Properties

Label 476.2.q.a.339.8
Level $476$
Weight $2$
Character 476.339
Analytic conductor $3.801$
Analytic rank $0$
Dimension $16$
CM discriminant -68
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,2,Mod(271,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.271");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 476.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.80087913621\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 16x^{12} + 175x^{8} - 1296x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 339.8
Root \(0.246547 + 1.71441i\) of defining polynomial
Character \(\chi\) \(=\) 476.339
Dual form 476.2.q.a.271.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(2.96945 + 1.71441i) q^{3} +(-1.00000 + 1.73205i) q^{4} +4.84909i q^{6} +(0.563932 - 2.58495i) q^{7} -2.82843 q^{8} +(4.37843 + 7.58366i) q^{9} +(-1.25933 + 2.18122i) q^{11} +(-5.93890 + 3.42883i) q^{12} -6.58971i q^{13} +(3.56467 - 1.13716i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-3.57071 - 2.06155i) q^{17} +(-6.19203 + 10.7249i) q^{18} +(6.10625 - 6.70908i) q^{21} -3.56192 q^{22} +(2.48932 + 4.31162i) q^{23} +(-8.39888 - 4.84909i) q^{24} +(2.50000 - 4.33013i) q^{25} +(8.07071 - 4.65963i) q^{26} +19.7393i q^{27} +(3.91334 + 3.56171i) q^{28} +(-3.39090 - 1.95774i) q^{31} +(2.82843 - 4.89898i) q^{32} +(-7.47904 + 4.31802i) q^{33} -5.83095i q^{34} -17.5137 q^{36} +(11.2975 - 19.5678i) q^{39} +(12.5347 + 2.73456i) q^{42} +(-2.51866 - 4.36245i) q^{44} +(-3.52043 + 6.09756i) q^{46} -13.7153i q^{48} +(-6.36396 - 2.91548i) q^{49} +7.07107 q^{50} +(-7.06871 - 12.2434i) q^{51} +(11.4137 + 6.58971i) q^{52} +(-0.570714 + 0.988506i) q^{53} +(-24.1756 + 13.9578i) q^{54} +(-1.59504 + 7.31135i) q^{56} -5.53732i q^{62} +(22.0725 - 7.04136i) q^{63} +8.00000 q^{64} +(-10.5770 - 6.10661i) q^{66} +(7.14143 - 4.12311i) q^{68} +17.0709i q^{69} -7.01357 q^{71} +(-12.3841 - 21.4498i) q^{72} +(14.8473 - 8.57207i) q^{75} +(4.92818 + 4.48537i) q^{77} +31.9541 q^{78} +(8.73733 + 15.1335i) q^{79} +(-20.7060 + 35.8638i) q^{81} +(5.51422 + 17.2854i) q^{84} +(3.56192 - 6.16943i) q^{88} +(2.27133 - 1.31135i) q^{89} +(-17.0341 - 3.71615i) q^{91} -9.95727 q^{92} +(-6.71275 - 11.6268i) q^{93} +(16.7978 - 9.69819i) q^{96} +(-0.929286 - 9.85578i) q^{98} -22.0555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 24 q^{9} - 32 q^{16} - 8 q^{18} - 16 q^{21} + 40 q^{25} + 72 q^{26} - 96 q^{33} - 96 q^{36} + 40 q^{42} + 48 q^{53} + 128 q^{64} - 16 q^{72} - 48 q^{77} - 136 q^{81} + 64 q^{84} + 40 q^{93}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.500000 + 0.866025i
\(3\) 2.96945 + 1.71441i 1.71441 + 0.989817i 0.928379 + 0.371635i \(0.121203\pi\)
0.786035 + 0.618182i \(0.212130\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 4.84909i 1.97963i
\(7\) 0.563932 2.58495i 0.213146 0.977020i
\(8\) −2.82843 −1.00000
\(9\) 4.37843 + 7.58366i 1.45948 + 2.52789i
\(10\) 0 0
\(11\) −1.25933 + 2.18122i −0.379702 + 0.657664i −0.991019 0.133723i \(-0.957307\pi\)
0.611317 + 0.791386i \(0.290640\pi\)
\(12\) −5.93890 + 3.42883i −1.71441 + 0.989817i
\(13\) 6.58971i 1.82766i −0.406100 0.913828i \(-0.633112\pi\)
0.406100 0.913828i \(-0.366888\pi\)
\(14\) 3.56467 1.13716i 0.952698 0.303920i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) −3.57071 2.06155i −0.866025 0.500000i
\(18\) −6.19203 + 10.7249i −1.45948 + 2.52789i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0 0
\(21\) 6.10625 6.70908i 1.33249 1.46404i
\(22\) −3.56192 −0.759404
\(23\) 2.48932 + 4.31162i 0.519058 + 0.899036i 0.999755 + 0.0221485i \(0.00705065\pi\)
−0.480696 + 0.876887i \(0.659616\pi\)
\(24\) −8.39888 4.84909i −1.71441 0.989817i
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 8.07071 4.65963i 1.58280 0.913828i
\(27\) 19.7393i 3.79883i
\(28\) 3.91334 + 3.56171i 0.739551 + 0.673100i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −3.39090 1.95774i −0.609024 0.351620i 0.163559 0.986533i \(-0.447702\pi\)
−0.772583 + 0.634913i \(0.781036\pi\)
\(32\) 2.82843 4.89898i 0.500000 0.866025i
\(33\) −7.47904 + 4.31802i −1.30193 + 0.751672i
\(34\) 5.83095i 1.00000i
\(35\) 0 0
\(36\) −17.5137 −2.91895
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0 0
\(39\) 11.2975 19.5678i 1.80905 3.13336i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 12.5347 + 2.73456i 1.93414 + 0.421952i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −2.51866 4.36245i −0.379702 0.657664i
\(45\) 0 0
\(46\) −3.52043 + 6.09756i −0.519058 + 0.899036i
