Properties

Label 476.3.x.a.321.19
Level $476$
Weight $3$
Character 476.321
Analytic conductor $12.970$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,3,Mod(321,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.321");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 476.x (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9700605836\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 321.19
Character \(\chi\) \(=\) 476.321
Dual form 476.3.x.a.433.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.58574 - 1.07105i) q^{3} +(2.55560 + 6.16976i) q^{5} +(-4.71280 + 5.17586i) q^{7} +(-0.825039 + 0.825039i) q^{9} +(1.49730 - 3.61481i) q^{11} +17.3201 q^{13} +(13.2162 + 13.2162i) q^{15} +(-16.8940 - 1.89555i) q^{17} +(-6.39261 + 6.39261i) q^{19} +(-6.64249 + 18.4311i) q^{21} +(-16.0718 + 38.8007i) q^{23} +(-13.8572 + 13.8572i) q^{25} +(-10.8891 + 26.2887i) q^{27} +(13.4186 - 5.55816i) q^{29} +(3.06492 - 1.26953i) q^{31} -10.9507i q^{33} +(-43.9778 - 15.8494i) q^{35} +(12.8990 + 31.1409i) q^{37} +(44.7853 - 18.5507i) q^{39} +(28.5624 - 68.9556i) q^{41} +(-38.2049 + 38.2049i) q^{43} +(-7.19876 - 2.98182i) q^{45} +58.8692 q^{47} +(-4.57902 - 48.7856i) q^{49} +(-45.7138 + 13.1929i) q^{51} +(13.5679 + 13.5679i) q^{53} +26.1290 q^{55} +(-9.68285 + 23.3765i) q^{57} +(78.1791 + 78.1791i) q^{59} +(7.04078 - 16.9979i) q^{61} +(-0.382041 - 8.15853i) q^{63} +(44.2631 + 106.861i) q^{65} +99.2537 q^{67} +117.542i q^{69} +(-49.5054 - 119.517i) q^{71} +(-45.9951 - 111.042i) q^{73} +(-20.9894 + 50.6728i) q^{75} +(11.6533 + 24.7857i) q^{77} +(-15.2402 + 36.7932i) q^{79} +69.1376i q^{81} +(-26.4297 + 26.4297i) q^{83} +(-31.4791 - 109.076i) q^{85} +(28.7440 - 28.7440i) q^{87} -43.3144 q^{89} +(-81.6261 + 89.6462i) q^{91} +(6.56536 - 6.56536i) q^{93} +(-55.7778 - 23.1039i) q^{95} +(2.09599 + 5.06017i) q^{97} +(1.74703 + 4.21769i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{11} - 16 q^{15} + 72 q^{23} + 72 q^{25} + 32 q^{35} - 256 q^{37} - 88 q^{39} - 32 q^{43} - 20 q^{49} - 120 q^{51} - 80 q^{53} + 492 q^{63} - 104 q^{65} - 144 q^{67} - 64 q^{71} + 84 q^{77}+ \cdots + 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.58574 1.07105i 0.861915 0.357017i 0.0924586 0.995717i \(-0.470527\pi\)
0.769456 + 0.638700i \(0.220527\pi\)
\(4\) 0 0
\(5\) 2.55560 + 6.16976i 0.511120 + 1.23395i 0.943233 + 0.332132i \(0.107768\pi\)
−0.432113 + 0.901819i \(0.642232\pi\)
\(6\) 0 0
\(7\) −4.71280 + 5.17586i −0.673257 + 0.739408i
\(8\) 0 0
\(9\) −0.825039 + 0.825039i −0.0916710 + 0.0916710i
\(10\) 0 0
\(11\) 1.49730 3.61481i 0.136118 0.328619i −0.841092 0.540892i \(-0.818087\pi\)
0.977210 + 0.212273i \(0.0680867\pi\)
\(12\) 0 0
\(13\) 17.3201 1.33231 0.666157 0.745812i \(-0.267938\pi\)
0.666157 + 0.745812i \(0.267938\pi\)
\(14\) 0 0
\(15\) 13.2162 + 13.2162i 0.881083 + 0.881083i
\(16\) 0 0
\(17\) −16.8940 1.89555i −0.993764 0.111503i
\(18\) 0 0
\(19\) −6.39261 + 6.39261i −0.336453 + 0.336453i −0.855031 0.518577i \(-0.826462\pi\)
0.518577 + 0.855031i \(0.326462\pi\)
\(20\) 0 0
\(21\) −6.64249 + 18.4311i −0.316309 + 0.877671i
\(22\) 0 0
\(23\) −16.0718 + 38.8007i −0.698773 + 1.68699i 0.0275376 + 0.999621i \(0.491233\pi\)
