 0.348780 0.174390 0.984677i \(-0.444205\pi\)
0.174390 + 0.984677i \(0.444205\pi\)
\(450\) 0 0
\(451\) 0.119958 0.207773i 0.00564860 0.00978367i
\(452\) −7.60824 + 4.39262i −0.357862 + 0.206611i
\(453\) 31.4412 + 18.1526i 1.47724 + 0.852884i
\(454\) 2.44375 4.23270i 0.114691 0.198651i
\(455\) 0 0
\(456\) 29.8237 6.44571i 1.39662 0.301848i
\(457\) 2.30007i 0.107593i −0.998552 0.0537963i \(-0.982868\pi\)
0.998552 0.0537963i \(-0.0171322\pi\)
\(458\) −19.5125 11.2655i −0.911759 0.526404i
\(459\) 5.54411 9.60269i 0.258777 0.448215i
\(460\) 0 0
\(461\) −9.87848 + 17.1100i −0.460087 + 0.796894i −0.998965 0.0454900i \(-0.985515\pi\)
0.538878 + 0.842384i \(0.318848\pi\)
\(462\) 0.886103 0.511592i 0.0412253 0.0238014i
\(463\) 28.9468i 1.34527i 0.739974 + 0.672635i \(0.234838\pi\)
−0.739974 + 0.672635i \(0.765162\pi\)
\(464\) 3.50702 0.162809
\(465\) 0 0
\(466\) −7.76609 13.4513i −0.359757 0.623118i
\(467\) 3.31722i 0.153503i 0.997050 + 0.0767513i \(0.0244548\pi\)
−0.997050 + 0.0767513i \(0.975545\pi\)
\(468\) 5.63266i 0.260370i
\(469\) 0.633551 + 1.09734i 0.0292547 + 0.0506706i
\(470\) 0 0
\(471\) −8.57730 14.8563i −0.395221 0.684543i
\(472\) −15.1980 8.77457i −0.699544 0.403882i
\(473\) 1.22255 + 0.705838i 0.0562127 + 0.0324544i
\(474\) 43.1606 1.98243
\(475\) 0 0
\(476\) −4.06327 −0.186240
\(477\) 23.7878 + 13.7339i 1.08917 + 0.628833i
\(478\) 11.4646 + 6.61907i 0.524377 + 0.302749i
\(479\) −19.7535 34.2141i −0.902561 1.56328i −0.824158 0.566360i \(-0.808351\pi\)
−0.0784026 0.996922i \(-0.524982\pi\)
\(480\) 0 0
\(481\) 27.1737 + 47.0662i 1.23901 + 2.14603i
\(482\) 12.0642i 0.549507i
\(483\) 15.3765i 0.699654i
\(484\) 2.76799 + 4.79430i 0.125818 + 0.217923i
\(485\) 0 0
\(486\) −23.4389 −1.06321
\(487\) 24.7781i 1.12280i 0.827543 + 0.561402i \(0.189738\pi\)
−0.827543 + 0.561402i \(0.810262\pi\)
\(488\) −11.8259 + 6.82770i −0.535334 + 0.309075i
\(489\) 24.9312 43.1821i 1.12743 1.95276i
\(490\) 0 0
\(491\) 6.81176 11.7983i 0.307410 0.532450i −0.670385 0.742014i \(-0.733871\pi\)
0.977795 + 0.209563i \(0.0672042\pi\)
\(492\) 0.844239 + 0.487421i 0.0380612 + 0.0219747i
\(493\) 8.01404i 0.360934i
\(494\) 17.8865 + 19.7291i 0.804752 + 0.887656i
\(495\) 0 0
\(496\) −1.66719 + 2.88765i −0.0748589 + 0.129659i
\(497\) 3.25286 + 1.87804i 0.145911 + 0.0842416i
\(498\) 4.02763 2.32535i 0.180482 0.104201i
\(499\) 4.09490 7.09257i 0.183313 0.317507i −0.759694 0.650281i \(-0.774651\pi\)
0.943007 + 0.332774i \(0.107985\pi\)
\(500\) 0 0
\(501\) 25.7882 1.15213
\(502\) 21.7140i 0.969142i
\(503\) 15.8354 9.14257i 0.706065 0.407647i −0.103537 0.994626i \(-0.533016\pi\)
0.809603 + 0.586978i \(0.199683\pi\)
\(504\) 4.37347 + 7.57507i 0.194810 + 0.337420i
\(505\) 0 0
\(506\) −1.82424 −0.0810973
\(507\) −23.7479 + 13.7109i −1.05468 + 0.608920i
\(508\) 4.09727 + 2.36556i 0.181787 + 0.104955i
\(509\) 5.94220 + 10.2922i 0.263383 + 0.456193i 0.967139 0.254249i \(-0.0818283\pi\)
−0.703756 + 0.710442i \(0.748495\pi\)
\(510\) 0 0
\(511\) −0.490980 + 0.850402i −0.0217197 + 0.0376196i
\(512\) 24.3382i 1.07561i
\(513\) 5.74213 5.20584i 0.253521 0.229843i
\(514\) −9.96881 −0.439705
\(515\) 0 0
\(516\) −2.86801 + 4.96753i −0.126257 + 0.218683i
\(517\) −1.41470 + 0.816776i −0.0622183 + 0.0359218i
\(518\) 14.7815 + 8.53408i 0.649460 + 0.374966i
\(519\) −6.69024 11.5878i −0.293669 0.508650i
\(520\) 0 0