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 13.7153i 1.97963i
\(49\) −6.36396 2.91548i −0.909137 0.416497i
\(50\) 7.07107 1.00000
\(51\) −7.06871 12.2434i −0.989817 1.71441i
\(52\) 11.4137 + 6.58971i 1.58280 + 0.913828i
\(53\) −0.570714 + 0.988506i −0.0783936 + 0.135782i −0.902557 0.430570i \(-0.858312\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) −24.1756 + 13.9578i −3.28988 + 1.89941i
\(55\) 0 0
\(56\) −1.59504 + 7.31135i −0.213146 + 0.977020i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 5.53732i 0.703240i
\(63\) 22.0725 7.04136i 2.78088 0.887128i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) −10.5770 6.10661i −1.30193 0.751672i
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 7.14143 4.12311i 0.866025 0.500000i
\(69\) 17.0709i 2.05509i
\(70\) 0 0
\(71\) −7.01357 −0.832358 −0.416179 0.909283i \(-0.636631\pi\)
−0.416179 + 0.909283i \(0.636631\pi\)
\(72\) −12.3841 21.4498i −1.45948 2.52789i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) 14.8473 8.57207i 1.71441 0.989817i
\(76\) 0 0
\(77\) 4.92818 + 4.48537i 0.561618 + 0.511155i
\(78\) 31.9541 3.61809
\(79\) 8.73733 + 15.1335i 0.983027 + 1.70265i 0.650395 + 0.759596i \(0.274603\pi\)
0.332632 + 0.943057i \(0.392063\pi\)
\(80\) 0 0
\(81\) −20.7060 + 35.8638i −2.30067 + 3.98487i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 5.51422 + 17.2854i 0.601651 + 1.88599i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 3.56192 6.16943i 0.379702 0.657664i
\(89\) 2.27133 1.31135i 0.240760 0.139003i −0.374766 0.927119i \(-0.622277\pi\)
0.615526 + 0.788116i \(0.288944\pi\)
\(90\) 0 0
\(91\) −17.0341 3.71615i −1.78566 0.389558i
\(92\) −9.95727 −1.03812
\(93\) −6.71275 11.6268i −0.696079 1.20564i
\(94\) 0 0
\(95\) 0 0
\(96\) 16.7978 9.69819i 1.71441 0.989817i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −0.929286 9.85578i −0.0938720 0.995584i
\(99\) −22.0555 −2.21667
\(100\) 5.00000 + 8.66025i 0.500000 + 0.866025i
\(101\) −15.1493 8.74643i −1.50741 0.870302i −0.999963 0.00861771i \(-0.997257\pi\)
−0.507445 0.861684i \(-0.669410\pi\)
\(102\) 9.99666 17.3147i 0.989817 1.71441i
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 18.6385i 1.82766i
\(105\) 0 0
\(106\) −1.61422 −0.156787
\(107\) 8.84967 + 15.3281i 0.855530 + 1.48182i 0.876153 + 0.482034i \(0.160102\pi\)
−0.0206226 + 0.999787i \(0.506565\pi\)
\(108\) −34.1894 19.7393i −3.28988 1.89941i
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −10.0824 + 3.21639i −0.952698 + 0.303920i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 49.9741 28.8526i 4.62011 2.66742i
\(118\) 0 0
\(119\) −7.34266 + 8.06755i −0.673100 + 0.739551i
\(120\) 0 0
\(121\) 2.32818 + 4.03252i 0.211652 + 0.366593i
\(122\) 0 0
\(123\) 0 0
\(124\) 6.78180 3.91548i 0.609024 0.351620i
\(125\) 0 0
\(126\) 24.2315 + 22.0542i 2.15872 + 1.96475i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 5.65685 + 9.79796i 0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 19.7636 11.4105i 1.72676 0.996943i 0.824311 0.566137i \(-0.191563\pi\)
0.902445 0.430806i \(-0.141771\pi\)
\(132\) 17.2721i 1.50334i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 10.0995 + 5.83095i 0.866025 + 0.500000i
\(137\) −3.68554 + 6.38354i −0.314877 + 0.545383i −0.979411 0.201875i \(-0.935297\pi\)
0.664534 + 0.747258i \(0.268630\pi\)
\(138\) −20.9075 + 12.0709i −1.77976 + 1.02755i
\(139\) 4.16258i 0.353066i −0.984295 0.176533i \(-0.943512\pi\)
0.984295 0.176533i \(-0.0564882\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.95935 8.58984i −0.416179 0.720843i
\(143\) 14.3736 + 8.29862i 1.20198 + 0.693965i
\(144\) 17.5137 30.3347i 1.45948 2.52789i
\(145\) 0 0
\(146\) 0 0
\(147\) −13.8991 19.5678i −1.14638 1.61393i
\(148\) 0 0
\(149\) −11.6414 20.1635i −0.953703 1.65186i −0.737309 0.675556i \(-0.763904\pi\)
−0.216394 0.976306i \(-0.569430\pi\)
\(150\) 20.9972 + 12.1227i 1.71441 + 0.989817i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 36.1055i 2.91895i
\(154\) −2.00868 + 9.20740i −0.161864 + 0.741954i
\(155\) 0 0
\(156\) 22.5950 + 39.1357i 1.80905 + 3.13336i
\(157\) 13.7121 + 7.91671i 1.09435 + 0.631822i 0.934731 0.355357i \(-0.115641\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) −12.3565 + 21.4020i −0.983027 + 1.70265i
\(159\) −3.38942 + 1.95688i −0.268798 + 0.155191i
\(160\) 0 0
\(161\) 12.5491 4.00330i 0.989011 0.315505i
\(162\) −58.5654 −4.60133
\(163\) −10.9884 19.0324i −0.860676 1.49073i −0.871277 0.490791i \(-0.836708\pi\)