−0.726311 + 0.687367i \(0.758767\pi\)
\(24\) 0 0
\(25\) −13.8572 + 13.8572i −0.554287 + 0.554287i
\(26\) 0 0
\(27\) −10.8891 + 26.2887i −0.403301 + 0.973655i
\(28\) 0 0
\(29\) 13.4186 5.55816i 0.462710 0.191661i −0.139135 0.990273i \(-0.544432\pi\)
0.601845 + 0.798613i \(0.294432\pi\)
\(30\) 0 0
\(31\) 3.06492 1.26953i 0.0988683 0.0409526i −0.332701 0.943032i \(-0.607960\pi\)
0.431569 + 0.902080i \(0.357960\pi\)
\(32\) 0 0
\(33\) 10.9507i 0.331838i
\(34\) 0 0
\(35\) −43.9778 15.8494i −1.25651 0.452841i
\(36\) 0 0
\(37\) 12.8990 + 31.1409i 0.348621 + 0.841645i 0.996783 + 0.0801431i \(0.0255377\pi\)
−0.648163 + 0.761502i \(0.724462\pi\)
\(38\) 0 0
\(39\) 44.7853 18.5507i 1.14834 0.475658i
\(40\) 0 0
\(41\) 28.5624 68.9556i 0.696643 1.68184i −0.0343049 0.999411i \(-0.510922\pi\)
0.730948 0.682433i \(-0.239078\pi\)
\(42\) 0 0
\(43\) −38.2049 + 38.2049i −0.888487 + 0.888487i −0.994378 0.105891i \(-0.966230\pi\)
0.105891 + 0.994378i \(0.466230\pi\)
\(44\) 0 0
\(45\) −7.19876 2.98182i −0.159972 0.0662628i
\(46\) 0 0
\(47\) 58.8692 1.25254 0.626268 0.779608i \(-0.284582\pi\)
0.626268 + 0.779608i \(0.284582\pi\)
\(48\) 0 0
\(49\) −4.57902 48.7856i −0.0934493 0.995624i
\(50\) 0 0
\(51\) −45.7138 + 13.1929i −0.896348 + 0.258684i
\(52\) 0 0
\(53\) 13.5679 + 13.5679i 0.255999 + 0.255999i 0.823425 0.567426i \(-0.192061\pi\)
−0.567426 + 0.823425i \(0.692061\pi\)
\(54\) 0 0
\(55\) 26.1290 0.475073
\(56\) 0 0
\(57\) −9.68285 + 23.3765i −0.169875 + 0.410114i
\(58\) 0 0
\(59\) 78.1791 + 78.1791i 1.32507 + 1.32507i 0.909613 + 0.415457i \(0.136378\pi\)
0.415457 + 0.909613i \(0.363622\pi\)
\(60\) 0 0
\(61\) 7.04078 16.9979i 0.115423 0.278655i −0.855602 0.517634i \(-0.826813\pi\)
0.971025 + 0.238979i \(0.0768129\pi\)
\(62\) 0 0
\(63\) −0.382041 8.15853i −0.00606414 0.129500i
\(64\) 0 0
\(65\) 44.2631 + 106.861i 0.680971 + 1.64401i
\(66\) 0 0
\(67\) 99.2537 1.48140 0.740699 0.671837i \(-0.234494\pi\)
0.740699 + 0.671837i \(0.234494\pi\)
\(68\) 0 0
\(69\) 117.542i 1.70351i
\(70\) 0 0
\(71\) −49.5054 119.517i −0.697259 1.68333i −0.729616 0.683857i \(-0.760301\pi\)
0.0323567 0.999476i \(-0.489699\pi\)
\(72\) 0 0
\(73\) −45.9951 111.042i −0.630070 1.52112i −0.839534 0.543308i \(-0.817172\pi\)
0.209463 0.977817i \(-0.432828\pi\)
\(74\) 0 0
\(75\) −20.9894 + 50.6728i −0.279858 + 0.675638i
\(76\) 0 0
\(77\) 11.6533 + 24.7857i 0.151341 + 0.321892i
\(78\) 0 0
\(79\) −15.2402 + 36.7932i −0.192914 + 0.465736i −0.990507 0.137460i \(-0.956106\pi\)
0.797593 + 0.603196i \(0.206106\pi\)
\(80\) 0 0
\(81\) 69.1376i 0.853550i
\(82\) 0 0
\(83\) −26.4297 + 26.4297i −0.318431 + 0.318431i −0.848164 0.529734i \(-0.822292\pi\)
0.529734 + 0.848164i \(0.322292\pi\)
\(84\) 0 0
\(85\) −31.4791 109.076i −0.370343 1.28325i
\(86\) 0 0
\(87\) 28.7440 28.7440i 0.330390 0.330390i
\(88\) 0 0
\(89\) −43.3144 −0.486679 −0.243340 0.969941i \(-0.578243\pi\)
−0.243340 + 0.969941i \(0.578243\pi\)
\(90\) 0 0
\(91\) −81.6261 + 89.6462i −0.896990 + 0.985124i
\(92\) 0 0
\(93\) 6.56536 6.56536i 0.0705953 0.0705953i
\(94\) 0 0
\(95\) −55.7778 23.1039i −0.587135 0.243199i
\(96\) 0 0
\(97\) 2.09599 + 5.06017i 0.0216081 + 0.0521667i 0.934315 0.356448i \(-0.116012\pi\)
−0.912707 + 0.408614i \(0.866012\pi\)