\(521\) 21.3725 0.936345 0.468173 0.883637i \(-0.344913\pi\)
0.468173 + 0.883637i \(0.344913\pi\)
\(522\) −3.02154 + 1.74449i −0.132249 + 0.0763542i
\(523\) −5.00323 + 2.88862i −0.218776 + 0.126310i −0.605383 0.795934i \(-0.706980\pi\)
0.386607 + 0.922244i \(0.373647\pi\)
\(524\) 6.30007 0.275220
\(525\) 0 0
\(526\) −3.85943 6.68473i −0.168279 0.291468i
\(527\) 6.59869 + 3.80976i 0.287444 + 0.165956i
\(528\) −1.53990 + 0.889062i −0.0670156 + 0.0386915i
\(529\) 2.20739 3.82332i 0.0959737 0.166231i
\(530\) 0 0
\(531\) 12.7289 0.552387
\(532\) −2.70419 0.868450i −0.117242 0.0376521i
\(533\) 4.20695i 0.182223i
\(534\) −22.3765 + 38.7572i −0.968325 + 1.67719i
\(535\) 0 0
\(536\) −1.51013 2.61563i −0.0652278 0.112978i
\(537\) −37.1895 21.4714i −1.60485 0.926559i
\(538\) 8.71834 5.03354i 0.375874 0.217011i
\(539\) 1.52506 0.0656889
\(540\) 0 0
\(541\) −1.31678 2.28072i −0.0566126 0.0980559i 0.836330 0.548226i \(-0.184697\pi\)
−0.892943 + 0.450170i \(0.851363\pi\)
\(542\) 4.46749 2.57930i 0.191895 0.110791i
\(543\) 30.4959i 1.30870i
\(544\) 17.4117 0.746519
\(545\) 0 0
\(546\) −8.97081 + 15.5379i −0.383915 + 0.664961i
\(547\) 31.4908 18.1812i 1.34645 0.777373i 0.358705 0.933451i \(-0.383218\pi\)
0.987745 + 0.156078i \(0.0498852\pi\)
\(548\) −8.13859 4.69882i −0.347663 0.200724i
\(549\) 4.95233 8.57768i 0.211360 0.366087i
\(550\) 0 0
\(551\) 1.71286 5.33351i 0.0729701 0.227215i
\(552\) 36.6514i 1.55999i
\(553\) −17.2040 9.93273i −0.731588 0.422383i
\(554\) −6.01003 + 10.4097i −0.255342 + 0.442265i
\(555\) 0 0
\(556\) −1.52461 + 2.64071i −0.0646581 + 0.111991i
\(557\) −20.7541 + 11.9824i −0.879381 + 0.507711i −0.870454 0.492249i \(-0.836175\pi\)
−0.00892662 + 0.999960i \(0.502841\pi\)
\(558\) 3.31722i 0.140429i
\(559\) −24.7539 −1.04698
\(560\) 0 0
\(561\) 2.03163 + 3.51889i 0.0857756 + 0.148568i
\(562\) 6.57429i 0.277320i
\(563\) 8.52017i 0.359082i −0.983750 0.179541i \(-0.942539\pi\)
0.983750 0.179541i \(-0.0574613\pi\)
\(564\) −3.31878 5.74829i −0.139746 0.242047i
\(565\) 0 0
\(566\) 3.03319 + 5.25364i 0.127495 + 0.220827i
\(567\) 11.9409 + 6.89408i 0.501470 + 0.289524i
\(568\) −7.75352 4.47650i −0.325331 0.187830i
\(569\) −16.3734 −0.686407 −0.343204 0.939261i \(-0.611512\pi\)
−0.343204 + 0.939261i \(0.611512\pi\)
\(570\) 0 0
\(571\) −5.21876 −0.218398 −0.109199 0.994020i \(-0.534829\pi\)
−0.109199 + 0.994020i \(0.534829\pi\)
\(572\) 0.626018 + 0.361431i 0.0261751 + 0.0151122i
\(573\) 1.32344 + 0.764087i 0.0552874 + 0.0319202i
\(574\) 0.660611 + 1.14421i 0.0275734 + 0.0477585i
\(575\) 0 0
\(576\) −9.85343 17.0666i −0.410559 0.711110i
\(577\) 32.0390i 1.33380i 0.745147 + 0.666900i \(0.232379\pi\)
−0.745147 + 0.666900i \(0.767621\pi\)
\(578\) 26.7427i 1.11235i
\(579\) −4.30074 7.44910i −0.178733 0.309574i
\(580\) 0 0
\(581\) −2.14057 −0.0888058
\(582\) 32.7882i 1.35911i
\(583\) 3.05279 1.76253i 0.126434 0.0729965i
\(584\) 1.17030 2.02702i 0.0484274 0.0838787i
\(585\) 0 0
\(586\) 2.32535 4.02763i 0.0960594 0.166380i
\(587\) −2.89634 1.67220i −0.119545 0.0690192i 0.439035 0.898470i \(-0.355320\pi\)
−0.558580 + 0.829451i \(0.688654\pi\)
\(588\) 6.19672i 0.255548i
\(589\) 3.57730 + 3.94583i 0.147400 + 0.162585i
\(590\) 0 0
\(591\) −16.7003 + 28.9257i −0.686958 + 1.18985i
\(592\) −25.6877 14.8308i −1.05576 0.609543i
\(593\) 36.5556 21.1054i 1.50116 0.866694i 0.501159 0.865355i \(-0.332907\pi\)