0.0106013 0.999944i \(-0.496625\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.8608i 1.07258i 0.844034 + 0.536289i \(0.180174\pi\)
−0.844034 + 0.536289i \(0.819826\pi\)
\(168\) −17.2711 + 18.9761i −1.33249 + 1.46404i
\(169\) −30.4243 −2.34033
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) −9.78334 8.90428i −0.739551 0.673100i
\(176\) 10.0746 0.759404
\(177\) 0 0
\(178\) 3.21214 + 1.85453i 0.240760 + 0.139003i
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −7.49359 23.4901i −0.555462 1.74120i
\(183\) 0 0
\(184\) −7.04085 12.1951i −0.519058 0.899036i
\(185\) 0 0
\(186\) 9.49326 16.4428i 0.696079 1.20564i
\(187\) 8.99341 5.19235i 0.657664 0.379702i
\(188\) 0 0
\(189\) 51.0251 + 11.1316i 3.71153 + 0.809706i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 23.7556 + 13.7153i 1.71441 + 0.989817i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 11.4137 8.10723i 0.815265 0.579088i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −15.5956 27.0124i −1.10833 1.91969i
\(199\) −16.2032 9.35493i −1.14862 0.663154i −0.200066 0.979782i \(-0.564116\pi\)
−0.948550 + 0.316629i \(0.897449\pi\)
\(200\) −7.07107 + 12.2474i −0.500000 + 0.866025i
\(201\) 0 0
\(202\) 24.7386i 1.74060i
\(203\) 0 0
\(204\) 28.2748 1.97963
\(205\) 0 0
\(206\) 0 0
\(207\) −21.7986 + 37.7563i −1.51511 + 2.62424i
\(208\) −22.8274 + 13.1794i −1.58280 + 0.913828i
\(209\) 0 0
\(210\) 0 0
\(211\) −29.0176 −1.99765 −0.998827 0.0484178i \(-0.984582\pi\)
−0.998827 + 0.0484178i \(0.984582\pi\)
\(212\) −1.14143 1.97701i −0.0783936 0.135782i
\(213\) −20.8265 12.0242i −1.42701 0.823882i
\(214\) −12.5153 + 21.6772i −0.855530 + 1.48182i
\(215\) 0 0
\(216\) 55.8311i 3.79883i
\(217\) −6.97290 + 7.66129i −0.473351 + 0.520082i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −13.5850 + 23.5300i −0.913828 + 1.58280i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −11.0686 10.0740i −0.739551 0.673100i
\(225\) 43.7843 2.91895
\(226\) 0 0
\(227\) 13.1929 + 7.61690i 0.875640 + 0.505551i 0.869218 0.494428i \(-0.164623\pi\)
0.00642189 + 0.999979i \(0.497956\pi\)
\(228\) 0 0
\(229\) −5.04975 + 2.91548i −0.333697 + 0.192660i −0.657481 0.753471i \(-0.728378\pi\)
0.323784 + 0.946131i \(0.395045\pi\)
\(230\) 0 0
\(231\) 6.94422 + 21.7680i 0.456896 + 1.43223i
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 70.6741 + 40.8037i 4.62011 + 2.66742i
\(235\) 0 0
\(236\) 0 0
\(237\) 59.9176i 3.89207i
\(238\) −15.0727 3.28826i −0.977020 0.213146i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −3.29254 + 5.70285i −0.211652 + 0.366593i
\(243\) −71.6868 + 41.3884i −4.59871 + 2.65507i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 9.59092 + 5.53732i 0.609024 + 0.351620i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) −9.87655 + 45.2721i −0.622164 + 2.85188i
\(253\) −12.5395 −0.788351
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −12.5779 + 7.26186i −0.784589 + 0.452983i −0.838054 0.545587i \(-0.816307\pi\)
0.0534653 + 0.998570i \(0.482973\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 27.9500 + 16.1369i 1.72676 + 0.996943i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 21.1539 12.2132i 1.30193 0.751672i
\(265\) 0 0
\(266\) 0 0
\(267\) 8.99280 0.550350
\(268\) 0 0
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 16.4924i 1.00000i
\(273\) −44.2109 40.2384i −2.67576 2.43534i
\(274\) −10.4243 −0.629754
\(275\) 6.29665 + 10.9061i 0.379702 + 0.657664i
\(276\) −29.5676 17.0709i −1.77976 1.02755i
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 5.09810 2.94339i 0.305764 0.176533i
\(279\) 34.2873i 2.05273i
\(280\) 0 0
\(281\) 25.5657 1.52512 0.762561 0.646916i \(-0.223942\pi\)
0.762561 + 0.646916i \(0.223942\pi\)
\(282\) 0 0
\(283\) −8.06756 4.65781i −0.479566 0.276878i 0.240669 0.970607i \(-0.422633\pi\)
−0.720236 + 0.693729i \(0.755966\pi\)
\(284\) 7.01357 12.1479i 0.416179 0.720843i
\(285\) 0 0
\(286\) 23.4720i 1.38793i
\(287\) 0 0
\(288\) 49.5363 2.91895
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.7346i 1.03606i −0.855361 0.518032i \(-0.826665\pi\)
0.855361 0.518032i \(-0.173335\pi\)
\(294\) 14.1374 30.8594i 0.824511 1.79976i
\(295\) 0 0
\(296\) 0 0
\(297\) −43.0558 24.8583i −2.49835 1.44242i
\(298\) 16.4635 28.5156i 0.953703 1.65186i
\(299\) 28.4124 16.4039i 1.64313 0.948661i
\(300\) 34.2883i 1.97963i
\(301\) 0 0
\(302\) 0 0
\(303\) −29.9900 51.9442i −1.72288 2.98412i
\(304\) 0 0
\(305\) 0 0
\(306\) 44.2200 25.5304i 2.52789 1.45948i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) −12.6971 + 4.05049i −0.723483 + 0.230798i
