Properties

Label 855.2.k.g.676.2
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.2
Root \(0.610938 - 1.05818i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.g.406.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.610938 - 1.05818i) q^{2} +(0.253509 + 0.439091i) q^{4} +(-0.500000 + 0.866025i) q^{5} -1.28514 q^{7} +3.06327 q^{8} +O(q^{10})\) \(q+(0.610938 - 1.05818i) q^{2} +(0.253509 + 0.439091i) q^{4} +(-0.500000 + 0.866025i) q^{5} -1.28514 q^{7} +3.06327 q^{8} +(0.610938 + 1.05818i) q^{10} -0.285142 q^{11} +(2.50000 + 4.33013i) q^{13} +(-0.785142 + 1.35991i) q^{14} +(1.36445 - 2.36329i) q^{16} +(-3.11796 + 5.40046i) q^{17} +(2.92771 + 3.22932i) q^{19} -0.507019 q^{20} +(-0.174204 + 0.301731i) q^{22} +(-2.61796 - 4.53443i) q^{23} +(-0.500000 - 0.866025i) q^{25} +6.10938 q^{26} +(-0.325796 - 0.564295i) q^{28} +(0.642571 + 1.11297i) q^{29} -1.22188 q^{31} +(1.39608 + 2.41808i) q^{32} +(3.80976 + 6.59869i) q^{34} +(0.642571 - 1.11297i) q^{35} +10.8695 q^{37} +(5.20584 - 1.12512i) q^{38} +(-1.53163 + 2.65287i) q^{40} +(-0.420695 + 0.728665i) q^{41} +(2.47539 - 4.28749i) q^{43} +(-0.0722863 - 0.125204i) q^{44} -6.39764 q^{46} +(2.86445 + 4.96137i) q^{47} -5.34841 q^{49} -1.22188 q^{50} +(-1.26755 + 2.19546i) q^{52} +(6.18122 + 10.7062i) q^{53} +(0.142571 - 0.246941i) q^{55} -3.93673 q^{56} +1.57028 q^{58} +(2.86445 - 4.96137i) q^{59} +(-2.22889 - 3.86056i) q^{61} +(-0.746491 + 1.29296i) q^{62} +8.86946 q^{64} -5.00000 q^{65} +(0.492981 + 0.853869i) q^{67} -3.16172 q^{68} +(-0.785142 - 1.35991i) q^{70} +(-1.46135 + 2.53113i) q^{71} +(0.382043 - 0.661718i) q^{73} +(6.64057 - 11.5018i) q^{74} +(-0.675762 + 2.10419i) q^{76} +0.366449 q^{77} +(7.72889 - 13.3868i) q^{79} +(1.36445 + 2.36329i) q^{80} +(0.514037 + 0.890339i) q^{82} -1.66563 q^{83} +(-3.11796 - 5.40046i) q^{85} +(-3.02461 - 5.23879i) q^{86} -0.873467 q^{88} +(-8.01404 - 13.8807i) q^{89} +(-3.21286 - 5.56483i) q^{91} +(1.32735 - 2.29904i) q^{92} +7.00000 q^{94} +(-4.26053 + 0.920816i) q^{95} +(-5.87147 + 10.1697i) q^{97} +(-3.26755 + 5.65956i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8} + q^{10} + 10 q^{11} + 15 q^{13} + 7 q^{14} - 3 q^{16} + q^{17} + 14 q^{20} + 8 q^{22} + 4 q^{23} - 3 q^{25} + 10 q^{26} - 11 q^{28} - 2 q^{29} - 2 q^{31} - 6 q^{32} + 25 q^{34} - 2 q^{35} - 4 q^{37} + 19 q^{38} - 6 q^{40} - 2 q^{41} + q^{43} - 18 q^{44} - 48 q^{46} + 6 q^{47} - 14 q^{49} - 2 q^{50} + 35 q^{52} + 11 q^{53} - 5 q^{55} - 30 q^{56} - 14 q^{58} + 6 q^{59} + 9 q^{61} - 13 q^{62} - 16 q^{64} - 30 q^{65} + 20 q^{67} - 68 q^{68} + 7 q^{70} - 29 q^{71} + 22 q^{73} - 7 q^{74} - 19 q^{76} + 32 q^{77} + 24 q^{79} - 3 q^{80} - 31 q^{82} + 6 q^{83} + q^{85} - 32 q^{86} - 18 q^{88} - 14 q^{89} + 10 q^{91} + 41 q^{92} + 42 q^{94} - 7 q^{97} + 23 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.610938 1.05818i 0.431998 0.748243i −0.565047 0.825059i \(-0.691142\pi\)
0.997045 + 0.0768155i \(0.0244753\pi\)
\(3\) 0 0
\(4\) 0.253509 + 0.439091i 0.126755 + 0.219546i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.28514 −0.485738 −0.242869 0.970059i \(-0.578089\pi\)
−0.242869 + 0.970059i \(0.578089\pi\)
\(8\) 3.06327 1.08303
\(9\) 0 0
\(10\) 0.610938 + 1.05818i 0.193196 + 0.334625i
\(11\) −0.285142 −0.0859737 −0.0429868 0.999076i \(-0.513687\pi\)
−0.0429868 + 0.999076i \(0.513687\pi\)
\(12\) 0 0
\(13\) 2.50000 + 4.33013i 0.693375 + 1.20096i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −0.785142 + 1.35991i −0.209838 + 0.363450i
\(15\) 0 0
\(16\) 1.36445 2.36329i 0.341112 0.590823i
\(17\) −3.11796 + 5.40046i −0.756216 + 1.30980i 0.188552 + 0.982063i \(0.439621\pi\)
−0.944768 + 0.327741i \(0.893713\pi\)
\(18\) 0 0
\(19\) 2.92771 + 3.22932i 0.671664 + 0.740856i
\(20\) −0.507019 −0.113373
\(21\) 0 0
\(22\) −0.174204 + 0.301731i −0.0371405 + 0.0643292i
\(23\) −2.61796 4.53443i −0.545882 0.945495i −0.998551 0.0538163i \(-0.982861\pi\)
0.452669 0.891679i \(-0.350472\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 6.10938 1.19815
\(27\) 0 0
\(28\) −0.325796 0.564295i −0.0615696 0.106642i
\(29\) 0.642571 + 1.11297i 0.119322 + 0.206673i 0.919499 0.393091i \(-0.128594\pi\)
−0.800177 + 0.599764i \(0.795261\pi\)
\(30\) 0 0
\(31\) −1.22188 −0.219455 −0.109728 0.993962i \(-0.534998\pi\)
−0.109728 + 0.993962i \(0.534998\pi\)
\(32\) 1.39608 + 2.41808i 0.246795 + 0.427461i
\(33\) 0 0
\(34\) 3.80976 + 6.59869i 0.653368 + 1.13167i
\(35\) 0.642571 1.11297i 0.108614 0.188126i
\(36\) 0 0
\(37\) 10.8695 1.78693 0.893464 0.449134i \(-0.148267\pi\)
0.893464 + 0.449134i \(0.148267\pi\)
\(38\) 5.20584 1.12512i 0.844498 0.182519i
\(39\) 0 0
\(40\) −1.53163 + 2.65287i −0.242172 + 0.419455i
\(41\) −0.420695 + 0.728665i −0.0657015 + 0.113798i −0.897005 0.442020i \(-0.854262\pi\)
0.831303 + 0.555819i \(0.187595\pi\)
\(42\) 0 0
\(43\) 2.47539 4.28749i 0.377493 0.653837i −0.613204 0.789925i \(-0.710120\pi\)
0.990697 + 0.136088i \(0.0434530\pi\)
\(44\) −0.0722863 0.125204i −0.0108976 0.0188751i
\(45\) 0 0
\(46\) −6.39764 −0.943280
\(47\) 2.86445 + 4.96137i 0.417823 + 0.723690i 0.995720 0.0924193i \(-0.0294600\pi\)
−0.577898 + 0.816109i \(0.696127\pi\)
\(48\) 0 0
\(49\) −5.34841 −0.764058
\(50\) −1.22188 −0.172799
\(51\) 0 0
\(52\) −1.26755 + 2.19546i −0.175777 + 0.304455i
\(53\) 6.18122 + 10.7062i 0.849056 + 1.47061i 0.882051 + 0.471153i \(0.156162\pi\)
−0.0329952 + 0.999456i \(0.510505\pi\)
\(54\) 0 0
\(55\) 0.142571 0.246941i 0.0192243 0.0332975i
\(56\) −3.93673 −0.526068
\(57\) 0 0
\(58\) 1.57028 0.206189
\(59\) 2.86445 4.96137i 0.372919 0.645915i −0.617094 0.786889i \(-0.711690\pi\)
0.990013 + 0.140974i \(0.0450235\pi\)
\(60\) 0 0
\(61\) −2.22889 3.86056i −0.285381 0.494294i 0.687321 0.726354i \(-0.258787\pi\)
−0.972701 + 0.232060i \(0.925453\pi\)
\(62\) −0.746491 + 1.29296i −0.0948044 + 0.164206i
\(63\) 0 0
\(64\) 8.86946 1.10868
\(65\) −5.00000 −0.620174
\(66\) 0 0
\(67\) 0.492981 + 0.853869i 0.0602273 + 0.104317i 0.894567 0.446934i \(-0.147484\pi\)