\(98\) 0 0
\(99\) 1.74703 + 4.21769i 0.0176467 + 0.0426030i
\(100\) 0 0
\(101\) 99.4933i 0.985082i −0.870289 0.492541i \(-0.836068\pi\)
0.870289 0.492541i \(-0.163932\pi\)
\(102\) 0 0
\(103\) 41.4904i 0.402820i −0.979507 0.201410i \(-0.935448\pi\)
0.979507 0.201410i \(-0.0645523\pi\)
\(104\) 0 0
\(105\) −130.691 + 6.11988i −1.24468 + 0.0582846i
\(106\) 0 0
\(107\) 72.1912 29.9026i 0.674684 0.279463i −0.0189184 0.999821i \(-0.506022\pi\)
0.693603 + 0.720358i \(0.256022\pi\)
\(108\) 0 0
\(109\) 170.148 + 70.4774i 1.56099 + 0.646582i 0.985261 0.171061i \(-0.0547194\pi\)
0.575726 + 0.817642i \(0.304719\pi\)
\(110\) 0 0
\(111\) 66.7069 + 66.7069i 0.600963 + 0.600963i
\(112\) 0 0
\(113\) 42.3216 102.173i 0.374528 0.904190i −0.618443 0.785830i \(-0.712236\pi\)
0.992971 0.118360i \(-0.0377638\pi\)
\(114\) 0 0
\(115\) −280.464 −2.43882
\(116\) 0 0
\(117\) −14.2897 + 14.2897i −0.122135 + 0.122135i
\(118\) 0 0
\(119\) 89.4291 78.5075i 0.751505 0.659727i
\(120\) 0 0
\(121\) 74.7350 + 74.7350i 0.617645 + 0.617645i
\(122\) 0 0
\(123\) 208.893i 1.69832i
\(124\) 0 0
\(125\) 33.3352 + 13.8079i 0.266681 + 0.110463i
\(126\) 0 0
\(127\) −122.429 + 122.429i −0.964006 + 0.964006i −0.999374 0.0353684i \(-0.988740\pi\)
0.0353684 + 0.999374i \(0.488740\pi\)
\(128\) 0 0
\(129\) −57.8687 + 139.708i −0.448595 + 1.08300i
\(130\) 0 0
\(131\) −8.15133 19.6790i −0.0622239 0.150222i 0.889709 0.456528i \(-0.150907\pi\)
−0.951933 + 0.306306i \(0.900907\pi\)
\(132\) 0 0
\(133\) −2.96015 63.2144i −0.0222567 0.475296i
\(134\) 0 0
\(135\) −190.023 −1.40758
\(136\) 0 0
\(137\) −53.0715 −0.387383 −0.193692 0.981062i \(-0.562046\pi\)
−0.193692 + 0.981062i \(0.562046\pi\)
\(138\) 0 0
\(139\) 86.6360 35.8858i 0.623281 0.258171i −0.0486144 0.998818i \(-0.515481\pi\)
0.671895 + 0.740646i \(0.265481\pi\)
\(140\) 0 0
\(141\) 152.221 63.0519i 1.07958 0.447176i
\(142\) 0 0
\(143\) 25.9334 62.6088i 0.181352 0.437824i
\(144\) 0 0
\(145\) 68.5850 + 68.5850i 0.473000 + 0.473000i
\(146\) 0 0
\(147\) −64.0920 121.243i −0.436000 0.824780i
\(148\) 0 0
\(149\) 189.056i 1.26884i −0.772990 0.634418i \(-0.781240\pi\)
0.772990 0.634418i \(-0.218760\pi\)
\(150\) 0 0
\(151\) −184.770 184.770i −1.22364 1.22364i −0.966328 0.257313i \(-0.917163\pi\)
−0.257313 0.966328i \(-0.582837\pi\)
\(152\) 0 0
\(153\) 15.5021 12.3743i 0.101321 0.0808778i
\(154\) 0 0
\(155\) 15.6654 + 15.6654i 0.101067 + 0.101067i
\(156\) 0 0
\(157\) 48.8230 0.310974 0.155487 0.987838i \(-0.450305\pi\)
0.155487 + 0.987838i \(0.450305\pi\)
\(158\) 0 0
\(159\) 49.6151 + 20.5513i 0.312045 + 0.129253i
\(160\) 0 0
\(161\) −125.084 266.045i −0.776918 1.65246i
\(162\) 0 0
\(163\) 70.1040 + 29.0380i 0.430086 + 0.178147i 0.587215 0.809431i \(-0.300224\pi\)
−0.157130 + 0.987578i \(0.550224\pi\)
\(164\) 0 0
\(165\) 67.5629 27.9855i 0.409472 0.169609i
\(166\) 0 0
\(167\) 93.6387 38.7864i 0.560711 0.232254i −0.0842830 0.996442i \(-0.526860\pi\)
0.644994 + 0.764188i \(0.276860\pi\)
\(168\) 0 0
\(169\) 130.985 0.775059
\(170\) 0 0
\(171\) 10.5483i 0.0616860i
\(172\) 0 0
\(173\) 18.3009 7.58047i 0.105785 0.0438177i −0.329163 0.944273i \(-0.606767\pi\)
0.434948 + 0.900455i \(0.356767\pi\)
\(174\) 0 0