\(309\) 0 0
\(310\) 0 0
\(311\) 14.0065 + 8.08663i 0.794233 + 0.458551i 0.841451 0.540334i \(-0.181702\pi\)
−0.0472173 + 0.998885i \(0.515035\pi\)
\(312\) −31.9541 + 55.3462i −1.80905 + 3.13336i
\(313\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) 22.3918i 1.26364i
\(315\) 0 0
\(316\) −34.9493 −1.96605
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) −4.79336 2.76745i −0.268798 0.155191i
\(319\) 0 0
\(320\) 0 0
\(321\) 60.6880i 3.38727i
\(322\) 13.7766 + 12.5387i 0.767741 + 0.698757i
\(323\) 0 0
\(324\) −41.4120 71.7277i −2.30067 3.98487i
\(325\) −28.5343 16.4743i −1.58280 0.913828i
\(326\) 15.5399 26.9159i 0.860676 1.49073i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −16.9759 + 9.80105i −0.928881 + 0.536289i
\(335\) 0 0
\(336\) −35.4534 7.73450i −1.93414 0.421952i
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −21.5132 37.2620i −1.17016 2.02678i
\(339\) 0 0
\(340\) 0 0
\(341\) 8.54053 4.93088i 0.462495 0.267022i
\(342\) 0 0
\(343\) −11.1252 + 14.8064i −0.600705 + 0.799471i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.0506 + 22.6043i −0.700593 + 1.21346i 0.267666 + 0.963512i \(0.413748\pi\)
−0.968259 + 0.249950i \(0.919586\pi\)
\(348\) 0 0
\(349\) 24.7386i 1.32423i −0.749403 0.662114i \(-0.769659\pi\)
0.749403 0.662114i \(-0.230341\pi\)
\(350\) 3.98760 18.2784i 0.213146 0.977020i
\(351\) 130.076 6.94295
\(352\) 7.12384 + 12.3389i 0.379702 + 0.657664i
\(353\) −0.782857 0.451983i −0.0416673 0.0240566i 0.479022 0.877803i \(-0.340992\pi\)
−0.520689 + 0.853746i \(0.674325\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5.24541i 0.278006i
\(357\) −35.6348 + 11.3679i −1.88599 + 0.601651i
\(358\) 0 0
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 0 0
\(363\) 15.9658i 0.837989i
\(364\) 23.4707 25.7878i 1.23020 1.35165i
\(365\) 0 0
\(366\) 0 0
\(367\) 28.8015 + 16.6286i 1.50343 + 0.868005i 0.999992 + 0.00397207i \(0.00126435\pi\)
0.503436 + 0.864033i \(0.332069\pi\)
\(368\) 9.95727 17.2465i 0.519058 0.899036i
\(369\) 0 0
\(370\) 0 0
\(371\) 2.23340 + 2.03272i 0.115952 + 0.105534i
\(372\) 26.8510 1.39216
\(373\) −7.02107 12.1608i −0.363537 0.629665i 0.625003 0.780622i \(-0.285098\pi\)
−0.988540 + 0.150958i \(0.951764\pi\)
\(374\) 12.7186 + 7.34309i 0.657664 + 0.379702i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 22.4468 + 70.3640i 1.15454 + 3.61913i
\(379\) −38.8503 −1.99561 −0.997804 0.0662388i \(-0.978900\pi\)
−0.997804 + 0.0662388i \(0.978900\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 38.7928i 1.97963i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.26421 2.18967i 0.0640978 0.111021i −0.832196 0.554482i \(-0.812916\pi\)
0.896293 + 0.443461i \(0.146250\pi\)
\(390\) 0 0
\(391\) 20.5274i 1.03812i
\(392\) 18.0000 + 8.24621i 0.909137 + 0.416497i
\(393\) 78.2495 3.94717
\(394\) 0 0
\(395\) 0 0
\(396\) 22.0555 38.2013i 1.10833 1.91969i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 26.4597i 1.32631i
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) −12.9009 + 22.3451i −0.642641 + 1.11309i
\(404\) 30.2985 17.4929i 1.50741 0.870302i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 19.9933 + 34.6295i 0.989817 + 1.71441i
\(409\) 34.7121 + 20.0411i 1.71640 + 0.990967i 0.925256 + 0.379344i \(0.123850\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) 0 0
\(411\) −21.8881 + 12.6371i −1.07966 + 0.623342i
\(412\) 0 0
\(413\) 0 0
\(414\) −61.6557 −3.03021
\(415\) 0 0
\(416\) −32.2829 18.6385i −1.58280 0.913828i
\(417\) 7.13639 12.3606i 0.349471 0.605301i
\(418\) 0 0
\(419\) 29.7811i 1.45490i 0.686160 + 0.727450i \(0.259295\pi\)
−0.686160 + 0.727450i \(0.740705\pi\)
\(420\) 0 0
\(421\) 4.24264 0.206774 0.103387 0.994641i \(-0.467032\pi\)
0.103387 + 0.994641i \(0.467032\pi\)
\(422\) −20.5185 35.5392i −0.998827 1.73002i
\(423\) 0 0
\(424\) 1.61422 2.79592i 0.0783936 0.135782i
\(425\) −17.8536 + 10.3078i −0.866025 + 0.500000i
\(426\) 34.0095i 1.64776i
\(427\) 0 0
\(428\) −35.3987 −1.71106
\(429\) 28.4545 + 49.2847i 1.37380 + 2.37949i
\(430\) 0 0
\(431\) 1.83610 3.18021i 0.0884417 0.153185i −0.818411 0.574633i \(-0.805145\pi\)
0.906853 + 0.421448i \(0.138478\pi\)
\(432\) 68.3789 39.4786i 3.28988 1.89941i
\(433\) 29.1548i 1.40109i 0.713609 + 0.700544i \(0.247059\pi\)
−0.713609 + 0.700544i \(0.752941\pi\)
\(434\) −14.3137 3.12267i −0.687080 0.149893i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 25.8843 14.9443i 1.23539 0.713252i 0.267240 0.963630i \(-0.413888\pi\)
0.968148 + 0.250378i \(0.0805549\pi\)