−0.834340 + 0.551251i \(0.814151\pi\)
\(68\) −3.16172 −0.383415
\(69\) 0 0
\(70\) −0.785142 1.35991i −0.0938425 0.162540i
\(71\) −1.46135 + 2.53113i −0.173430 + 0.300390i −0.939617 0.342228i \(-0.888818\pi\)
0.766187 + 0.642618i \(0.222152\pi\)
\(72\) 0 0
\(73\) 0.382043 0.661718i 0.0447148 0.0774483i −0.842802 0.538224i \(-0.819095\pi\)
0.887517 + 0.460776i \(0.152429\pi\)
\(74\) 6.64057 11.5018i 0.771951 1.33706i
\(75\) 0 0
\(76\) −0.675762 + 2.10419i −0.0775152 + 0.241368i
\(77\) 0.366449 0.0417607
\(78\) 0 0
\(79\) 7.72889 13.3868i 0.869569 1.50614i 0.00713043 0.999975i \(-0.497730\pi\)
0.862438 0.506162i \(-0.168936\pi\)
\(80\) 1.36445 + 2.36329i 0.152550 + 0.264224i
\(81\) 0 0
\(82\) 0.514037 + 0.890339i 0.0567659 + 0.0983215i
\(83\) −1.66563 −0.182826 −0.0914132 0.995813i \(-0.529138\pi\)
−0.0914132 + 0.995813i \(0.529138\pi\)
\(84\) 0 0
\(85\) −3.11796 5.40046i −0.338190 0.585762i
\(86\) −3.02461 5.23879i −0.326153 0.564913i
\(87\) 0 0
\(88\) −0.873467 −0.0931119
\(89\) −8.01404 13.8807i −0.849486 1.47135i −0.881667 0.471871i \(-0.843579\pi\)
0.0321812 0.999482i \(-0.489755\pi\)
\(90\) 0 0
\(91\) −3.21286 5.56483i −0.336799 0.583353i
\(92\) 1.32735 2.29904i 0.138386 0.239692i
\(93\) 0 0
\(94\) 7.00000 0.721995
\(95\) −4.26053 + 0.920816i −0.437121 + 0.0944737i
\(96\) 0 0
\(97\) −5.87147 + 10.1697i −0.596157 + 1.03257i 0.397225 + 0.917721i \(0.369973\pi\)
−0.993382 + 0.114853i \(0.963360\pi\)
\(98\) −3.26755 + 5.65956i −0.330072 + 0.571702i
\(99\) 0 0
\(100\) 0.253509 0.439091i 0.0253509 0.0439091i
\(101\) −3.95935 6.85779i −0.393970 0.682376i 0.598999 0.800750i \(-0.295565\pi\)
−0.992969 + 0.118374i \(0.962232\pi\)
\(102\) 0 0
\(103\) −12.8202 −1.26322 −0.631608 0.775288i \(-0.717605\pi\)
−0.631608 + 0.775288i \(0.717605\pi\)
\(104\) 7.65817 + 13.2643i 0.750945 + 1.30067i
\(105\) 0 0
\(106\) 15.1054 1.46716
\(107\) −13.8062 −1.33470 −0.667348 0.744746i \(-0.732571\pi\)
−0.667348 + 0.744746i \(0.732571\pi\)
\(108\) 0 0
\(109\) 4.60192 7.97076i 0.440784 0.763460i −0.556964 0.830537i \(-0.688034\pi\)
0.997748 + 0.0670767i \(0.0213672\pi\)
\(110\) −0.174204 0.301731i −0.0166097 0.0287689i
\(111\) 0 0
\(112\) −1.75351 + 3.03717i −0.165691 + 0.286985i
\(113\) 17.3273 1.63001 0.815005 0.579453i \(-0.196734\pi\)
0.815005 + 0.579453i \(0.196734\pi\)
\(114\) 0 0
\(115\) 5.23591 0.488251
\(116\) −0.325796 + 0.564295i −0.0302494 + 0.0523934i
\(117\) 0 0
\(118\) −3.50000 6.06218i −0.322201 0.558069i
\(119\) 4.00702 6.94036i 0.367323 0.636222i
\(120\) 0 0
\(121\) −10.9187 −0.992609
\(122\) −5.44687 −0.493136
\(123\) 0 0
\(124\) −0.309757 0.536515i −0.0278170 0.0481805i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.66563 8.08111i −0.414008 0.717082i 0.581316 0.813678i \(-0.302538\pi\)
−0.995324 + 0.0965956i \(0.969205\pi\)
\(128\) 2.62653 4.54929i 0.232155 0.402104i
\(129\) 0 0
\(130\) −3.05469 + 5.29088i −0.267914 + 0.464041i
\(131\) 6.21286 10.7610i 0.542820 0.940191i −0.455921 0.890020i \(-0.650690\pi\)
0.998741 0.0501711i \(-0.0159767\pi\)
\(132\) 0 0
\(133\) −3.76253 4.15013i −0.326253 0.359862i
\(134\) 1.20472 0.104072
\(135\) 0 0
\(136\) −9.55113 + 16.5430i −0.819003 + 1.41855i
\(137\) −9.26755 16.0519i −0.791780 1.37140i −0.924864 0.380298i \(-0.875821\pi\)
0.133084 0.991105i \(-0.457512\pi\)
\(138\) 0 0
\(139\) 3.00702 + 5.20831i 0.255052 + 0.441763i 0.964910 0.262582i \(-0.0845741\pi\)
−0.709858 + 0.704345i \(0.751241\pi\)
\(140\) 0.651591 0.0550695
\(141\) 0 0
\(142\) 1.78559 + 3.09273i 0.149843 + 0.259536i
\(143\) −0.712856 1.23470i −0.0596120 0.103251i
\(144\) 0 0
\(145\) −1.28514 −0.106725
\(146\) −0.466810 0.808538i −0.0386334 0.0669151i
\(147\) 0 0
\(148\) 2.75551 + 4.77268i 0.226502 + 0.392312i
\(149\) −3.39608 + 5.88218i −0.278218 + 0.481887i −0.970942 0.239315i \(-0.923077\pi\)
0.692724 + 0.721203i \(0.256410\pi\)
\(150\) 0 0
\(151\) −15.8875 −1.29291 −0.646453 0.762953i \(-0.723749\pi\)
−0.646453 + 0.762953i \(0.723749\pi\)
\(152\) 8.96837 + 9.89226i 0.727431 + 0.802368i
\(153\) 0 0
\(154\) 0.223877 0.387767i 0.0180406 0.0312472i
\(155\) 0.610938 1.05818i 0.0490717 0.0849947i
\(156\) 0 0
\(157\) −3.75351 + 6.50127i −0.299563 + 0.518858i −0.976036 0.217609i \(-0.930174\pi\)
0.676473 + 0.736467i \(0.263507\pi\)
\(158\) −9.44375 16.3571i −0.751305 1.30130i
\(159\) 0 0
\(160\) −2.79216 −0.220740
\(161\) 3.36445 + 5.82739i 0.265156 + 0.459263i
\(162\) 0 0
\(163\) 21.8202 1.70909 0.854546 0.519375i \(-0.173835\pi\)
0.854546 + 0.519375i \(0.173835\pi\)
\(164\) −0.426600 −0.0333119
\(165\) 0 0
\(166\) −1.01760 + 1.76253i −0.0789808 + 0.136799i
\(167\) 5.64257 + 9.77322i 0.436635 + 0.756274i 0.997428 0.0716821i \(-0.0228367\pi\)
−0.560792 + 0.827957i \(0.689503\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) −7.61951 −0.584390
\(171\) 0 0
\(172\) 2.51013 0.191396
\(173\) −2.92771 + 5.07095i −0.222590 + 0.385537i −0.955594 0.294688i \(-0.904784\pi\)
0.733004 + 0.680225i \(0.238118\pi\)
\(174\) 0 0
\(175\) 0.642571 + 1.11297i 0.0485738 + 0.0841323i
\(176\) −0.389062 + 0.673875i −0.0293266 + 0.0507952i
\(177\) 0 0
\(178\) −19.5843 −1.46791
\(179\) 18.7922 1.40459 0.702296 0.711885i \(-0.252158\pi\)
0.702296 + 0.711885i \(0.252158\pi\)
\(180\) 0 0
\(181\) −6.67265 11.5574i −0.495974 0.859052i 0.504015 0.863695i \(-0.331856\pi\)
−0.999989 + 0.00464265i \(0.998522\pi\)
\(182\) −7.85142 −0.581986
\(183\) 0 0
\(184\) −8.01950 13.8902i −0.591205 1.02400i
\(185\) −5.43473 + 9.41323i −0.399569 + 0.692075i
\(186\) 0 0
\(187\) 0.889062 1.53990i 0.0650146 0.112609i
\(188\) −1.45233 + 2.51551i −0.105922 + 0.183462i
\(189\) 0 0
\(190\) −1.62853 + 5.07095i −0.118146 + 0.367885i
\(191\) 0.668743 0.0483885 0.0241943 0.999707i \(-0.492298\pi\)
0.0241943 + 0.999707i \(0.492298\pi\)
\(192\) 0 0
\(193\) 1.88204 3.25979i 0.135472 0.234645i −0.790305 0.612713i \(-0.790078\pi\)
0.925778 + 0.378068i \(0.123411\pi\)
\(194\) 7.17420 + 12.4261i 0.515078 + 0.892141i