\(175\) −6.41667 137.029i −0.0366667 0.783022i
\(176\) 0 0
\(177\) 285.885 + 118.417i 1.61517 + 0.669025i
\(178\) 0 0
\(179\) −236.436 + 236.436i −1.32087 + 1.32087i −0.407802 + 0.913070i \(0.633705\pi\)
−0.913070 + 0.407802i \(0.866295\pi\)
\(180\) 0 0
\(181\) 208.563 + 86.3898i 1.15228 + 0.477292i 0.875299 0.483582i \(-0.160665\pi\)
0.276986 + 0.960874i \(0.410665\pi\)
\(182\) 0 0
\(183\) 51.4933i 0.281384i
\(184\) 0 0
\(185\) −159.167 + 159.167i −0.860363 + 0.860363i
\(186\) 0 0
\(187\) −32.1475 + 58.2303i −0.171912 + 0.311392i
\(188\) 0 0
\(189\) −84.7482 180.254i −0.448403 0.953725i
\(190\) 0 0
\(191\) 311.972i 1.63336i −0.577088 0.816682i \(-0.695811\pi\)
0.577088 0.816682i \(-0.304189\pi\)
\(192\) 0 0
\(193\) −10.2994 + 24.8650i −0.0533648 + 0.128834i −0.948313 0.317335i \(-0.897212\pi\)
0.894949 + 0.446169i \(0.147212\pi\)
\(194\) 0 0
\(195\) 228.906 + 228.906i 1.17388 + 1.17388i
\(196\) 0 0
\(197\) −188.267 77.9828i −0.955671 0.395852i −0.150311 0.988639i \(-0.548028\pi\)
−0.805359 + 0.592787i \(0.798028\pi\)
\(198\) 0 0
\(199\) −70.8095 170.949i −0.355827 0.859041i −0.995877 0.0907089i \(-0.971087\pi\)
0.640051 0.768333i \(-0.278913\pi\)
\(200\) 0 0
\(201\) 256.645 106.306i 1.27684 0.528884i
\(202\) 0 0
\(203\) −34.4709 + 95.6472i −0.169807 + 0.471169i
\(204\) 0 0
\(205\) 498.434 2.43138
\(206\) 0 0
\(207\) −18.7523 45.2720i −0.0905906 0.218705i
\(208\) 0 0
\(209\) 13.5364 + 32.6798i 0.0647675 + 0.156363i
\(210\) 0 0
\(211\) −73.4127 30.4085i −0.347927 0.144116i 0.201874 0.979411i \(-0.435297\pi\)
−0.549802 + 0.835295i \(0.685297\pi\)
\(212\) 0 0
\(213\) −256.017 256.017i −1.20196 1.20196i
\(214\) 0 0
\(215\) −333.352 138.079i −1.55047 0.642227i
\(216\) 0 0
\(217\) −7.87344 + 21.8466i −0.0362831 + 0.100676i
\(218\) 0 0
\(219\) −237.863 237.863i −1.08613 1.08613i
\(220\) 0 0
\(221\) −292.605 32.8311i −1.32401 0.148557i
\(222\) 0 0
\(223\) 10.6723 10.6723i 0.0478577 0.0478577i −0.682773 0.730631i \(-0.739226\pi\)
0.730631 + 0.682773i \(0.239226\pi\)
\(224\) 0 0
\(225\) 22.8654i 0.101624i
\(226\) 0 0
\(227\) −138.108 57.2061i −0.608404 0.252009i 0.0571417 0.998366i \(-0.481801\pi\)
−0.665546 + 0.746357i \(0.731801\pi\)
\(228\) 0 0
\(229\) 152.182 + 152.182i 0.664548 + 0.664548i 0.956449 0.291900i \(-0.0942876\pi\)
−0.291900 + 0.956449i \(0.594288\pi\)
\(230\) 0 0
\(231\) 56.6791 + 51.6083i 0.245364 + 0.223412i
\(232\) 0 0
\(233\) −229.290 + 94.9750i −0.984077 + 0.407618i −0.815934 0.578145i \(-0.803777\pi\)
−0.168143 + 0.985763i \(0.553777\pi\)
\(234\) 0 0
\(235\) 150.446 + 363.209i 0.640196 + 1.54557i
\(236\) 0 0
\(237\) 111.461i 0.470298i
\(238\) 0 0
\(239\) 107.048 0.447901 0.223951 0.974600i \(-0.428105\pi\)
0.223951 + 0.974600i \(0.428105\pi\)
\(240\) 0 0
\(241\) 343.119 142.125i 1.42373 0.589729i 0.467937 0.883762i \(-0.344998\pi\)
0.955795 + 0.294033i \(0.0949976\pi\)
\(242\) 0 0
\(243\) −23.9524 57.8261i −0.0985694 0.237968i
\(244\) 0 0
\(245\) 289.293 152.928i 1.18079 0.624195i
\(246\) 0 0
\(247\) −110.721 + 110.721i −0.448261 + 0.448261i
\(248\) 0 0
\(249\) −40.0330 + 96.6481i −0.160775 + 0.388145i
\(250\) 0 0
\(251\) −93.6181 −0.372981 −0.186490 0.982457i \(-0.559711\pi\)
−0.186490 + 0.982457i \(0.559711\pi\)