\(440\) 0 0
\(441\) −5.75417 61.0273i −0.274008 2.90606i
\(442\) −38.4243 −1.82766
\(443\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 79.8329i 3.77597i
\(448\) 4.51146 20.6796i 0.213146 0.977020i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 30.9602 + 53.6246i 1.45948 + 2.52789i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 21.5438i 1.01110i
\(455\) 0 0
\(456\) 0 0
\(457\) 6.36396 + 11.0227i 0.297694 + 0.515620i 0.975608 0.219521i \(-0.0704493\pi\)
−0.677914 + 0.735141i \(0.737116\pi\)
\(458\) −7.14143 4.12311i −0.333697 0.192660i
\(459\) 40.6936 70.4833i 1.89941 3.28988i
\(460\) 0 0
\(461\) 10.2232i 0.476143i −0.971248 0.238071i \(-0.923485\pi\)
0.971248 0.238071i \(-0.0765153\pi\)
\(462\) −21.7500 + 23.8972i −1.01190 + 1.11180i
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 115.410i 5.33484i
\(469\) 0 0
\(470\) 0 0
\(471\) 27.1450 + 47.0166i 1.25078 + 2.16641i
\(472\) 0 0
\(473\) 0 0
\(474\) −73.3838 + 42.3682i −3.37063 + 1.94603i
\(475\) 0 0
\(476\) −6.63075 20.7854i −0.303920 0.952698i
\(477\) −9.99533 −0.457655
\(478\) 0 0
\(479\) −29.3545 16.9479i −1.34124 0.774367i −0.354253 0.935149i \(-0.615265\pi\)
−0.986990 + 0.160782i \(0.948598\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 44.1274 + 9.62682i 2.00787 + 0.438035i
\(484\) −9.31271 −0.423305
\(485\) 0 0
\(486\) −101.380 58.5320i −4.59871 2.65507i
\(487\) 21.2527 36.8107i 0.963050 1.66805i 0.248284 0.968687i \(-0.420133\pi\)
0.714766 0.699364i \(-0.246533\pi\)
\(488\) 0 0
\(489\) 75.3545i 3.40765i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 15.6619i 0.703240i
\(497\) −3.95518 + 18.1298i −0.177414 + 0.813231i
\(498\) 0 0
\(499\) 12.3013 + 21.3065i 0.550683 + 0.953811i 0.998225 + 0.0595480i \(0.0189659\pi\)
−0.447543 + 0.894263i \(0.647701\pi\)
\(500\) 0 0
\(501\) −23.7631 + 41.1589i −1.06166 + 1.83884i
\(502\) 0 0
\(503\) 24.9727i 1.11348i −0.830688 0.556738i \(-0.812053\pi\)
0.830688 0.556738i \(-0.187947\pi\)
\(504\) −62.4306 + 19.9160i −2.78088 + 0.887128i
\(505\) 0 0
\(506\) −8.86675 15.3577i −0.394175 0.682732i
\(507\) −90.3435 52.1598i −4.01229 2.31650i
\(508\) 0 0
\(509\) 14.2829 8.24621i 0.633076 0.365507i −0.148866 0.988857i \(-0.547562\pi\)
0.781943 + 0.623350i \(0.214229\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) 0 0
\(514\) −17.7879 10.2698i −0.784589 0.452983i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 45.6421i 1.99389i
\(525\) −13.7855 43.2135i −0.601651 1.88599i
\(526\) 0 0
\(527\) 8.07196 + 13.9810i 0.351620 + 0.609024i
\(528\) 29.9162 + 17.2721i 1.30193 + 0.751672i
\(529\) −0.893398 + 1.54741i −0.0388434 + 0.0672787i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 6.35887 + 11.0139i 0.275175 + 0.476617i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.3736 10.2097i 0.619116 0.439762i
\(540\) 0 0
\(541\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −20.1990 + 11.6619i −0.866025 + 0.500000i
\(545\) 0 0
\(546\) 18.0200 82.5999i 0.771183 3.53495i
\(547\) 32.5866 1.39330 0.696652 0.717409i \(-0.254672\pi\)
0.696652 + 0.717409i \(0.254672\pi\)
\(548\) −7.37108 12.7671i −0.314877 0.545383i
\(549\) 0 0
\(550\) −8.90481 + 15.4236i −0.379702 + 0.657664i
\(551\) 0 0
\(552\) 48.2837i 2.05509i
\(553\) 44.0467 14.0513i 1.87305 0.597523i
\(554\) 0 0
\(555\) 0 0
\(556\) 7.20981 + 4.16258i 0.305764 + 0.176533i
\(557\) −18.5348 + 32.1032i −0.785344 + 1.36026i 0.143449 + 0.989658i \(0.454181\pi\)
−0.928793 + 0.370598i \(0.879153\pi\)
\(558\) 41.9932 24.2448i 1.77771 1.02636i
\(559\) 0 0
\(560\) 0 0
\(561\) 35.6073 1.50334
\(562\) 18.0777 + 31.3115i 0.762561 + 1.32079i
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.1743i 0.553756i
\(567\) 81.0296 + 73.7488i 3.40292 + 3.09716i
\(568\) 19.8374 0.832358
\(569\) 23.8536 + 41.3156i 0.999994 + 1.73204i 0.503066 + 0.864248i \(0.332205\pi\)
0.496928 + 0.867792i \(0.334461\pi\)
\(570\) 0 0
\(571\) 0.427099 0.739758i 0.0178735 0.0309579i −0.856950 0.515399i \(-0.827644\pi\)
0.874824 + 0.484441i \(0.160977\pi\)
\(572\) −28.7473 + 16.5972i −1.20198 + 0.693965i
\(573\) 0 0
\(574\) 0 0
\(575\) 24.8932 1.03812
\(576\) 35.0274 + 60.6693i 1.45948 + 2.52789i
\(577\) 16.0134 + 9.24537i 0.666648 + 0.384890i 0.794805 0.606864i \(-0.207573\pi\)
−0.128157 + 0.991754i \(0.540906\pi\)
\(578\) −12.0208 + 20.8207i −0.500000 + 0.866025i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.43743 2.48971i −0.0595325 0.103113i
\(584\) 0 0
\(585\) 0 0