0.999999 0.00133875i \(-0.000426138\pi\)
\(594\) −0.309757 + 0.536515i −0.0127095 + 0.0220135i
\(595\) 0 0
\(596\) 3.44375 0.141062
\(597\) 26.3273i 1.07750i
\(598\) 27.7026 15.9941i 1.13284 0.654047i
\(599\) −2.60938 4.51958i −0.106616 0.184665i 0.807781 0.589483i \(-0.200668\pi\)
−0.914397 + 0.404818i \(0.867335\pi\)
\(600\) 0 0
\(601\) −10.1546 −0.414215 −0.207108 0.978318i \(-0.566405\pi\)
−0.207108 + 0.978318i \(0.566405\pi\)
\(602\) −6.73259 + 3.88706i −0.274400 + 0.158425i
\(603\) 1.89719 + 1.09534i 0.0772596 + 0.0446058i
\(604\) 4.02763 + 6.97606i 0.163882 + 0.283852i
\(605\) 0 0
\(606\) 11.0551 19.1481i 0.449084 0.777837i
\(607\) 42.8764i 1.74030i −0.492788 0.870149i \(-0.664022\pi\)
0.492788 0.870149i \(-0.335978\pi\)
\(608\) 11.5878 + 3.72143i 0.469949 + 0.150924i
\(609\) 3.77412 0.152935
\(610\) 0 0
\(611\) 14.3222 24.8068i 0.579416 1.00358i
\(612\) −6.08379 + 3.51248i −0.245923 + 0.141984i
\(613\) −21.7141 12.5367i −0.877025 0.506351i −0.00734857 0.999973i \(-0.502339\pi\)
−0.869676 + 0.493622i \(0.835672\pi\)
\(614\) 0.350854 + 0.607697i 0.0141593 + 0.0245247i
\(615\) 0 0
\(616\) 1.12253 0.0452280
\(617\) 4.76053 2.74849i 0.191652 0.110650i −0.401104 0.916033i \(-0.631373\pi\)
0.592756 + 0.805382i \(0.298040\pi\)
\(618\) −31.0004 + 17.8981i −1.24702 + 0.719966i
\(619\) −15.4899 −0.622590 −0.311295 0.950313i \(-0.600763\pi\)
−0.311295 + 0.950313i \(0.600763\pi\)
\(620\) 0 0
\(621\) −4.65505 8.06279i −0.186801 0.323548i
\(622\) −9.11767 5.26409i −0.365585 0.211071i
\(623\) 17.8387 10.2992i 0.714693 0.412628i
\(624\) 15.5898 27.0023i 0.624091 1.08096i
\(625\) 0 0
\(626\) −41.6946 −1.66645
\(627\) 0.599995 + 2.77612i 0.0239615 + 0.110868i
\(628\) 3.80620i 0.151884i
\(629\) −33.8905 + 58.7001i −1.35130 + 2.34053i
\(630\) 0 0
\(631\) −20.6616 35.7870i −0.822526 1.42466i −0.903795 0.427965i \(-0.859231\pi\)
0.0812689 0.996692i \(-0.474103\pi\)
\(632\) 41.0075 + 23.6757i 1.63119 + 0.941767i
\(633\) −33.9210 + 19.5843i −1.34824 + 0.778407i
\(634\) 13.5351 0.537547
\(635\) 0 0
\(636\) 7.16163 + 12.4043i 0.283977 + 0.491862i
\(637\) −23.1593 + 13.3710i −0.917604 + 0.529779i
\(638\) 0.447755i 0.0177268i
\(639\) 6.49387 0.256894
\(640\) 0 0
\(641\) 15.3358 26.5624i 0.605729 1.04915i −0.386207 0.922412i \(-0.626215\pi\)
0.991936 0.126741i \(-0.0404517\pi\)
\(642\) −33.3845 + 19.2746i −1.31758 + 0.760706i
\(643\) 6.94383 + 4.00902i 0.273838 + 0.158100i 0.630630 0.776083i \(-0.282796\pi\)
−0.356793 + 0.934184i \(0.616130\pi\)
\(644\) −1.70584 + 2.95460i −0.0672194 + 0.116427i
\(645\) 0 0
\(646\) −10.1554 + 31.6220i −0.399559 + 1.24415i
\(647\) 10.0272i 0.394209i −0.980382 0.197105i \(-0.936846\pi\)
0.980382 0.197105i \(-0.0631539\pi\)
\(648\) −28.4623 16.4327i −1.11811 0.645539i
\(649\) 0.816776 1.41470i 0.0320612 0.0555317i
\(650\) 0 0
\(651\) −1.79416 + 3.10758i −0.0703188 + 0.121796i
\(652\) 9.58107 5.53163i 0.375224 0.216635i
\(653\) 20.4117i 0.798771i 0.916783 + 0.399385i \(0.130776\pi\)
−0.916783 + 0.399385i \(0.869224\pi\)
\(654\) 25.6986 1.00489
\(655\) 0 0
\(656\) −1.14803 1.98845i −0.0448231 0.0776360i
\(657\) 1.69771i 0.0662338i
\(658\) 8.99600i 0.350700i
\(659\) −18.4874 32.0212i −0.720168 1.24737i −0.960932 0.276783i \(-0.910732\pi\)
0.240765 0.970584i \(-0.422602\pi\)
\(660\) 0 0