\(252\) 0 0
\(253\) 116.193 + 116.193i 0.459260 + 0.459260i
\(254\) 0 0
\(255\) −198.223 248.327i −0.777345 0.973832i
\(256\) 0 0
\(257\) 97.8788 97.8788i 0.380851 0.380851i −0.490557 0.871409i \(-0.663207\pi\)
0.871409 + 0.490557i \(0.163207\pi\)
\(258\) 0 0
\(259\) −221.971 79.9975i −0.857031 0.308871i
\(260\) 0 0
\(261\) −6.48516 + 15.6566i −0.0248474 + 0.0599868i
\(262\) 0 0
\(263\) −35.5784 + 35.5784i −0.135279 + 0.135279i −0.771504 0.636225i \(-0.780495\pi\)
0.636225 + 0.771504i \(0.280495\pi\)
\(264\) 0 0
\(265\) −49.0367 + 118.385i −0.185044 + 0.446736i
\(266\) 0 0
\(267\) −112.000 + 46.3919i −0.419476 + 0.173753i
\(268\) 0 0
\(269\) −117.014 + 48.4687i −0.434996 + 0.180181i −0.589426 0.807823i \(-0.700646\pi\)
0.154430 + 0.988004i \(0.450646\pi\)
\(270\) 0 0
\(271\) 494.558i 1.82494i 0.409145 + 0.912469i \(0.365827\pi\)
−0.409145 + 0.912469i \(0.634173\pi\)
\(272\) 0 0
\(273\) −115.048 + 319.228i −0.421423 + 1.16933i
\(274\) 0 0
\(275\) 29.3427 + 70.8395i 0.106701 + 0.257598i
\(276\) 0 0
\(277\) 19.0439 7.88824i 0.0687505 0.0284774i −0.348043 0.937479i \(-0.613154\pi\)
0.416794 + 0.909001i \(0.363154\pi\)
\(278\) 0 0
\(279\) −1.48126 + 3.57609i −0.00530919 + 0.0128175i
\(280\) 0 0
\(281\) −118.283 + 118.283i −0.420937 + 0.420937i −0.885526 0.464589i \(-0.846202\pi\)
0.464589 + 0.885526i \(0.346202\pi\)
\(282\) 0 0
\(283\) 217.112 + 89.9308i 0.767180 + 0.317777i 0.731730 0.681595i \(-0.238713\pi\)
0.0354507 + 0.999371i \(0.488713\pi\)
\(284\) 0 0
\(285\) −168.973 −0.592887
\(286\) 0 0
\(287\) 222.296 + 472.809i 0.774550 + 1.64742i
\(288\) 0 0
\(289\) 281.814 + 64.0469i 0.975134 + 0.221615i
\(290\) 0 0
\(291\) 10.8394 + 10.8394i 0.0372487 + 0.0372487i
\(292\) 0 0
\(293\) 369.182 1.26001 0.630003 0.776593i \(-0.283054\pi\)
0.630003 + 0.776593i \(0.283054\pi\)
\(294\) 0 0
\(295\) −282.552 + 682.141i −0.957803 + 2.31234i
\(296\) 0 0
\(297\) 78.7243 + 78.7243i 0.265065 + 0.265065i
\(298\) 0 0
\(299\) −278.364 + 672.031i −0.930985 + 2.24760i
\(300\) 0 0
\(301\) −17.6911 377.795i −0.0587743 1.25513i
\(302\) 0 0
\(303\) −106.562 257.264i −0.351691 0.849057i
\(304\) 0 0
\(305\) 122.867 0.402841
\(306\) 0 0
\(307\) 182.073i 0.593073i 0.955022 + 0.296536i \(0.0958316\pi\)
−0.955022 + 0.296536i \(0.904168\pi\)
\(308\) 0 0
\(309\) −44.4383 107.284i −0.143813 0.347196i
\(310\) 0 0
\(311\) −4.12524 9.95921i −0.0132644 0.0320232i 0.917109 0.398638i \(-0.130517\pi\)
−0.930373 + 0.366614i \(0.880517\pi\)
\(312\) 0 0
\(313\) 160.175 386.697i 0.511741 1.23545i −0.431129 0.902290i \(-0.641884\pi\)
0.942870 0.333162i \(-0.108116\pi\)
\(314\) 0 0
\(315\) 49.3598 23.2070i 0.156698 0.0736731i
\(316\) 0 0
\(317\) 4.68687 11.3151i 0.0147851 0.0356943i −0.916315 0.400459i \(-0.868851\pi\)
0.931100 + 0.364765i \(0.118851\pi\)
\(318\) 0 0
\(319\) 56.8279i 0.178144i
\(320\) 0 0
\(321\) 154.641 154.641i 0.481747 0.481747i
\(322\) 0 0
\(323\) 120.114 95.8792i 0.371871 0.296840i
\(324\) 0 0
\(325\) −240.007 + 240.007i −0.738484 + 0.738484i
\(326\) 0 0
\(327\) 515.443 1.57628
\(328\) 0 0
\(329\) −277.439 + 304.699i −0.843279 + 0.926136i
\(330\) 0 0
\(331\) 58.9936 58.9936i 0.178228 0.178228i −0.612355 0.790583i \(-0.709778\pi\)