\(586\) 21.7203 12.5402i 0.897257 0.518032i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 47.7916 4.50619i 1.97089 0.185832i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 39.5707 22.8462i 1.62497 0.938179i 0.639413 0.768864i \(-0.279178\pi\)
0.985562 0.169316i \(-0.0541557\pi\)
\(594\) 70.3098i 2.88485i
\(595\) 0 0
\(596\) 46.5657 1.90741
\(597\) −32.0765 55.5581i −1.31280 2.27384i
\(598\) 40.1811 + 23.1986i 1.64313 + 0.948661i
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −41.9944 + 24.2455i −1.71441 + 0.989817i
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 42.4123 73.4602i 1.72288 2.98412i
\(607\) −34.1900 + 19.7396i −1.38773 + 0.801207i −0.993059 0.117615i \(-0.962475\pi\)
−0.394672 + 0.918822i \(0.629142\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 62.5365 + 36.1055i 2.52789 + 1.45948i
\(613\) 20.9243 36.2419i 0.845124 1.46380i −0.0403896 0.999184i \(-0.512860\pi\)
0.885514 0.464614i \(-0.153807\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −13.9390 12.6865i −0.561618 0.511155i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −27.5659 15.9152i −1.10797 0.639684i −0.169664 0.985502i \(-0.554268\pi\)
−0.938302 + 0.345818i \(0.887602\pi\)
\(620\) 0 0
\(621\) −85.1083 + 49.1373i −3.41528 + 1.97181i
\(622\) 22.8725i 0.917102i
\(623\) −2.10891 6.61079i −0.0844916 0.264856i
\(624\) −90.3799 −3.61809
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) −27.4243 + 15.8334i −1.09435 + 0.631822i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −24.7129 42.8040i −0.983027 1.70265i
\(633\) −86.1664 49.7482i −3.42481 1.97731i
\(634\) 0 0
\(635\) 0 0
\(636\) 7.82752i 0.310381i
\(637\) −19.2121 + 41.9367i −0.761213 + 1.66159i
\(638\) 0 0
\(639\) −30.7084 53.1886i −1.21481 2.10411i
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −74.3273 + 42.9129i −2.93346 + 1.69364i
\(643\) 47.8044i 1.88522i 0.333892 + 0.942611i \(0.391638\pi\)
−0.333892 + 0.942611i \(0.608362\pi\)
\(644\) −5.61522 + 25.7391i −0.221271 + 1.01426i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 58.5654 101.438i 2.30067 3.98487i
\(649\) 0 0
\(650\) 46.5963i 1.82766i
\(651\) −33.8403 + 10.7954i −1.32631 + 0.423105i
\(652\) 43.9535 1.72135
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 42.8486 + 24.7386i 1.66662 + 0.962221i 0.969442 + 0.245319i \(0.0788928\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 0 0
\(663\) −80.6802 + 46.5807i −3.13336 + 1.80905i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −24.0076 13.8608i −0.928881 0.536289i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −15.5966 48.8905i −0.601651 1.88599i
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 85.4736 + 49.3482i 3.28988 + 1.89941i
\(676\) 30.4243 52.6964i 1.17016 2.02678i
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 26.1170 + 45.2360i 1.00081 + 1.73345i
\(682\) 12.0781 + 6.97331i 0.462495 + 0.267022i
\(683\) 23.6933 41.0381i 0.906601 1.57028i 0.0878466 0.996134i \(-0.472001\pi\)
0.818754 0.574144i \(-0.194665\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −26.0008 3.15583i −0.992715 0.120490i
\(687\) −19.9933 −0.762793
\(688\) 0 0
\(689\) 6.51397 + 3.76084i 0.248162 + 0.143277i
\(690\) 0 0
\(691\) 38.1227 22.0101i 1.45026 0.837305i 0.451760 0.892140i \(-0.350796\pi\)
0.998495 + 0.0548341i \(0.0174630\pi\)
\(692\) 0 0
\(693\) −12.4378 + 57.0125i −0.472474 + 2.16573i
\(694\) −36.9127 −1.40119
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 30.2985 17.4929i 1.14682 0.662114i
\(699\) 0 0
\(700\) 25.2060 8.04097i 0.952698 0.303920i
\(701\) −41.9122 −1.58300 −0.791502 0.611167i \(-0.790700\pi\)
−0.791502 + 0.611167i \(0.790700\pi\)
\(702\) 91.9777 + 159.310i 3.47148 + 6.01277i
\(703\) 0 0
\(704\) −10.0746 + 17.4498i −0.379702 + 0.657664i
\(705\) 0 0
\(706\) 1.27840i 0.0481132i
\(707\) −31.1523 + 34.2277i −1.17160 + 1.28727i
\(708\) 0 0
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) −76.5116 + 132.522i −2.86941 + 4.96996i
\(712\) −6.42429 + 3.70906i −0.240760 + 0.139003i
\(713\) 19.4937i 0.730046i
\(714\) −39.1203 35.6052i −1.46404 1.33249i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 38.3895 22.1642i 1.43169 0.826584i 0.434437 0.900702i \(-0.356947\pi\)
0.997249 + 0.0741179i \(0.0236141\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 26.8701 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −19.5541 + 11.2896i −0.725720 + 0.418995i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 48.1797 + 10.5109i 1.78566 + 0.389558i
\(729\) −159.591 −5.91079