\(661\) −1.59646 2.76514i −0.0620950 0.107552i 0.833307 0.552811i \(-0.186445\pi\)
−0.895402 + 0.445259i \(0.853112\pi\)
\(662\) 6.78468 + 3.91714i 0.263694 + 0.152244i
\(663\) −61.7041 35.6249i −2.39639 1.38356i
\(664\) 5.10226 0.198006
\(665\) 0 0
\(666\) 29.5090 1.14345
\(667\) −5.82739 3.36445i −0.225638 0.130272i
\(668\) 4.95520 + 2.86089i 0.191723 + 0.110691i
\(669\) 1.74147 + 3.01632i 0.0673292 + 0.116618i
\(670\) 0 0
\(671\) −0.635553 1.10081i −0.0245352 0.0424963i
\(672\) 8.19983i 0.316315i
\(673\) 15.0742i 0.581067i −0.956865 0.290534i \(-0.906167\pi\)
0.956865 0.290534i \(-0.0938328\pi\)
\(674\) −15.4366 26.7370i −0.594597 1.02987i
\(675\) 0 0
\(676\) −6.08422 −0.234009
\(677\) 17.9648i 0.690444i −0.938521 0.345222i \(-0.887804\pi\)
0.938521 0.345222i \(-0.112196\pi\)
\(678\) −41.8987 + 24.1902i −1.60911 + 0.929021i
\(679\) −7.54567 + 13.0695i −0.289576 + 0.501561i
\(680\) 0 0
\(681\) −4.57028 + 7.91597i −0.175134 + 0.303340i
\(682\) −0.368678 0.212856i −0.0141174 0.00815069i
\(683\) 3.78524i 0.144838i −0.997374 0.0724191i \(-0.976928\pi\)
0.997374 0.0724191i \(-0.0230719\pi\)
\(684\) −4.79962 + 1.03733i −0.183518 + 0.0396633i
\(685\) 0 0
\(686\) −9.69526 + 16.7927i −0.370167 + 0.641148i
\(687\) 36.4921 + 21.0687i 1.39226 + 0.803822i
\(688\) 11.7001 6.75507i 0.446063 0.257534i
\(689\) −30.9061 + 53.5310i −1.17743 + 2.03937i
\(690\) 0 0
\(691\) −10.3335 −0.393104 −0.196552 0.980493i \(-0.562974\pi\)
−0.196552 + 0.980493i \(0.562974\pi\)
\(692\) 2.96881i 0.112857i
\(693\) −0.705121 + 0.407102i −0.0267853 + 0.0154645i
\(694\) 7.58086 + 13.1304i 0.287766 + 0.498425i
\(695\) 0 0
\(696\) −8.99600 −0.340992
\(697\) −4.54389 + 2.62342i −0.172112 + 0.0993690i
\(698\) −6.56475 3.79016i −0.248479 0.143460i
\(699\) 14.5241 + 25.1564i 0.549351 + 0.951504i
\(700\) 0 0
\(701\) −17.9980 + 31.1734i −0.679775 + 1.17740i 0.295273 + 0.955413i \(0.404589\pi\)
−0.975048 + 0.221992i \(0.928744\pi\)
\(702\) 10.8632i 0.410006i
\(703\) −35.1010 + 31.8227i −1.32386 + 1.20022i
\(704\) −2.52906 −0.0953176
\(705\) 0 0
\(706\) 14.2644 24.7067i 0.536849 0.929850i
\(707\) −8.81324 + 5.08832i −0.331456 + 0.191366i
\(708\) 5.74829 + 3.31878i 0.216034 + 0.124727i
\(709\) 4.40266 + 7.62562i 0.165345 + 0.286386i 0.936778 0.349925i \(-0.113793\pi\)
−0.771433 + 0.636311i \(0.780460\pi\)
\(710\) 0 0
\(711\) −34.3453 −1.28805
\(712\) −42.5203 + 24.5491i −1.59352 + 0.920018i
\(713\) 5.54052 3.19882i 0.207494 0.119797i
\(714\) −22.3765 −0.837419
\(715\) 0 0
\(716\) −4.76399 8.25147i −0.178039 0.308372i
\(717\) −21.4409 12.3789i −0.800726 0.462300i
\(718\) −39.9163 + 23.0457i −1.48966 + 0.860057i
\(719\) 9.49600 16.4475i 0.354141 0.613390i −0.632830 0.774291i \(-0.718107\pi\)
0.986971 + 0.160901i \(0.0514400\pi\)
\(720\) 0 0
\(721\) 16.4758 0.613592
\(722\) −13.5173 + 18.8746i −0.503061 + 0.702439i
\(723\) 22.5623i 0.839100i
\(724\) −3.38316 + 5.85980i −0.125734 + 0.217778i
\(725\) 0 0
\(726\) 15.2434 + 26.4023i 0.565735 + 0.979881i
\(727\) 3.54321 + 2.04567i 0.131410 + 0.0758697i 0.564264 0.825594i \(-0.309160\pi\)
−0.432854 + 0.901464i \(0.642493\pi\)
\(728\) −17.0466 + 9.84183i −0.631787 + 0.364763i
\(729\) 11.6485 0.431425
\(730\) 0 0
\(731\) −15.4363 26.7364i −0.570932 0.988883i
\(732\) 4.47288 2.58242i 0.165322 0.0954490i
\(733\) 50.4678i 1.86407i −0.362366 0.932036i \(-0.618031\pi\)
0.362366 0.932036i \(-0.381969\pi\)