0.790583 + 0.612355i \(0.209778\pi\)
\(332\) 0 0
\(333\) −36.3346 15.0503i −0.109113 0.0451960i
\(334\) 0 0
\(335\) 253.652 + 612.371i 0.757172 + 1.82797i
\(336\) 0 0
\(337\) 94.1166 + 227.218i 0.279278 + 0.674236i 0.999816 0.0191789i \(-0.00610522\pi\)
−0.720538 + 0.693415i \(0.756105\pi\)
\(338\) 0 0
\(339\) 309.523i 0.913047i
\(340\) 0 0
\(341\) 12.9800i 0.0380644i
\(342\) 0 0
\(343\) 274.087 + 206.216i 0.799088 + 0.601214i
\(344\) 0 0
\(345\) −725.208 + 300.391i −2.10205 + 0.870699i
\(346\) 0 0
\(347\) −94.9204 39.3173i −0.273546 0.113306i 0.241694 0.970353i \(-0.422297\pi\)
−0.515240 + 0.857046i \(0.672297\pi\)
\(348\) 0 0
\(349\) 339.177 + 339.177i 0.971853 + 0.971853i 0.999615 0.0277618i \(-0.00883799\pi\)
−0.0277618 + 0.999615i \(0.508838\pi\)
\(350\) 0 0
\(351\) −188.601 + 455.322i −0.537324 + 1.29721i
\(352\) 0 0
\(353\) −385.705 −1.09265 −0.546325 0.837573i \(-0.683974\pi\)
−0.546325 + 0.837573i \(0.683974\pi\)
\(354\) 0 0
\(355\) 610.873 610.873i 1.72077 1.72077i
\(356\) 0 0
\(357\) 147.155 298.783i 0.412200 0.836928i
\(358\) 0 0
\(359\) −206.582 206.582i −0.575436 0.575436i 0.358206 0.933642i \(-0.383388\pi\)
−0.933642 + 0.358206i \(0.883388\pi\)
\(360\) 0 0
\(361\) 279.269i 0.773598i
\(362\) 0 0
\(363\) 273.290 + 113.201i 0.752866 + 0.311847i
\(364\) 0 0
\(365\) 567.558 567.558i 1.55495 1.55495i
\(366\) 0 0
\(367\) 130.349 314.690i 0.355174 0.857467i −0.640790 0.767716i \(-0.721393\pi\)
0.995964 0.0897506i \(-0.0286070\pi\)
\(368\) 0 0
\(369\) 33.3260 + 80.4562i 0.0903145 + 0.218038i
\(370\) 0 0
\(371\) −134.169 + 6.28273i −0.361641 + 0.0169346i
\(372\) 0 0
\(373\) −344.488 −0.923559 −0.461780 0.886995i \(-0.652789\pi\)
−0.461780 + 0.886995i \(0.652789\pi\)
\(374\) 0 0
\(375\) 100.985 0.269294
\(376\) 0 0
\(377\) 232.411 96.2678i 0.616475 0.255352i
\(378\) 0 0
\(379\) 214.319 88.7738i 0.565485 0.234232i −0.0815795 0.996667i \(-0.525996\pi\)
0.647064 + 0.762435i \(0.275996\pi\)
\(380\) 0 0
\(381\) −185.442 + 447.697i −0.486725 + 1.17506i
\(382\) 0 0
\(383\) 21.0363 + 21.0363i 0.0549250 + 0.0549250i 0.734036 0.679111i \(-0.237634\pi\)
−0.679111 + 0.734036i \(0.737634\pi\)
\(384\) 0 0
\(385\) −123.141 + 135.240i −0.319846 + 0.351273i
\(386\) 0 0
\(387\) 63.0411i 0.162897i
\(388\) 0 0
\(389\) 10.4921 + 10.4921i 0.0269719 + 0.0269719i 0.720464 0.693492i \(-0.243929\pi\)
−0.693492 + 0.720464i \(0.743929\pi\)
\(390\) 0 0
\(391\) 345.065 625.034i 0.882520 1.59855i
\(392\) 0 0
\(393\) −42.1545 42.1545i −0.107263 0.107263i
\(394\) 0 0
\(395\) −265.953 −0.673298
\(396\) 0 0
\(397\) −455.888 188.835i −1.14833 0.475655i −0.274358 0.961628i \(-0.588465\pi\)
−0.873974 + 0.485973i \(0.838465\pi\)
\(398\) 0 0
\(399\) −75.3600 160.286i −0.188872 0.401719i
\(400\) 0 0
\(401\) −270.847 112.189i −0.675429 0.279772i 0.0184854 0.999829i \(-0.494116\pi\)
−0.693915 + 0.720057i \(0.744116\pi\)
\(402\) 0 0
\(403\) 53.0846 21.9884i 0.131724 0.0545617i
\(404\) 0 0
\(405\) −426.562 + 176.688i −1.05324 + 0.436266i
\(406\) 0 0
\(407\) 131.882 0.324034
\(408\) 0 0
\(409\) 191.151i 0.467362i −0.972313 0.233681i \(-0.924923\pi\)
0.972313 0.233681i \(-0.0750771\pi\)
\(410\) 0 0
\(411\) −137.229 + 56.8423i −0.333891 + 0.138302i
\(412\) 0 0