\(195\) 0 0
\(196\) −1.35587 2.34844i −0.0968480 0.167746i
\(197\) −14.6164 −1.04138 −0.520688 0.853747i \(-0.674324\pi\)
−0.520688 + 0.853747i \(0.674324\pi\)
\(198\) 0 0
\(199\) −5.76053 9.97753i −0.408353 0.707288i 0.586352 0.810056i \(-0.300563\pi\)
−0.994705 + 0.102768i \(0.967230\pi\)
\(200\) −1.53163 2.65287i −0.108303 0.187586i
\(201\) 0 0
\(202\) −9.67566 −0.680777
\(203\) −0.825796 1.43032i −0.0579595 0.100389i
\(204\) 0 0
\(205\) −0.420695 0.728665i −0.0293826 0.0508922i
\(206\) −7.83237 + 13.5661i −0.545707 + 0.945192i
\(207\) 0 0
\(208\) 13.6445 0.946074
\(209\) −0.834816 0.920816i −0.0577454 0.0636941i
\(210\) 0 0
\(211\) 8.57028 14.8442i 0.590003 1.02191i −0.404229 0.914658i \(-0.632460\pi\)
0.994231 0.107257i \(-0.0342067\pi\)
\(212\) −3.13400 + 5.42824i −0.215244 + 0.372813i
\(213\) 0 0
\(214\) −8.43473 + 14.6094i −0.576586 + 0.998677i
\(215\) 2.47539 + 4.28749i 0.168820 + 0.292405i
\(216\) 0 0
\(217\) 1.57028 0.106598
\(218\) −5.62297 9.73928i −0.380836 0.659627i
\(219\) 0 0
\(220\) 0.144573 0.00974708
\(221\) −31.1796 −2.09736
\(222\) 0 0
\(223\) −0.762085 + 1.31997i −0.0510330 + 0.0883918i −0.890413 0.455153i \(-0.849585\pi\)
0.839380 + 0.543544i \(0.182918\pi\)
\(224\) −1.79416 3.10758i −0.119878 0.207634i
\(225\) 0 0
\(226\) 10.5859 18.3353i 0.704162 1.21964i
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 18.4397 1.21853 0.609266 0.792966i \(-0.291464\pi\)
0.609266 + 0.792966i \(0.291464\pi\)
\(230\) 3.19882 5.54052i 0.210924 0.365331i
\(231\) 0 0
\(232\) 1.96837 + 3.40931i 0.129230 + 0.223832i
\(233\) 6.35587 11.0087i 0.416387 0.721203i −0.579186 0.815195i \(-0.696629\pi\)
0.995573 + 0.0939920i \(0.0299628\pi\)
\(234\) 0 0
\(235\) −5.72889 −0.373712
\(236\) 2.90466 0.189077
\(237\) 0 0
\(238\) −4.89608 8.48026i −0.317366 0.549694i
\(239\) 10.8343 0.700811 0.350405 0.936598i \(-0.386044\pi\)
0.350405 + 0.936598i \(0.386044\pi\)
\(240\) 0 0
\(241\) 4.93673 + 8.55067i 0.318003 + 0.550797i 0.980071 0.198646i \(-0.0636545\pi\)
−0.662068 + 0.749444i \(0.730321\pi\)
\(242\) −6.67065 + 11.5539i −0.428805 + 0.742713i
\(243\) 0 0
\(244\) 1.13009 1.95738i 0.0723467 0.125308i
\(245\) 2.67420 4.63186i 0.170849 0.295919i
\(246\) 0 0
\(247\) −6.66407 + 20.7507i −0.424025 + 1.32033i
\(248\) −3.74293 −0.237676
\(249\) 0 0
\(250\) 0.610938 1.05818i 0.0386391 0.0669249i
\(251\) 8.88550 + 15.3901i 0.560848 + 0.971417i 0.997423 + 0.0717492i \(0.0228581\pi\)
−0.436575 + 0.899668i \(0.643809\pi\)
\(252\) 0 0
\(253\) 0.746491 + 1.29296i 0.0469315 + 0.0812877i
\(254\) −11.4016 −0.715403
\(255\) 0 0
\(256\) 5.66017 + 9.80370i 0.353760 + 0.612731i
\(257\) 4.07930 + 7.06556i 0.254460 + 0.440738i 0.964749 0.263173i \(-0.0847689\pi\)
−0.710289 + 0.703911i \(0.751436\pi\)
\(258\) 0 0
\(259\) −13.9688 −0.867980
\(260\) −1.26755 2.19546i −0.0786099 0.136156i
\(261\) 0 0
\(262\) −7.59134 13.1486i −0.468995 0.812322i
\(263\) 3.15861 5.47087i 0.194768 0.337348i −0.752056 0.659099i \(-0.770938\pi\)
0.946825 + 0.321750i \(0.104271\pi\)
\(264\) 0 0
\(265\) −12.3624 −0.759419
\(266\) −6.69024 + 1.44594i −0.410205 + 0.0886565i
\(267\) 0 0
\(268\) −0.249951 + 0.432927i −0.0152682 + 0.0264452i
\(269\) 4.11951 7.13521i 0.251171 0.435041i −0.712677 0.701492i \(-0.752518\pi\)
0.963849 + 0.266451i \(0.0858510\pi\)
\(270\) 0 0
\(271\) 2.11094 3.65625i 0.128230 0.222101i −0.794761 0.606923i \(-0.792404\pi\)
0.922991 + 0.384821i \(0.125737\pi\)
\(272\) 8.50858 + 14.7373i 0.515908 + 0.893579i
\(273\) 0 0
\(274\) −22.6476 −1.36819
\(275\) 0.142571 + 0.246941i 0.00859737 + 0.0148911i
\(276\) 0 0
\(277\) −9.83739 −0.591071 −0.295536 0.955332i \(-0.595498\pi\)
−0.295536 + 0.955332i \(0.595498\pi\)
\(278\) 7.34841 0.440728
\(279\) 0 0
\(280\) 1.96837 3.40931i 0.117632 0.203745i
\(281\) 2.69024 + 4.65964i 0.160486 + 0.277971i 0.935043 0.354534i \(-0.115360\pi\)
−0.774557 + 0.632504i \(0.782027\pi\)
\(282\) 0 0
\(283\) 2.48240 4.29965i 0.147564 0.255588i −0.782763 0.622320i \(-0.786190\pi\)
0.930326 + 0.366732i \(0.119524\pi\)
\(284\) −1.48186 −0.0879323
\(285\) 0 0
\(286\) −1.74204 −0.103009
\(287\) 0.540653 0.936439i 0.0319137 0.0552762i
\(288\) 0 0
\(289\) −10.9433 18.9544i −0.643724 1.11496i
\(290\) −0.785142 + 1.35991i −0.0461052 + 0.0798565i
\(291\) 0 0
\(292\) 0.387406 0.0226712
\(293\) 3.80620 0.222360 0.111180 0.993800i \(-0.464537\pi\)
0.111180 + 0.993800i \(0.464537\pi\)
\(294\) 0 0
\(295\) 2.86445 + 4.96137i 0.166775 + 0.288862i
\(296\) 33.2961 1.93529
\(297\) 0 0
\(298\) 4.14959 + 7.18730i 0.240379 + 0.416349i
\(299\) 13.0898 22.6722i 0.757002 1.31117i
\(300\) 0 0
\(301\) −3.18122 + 5.51004i −0.183363 + 0.317593i
\(302\) −9.70628 + 16.8118i −0.558534 + 0.967409i
\(303\) 0 0
\(304\) 11.6265 2.51281i 0.666827 0.144119i
\(305\) 4.45779 0.255252
\(306\) 0 0
\(307\) −0.287144 + 0.497348i −0.0163882 + 0.0283851i −0.874103 0.485740i \(-0.838550\pi\)
0.857715 + 0.514125i \(0.171883\pi\)
\(308\) 0.0928982 + 0.160904i 0.00529336 + 0.00916838i
\(309\) 0 0
\(310\) −0.746491 1.29296i −0.0423978 0.0734352i
\(311\) 8.61640 0.488591 0.244296 0.969701i \(-0.421443\pi\)
0.244296 + 0.969701i \(0.421443\pi\)
\(312\) 0 0
\(313\) 17.0617 + 29.5517i 0.964385 + 1.67036i 0.711259 + 0.702930i \(0.248125\pi\)
0.253126 + 0.967433i \(0.418541\pi\)
\(314\) 4.58632 + 7.94375i 0.258821 + 0.448291i
\(315\) 0 0
\(316\) 7.83739 0.440887
\(317\) −5.53865 9.59323i −0.311082 0.538809i 0.667515 0.744596i \(-0.267358\pi\)
−0.978597 + 0.205787i \(0.934025\pi\)
\(318\) 0 0
\(319\) −0.183224 0.317354i −0.0102586 0.0177684i
\(320\) −4.43473 + 7.68118i −0.247909 + 0.429391i
\(321\) 0 0
\(322\) 8.22188 0.458187
\(323\) −26.5683 + 5.74213i −1.47830 + 0.319500i
\(324\) 0 0
\(325\) 2.50000 4.33013i 0.138675 0.240192i
\(326\) 13.3308 23.0896i 0.738325 1.27882i
\(327\) 0 0
\(328\) −1.28870 + 2.23210i −0.0711566 + 0.123247i
\(329\) −3.68122 6.37607i −0.202952 0.351524i
\(330\) 0 0
\(331\) 6.41168 0.352418 0.176209 0.984353i \(-0.443617\pi\)