\(734\) −35.9325 −1.32629
\(735\) 0 0
\(736\) 7.30976 12.6609i 0.269441 0.466686i
\(737\) 0.243474 0.140570i 0.00896849 0.00517796i
\(738\) 1.97822 + 1.14213i 0.0728194 + 0.0420423i
\(739\) 17.1148 29.6438i 0.629580 1.09046i −0.358056 0.933700i \(-0.616560\pi\)
0.987636 0.156764i \(-0.0501062\pi\)
\(740\) 0 0
\(741\) −33.4512 36.8973i −1.22886 1.35545i
\(742\) 19.4126i 0.712658i
\(743\) −19.5715 11.2996i −0.718010 0.414543i 0.0960101 0.995380i \(-0.469392\pi\)
−0.814020 + 0.580837i \(0.802725\pi\)
\(744\) 4.27657 7.40723i 0.156787 0.271562i
\(745\) 0 0
\(746\) 13.1652 22.8028i 0.482012 0.834869i
\(747\) −3.20500 + 1.85041i −0.117265 + 0.0677030i
\(748\) 0.901542i 0.0329636i
\(749\) 17.7429 0.648313
\(750\) 0 0
\(751\) 12.7199 + 22.0315i 0.464155 + 0.803940i 0.999163 0.0409072i \(-0.0130248\pi\)
−0.535008 + 0.844847i \(0.679691\pi\)
\(752\) 15.6336i 0.570097i
\(753\) 40.6093i 1.47988i
\(754\) −3.92571 6.79953i −0.142966 0.247624i
\(755\) 0 0
\(756\) 0.579305 + 1.00339i 0.0210691 + 0.0364928i
\(757\) 37.0686 + 21.4015i 1.34728 + 0.777852i 0.987863 0.155325i \(-0.0496425\pi\)
0.359416 + 0.933177i \(0.382976\pi\)
\(758\) 20.5228 + 11.8489i 0.745422 + 0.430370i
\(759\) 3.41168 0.123836
\(760\) 0 0
\(761\) −29.8944 −1.08367 −0.541836 0.840484i \(-0.682271\pi\)
−0.541836 + 0.840484i \(0.682271\pi\)
\(762\) 22.5637 + 13.0272i 0.817398 + 0.471925i
\(763\) −10.2436 5.91412i −0.370842 0.214106i
\(764\) 0.169533 + 0.293639i 0.00613347 + 0.0106235i
\(765\) 0 0
\(766\) −11.5386 19.9854i −0.416905 0.722100i
\(767\) 28.6445i 1.03429i
\(768\) 25.8686i 0.933452i
\(769\) −8.32179 14.4138i −0.300092 0.519774i 0.676065 0.736842i \(-0.263684\pi\)
−0.976156 + 0.217068i \(0.930351\pi\)
\(770\) 0 0
\(771\) 18.6436 0.671432
\(772\) 1.90846i 0.0686871i
\(773\) 5.29435 3.05669i 0.190424 0.109942i −0.401757 0.915746i \(-0.631600\pi\)
0.592181 + 0.805805i \(0.298267\pi\)
\(774\) −6.72032 + 11.6399i −0.241557 + 0.418389i
\(775\) 0 0
\(776\) 17.9859 31.1524i 0.645655 1.11831i
\(777\) −27.6442 15.9604i −0.991729 0.572575i
\(778\) 11.0951i 0.397780i
\(779\) −3.58477 + 0.774765i −0.128438 + 0.0277588i
\(780\) 0 0
\(781\) 0.416692 0.721732i 0.0149104 0.0258256i
\(782\) 34.5502 + 19.9476i 1.23551 + 0.713323i
\(783\) −1.97899 + 1.14257i −0.0707234 + 0.0408322i
\(784\) 7.29762 12.6399i 0.260629 0.451423i
\(785\) 0 0
\(786\) 34.6946 1.23752
\(787\) 18.7781i 0.669368i 0.942330 + 0.334684i \(0.108630\pi\)
−0.942330 + 0.334684i \(0.891370\pi\)
\(788\) −6.41793 + 3.70539i −0.228629 + 0.131999i
\(789\) 7.21787 + 12.5017i 0.256963 + 0.445073i
\(790\) 0 0
\(791\) 22.2680 0.791759
\(792\) 1.68073 0.970368i 0.0597220 0.0344805i
\(793\) 19.3028 + 11.1445i 0.685462 + 0.395752i
\(794\) 10.3835 + 17.9848i 0.368497 + 0.638255i
\(795\) 0 0
\(796\) 2.92070 5.05879i 0.103521 0.179304i
\(797\) 30.2851i 1.07275i −0.843978 0.536377i \(-0.819792\pi\)
0.843978 0.536377i \(-0.180208\pi\)
\(798\) −14.8920 4.78257i −0.527172 0.169301i
\(799\) 35.7249 1.26386
\(800\) 0 0
\(801\) 17.8062 30.8412i 0.629151 1.08972i
\(802\) −1.68402 + 0.972271i −0.0594649 + 0.0343321i
\(803\) 0.188684 + 0.108937i 0.00665851 + 0.00384430i
\(804\) 0.571173 + 0.989301i 0.0201437 + 0.0348899i
\(805\) 0 0
\(806\) 7.46491 0.262940
\(807\) −16.3050 + 9.41368i −0.573962 + 0.331377i
\(808\) 21.0072 12.1285i 0.739032 0.426680i