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −37.9243 + 21.8956i −1.40077 + 0.808732i −0.994471 0.105010i \(-0.966513\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 47.0327i 1.73601i
\(735\) 0 0
\(736\) 28.1634 1.03812
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.910313 + 4.17269i −0.0334186 + 0.153184i
\(743\) 42.3494 1.55365 0.776824 0.629718i \(-0.216830\pi\)
0.776824 + 0.629718i \(0.216830\pi\)
\(744\) 18.9865 + 32.8856i 0.696079 + 1.20564i
\(745\) 0 0
\(746\) 9.92929 17.1980i 0.363537 0.629665i
\(747\) 0 0
\(748\) 20.7694i 0.759404i
\(749\) 44.6130 14.2320i 1.63012 0.520025i
\(750\) 0 0
\(751\) 24.7681 + 42.8995i 0.903799 + 1.56543i 0.822521 + 0.568734i \(0.192567\pi\)
0.0812777 + 0.996691i \(0.474100\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −70.3056 + 77.2465i −2.55699 + 2.80943i
\(757\) 48.5833 1.76579 0.882895 0.469571i \(-0.155591\pi\)
0.882895 + 0.469571i \(0.155591\pi\)
\(758\) −27.4713 47.5817i −0.997804 1.72825i
\(759\) −37.2354 21.4979i −1.35156 0.780323i
\(760\) 0 0
\(761\) 46.8191 27.0310i 1.69719 0.979873i 0.748783 0.662815i \(-0.230638\pi\)
0.948406 0.317058i \(-0.102695\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −47.5112 + 27.4306i −1.71441 + 0.989817i
\(769\) 44.8496i 1.61732i 0.588278 + 0.808659i \(0.299806\pi\)
−0.588278 + 0.808659i \(0.700194\pi\)
\(770\) 0 0
\(771\) −49.7993 −1.79348
\(772\) 0 0
\(773\) 36.5125 + 21.0805i 1.31326 + 0.758212i 0.982635 0.185549i \(-0.0594064\pi\)
0.330627 + 0.943761i \(0.392740\pi\)
\(774\) 0 0
\(775\) −16.9545 + 9.78869i −0.609024 + 0.351620i
\(776\) 0 0
\(777\) 0 0
\(778\) 3.57571 0.128196
\(779\) 0 0
\(780\) 0 0
\(781\) 8.83240 15.2982i 0.316048 0.547412i
\(782\) 25.1409 14.5151i 0.899036 0.519058i
\(783\) 0 0
\(784\) 2.62842 + 27.8764i 0.0938720 + 0.995584i
\(785\) 0 0
\(786\) 55.3308 + 95.8357i 1.97358 + 3.41835i
\(787\) −10.9955 6.34824i −0.391946 0.226290i 0.291057 0.956706i \(-0.405993\pi\)
−0.683003 + 0.730415i \(0.739326\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 62.3825 2.21667
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 32.4064 18.7099i 1.14862 0.663154i
\(797\) 55.0116i 1.94861i 0.225232 + 0.974305i \(0.427686\pi\)
−0.225232 + 0.974305i \(0.572314\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −14.1421 24.4949i −0.500000 0.866025i
\(801\) 19.8897 + 11.4833i 0.702768 + 0.405743i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −36.4893 −1.28528
\(807\) 0 0
\(808\) 42.8486 + 24.7386i 1.50741 + 0.870302i
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 50.4615i 1.77194i −0.463738 0.885972i \(-0.653492\pi\)
0.463738 0.885972i \(-0.346508\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −28.2748 + 48.9735i −0.989817 + 1.71441i
\(817\) 0 0
\(818\) 56.6847i 1.98193i
\(819\) −46.4005 145.452i −1.62137 5.08249i
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) −30.9544 17.8715i −1.07966 0.623342i
\(823\) 8.73940 15.1371i 0.304636 0.527646i −0.672544 0.740057i \(-0.734798\pi\)
0.977180 + 0.212412i \(0.0681318\pi\)
\(824\) 0 0
\(825\) 43.1802i 1.50334i
\(826\) 0 0
\(827\) −57.4613 −1.99813 −0.999063 0.0432777i \(-0.986220\pi\)
−0.999063 + 0.0432777i \(0.986220\pi\)
\(828\) −43.5972 75.5126i −1.51511 2.62424i
\(829\) −28.2879 16.3320i −0.982478 0.567234i −0.0794606 0.996838i \(-0.525320\pi\)
−0.903017 + 0.429604i \(0.858653\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 52.7177i 1.82766i
\(833\) 16.7135 + 23.5300i 0.579088 + 0.815265i
\(834\) 20.1848 0.698941
\(835\) 0 0
\(836\) 0 0
\(837\) 38.6443 66.9340i 1.33574 2.31358i
\(838\) −36.4742 + 21.0584i −1.25998 + 0.727450i
\(839\) 39.4330i 1.36138i 0.732572 + 0.680690i \(0.238320\pi\)
−0.732572 + 0.680690i \(0.761680\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 3.00000 + 5.19615i 0.103387 + 0.179071i
\(843\) 75.9162 + 43.8302i 2.61469 + 1.50959i
\(844\) 29.0176 50.2600i 0.998827 1.73002i
\(845\) 0 0
\(846\) 0 0
\(847\) 11.7368 3.74416i 0.403282 0.128651i
\(848\) 4.56571 0.156787
\(849\) −15.9708 27.6623i −0.548117 0.949366i
\(850\) −25.2488 14.5774i −0.866025 0.500000i
\(851\) 0 0
\(852\) 41.6529 24.0483i 1.42701 0.823882i
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −25.0306 43.3544i −0.855530 1.48182i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) −40.2408 + 69.6991i −1.37380 + 2.37949i
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.19327 0.176883
\(863\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) 96.7023 + 55.8311i 3.28988 + 1.89941i
\(865\) 0 0
\(866\) −35.7071 + 20.6155i −1.21338 + 0.700544i