0.176209 + 0.984353i \(0.443617\pi\)
\(332\) −0.422252 0.731363i −0.0231741 0.0401387i
\(333\) 0 0
\(334\) 13.7890 0.754503
\(335\) −0.985963 −0.0538689
\(336\) 0 0
\(337\) 12.6336 21.8820i 0.688193 1.19199i −0.284228 0.958757i \(-0.591737\pi\)
0.972422 0.233229i \(-0.0749293\pi\)
\(338\) 7.33126 + 12.6981i 0.398768 + 0.690686i
\(339\) 0 0
\(340\) 1.58086 2.73813i 0.0857343 0.148496i
\(341\) 0.348409 0.0188674
\(342\) 0 0
\(343\) 15.8695 0.856871
\(344\) 7.58276 13.1337i 0.408835 0.708123i
\(345\) 0 0
\(346\) 3.57730 + 6.19607i 0.192317 + 0.333103i
\(347\) 6.20428 10.7461i 0.333063 0.576882i −0.650048 0.759893i \(-0.725251\pi\)
0.983111 + 0.183011i \(0.0585844\pi\)
\(348\) 0 0
\(349\) 6.20384 0.332084 0.166042 0.986119i \(-0.446901\pi\)
0.166042 + 0.986119i \(0.446901\pi\)
\(350\) 1.57028 0.0839353
\(351\) 0 0
\(352\) −0.398082 0.689498i −0.0212178 0.0367504i
\(353\) 23.3484 1.24271 0.621355 0.783529i \(-0.286582\pi\)
0.621355 + 0.783529i \(0.286582\pi\)
\(354\) 0 0
\(355\) −1.46135 2.53113i −0.0775603 0.134338i
\(356\) 4.06327 7.03778i 0.215353 0.373002i
\(357\) 0 0
\(358\) 11.4808 19.8854i 0.606782 1.05098i
\(359\) −18.8609 + 32.6680i −0.995440 + 1.72415i −0.415107 + 0.909773i \(0.636256\pi\)
−0.580333 + 0.814379i \(0.697078\pi\)
\(360\) 0 0
\(361\) −1.85698 + 18.9090i −0.0977360 + 0.995212i
\(362\) −16.3063 −0.857040
\(363\) 0 0
\(364\) 1.62898 2.82147i 0.0853816 0.147885i
\(365\) 0.382043 + 0.661718i 0.0199971 + 0.0346359i
\(366\) 0 0
\(367\) −14.7038 25.4678i −0.767534 1.32941i −0.938896 0.344200i \(-0.888150\pi\)
0.171362 0.985208i \(-0.445183\pi\)
\(368\) −14.2883 −0.744827
\(369\) 0 0
\(370\) 6.64057 + 11.5018i 0.345227 + 0.597950i
\(371\) −7.94375 13.7590i −0.412419 0.714331i
\(372\) 0 0
\(373\) −21.5491 −1.11577 −0.557886 0.829918i \(-0.688387\pi\)
−0.557886 + 0.829918i \(0.688387\pi\)
\(374\) −1.08632 1.88157i −0.0561725 0.0972935i
\(375\) 0 0
\(376\) 8.77457 + 15.1980i 0.452514 + 0.783777i
\(377\) −3.21286 + 5.56483i −0.165471 + 0.286603i
\(378\) 0 0
\(379\) −19.3945 −0.996230 −0.498115 0.867111i \(-0.665974\pi\)
−0.498115 + 0.867111i \(0.665974\pi\)
\(380\) −1.48441 1.63732i −0.0761484 0.0839930i
\(381\) 0 0
\(382\) 0.408561 0.707648i 0.0209038 0.0362064i
\(383\) 9.44331 16.3563i 0.482531 0.835767i −0.517268 0.855823i \(-0.673051\pi\)
0.999799 + 0.0200559i \(0.00638442\pi\)
\(384\) 0 0
\(385\) −0.183224 + 0.317354i −0.00933798 + 0.0161739i
\(386\) −2.29962 3.98307i −0.117048 0.202733i
\(387\) 0 0
\(388\) −5.95389 −0.302263
\(389\) −4.54021 7.86387i −0.230198 0.398714i 0.727668 0.685929i \(-0.240604\pi\)
−0.957866 + 0.287215i \(0.907271\pi\)
\(390\) 0 0
\(391\) 32.6507 1.65122
\(392\) −16.3836 −0.827497
\(393\) 0 0
\(394\) −8.92972 + 15.4667i −0.449873 + 0.779202i
\(395\) 7.72889 + 13.3868i 0.388883 + 0.673565i
\(396\) 0 0
\(397\) −8.49800 + 14.7190i −0.426502 + 0.738724i −0.996559 0.0828814i \(-0.973588\pi\)
0.570057 + 0.821605i \(0.306921\pi\)
\(398\) −14.0773 −0.705631
\(399\) 0 0
\(400\) −2.72889 −0.136445
\(401\) 0.795720 1.37823i 0.0397363 0.0688254i −0.845473 0.534018i \(-0.820682\pi\)
0.885210 + 0.465192i \(0.154015\pi\)
\(402\) 0 0
\(403\) −3.05469 5.29088i −0.152165 0.263557i
\(404\) 2.00746 3.47703i 0.0998750 0.172989i
\(405\) 0 0
\(406\) −2.01804 −0.100154
\(407\) −3.09935 −0.153629
\(408\) 0 0
\(409\) 0.998443 + 1.72935i 0.0493698 + 0.0855110i 0.889654 0.456635i \(-0.150945\pi\)
−0.840284 + 0.542146i \(0.817612\pi\)
\(410\) −1.02807 −0.0507730
\(411\) 0 0
\(412\) −3.25005 5.62925i −0.160118 0.277333i
\(413\) −3.68122 + 6.37607i −0.181141 + 0.313746i
\(414\) 0 0
\(415\) 0.832814 1.44248i 0.0408812 0.0708084i
\(416\) −6.98040 + 12.0904i −0.342242 + 0.592781i
\(417\) 0 0
\(418\) −1.48441 + 0.320820i −0.0726046 + 0.0156918i
\(419\) 22.7781 1.11278 0.556392 0.830920i \(-0.312185\pi\)
0.556392 + 0.830920i \(0.312185\pi\)
\(420\) 0 0
\(421\) 6.92070 11.9870i 0.337294 0.584210i −0.646629 0.762805i \(-0.723822\pi\)
0.983923 + 0.178594i \(0.0571550\pi\)
\(422\) −10.4718 18.1377i −0.509761 0.882931i
\(423\) 0 0
\(424\) 18.9347 + 32.7959i 0.919552 + 1.59271i
\(425\) 6.23591 0.302486
\(426\) 0 0
\(427\) 2.86445 + 4.96137i 0.138620 + 0.240097i
\(428\) −3.50000 6.06218i −0.169179 0.293026i
\(429\) 0 0
\(430\) 6.04923 0.291720
\(431\) 1.71987 + 2.97891i 0.0828435 + 0.143489i 0.904470 0.426537i \(-0.140267\pi\)
−0.821627 + 0.570026i \(0.806933\pi\)
\(432\) 0 0
\(433\) 4.60036 + 7.96806i 0.221079 + 0.382920i 0.955136 0.296168i \(-0.0957087\pi\)
−0.734057 + 0.679088i \(0.762375\pi\)
\(434\) 0.959347 1.66164i 0.0460501 0.0797612i
\(435\) 0 0
\(436\) 4.66652 0.223486
\(437\) 6.97850 21.7297i 0.333827 1.03947i
\(438\) 0 0
\(439\) 18.7550 32.4846i 0.895126 1.55040i 0.0614769 0.998109i \(-0.480419\pi\)
0.833649 0.552295i \(-0.186248\pi\)
\(440\) 0.436734 0.756445i 0.0208205 0.0360621i
\(441\) 0 0
\(442\) −19.0488 + 32.9935i −0.906058 + 1.56934i
\(443\) 7.33939 + 12.7122i 0.348705 + 0.603975i 0.986020 0.166629i \(-0.0532882\pi\)
−0.637315 + 0.770604i \(0.719955\pi\)
\(444\) 0 0
\(445\) 16.0281 0.759804
\(446\) 0.931174 + 1.61284i 0.0440924 + 0.0763702i
\(447\) 0 0
\(448\) −11.3985 −0.538530
\(449\) 7.39052 0.348780 0.174390 0.984677i \(-0.444205\pi\)
0.174390 + 0.984677i \(0.444205\pi\)
\(450\) 0 0
\(451\) 0.119958 0.207773i 0.00564860 0.00978367i
\(452\) 4.39262 + 7.60824i 0.206611 + 0.357862i
\(453\) 0 0
\(454\) −2.44375 + 4.23270i −0.114691 + 0.198651i
\(455\) 6.42571 0.301242
\(456\) 0 0
\(457\) 2.30007 0.107593 0.0537963 0.998552i \(-0.482868\pi\)
0.0537963 + 0.998552i \(0.482868\pi\)
\(458\) 11.2655 19.5125i 0.526404 0.911759i
\(459\) 0 0
\(460\) 1.32735 + 2.29904i 0.0618881 + 0.107193i
\(461\) 9.87848 17.1100i 0.460087 0.796894i −0.538878 0.842384i \(-0.681152\pi\)
0.998965 + 0.0454900i \(0.0144849\pi\)
\(462\) 0 0
\(463\) 28.9468 1.34527 0.672635 0.739974i \(-0.265162\pi\)
0.672635 + 0.739974i \(0.265162\pi\)
\(464\) 3.50702 0.162809
\(465\) 0 0