\(809\) −13.6015 −0.478202 −0.239101 0.970995i \(-0.576853\pi\)
−0.239101 + 0.970995i \(0.576853\pi\)
\(810\) 0 0
\(811\) −0.799180 1.38422i −0.0280630 0.0486065i 0.851653 0.524106i \(-0.175601\pi\)
−0.879716 + 0.475500i \(0.842267\pi\)
\(812\) 0.725199 + 0.418694i 0.0254495 + 0.0146933i
\(813\) −8.35506 + 4.82379i −0.293025 + 0.169178i
\(814\) 1.89351 3.27965i 0.0663674 0.114952i
\(815\) 0 0
\(816\) 38.8866 1.36130
\(817\) −4.55875 21.0929i −0.159490 0.737947i
\(818\) 2.43995i 0.0853107i
\(819\) 7.13857 12.3644i 0.249442 0.432046i
\(820\) 0 0
\(821\) 9.40110 + 16.2832i 0.328101 + 0.568287i 0.982135 0.188178i \(-0.0602582\pi\)
−0.654034 + 0.756465i \(0.726925\pi\)
\(822\) −44.8194 25.8765i −1.56326 0.902546i
\(823\) 46.0697 26.5984i 1.60589 0.927161i 0.615612 0.788049i \(-0.288909\pi\)
0.990277 0.139111i \(-0.0444246\pi\)
\(824\) −39.2718 −1.36810
\(825\) 0 0
\(826\) 4.49800 + 7.79076i 0.156505 + 0.271075i
\(827\) 21.7149 12.5371i 0.755101 0.435957i −0.0724334 0.997373i \(-0.523076\pi\)
0.827534 + 0.561416i \(0.189743\pi\)
\(828\) 5.89843i 0.204985i
\(829\) 28.2740 0.981997 0.490999 0.871160i \(-0.336632\pi\)
0.490999 + 0.871160i \(0.336632\pi\)
\(830\) 0 0
\(831\) 11.2399 19.4681i 0.389908 0.675341i
\(832\) 38.4059 22.1737i 1.33149 0.768733i
\(833\) −28.8839 16.6761i −1.00077 0.577793i
\(834\) −8.39608 + 14.5424i −0.290732 + 0.503563i
\(835\) 0 0
\(836\) −0.192688 + 0.599995i −0.00666427 + 0.0207513i
\(837\) 2.17265i 0.0750977i
\(838\) 24.1033 + 13.9160i 0.832633 + 0.480721i
\(839\) 7.33983 12.7130i 0.253399 0.438900i −0.711060 0.703131i \(-0.751785\pi\)
0.964459 + 0.264231i \(0.0851181\pi\)
\(840\) 0 0
\(841\) 13.6742 23.6844i 0.471524 0.816704i
\(842\) 14.6466 8.45623i 0.504756 0.291421i
\(843\) 12.2952i 0.423468i
\(844\) −8.69059 −0.299142
\(845\) 0 0
\(846\) −7.77657 13.4694i −0.267364 0.463088i
\(847\) 14.0321i 0.482148i
\(848\) 33.7358i 1.15849i
\(849\) −5.67265 9.82531i −0.194685 0.337204i
\(850\) 0 0
\(851\) 28.4558 + 49.2869i 0.975452 + 1.68953i
\(852\) 2.93259 + 1.69313i 0.100469 + 0.0580058i
\(853\) 22.4341 + 12.9523i 0.768129 + 0.443479i 0.832207 0.554466i \(-0.187077\pi\)
−0.0640780 + 0.997945i \(0.520411\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) −42.2921 −1.44551
\(857\) −11.1765 6.45277i −0.381783 0.220423i 0.296811 0.954936i \(-0.404077\pi\)
−0.678594 + 0.734514i \(0.737410\pi\)
\(858\) 3.44749 + 1.99041i 0.117695 + 0.0679515i
\(859\) −14.3589 24.8703i −0.489919 0.848564i 0.510014 0.860166i \(-0.329640\pi\)
−0.999933 + 0.0116018i \(0.996307\pi\)
\(860\) 0 0
\(861\) −1.23547 2.13990i −0.0421047 0.0729275i
\(862\) 4.20295i 0.143153i
\(863\) 3.04300i 0.103585i −0.998658 0.0517925i \(-0.983507\pi\)
0.998658 0.0517925i \(-0.0164934\pi\)
\(864\) −2.48240 4.29965i −0.0844531 0.146277i
\(865\) 0 0
\(866\) −11.2421 −0.382024
\(867\) 50.0140i 1.69857i
\(868\) −0.689498 + 0.398082i −0.0234031 + 0.0135118i
\(869\) −2.20384 + 3.81716i −0.0747600 + 0.129488i
\(870\) 0 0
\(871\) −2.46491 + 4.26934i −0.0835202 + 0.144661i
\(872\) 24.4165 + 14.0969i 0.826849 + 0.477381i
\(873\) 26.0913i 0.883058i
\(874\) 18.7305 + 20.6600i 0.633567 + 0.698835i
\(875\) 0 0
\(876\) −0.442639 + 0.766673i −0.0149554 + 0.0259035i
\(877\) 9.84616 + 5.68468i 0.332481 + 0.191958i 0.656942 0.753941i \(-0.271850\pi\)
−0.324461 + 0.945899i \(0.605183\pi\)