\(413\) −773.087 + 36.2014i −1.87188 + 0.0876548i
\(414\) 0 0
\(415\) −230.609 95.5213i −0.555684 0.230172i
\(416\) 0 0
\(417\) 185.583 185.583i 0.445043 0.445043i
\(418\) 0 0
\(419\) 467.230 + 193.533i 1.11511 + 0.461893i 0.862694 0.505727i \(-0.168776\pi\)
0.252414 + 0.967619i \(0.418776\pi\)
\(420\) 0 0
\(421\) 556.044i 1.32077i 0.750927 + 0.660385i \(0.229607\pi\)
−0.750927 + 0.660385i \(0.770393\pi\)
\(422\) 0 0
\(423\) −48.5694 + 48.5694i −0.114821 + 0.114821i
\(424\) 0 0
\(425\) 260.370 207.836i 0.612635 0.489026i
\(426\) 0 0
\(427\) 54.7971 + 116.550i 0.128331 + 0.272951i
\(428\) 0 0
\(429\) 189.666i 0.442112i
\(430\) 0 0
\(431\) 65.7682 158.779i 0.152595 0.368396i −0.829034 0.559198i \(-0.811109\pi\)
0.981628 + 0.190803i \(0.0611090\pi\)
\(432\) 0 0
\(433\) 289.547 + 289.547i 0.668700 + 0.668700i 0.957415 0.288715i \(-0.0932281\pi\)
−0.288715 + 0.957415i \(0.593228\pi\)
\(434\) 0 0
\(435\) 250.801 + 103.885i 0.576555 + 0.238817i
\(436\) 0 0
\(437\) −145.297 350.779i −0.332488 0.802697i
\(438\) 0 0
\(439\) 211.924 87.7818i 0.482743 0.199959i −0.128021 0.991771i \(-0.540862\pi\)
0.610764 + 0.791813i \(0.290862\pi\)
\(440\) 0 0
\(441\) 44.0279 + 36.4721i 0.0998365 + 0.0827033i
\(442\) 0 0
\(443\) 56.3433 0.127186 0.0635929 0.997976i \(-0.479744\pi\)
0.0635929 + 0.997976i \(0.479744\pi\)
\(444\) 0 0
\(445\) −110.694 267.240i −0.248751 0.600539i
\(446\) 0 0
\(447\) −202.489 488.852i −0.452995 1.09363i
\(448\) 0 0
\(449\) −156.291 64.7377i −0.348086 0.144182i 0.201789 0.979429i \(-0.435325\pi\)
−0.549875 + 0.835247i \(0.685325\pi\)
\(450\) 0 0
\(451\) −206.495 206.495i −0.457860 0.457860i
\(452\) 0 0
\(453\) −675.665 279.870i −1.49153 0.617814i
\(454\) 0 0
\(455\) −761.699 274.513i −1.67406 0.603326i
\(456\) 0 0
\(457\) 516.428 + 516.428i 1.13004 + 1.13004i 0.990170 + 0.139869i \(0.0446681\pi\)
0.139869 + 0.990170i \(0.455332\pi\)
\(458\) 0 0
\(459\) 233.792 423.480i 0.509352 0.922614i
\(460\) 0 0
\(461\) −261.847 + 261.847i −0.567997 + 0.567997i −0.931567 0.363570i \(-0.881558\pi\)
0.363570 + 0.931567i \(0.381558\pi\)
\(462\) 0 0
\(463\) 501.256i 1.08263i 0.840821 + 0.541313i \(0.182072\pi\)
−0.840821 + 0.541313i \(0.817928\pi\)
\(464\) 0 0
\(465\) 57.2851 + 23.7283i 0.123194 + 0.0510285i
\(466\) 0 0
\(467\) 349.995 + 349.995i 0.749454 + 0.749454i 0.974377 0.224922i \(-0.0722129\pi\)
−0.224922 + 0.974377i \(0.572213\pi\)
\(468\) 0 0
\(469\) −467.763 + 513.723i −0.997362 + 1.09536i
\(470\) 0 0
\(471\) 126.244 52.2918i 0.268033 0.111023i
\(472\) 0 0
\(473\) 80.8992 + 195.308i 0.171034 + 0.412913i
\(474\) 0 0
\(475\) 177.167i 0.372983i
\(476\) 0 0
\(477\) −22.3881 −0.0469353
\(478\) 0 0
\(479\) 174.744 72.3812i 0.364809 0.151109i −0.192746 0.981249i \(-0.561739\pi\)
0.557556 + 0.830140i \(0.311739\pi\)
\(480\) 0 0
\(481\) 223.411 + 539.362i 0.464472 + 1.12133i
\(482\) 0 0
\(483\) −608.383 553.954i −1.25959 1.14690i
\(484\) 0 0
\(485\) −25.8635 + 25.8635i −0.0533268 + 0.0533268i
\(486\) 0 0
\(487\) 177.799 429.245i 0.365090 0.881406i −0.629449 0.777042i \(-0.716719\pi\)
0.994539 0.104364i \(-0.0332807\pi\)
\(488\) 0 0
\(489\) 212.372 0.434299
\(490\) 0 0
\(491\) −231.549 231.549i −0.471587 0.471587i 0.430841 0.902428i \(-0.358217\pi\)