\(867\) 58.2901i 1.97963i
\(868\) −6.29684 19.7387i −0.213729 0.669975i
\(869\) −44.0127 −1.49303
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 36.6059 + 21.1344i 1.23539 + 0.713252i
\(879\) 30.4044 52.6619i 1.02551 1.77624i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 70.6741 50.2002i 2.37972 1.69033i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −27.1701 47.0599i −0.913828 1.58280i
\(885\) 0 0
\(886\) 0 0
\(887\) −49.7987 + 28.7513i −1.67208 + 0.965375i −0.705605 + 0.708605i \(0.749325\pi\)
−0.966473 + 0.256769i \(0.917342\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −52.1514 90.3288i −1.74714 3.02613i
\(892\) 0 0
\(893\) 0 0
\(894\) 97.7749 56.4504i 3.27008 1.88798i
\(895\) 0 0
\(896\) 28.5173 9.09732i 0.952698 0.303920i
\(897\) 112.492 3.75600
\(898\) 0 0
\(899\) 0 0
\(900\) −43.7843 + 75.8366i −1.45948 + 2.52789i
\(901\) 4.07571 2.35311i 0.135782 0.0783936i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 25.0701 43.4227i 0.832438 1.44183i −0.0636608 0.997972i \(-0.520278\pi\)
0.896099 0.443854i \(-0.146389\pi\)
\(908\) −26.3857 + 15.2338i −0.875640 + 0.505551i
\(909\) 153.182i 5.08074i
\(910\) 0 0
\(911\) −55.9730 −1.85447 −0.927234 0.374482i \(-0.877820\pi\)
−0.927234 + 0.374482i \(0.877820\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −9.00000 + 15.5885i −0.297694 + 0.515620i
\(915\) 0 0
\(916\) 11.6619i 0.385320i
\(917\) −18.3503 57.5228i −0.605982 1.89957i
\(918\) 115.099 3.79883
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 12.5208 7.22891i 0.412352 0.238071i
\(923\) 46.2174i 1.52126i
\(924\) −44.6476 9.74029i −1.46880 0.320432i
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 27.7277 + 48.0257i 0.907763 + 1.57229i
\(934\) 0 0
\(935\) 0 0
\(936\) −141.348 + 81.6074i −4.62011 + 2.66742i
\(937\) 24.7386i 0.808176i −0.914720 0.404088i \(-0.867589\pi\)
0.914720 0.404088i \(-0.132411\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) −38.3889 + 66.4915i −1.25078 + 2.16641i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.2197 + 48.8780i 0.917017 + 1.58832i 0.803921 + 0.594736i \(0.202743\pi\)
0.113096 + 0.993584i \(0.463923\pi\)
\(948\) −103.780 59.9176i −3.37063 1.94603i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 20.7682 22.8185i 0.673100 0.739551i
\(953\) −61.7112 −1.99902 −0.999511 0.0312570i \(-0.990049\pi\)
−0.999511 + 0.0312570i \(0.990049\pi\)
\(954\) −7.06776 12.2417i −0.228827 0.396341i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 47.9358i 1.54873i
\(959\) 14.4228 + 13.1268i 0.465735 + 0.423888i
\(960\) 0 0
\(961\) −7.83452 13.5698i −0.252727 0.437735i
\(962\) 0 0
\(963\) −77.4953 + 134.226i −2.49725 + 4.32537i
\(964\) 0 0
\(965\) 0 0
\(966\) 19.4124 + 60.8520i 0.624584 + 1.95788i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −6.58508 11.4057i −0.211652 0.366593i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 165.554i 5.31013i
\(973\) −10.7601 2.34742i −0.344952 0.0752547i
\(974\) 60.1116 1.92610
\(975\) −56.4875 97.8391i −1.80905 3.13336i
\(976\) 0 0
\(977\) 12.0000 20.7846i 0.383914 0.664959i −0.607704 0.794164i \(-0.707909\pi\)
0.991618 + 0.129205i \(0.0412426\pi\)
\(978\) 92.2900 53.2837i 2.95111 1.70382i
\(979\) 6.60570i 0.211119i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −49.6399 28.6596i −1.58327 0.914099i −0.994378 0.105885i \(-0.966233\pi\)
−0.588888 0.808215i \(-0.700434\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −6.14070 + 10.6360i −0.195066 + 0.337864i −0.946922 0.321463i \(-0.895825\pi\)
0.751856 + 0.659327i \(0.229159\pi\)
\(992\) −19.1818 + 11.0746i −0.609024 + 0.351620i
\(993\) 0 0
\(994\) −25.0011 + 7.97559i −0.792985 + 0.252970i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(998\) −17.3967 + 30.1320i −0.550683 + 0.953811i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 476.2.q.a.339.8 yes 16
4.3 odd 2 inner 476.2.q.a.339.5 yes 16
7.5 odd 6 inner 476.2.q.a.271.8 yes 16
17.16 even 2 inner 476.2.q.a.339.5 yes 16
28.19 even 6 inner 476.2.q.a.271.5 16
68.67 odd 2 CM 476.2.q.a.339.8 yes 16
119.33 odd 6 inner 476.2.q.a.271.5 16
476.271 even 6 inner 476.2.q.a.271.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.q.a.271.5 16 28.19 even 6 inner
476.2.q.a.271.5 16 119.33 odd 6 inner
476.2.q.a.271.8 yes 16 7.5 odd 6 inner
476.2.q.a.271.8 yes 16 476.271 even 6 inner
476.2.q.a.339.5 yes 16 4.3 odd 2 inner
476.2.q.a.339.5 yes 16 17.16 even 2 inner
476.2.q.a.339.8 yes 16 1.1 even 1 trivial
476.2.q.a.339.8 yes 16 68.67 odd 2 CM