\(878\) −39.6921 + 22.9162i −1.33954 + 0.773386i
\(879\) −4.34885 + 7.53243i −0.146683 + 0.254063i
\(880\) 0 0
\(881\) 36.4014 1.22640 0.613198 0.789929i \(-0.289883\pi\)
0.613198 + 0.789929i \(0.289883\pi\)
\(882\) 14.5202i 0.488919i
\(883\) −43.1003 + 24.8839i −1.45044 + 0.837411i −0.998506 0.0546404i \(-0.982599\pi\)
−0.451933 + 0.892052i \(0.649265\pi\)
\(884\) −7.90431 13.6907i −0.265851 0.460467i
\(885\) 0 0
\(886\) 17.9356 0.602560
\(887\) 13.5946 7.84885i 0.456462 0.263539i −0.254093 0.967180i \(-0.581777\pi\)
0.710556 + 0.703641i \(0.248444\pi\)
\(888\) 65.8926 + 38.0431i 2.21121 + 1.27664i
\(889\) −5.99600 10.3854i −0.201099 0.348314i
\(890\) 0 0
\(891\) 1.52963 2.64940i 0.0512446 0.0887582i
\(892\) 0.772783i 0.0258747i
\(893\) 23.7757 + 7.63555i 0.795623 + 0.255514i
\(894\) 18.9648 0.634278
\(895\) 0 0
\(896\) 3.37547 5.84648i 0.112766 0.195317i
\(897\) −51.8091 + 29.9120i −1.72986 + 0.998733i
\(898\) 7.82047 + 4.51515i 0.260972 + 0.150673i
\(899\) −0.785142 1.35991i −0.0261860 0.0453554i
\(900\) 0 0
\(901\) −77.0911 −2.56828
\(902\) 0.253873 0.146574i 0.00845306 0.00488038i
\(903\) 12.5912 7.26955i 0.419010 0.241915i
\(904\) −53.0780 −1.76535
\(905\) 0 0
\(906\) 22.1802 + 38.4173i 0.736889 + 1.27633i
\(907\) −28.5057 16.4578i −0.946517 0.546472i −0.0545199 0.998513i \(-0.517363\pi\)
−0.891997 + 0.452041i \(0.850696\pi\)
\(908\) −1.75636 + 1.01404i −0.0582870 + 0.0336520i
\(909\) −8.79718 + 15.2372i −0.291784 + 0.505385i
\(910\) 0 0
\(911\) −18.7109 −0.619918 −0.309959 0.950750i \(-0.600315\pi\)
−0.309959 + 0.950750i \(0.600315\pi\)
\(912\) 25.8799 + 8.31131i 0.856968 + 0.275215i
\(913\) 0.474941i 0.0157183i
\(914\) 1.40520 2.43388i 0.0464799 0.0805055i
\(915\) 0 0
\(916\) 4.67465 + 8.09673i 0.154455 + 0.267523i
\(917\) −13.8294 7.98441i −0.456687 0.263668i
\(918\) 11.7333 6.77422i 0.387256 0.223583i
\(919\) 50.9506 1.68070 0.840352 0.542041i \(-0.182348\pi\)
0.840352 + 0.542041i \(0.182348\pi\)
\(920\) 0 0
\(921\) −0.656164 1.13651i −0.0216214 0.0374493i
\(922\) −20.9063 + 12.0703i −0.688514 + 0.397514i
\(923\) 14.6135i 0.481009i
\(924\) −0.424571 −0.0139674
\(925\) 0 0
\(926\) −17.6847 + 30.6308i −0.581155 + 1.00659i
\(927\) 24.6687 14.2425i 0.810227 0.467785i
\(928\) −3.10758 1.79416i −0.102011 0.0588963i
\(929\) 5.74249 9.94628i 0.188405 0.326327i −0.756314 0.654209i \(-0.773002\pi\)
0.944719 + 0.327882i \(0.106335\pi\)
\(930\) 0 0
\(931\) −15.6586 17.2717i −0.513190 0.566057i
\(932\) 6.44509i 0.211116i
\(933\) 17.0518 + 9.84485i 0.558250 + 0.322306i
\(934\) −2.02662 + 3.51020i −0.0663129 + 0.114857i
\(935\) 0 0
\(936\) −17.0155 + 29.4717i −0.556169 + 0.963313i
\(937\) −14.0032 + 8.08477i −0.457465 + 0.264118i −0.710978 0.703214i \(-0.751747\pi\)
0.253512 + 0.967332i \(0.418414\pi\)
\(938\) 1.54824i 0.0505519i
\(939\) 77.9769 2.54468
\(940\) 0 0
\(941\) 12.6937 + 21.9861i 0.413803 + 0.716728i 0.995302 0.0968194i \(-0.0308669\pi\)
−0.581499 + 0.813547i \(0.697534\pi\)
\(942\) 20.9608i 0.682940i
\(943\) 4.40545i 0.143461i
\(944\) −7.81678 13.5391i −0.254414 0.440659i
\(945\) 0 0
\(946\) 0.862446 + 1.49380i 0.0280405 + 0.0485676i
\(947\) 20.2481 + 11.6902i 0.657975 + 0.379882i 0.791505 0.611163i \(-0.209298\pi\)
−0.133530 + 0.991045i \(0.542631\pi\)
\(948\) −15.5101 8.95477i −0.503745 0.290838i
\(949\) −3.82043 −0.124016
\(950\) 0 0
\(951\) −25.3132 −0.820837