\(466\) −7.76609 13.4513i −0.359757 0.623118i
\(467\) 3.31722 0.153503 0.0767513 0.997050i \(-0.475545\pi\)
0.0767513 + 0.997050i \(0.475545\pi\)
\(468\) 0 0
\(469\) −0.633551 1.09734i −0.0292547 0.0506706i
\(470\) −3.50000 + 6.06218i −0.161443 + 0.279627i
\(471\) 0 0
\(472\) 8.77457 15.1980i 0.403882 0.699544i
\(473\) −0.705838 + 1.22255i −0.0324544 + 0.0562127i
\(474\) 0 0
\(475\) 1.33281 4.15013i 0.0611537 0.190421i
\(476\) 4.06327 0.186240
\(477\) 0 0
\(478\) 6.61907 11.4646i 0.302749 0.524377i
\(479\) −19.7535 34.2141i −0.902561 1.56328i −0.824158 0.566360i \(-0.808351\pi\)
−0.0784026 0.996922i \(-0.524982\pi\)
\(480\) 0 0
\(481\) 27.1737 + 47.0662i 1.23901 + 2.14603i
\(482\) 12.0642 0.549507
\(483\) 0 0
\(484\) −2.76799 4.79430i −0.125818 0.217923i
\(485\) −5.87147 10.1697i −0.266610 0.461781i
\(486\) 0 0
\(487\) −24.7781 −1.12280 −0.561402 0.827543i \(-0.689738\pi\)
−0.561402 + 0.827543i \(0.689738\pi\)
\(488\) −6.82770 11.8259i −0.309075 0.535334i
\(489\) 0 0
\(490\) −3.26755 5.65956i −0.147613 0.255673i
\(491\) −6.81176 + 11.7983i −0.307410 + 0.532450i −0.977795 0.209563i \(-0.932796\pi\)
0.670385 + 0.742014i \(0.266129\pi\)
\(492\) 0 0
\(493\) −8.01404 −0.360934
\(494\) 17.8865 + 19.7291i 0.804752 + 0.887656i
\(495\) 0 0
\(496\) −1.66719 + 2.88765i −0.0748589 + 0.129659i
\(497\) 1.87804 3.25286i 0.0842416 0.145911i
\(498\) 0 0
\(499\) −4.09490 + 7.09257i −0.183313 + 0.317507i −0.943007 0.332774i \(-0.892015\pi\)
0.759694 + 0.650281i \(0.225349\pi\)
\(500\) 0.253509 + 0.439091i 0.0113373 + 0.0196367i
\(501\) 0 0
\(502\) 21.7140 0.969142
\(503\) 9.14257 + 15.8354i 0.407647 + 0.706065i 0.994626 0.103537i \(-0.0330160\pi\)
−0.586978 + 0.809603i \(0.699683\pi\)
\(504\) 0 0
\(505\) 7.91869 0.352377
\(506\) 1.82424 0.0810973
\(507\) 0 0
\(508\) 2.36556 4.09727i 0.104955 0.181787i
\(509\) 5.94220 + 10.2922i 0.263383 + 0.456193i 0.967139 0.254249i \(-0.0818283\pi\)
−0.703756 + 0.710442i \(0.748495\pi\)
\(510\) 0 0
\(511\) −0.490980 + 0.850402i −0.0217197 + 0.0376196i
\(512\) 24.3382 1.07561
\(513\) 0 0
\(514\) 9.96881 0.439705
\(515\) 6.41012 11.1026i 0.282464 0.489241i
\(516\) 0 0
\(517\) −0.816776 1.41470i −0.0359218 0.0622183i
\(518\) −8.53408 + 14.7815i −0.374966 + 0.649460i
\(519\) 0 0
\(520\) −15.3163 −0.671666
\(521\) −21.3725 −0.936345 −0.468173 0.883637i \(-0.655087\pi\)
−0.468173 + 0.883637i \(0.655087\pi\)
\(522\) 0 0
\(523\) 2.88862 + 5.00323i 0.126310 + 0.218776i 0.922244 0.386607i \(-0.126353\pi\)
−0.795934 + 0.605383i \(0.793020\pi\)
\(524\) 6.30007 0.275220
\(525\) 0 0
\(526\) −3.85943 6.68473i −0.168279 0.291468i
\(527\) 3.80976 6.59869i 0.165956 0.287444i
\(528\) 0 0
\(529\) −2.20739 + 3.82332i −0.0959737 + 0.166231i
\(530\) −7.55269 + 13.0816i −0.328068 + 0.568230i
\(531\) 0 0
\(532\) 0.868450 2.70419i 0.0376521 0.117242i
\(533\) −4.20695 −0.182223
\(534\) 0 0
\(535\) 6.90310 11.9565i 0.298447 0.516925i
\(536\) 1.51013 + 2.61563i 0.0652278 + 0.112978i
\(537\) 0 0
\(538\) −5.03354 8.71834i −0.217011 0.375874i
\(539\) 1.52506 0.0656889
\(540\) 0 0
\(541\) −1.31678 2.28072i −0.0566126 0.0980559i 0.836330 0.548226i \(-0.184697\pi\)
−0.892943 + 0.450170i \(0.851363\pi\)
\(542\) −2.57930 4.46749i −0.110791 0.191895i
\(543\) 0 0
\(544\) −17.4117 −0.746519
\(545\) 4.60192 + 7.97076i 0.197125 + 0.341430i
\(546\) 0 0
\(547\) 18.1812 + 31.4908i 0.777373 + 1.34645i 0.933451 + 0.358705i \(0.116782\pi\)
−0.156078 + 0.987745i \(0.549885\pi\)
\(548\) 4.69882 8.13859i 0.200724 0.347663i
\(549\) 0 0
\(550\) 0.348409 0.0148562
\(551\) −1.71286 + 5.33351i −0.0729701 + 0.227215i
\(552\) 0 0
\(553\) −9.93273 + 17.2040i −0.422383 + 0.731588i
\(554\) −6.01003 + 10.4097i −0.255342 + 0.442265i
\(555\) 0 0
\(556\) −1.52461 + 2.64071i −0.0646581 + 0.111991i
\(557\) 11.9824 + 20.7541i 0.507711 + 0.879381i 0.999960 + 0.00892662i \(0.00284147\pi\)
−0.492249 + 0.870454i \(0.663825\pi\)
\(558\) 0 0
\(559\) 24.7539 1.04698
\(560\) −1.75351 3.03717i −0.0740993 0.128344i
\(561\) 0 0
\(562\) 6.57429 0.277320
\(563\) 8.52017 0.359082 0.179541 0.983750i \(-0.442539\pi\)
0.179541 + 0.983750i \(0.442539\pi\)
\(564\) 0 0
\(565\) −8.66363 + 15.0058i −0.364482 + 0.631301i
\(566\) −3.03319 5.25364i −0.127495 0.220827i
\(567\) 0 0
\(568\) −4.47650 + 7.75352i −0.187830 + 0.325331i
\(569\) −16.3734 −0.686407 −0.343204 0.939261i \(-0.611512\pi\)
−0.343204 + 0.939261i \(0.611512\pi\)
\(570\) 0 0
\(571\) −5.21876 −0.218398 −0.109199 0.994020i \(-0.534829\pi\)
−0.109199 + 0.994020i \(0.534829\pi\)
\(572\) 0.361431 0.626018i 0.0151122 0.0261751i
\(573\) 0 0
\(574\) −0.660611 1.14421i −0.0275734 0.0477585i
\(575\) −2.61796 + 4.53443i −0.109176 + 0.189099i
\(576\) 0 0
\(577\) −32.0390 −1.33380 −0.666900 0.745147i \(-0.732379\pi\)
−0.666900 + 0.745147i \(0.732379\pi\)
\(578\) −26.7427 −1.11235
\(579\) 0 0
\(580\) −0.325796 0.564295i −0.0135279 0.0234311i
\(581\) 2.14057 0.0888058
\(582\) 0 0
\(583\) −1.76253 3.05279i −0.0729965 0.126434i
\(584\) 1.17030 2.02702i 0.0484274 0.0838787i
\(585\) 0 0
\(586\) 2.32535 4.02763i 0.0960594 0.166380i
\(587\) −1.67220 + 2.89634i −0.0690192 + 0.119545i −0.898470 0.439035i \(-0.855320\pi\)
0.829451 + 0.558580i \(0.188654\pi\)
\(588\) 0 0
\(589\) −3.57730 3.94583i −0.147400 0.162585i
\(590\) 7.00000 0.288185
\(591\) 0 0
\(592\) 14.8308 25.6877i 0.609543 1.05576i
\(593\) 21.1054 + 36.5556i 0.866694 + 1.50116i 0.865355 + 0.501159i \(0.167093\pi\)
0.00133875 + 0.999999i \(0.499574\pi\)
\(594\) 0 0
\(595\) 4.00702 + 6.94036i 0.164272 + 0.284527i
\(596\) −3.44375 −0.141062
\(597\) 0 0
\(598\) −15.9941 27.7026i −0.654047 1.13284i
\(599\) −2.60938 4.51958i −0.106616 0.184665i 0.807781 0.589483i \(-0.200668\pi\)
−0.914397 + 0.404818i \(0.867335\pi\)
\(600\) 0 0
\(601\) −10.1546 −0.414215 −0.207108 0.978318i \(-0.566405\pi\)
−0.207108 + 0.978318i \(0.566405\pi\)
\(602\) 3.88706 + 6.73259i 0.158425 + 0.274400i
\(603\) 0 0
\(604\) −4.02763 6.97606i −0.163882 0.283852i
\(605\) 5.45935 9.45587i 0.221954 0.384436i
\(606\) 0 0
\(607\) 42.8764 1.74030 0.870149 0.492788i \(-0.164022\pi\)
0.870149 + 0.492788i \(0.164022\pi\)
\(608\) −3.72143 + 11.5878i −0.150924 + 0.469949i
\(609\) 0 0
\(610\) 2.72343 4.71713i 0.110269 0.190991i
\(611\) −14.3222 + 24.8068i −0.579416 + 1.00358i
\(612\) 0 0
\(613\) −12.5367 + 21.7141i −0.506351 + 0.877025i 0.493622 + 0.869676i \(0.335672\pi\)
−0.999973 + 0.00734857i \(0.997661\pi\)
\(614\) 0.350854 + 0.607697i 0.0141593 + 0.0245247i
\(615\) 0 0
\(616\) 1.12253 0.0452280
\(617\) −2.74849 4.76053i −0.110650 0.191652i 0.805382 0.592756i \(-0.201960\pi\)
−0.916033 + 0.401104i \(0.868627\pi\)
\(618\) 0 0
\(619\) 15.4899 0.622590 0.311295 0.950313i \(-0.399237\pi\)
0.311295 + 0.950313i \(0.399237\pi\)
\(620\) 0.619514 0.0248803
\(621\) 0 0
\(622\) 5.26409 9.11767i 0.211071 0.365585i
\(623\) 10.2992 + 17.8387i 0.412628 + 0.714693i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 41.6946 1.66645
\(627\) 0 0
\(628\) −3.80620 −0.151884
\(629\) −33.8905 + 58.7001i −1.35130 + 2.34053i
\(630\) 0 0
\(631\) −20.6616 35.7870i −0.822526 1.42466i −0.903795 0.427965i \(-0.859231\pi\)
0.0812689 0.996692i \(-0.474103\pi\)
\(632\) 23.6757 41.0075i 0.941767 1.63119i
\(633\) 0 0
\(634\) −13.5351 −0.537547
\(635\) 9.33126 0.370300
\(636\) 0 0
\(637\) −13.3710 23.1593i −0.529779 0.917604i
\(638\) −0.447755 −0.0177268
\(639\) 0 0
\(640\) 2.62653 + 4.54929i 0.103823 + 0.179826i
\(641\) −15.3358 + 26.5624i −0.605729 + 1.04915i 0.386207 + 0.922412i \(0.373785\pi\)
−0.991936 + 0.126741i \(0.959548\pi\)
\(642\) 0 0
\(643\) 4.00902 6.94383i 0.158100 0.273838i −0.776083 0.630630i \(-0.782796\pi\)
0.934184 + 0.356793i \(0.116130\pi\)
\(644\) −1.70584 + 2.95460i −0.0672194 + 0.116427i
\(645\) 0 0
\(646\) −10.1554 + 31.6220i −0.399559 + 1.24415i
\(647\) −10.0272 −0.394209 −0.197105 0.980382i \(-0.563154\pi\)
−0.197105 + 0.980382i \(0.563154\pi\)
\(648\) 0 0
\(649\) −0.816776 + 1.41470i −0.0320612 + 0.0555317i
\(650\) −3.05469 5.29088i −0.119815 0.207525i
\(651\) 0 0
\(652\) 5.53163 + 9.58107i 0.216635 + 0.375224i
\(653\) −20.4117 −0.798771 −0.399385 0.916783i \(-0.630776\pi\)
−0.399385 + 0.916783i \(0.630776\pi\)
\(654\) 0 0
\(655\) 6.21286 + 10.7610i 0.242756 + 0.420466i
\(656\) 1.14803 + 1.98845i 0.0448231 + 0.0776360i
\(657\) 0 0
\(658\) −8.99600 −0.350700
\(659\) −18.4874 32.0212i −0.720168 1.24737i −0.960932 0.276783i \(-0.910732\pi\)
0.240765 0.970584i \(-0.422602\pi\)
\(660\) 0 0
\(661\) −1.59646 2.76514i −0.0620950 0.107552i 0.833307 0.552811i \(-0.186445\pi\)
−0.895402 + 0.445259i \(0.853112\pi\)
\(662\) 3.91714 6.78468i 0.152244 0.263694i
\(663\) 0 0
\(664\) −5.10226 −0.198006
\(665\) 5.47539 1.18338i 0.212326 0.0458895i
\(666\) 0 0
\(667\) 3.36445 5.82739i 0.130272 0.225638i
\(668\) −2.86089 + 4.95520i −0.110691 + 0.191723i
\(669\) 0 0
\(670\) −0.602362 + 1.04332i −0.0232713 + 0.0403070i
\(671\) 0.635553 + 1.10081i 0.0245352 + 0.0424963i
\(672\) 0 0
\(673\) −15.0742 −0.581067 −0.290534 0.956865i \(-0.593833\pi\)
−0.290534 + 0.956865i \(0.593833\pi\)
\(674\) −15.4366 26.7370i −0.594597 1.02987i
\(675\) 0 0
\(676\) −6.08422 −0.234009
\(677\) −17.9648 −0.690444 −0.345222 0.938521i \(-0.612196\pi\)
−0.345222 + 0.938521i \(0.612196\pi\)
\(678\) 0 0
\(679\) 7.54567 13.0695i 0.289576 0.501561i
\(680\) −9.55113 16.5430i −0.366269 0.634397i
\(681\) 0 0
\(682\) 0.212856 0.368678i 0.00815069 0.0141174i
\(683\) 3.78524 0.144838 0.0724191 0.997374i \(-0.476928\pi\)
0.0724191 + 0.997374i \(0.476928\pi\)
\(684\) 0 0
\(685\) 18.5351 0.708190
\(686\) 9.69526 16.7927i 0.370167 0.641148i
\(687\) 0 0
\(688\) −6.75507 11.7001i −0.257534 0.446063i
\(689\) −30.9061 + 53.5310i −1.17743 + 2.03937i
\(690\) 0 0
\(691\) −10.3335 −0.393104 −0.196552 0.980493i \(-0.562974\pi\)
−0.196552 + 0.980493i \(0.562974\pi\)
\(692\) −2.96881 −0.112857
\(693\) 0 0
\(694\) −7.58086 13.1304i −0.287766 0.498425i
\(695\) −6.01404 −0.228125
\(696\) 0 0
\(697\) −2.62342 4.54389i −0.0993690 0.172112i
\(698\) 3.79016 6.56475i 0.143460 0.248479i
\(699\) 0 0
\(700\) −0.325796 + 0.564295i −0.0123139 + 0.0213283i
\(701\) 17.9980 31.1734i 0.679775 1.17740i −0.295273 0.955413i \(-0.595411\pi\)
0.975048 0.221992i \(-0.0712559\pi\)
\(702\) 0 0
\(703\) 31.8227 + 35.1010i 1.20022 + 1.32386i
\(704\) −2.52906 −0.0953176
\(705\) 0 0
\(706\) 14.2644 24.7067i 0.536849 0.929850i
\(707\) 5.08832 + 8.81324i 0.191366 + 0.331456i
\(708\) 0 0
\(709\) −4.40266 7.62562i −0.165345 0.286386i 0.771433 0.636311i \(-0.219540\pi\)
−0.936778 + 0.349925i \(0.886207\pi\)
\(710\) −3.57117 −0.134024
\(711\) 0 0
\(712\) −24.5491 42.5203i −0.920018 1.59352i
\(713\) 3.19882 + 5.54052i 0.119797 + 0.207494i
\(714\) 0 0
\(715\) 1.42571 0.0533186
\(716\) 4.76399 + 8.25147i 0.178039 + 0.308372i
\(717\) 0 0
\(718\) 23.0457 + 39.9163i 0.860057 + 1.48966i
\(719\) 9.49600 16.4475i 0.354141 0.613390i −0.632830 0.774291i \(-0.718107\pi\)
0.986971 + 0.160901i \(0.0514400\pi\)
\(720\) 0 0
\(721\) 16.4758 0.613592
\(722\) 18.8746 + 13.5173i 0.702439 + 0.503061i
\(723\) 0 0
\(724\) 3.38316 5.85980i 0.125734 0.217778i
\(725\) 0.642571 1.11297i 0.0238645 0.0413345i
\(726\) 0 0
\(727\) −2.04567 + 3.54321i −0.0758697 + 0.131410i −0.901464 0.432854i \(-0.857507\pi\)
0.825594 + 0.564264i \(0.190840\pi\)
\(728\) −9.84183 17.0466i −0.364763 0.631787i
\(729\) 0 0
\(730\) 0.933619 0.0345548
\(731\) 15.4363 + 26.7364i 0.570932 + 0.988883i
\(732\) 0 0
\(733\) −50.4678 −1.86407 −0.932036 0.362366i \(-0.881969\pi\)
−0.932036 + 0.362366i \(0.881969\pi\)
\(734\) −35.9325 −1.32629
\(735\) 0 0
\(736\) 7.30976 12.6609i 0.269441 0.466686i
\(737\) −0.140570 0.243474i −0.00517796 0.00896849i
\(738\) 0 0
\(739\) −17.1148 + 29.6438i −0.629580 + 1.09046i 0.358056 + 0.933700i \(0.383440\pi\)
−0.987636 + 0.156764i \(0.949894\pi\)
\(740\) −5.51102 −0.202589
\(741\) 0 0
\(742\) −19.4126 −0.712658
\(743\) 11.2996 19.5715i 0.414543 0.718010i −0.580837 0.814020i \(-0.697275\pi\)