\(952\) −21.2602 12.2746i −0.689046 0.397821i
\(953\) 19.2073 + 11.0893i 0.622185 + 0.359219i 0.777719 0.628612i \(-0.216376\pi\)
−0.155534 + 0.987831i \(0.549710\pi\)
\(954\) 16.7811 + 29.0658i 0.543309 + 0.941040i
\(955\) 0 0
\(956\) −2.74659 4.75723i −0.0888310 0.153860i
\(957\) 0.837388i 0.0270689i
\(958\) 48.2727i 1.55962i
\(959\) 11.9101 + 20.6289i 0.384598 + 0.666143i
\(960\) 0 0
\(961\) −29.5070 −0.951839
\(962\) 66.4057i 2.14101i
\(963\) 26.5659 15.3378i 0.856074 0.494255i
\(964\) 2.50302 4.33535i 0.0806167 0.139632i
\(965\) 0 0
\(966\) −9.39408 + 16.2710i −0.302250 + 0.523512i
\(967\) −35.3853 20.4297i −1.13791 0.656975i −0.192001 0.981395i \(-0.561498\pi\)
−0.945913 + 0.324419i \(0.894831\pi\)
\(968\) 33.4469i 1.07502i
\(969\) 18.9925 59.1392i 0.610128 1.89982i
\(970\) 0 0
\(971\) −12.3238 + 21.3454i −0.395489 + 0.685008i −0.993164 0.116731i \(-0.962758\pi\)
0.597674 + 0.801739i \(0.296092\pi\)
\(972\) 8.42294 + 4.86299i 0.270166 + 0.155980i
\(973\) 6.69342 3.86445i 0.214581 0.123888i
\(974\) −15.1379 + 26.2196i −0.485050 + 0.840131i
\(975\) 0 0
\(976\) −12.1648 −0.389387
\(977\) 13.7077i 0.438549i 0.975663 + 0.219275i \(0.0703691\pi\)
−0.975663 + 0.219275i \(0.929631\pi\)
\(978\) 52.7631 30.4628i 1.68718 0.974093i
\(979\) −2.28514 3.95798i −0.0730335 0.126498i
\(980\) 0 0
\(981\) −20.4498 −0.652911
\(982\) 14.4161 8.32313i 0.460035 0.265602i
\(983\) −0.244243 0.141014i −0.00779015 0.00449765i 0.496100 0.868265i \(-0.334765\pi\)
−0.503890 + 0.863768i \(0.668098\pi\)
\(984\) 2.94487 + 5.10066i 0.0938789 + 0.162603i
\(985\) 0 0
\(986\) 4.89608 8.48026i 0.155923 0.270067i
\(987\) 16.8242i 0.535521i
\(988\) −2.33435 10.8008i −0.0742657 0.343620i
\(989\) −25.9218 −0.824266
\(990\) 0 0
\(991\) −12.2992 + 21.3028i −0.390696 + 0.676706i −0.992542 0.121907i \(-0.961099\pi\)
0.601845 + 0.798613i \(0.294432\pi\)
\(992\) 2.95460 1.70584i 0.0938086 0.0541604i
\(993\) −12.6887 7.32580i −0.402662 0.232477i
\(994\) 2.29473 + 3.97459i 0.0727845 + 0.126066i
\(995\) 0 0
\(996\) −1.92981 −0.0611485
\(997\) 20.0768 11.5913i 0.635838 0.367101i −0.147171 0.989111i \(-0.547017\pi\)
0.783010 + 0.622010i \(0.213684\pi\)
\(998\) 8.66625 5.00346i 0.274325 0.158382i
\(999\) 19.3273 0.611487
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.b.49.4 12
5.2 odd 4 95.2.e.b.11.2 6
5.3 odd 4 475.2.e.d.201.2 6
5.4 even 2 inner 475.2.j.b.49.3 12
15.2 even 4 855.2.k.g.676.2 6
19.7 even 3 inner 475.2.j.b.349.3 12
20.7 even 4 1520.2.q.j.961.3 6
95.7 odd 12 95.2.e.b.26.2 yes 6
95.8 even 12 9025.2.a.ba.1.2 3
95.27 even 12 1805.2.a.g.1.2 3
95.64 even 6 inner 475.2.j.b.349.4 12
95.68 odd 12 9025.2.a.z.1.2 3
95.83 odd 12 475.2.e.d.26.2 6
95.87 odd 12 1805.2.a.h.1.2 3
285.197 even 12 855.2.k.g.406.2 6
380.7 even 12 1520.2.q.j.881.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.b.11.2 6 5.2 odd 4
95.2.e.b.26.2 yes 6 95.7 odd 12
475.2.e.d.26.2 6 95.83 odd 12
475.2.e.d.201.2 6 5.3 odd 4
475.2.j.b.49.3 12 5.4 even 2 inner
475.2.j.b.49.4 12 1.1 even 1 trivial
475.2.j.b.349.3 12 19.7 even 3 inner
475.2.j.b.349.4 12 95.64 even 6 inner
855.2.k.g.406.2 6 285.197 even 12
855.2.k.g.676.2 6 15.2 even 4
1520.2.q.j.881.3 6 380.7 even 12
1520.2.q.j.961.3 6 20.7 even 4
1805.2.a.g.1.2 3 95.27 even 12
1805.2.a.h.1.2 3 95.87 odd 12
9025.2.a.z.1.2 3 95.68 odd 12
9025.2.a.ba.1.2 3 95.8 even 12