0.995380 + 0.0960101i \(0.0306081\pi\)
\(744\) 0 0
\(745\) −3.39608 5.88218i −0.124423 0.215507i
\(746\) −13.1652 + 22.8028i −0.482012 + 0.834869i
\(747\) 0 0
\(748\) 0.901542 0.0329636
\(749\) 17.7429 0.648313
\(750\) 0 0
\(751\) 12.7199 + 22.0315i 0.464155 + 0.803940i 0.999163 0.0409072i \(-0.0130248\pi\)
−0.535008 + 0.844847i \(0.679691\pi\)
\(752\) 15.6336 0.570097
\(753\) 0 0
\(754\) 3.92571 + 6.79953i 0.142966 + 0.247624i
\(755\) 7.94375 13.7590i 0.289103 0.500741i
\(756\) 0 0
\(757\) −21.4015 + 37.0686i −0.777852 + 1.34728i 0.155325 + 0.987863i \(0.450357\pi\)
−0.933177 + 0.359416i \(0.882976\pi\)
\(758\) −11.8489 + 20.5228i −0.430370 + 0.745422i
\(759\) 0 0
\(760\) −13.0511 + 2.82070i −0.473414 + 0.102318i
\(761\) 29.8944 1.08367 0.541836 0.840484i \(-0.317729\pi\)
0.541836 + 0.840484i \(0.317729\pi\)
\(762\) 0 0
\(763\) −5.91412 + 10.2436i −0.214106 + 0.370842i
\(764\) 0.169533 + 0.293639i 0.00613347 + 0.0106235i
\(765\) 0 0
\(766\) −11.5386 19.9854i −0.416905 0.722100i
\(767\) 28.6445 1.03429
\(768\) 0 0
\(769\) 8.32179 + 14.4138i 0.300092 + 0.519774i 0.976156 0.217068i \(-0.0696494\pi\)
−0.676065 + 0.736842i \(0.736316\pi\)
\(770\) 0.223877 + 0.387767i 0.00806798 + 0.0139742i
\(771\) 0 0
\(772\) 1.90846 0.0686871
\(773\) 3.05669 + 5.29435i 0.109942 + 0.190424i 0.915746 0.401757i \(-0.131600\pi\)
−0.805805 + 0.592181i \(0.798267\pi\)
\(774\) 0 0
\(775\) 0.610938 + 1.05818i 0.0219455 + 0.0380108i
\(776\) −17.9859 + 31.1524i −0.645655 + 1.11831i
\(777\) 0 0
\(778\) −11.0951 −0.397780
\(779\) −3.58477 + 0.774765i −0.128438 + 0.0277588i
\(780\) 0 0
\(781\) 0.416692 0.721732i 0.0149104 0.0258256i
\(782\) 19.9476 34.5502i 0.713323 1.23551i
\(783\) 0 0
\(784\) −7.29762 + 12.6399i −0.260629 + 0.451423i
\(785\) −3.75351 6.50127i −0.133968 0.232040i
\(786\) 0 0
\(787\) −18.7781 −0.669368 −0.334684 0.942330i \(-0.608630\pi\)
−0.334684 + 0.942330i \(0.608630\pi\)
\(788\) −3.70539 6.41793i −0.131999 0.228629i
\(789\) 0 0
\(790\) 18.8875 0.671987
\(791\) −22.2680 −0.791759
\(792\) 0 0
\(793\) 11.1445 19.3028i 0.395752 0.685462i
\(794\) 10.3835 + 17.9848i 0.368497 + 0.638255i
\(795\) 0 0
\(796\) 2.92070 5.05879i 0.103521 0.179304i
\(797\) −30.2851 −1.07275 −0.536377 0.843978i \(-0.680208\pi\)
−0.536377 + 0.843978i \(0.680208\pi\)
\(798\) 0 0
\(799\) −35.7249 −1.26386
\(800\) 1.39608 2.41808i 0.0493589 0.0854921i
\(801\) 0 0
\(802\) −0.972271 1.68402i −0.0343321 0.0594649i
\(803\) −0.108937 + 0.188684i −0.00384430 + 0.00665851i
\(804\) 0 0
\(805\) −6.72889 −0.237162
\(806\) −7.46491 −0.262940
\(807\) 0 0
\(808\) −12.1285 21.0072i −0.426680 0.739032i
\(809\) −13.6015 −0.478202 −0.239101 0.970995i \(-0.576853\pi\)
−0.239101 + 0.970995i \(0.576853\pi\)
\(810\) 0 0
\(811\) −0.799180 1.38422i −0.0280630 0.0486065i 0.851653 0.524106i \(-0.175601\pi\)
−0.879716 + 0.475500i \(0.842267\pi\)
\(812\) 0.418694 0.725199i 0.0146933 0.0254495i
\(813\) 0 0
\(814\) −1.89351 + 3.27965i −0.0663674 + 0.114952i
\(815\) −10.9101 + 18.8969i −0.382165 + 0.661929i
\(816\) 0 0
\(817\) 21.0929 4.55875i 0.737947 0.159490i
\(818\) 2.43995 0.0853107
\(819\) 0 0
\(820\) 0.213300 0.369447i 0.00744877 0.0129016i
\(821\) −9.40110 16.2832i −0.328101 0.568287i 0.654034 0.756465i \(-0.273075\pi\)
−0.982135 + 0.188178i \(0.939742\pi\)
\(822\) 0 0
\(823\) −26.5984 46.0697i −0.927161 1.60589i −0.788049 0.615612i \(-0.788909\pi\)
−0.139111 0.990277i \(-0.544425\pi\)
\(824\) −39.2718 −1.36810
\(825\) 0 0
\(826\) 4.49800 + 7.79076i 0.156505 + 0.271075i
\(827\) −12.5371 21.7149i −0.435957 0.755101i 0.561416 0.827534i \(-0.310257\pi\)
−0.997373 + 0.0724334i \(0.976924\pi\)
\(828\) 0 0
\(829\) −28.2740 −0.981997 −0.490999 0.871160i \(-0.663368\pi\)
−0.490999 + 0.871160i \(0.663368\pi\)
\(830\) −1.01760 1.76253i −0.0353213 0.0611782i
\(831\) 0 0
\(832\) 22.1737 + 38.4059i 0.768733 + 1.33149i
\(833\) 16.6761 28.8839i 0.577793 1.00077i
\(834\) 0 0
\(835\) −11.2851 −0.390538
\(836\) 0.192688 0.599995i 0.00666427 0.0207513i
\(837\) 0 0
\(838\) 13.9160 24.1033i 0.480721 0.832633i
\(839\) 7.33983 12.7130i 0.253399 0.438900i −0.711060 0.703131i \(-0.751785\pi\)
0.964459 + 0.264231i \(0.0851181\pi\)
\(840\) 0 0
\(841\) 13.6742 23.6844i 0.471524 0.816704i
\(842\) −8.45623 14.6466i −0.291421 0.504756i
\(843\) 0 0
\(844\) 8.69059 0.299142
\(845\) −6.00000 10.3923i −0.206406 0.357506i
\(846\) 0 0
\(847\) 14.0321 0.482148
\(848\) 33.7358 1.15849
\(849\) 0 0
\(850\) 3.80976 6.59869i 0.130674 0.226333i
\(851\) −28.4558 49.2869i −0.975452 1.68953i
\(852\) 0 0
\(853\) 12.9523 22.4341i 0.443479 0.768129i −0.554466 0.832207i \(-0.687077\pi\)
0.997945 + 0.0640780i \(0.0204106\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) −42.2921 −1.44551
\(857\) −6.45277 + 11.1765i −0.220423 + 0.381783i −0.954936 0.296811i \(-0.904077\pi\)
0.734514 + 0.678594i \(0.237410\pi\)
\(858\) 0 0
\(859\) 14.3589 + 24.8703i 0.489919 + 0.848564i 0.999933 0.0116018i \(-0.00369304\pi\)
−0.510014 + 0.860166i \(0.670360\pi\)
\(860\) −1.25507 + 2.17384i −0.0427974 + 0.0741273i
\(861\) 0 0
\(862\) 4.20295 0.143153
\(863\) 3.04300 0.103585 0.0517925 0.998658i \(-0.483507\pi\)
0.0517925 + 0.998658i \(0.483507\pi\)
\(864\) 0 0
\(865\) −2.92771 5.07095i −0.0995453 0.172417i
\(866\) 11.2421 0.382024
\(867\) 0 0
\(868\) 0.398082 + 0.689498i 0.0135118 + 0.0234031i
\(869\) −2.20384 + 3.81716i −0.0747600 + 0.129488i
\(870\) 0 0
\(871\) −2.46491 + 4.26934i −0.0835202 + 0.144661i
\(872\) 14.0969 24.4165i 0.477381 0.826849i
\(873\) 0 0
\(874\) −18.7305 20.6600i −0.633567 0.698835i
\(875\) −1.28514 −0.0434457
\(876\) 0 0
\(877\) −5.68468 + 9.84616i −0.191958 + 0.332481i −0.945899 0.324461i \(-0.894817\pi\)
0.753941 + 0.656942i \(0.228150\pi\)
\(878\) −22.9162 39.6921i −0.773386 1.33954i
\(879\) 0 0
\(880\) −0.389062 0.673875i −0.0131153 0.0227163i
\(881\) −36.4014 −1.22640 −0.613198 0.789929i \(-0.710117\pi\)
−0.613198 + 0.789929i \(0.710117\pi\)
\(882\) 0 0
\(883\) 24.8839 + 43.1003i 0.837411 + 1.45044i 0.892052 + 0.451933i \(0.149265\pi\)
−0.0546404 + 0.998506i \(0.517401\pi\)
\(884\) −7.90431 13.6907i −0.265851 0.460467i
\(885\) 0 0
\(886\) 17.9356 0.602560
\(887\) −7.84885 13.5946i −0.263539 0.456462i 0.703641 0.710556i \(-0.251556\pi\)
−0.967180 + 0.254093i \(0.918223\pi\)
\(888\) 0 0
\(889\) 5.99600 + 10.3854i 0.201099 + 0.348314i
\(890\) 9.79216 16.9605i 0.328234 0.568518i
\(891\) 0 0
\(892\) −0.772783 −0.0258747
\(893\) −7.63555 + 23.7757i −0.255514 + 0.795623i
\(894\) 0 0
\(895\) −9.39608 + 16.2745i −0.314076 + 0.543996i
\(896\) −3.37547 + 5.84648i −0.112766 + 0.195317i
\(897\) 0 0
\(898\) 4.51515 7.82047i 0.150673 0.260972i
\(899\) −0.785142 1.35991i −0.0261860 0.0453554i
\(900\) 0 0
\(901\) −77.0911 −2.56828
\(902\) −0.146574 0.253873i −0.00488038 0.00845306i
\(903\) 0 0
\(904\) 53.0780 1.76535
\(905\) 13.3453 0.443613
\(906\) 0 0
\(907\) 16.4578 28.5057i 0.546472 0.946517i −0.452041 0.891997i \(-0.649304\pi\)
0.998513 0.0545199i \(-0.0173628\pi\)
\(908\) −1.01404 1.75636i −0.0336520 0.0582870i
\(909\) 0 0
\(910\) 3.92571 6.79953i 0.130136 0.225402i
\(911\) 18.7109 0.619918 0.309959 0.950750i \(-0.399685\pi\)
0.309959 + 0.950750i \(0.399685\pi\)
\(912\) 0 0
\(913\) 0.474941 0.0157183
\(914\) 1.40520 2.43388i 0.0464799 0.0805055i
\(915\) 0 0
\(916\) 4.67465 + 8.09673i 0.154455 + 0.267523i
\(917\) −7.98441 + 13.8294i −0.263668 + 0.456687i
\(918\) 0 0
\(919\) −50.9506 −1.68070 −0.840352 0.542041i \(-0.817652\pi\)
−0.840352 + 0.542041i \(0.817652\pi\)
\(920\) 16.0390 0.528790
\(921\) 0 0
\(922\) −12.0703 20.9063i −0.397514 0.688514i
\(923\) −14.6135 −0.481009
\(924\) 0 0
\(925\) −5.43473 9.41323i −0.178693 0.309505i
\(926\) 17.6847 30.6308i 0.581155 1.00659i
\(927\) 0 0
\(928\) −1.79416 + 3.10758i −0.0588963 + 0.102011i
\(929\) 5.74249 9.94628i 0.188405 0.326327i −0.756314 0.654209i \(-0.773002\pi\)
0.944719 + 0.327882i \(0.106335\pi\)
\(930\) 0 0
\(931\) −15.6586 17.2717i −0.513190 0.566057i
\(932\) 6.44509 0.211116
\(933\) 0 0
\(934\) 2.02662 3.51020i 0.0663129 0.114857i
\(935\) 0.889062 + 1.53990i 0.0290754 + 0.0503601i
\(936\) 0 0
\(937\) −8.08477 14.0032i −0.264118 0.457465i 0.703214 0.710978i \(-0.251747\pi\)
−0.967332 + 0.253512i \(0.918414\pi\)
\(938\) −1.54824 −0.0505519
\(939\) 0 0
\(940\) −1.45233 2.51551i −0.0473697 0.0820468i
\(941\) −12.6937 21.9861i −0.413803 0.716728i 0.581499 0.813547i \(-0.302466\pi\)
−0.995302 + 0.0968194i \(0.969133\pi\)
\(942\) 0 0
\(943\) 4.40545 0.143461
\(944\) −7.81678 13.5391i −0.254414 0.440659i
\(945\) 0 0
\(946\) 0.862446 + 1.49380i 0.0280405 + 0.0485676i
\(947\) 11.6902 20.2481i 0.379882 0.657975i −0.611163 0.791505i \(-0.709298\pi\)
0.991045 + 0.133530i \(0.0426313\pi\)
\(948\) 0 0
\(949\) 3.82043 0.124016
\(950\) −3.57730 3.94583i −0.116063 0.128020i
\(951\) 0 0
\(952\) 12.2746 21.2602i 0.397821 0.689046i
\(953\) −11.0893 + 19.2073i −0.359219 + 0.622185i −0.987831 0.155534i \(-0.950290\pi\)
0.628612 + 0.777719i \(0.283624\pi\)
\(954\) 0 0
\(955\) −0.334372 + 0.579148i −0.0108200 + 0.0187408i
\(956\) 2.74659 + 4.75723i 0.0888310 + 0.153860i
\(957\) 0 0
\(958\) −48.2727 −1.55962
\(959\) 11.9101 + 20.6289i 0.384598 + 0.666143i
\(960\) 0 0
\(961\) −29.5070 −0.951839
\(962\) 66.4057 2.14101
\(963\) 0 0
\(964\) −2.50302 + 4.33535i −0.0806167 + 0.139632i
\(965\) 1.88204 + 3.25979i 0.0605851 + 0.104937i
\(966\) 0 0
\(967\) 20.4297 35.3853i 0.656975 1.13791i −0.324419 0.945913i \(-0.605169\pi\)
0.981395 0.192001i \(-0.0614978\pi\)
\(968\) −33.4469 −1.07502
\(969\) 0 0
\(970\) −14.3484 −0.460700
\(971\) 12.3238 21.3454i 0.395489 0.685008i −0.597674 0.801739i \(-0.703908\pi\)
0.993164 + 0.116731i \(0.0372417\pi\)
\(972\) 0 0
\(973\) −3.86445 6.69342i −0.123888 0.214581i
\(974\) −15.1379 + 26.2196i −0.485050 + 0.840131i
\(975\) 0 0
\(976\) −12.1648 −0.389387
\(977\) 13.7077 0.438549 0.219275 0.975663i \(-0.429631\pi\)
0.219275 + 0.975663i \(0.429631\pi\)
\(978\) 0 0
\(979\) 2.28514 + 3.95798i 0.0730335 + 0.126498i
\(980\) 2.71174 0.0866235
\(981\) 0 0
\(982\) 8.32313 + 14.4161i 0.265602 + 0.460035i
\(983\) 0.141014 0.244243i 0.00449765 0.00779015i −0.863768 0.503890i \(-0.831902\pi\)
0.868265 + 0.496100i \(0.165235\pi\)
\(984\) 0 0
\(985\) 7.30820 12.6582i 0.232859 0.403323i
\(986\) −4.89608 + 8.48026i −0.155923 + 0.270067i
\(987\) 0 0
\(988\) −10.8008 + 2.33435i −0.343620 + 0.0742657i
\(989\) −25.9218 −0.824266
\(990\) 0 0
\(991\) −12.2992 + 21.3028i −0.390696 + 0.676706i −0.992542 0.121907i \(-0.961099\pi\)
0.601845 + 0.798613i \(0.294432\pi\)
\(992\) −1.70584 2.95460i −0.0541604 0.0938086i
\(993\) 0 0
\(994\) −2.29473 3.97459i −0.0727845 0.126066i
\(995\) 11.5211 0.365242
\(996\) 0 0
\(997\) 11.5913 + 20.0768i 0.367101 + 0.635838i 0.989111 0.147171i \(-0.0470169\pi\)
−0.622010 + 0.783010i \(0.713684\pi\)
\(998\) 5.00346 + 8.66625i 0.158382 + 0.274325i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.k.g.676.2 6
3.2 odd 2 95.2.e.b.11.2 6
12.11 even 2 1520.2.q.j.961.3 6
15.2 even 4 475.2.j.b.49.3 12
15.8 even 4 475.2.j.b.49.4 12
15.14 odd 2 475.2.e.d.201.2 6
19.7 even 3 inner 855.2.k.g.406.2 6
57.8 even 6 1805.2.a.g.1.2 3
57.11 odd 6 1805.2.a.h.1.2 3
57.26 odd 6 95.2.e.b.26.2 yes 6
228.83 even 6 1520.2.q.j.881.3 6
285.83 even 12 475.2.j.b.349.3 12
285.179 even 6 9025.2.a.ba.1.2 3
285.197 even 12 475.2.j.b.349.4 12
285.239 odd 6 9025.2.a.z.1.2 3
285.254 odd 6 475.2.e.d.26.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.b.11.2 6 3.2 odd 2
95.2.e.b.26.2 yes 6 57.26 odd 6
475.2.e.d.26.2 6 285.254 odd 6
475.2.e.d.201.2 6 15.14 odd 2
475.2.j.b.49.3 12 15.2 even 4
475.2.j.b.49.4 12 15.8 even 4
475.2.j.b.349.3 12 285.83 even 12
475.2.j.b.349.4 12 285.197 even 12
855.2.k.g.406.2 6 19.7 even 3 inner
855.2.k.g.676.2 6 1.1 even 1 trivial
1520.2.q.j.881.3 6 228.83 even 6
1520.2.q.j.961.3 6 12.11 even 2
1805.2.a.g.1.2 3 57.8 even 6
1805.2.a.h.1.2 3 57.11 odd 6
9025.2.a.z.1.2 3 285.239 odd 6
9025.2.a.ba.1.2 3 285.179 even 6