−0.902428 + 0.430841i \(0.858217\pi\)
\(492\) 0 0
\(493\) −237.229 + 68.4639i −0.481195 + 0.138872i
\(494\) 0 0
\(495\) −21.5575 + 21.5575i −0.0435504 + 0.0435504i
\(496\) 0 0
\(497\) 851.910 + 307.025i 1.71411 + 0.617757i
\(498\) 0 0
\(499\) −68.4857 + 165.339i −0.137246 + 0.331341i −0.977527 0.210810i \(-0.932390\pi\)
0.840281 + 0.542151i \(0.182390\pi\)
\(500\) 0 0
\(501\) 200.583 200.583i 0.400366 0.400366i
\(502\) 0 0
\(503\) −41.8123 + 100.944i −0.0831259 + 0.200684i −0.959977 0.280078i \(-0.909640\pi\)
0.876851 + 0.480761i \(0.159640\pi\)
\(504\) 0 0
\(505\) 613.850 254.265i 1.21554 0.503495i
\(506\) 0 0
\(507\) 338.693 140.291i 0.668034 0.276709i
\(508\) 0 0
\(509\) 259.232i 0.509297i 0.967034 + 0.254648i \(0.0819597\pi\)
−0.967034 + 0.254648i \(0.918040\pi\)
\(510\) 0 0
\(511\) 791.504 + 285.255i 1.54893 + 0.558229i
\(512\) 0 0
\(513\) −98.4434 237.663i −0.191898 0.463282i
\(514\) 0 0
\(515\) 255.986 106.033i 0.497060 0.205889i
\(516\) 0 0
\(517\) 88.1450 212.801i 0.170493 0.411607i
\(518\) 0 0
\(519\) 39.2023 39.2023i 0.0755343 0.0755343i
\(520\) 0 0
\(521\) −445.716 184.622i −0.855501 0.354360i −0.0885549 0.996071i \(-0.528225\pi\)
−0.766947 + 0.641711i \(0.778225\pi\)
\(522\) 0 0
\(523\) −642.432 −1.22836 −0.614180 0.789166i \(-0.710513\pi\)
−0.614180 + 0.789166i \(0.710513\pi\)
\(524\) 0 0
\(525\) −163.357 347.449i −0.311156 0.661808i
\(526\) 0 0
\(527\) −54.1852 + 15.6377i −0.102818 + 0.0296731i
\(528\) 0 0
\(529\) −873.134 873.134i −1.65054 1.65054i
\(530\) 0 0
\(531\) −129.002 −0.242941
\(532\) 0 0
\(533\) 494.702 1194.32i 0.928147 2.24074i
\(534\) 0 0
\(535\) 368.984 + 368.984i 0.689689 + 0.689689i
\(536\) 0 0
\(537\) −358.128 + 864.598i −0.666906 + 1.61005i
\(538\) 0 0
\(539\) −183.207 56.4945i −0.339901 0.104814i
\(540\) 0 0
\(541\) −246.142 594.239i −0.454976 1.09841i −0.970406 0.241477i \(-0.922368\pi\)
0.515431 0.856931i \(-0.327632\pi\)
\(542\) 0 0
\(543\) 631.820 1.16357
\(544\) 0 0
\(545\) 1229.88i 2.25666i
\(546\) 0 0
\(547\) −4.12813 9.96620i −0.00754686 0.0182197i 0.920061 0.391775i \(-0.128139\pi\)
−0.927608 + 0.373555i \(0.878139\pi\)
\(548\) 0 0
\(549\) 8.21505 + 19.8329i 0.0149637 + 0.0361255i
\(550\) 0 0
\(551\) −50.2487 + 121.311i −0.0911954 + 0.220165i
\(552\) 0 0
\(553\) −118.612 252.280i −0.214488 0.456203i
\(554\) 0 0
\(555\) −241.089 + 582.041i −0.434395 + 1.04872i
\(556\) 0 0
\(557\) 536.780i 0.963699i 0.876254 + 0.481849i \(0.160035\pi\)
−0.876254 + 0.481849i \(0.839965\pi\)
\(558\) 0 0
\(559\) −661.712 + 661.712i −1.18374 + 1.18374i
\(560\) 0 0
\(561\) −20.7575 + 185.000i −0.0370010 + 0.329769i
\(562\) 0 0
\(563\) 764.763 764.763i 1.35837 1.35837i 0.482444 0.875927i \(-0.339749\pi\)
0.875927 0.482444i \(-0.160251\pi\)
\(564\) 0 0
\(565\) 738.543 1.30716
\(566\) 0 0
\(567\) −357.846 325.832i −0.631122 0.574659i
\(568\) 0 0
\(569\) 619.370 619.370i 1.08852 1.08852i 0.0928430 0.995681i \(-0.470405\pi\)
0.995681 0.0928430i \(-0.0295955\pi\)
\(570\) 0 0
\(571\) 693.882 + 287.415i 1.21521 + 0.503355i 0.895882 0.444291i \(-0.146545\pi\)
0.319323 + 0.947646i \(0.396545\pi\)
\(572\) 0 0
\(573\) −334.138 806.681i −0.583138 1.40782i
\(574\) 0 0
\(575\) −314.959 760.378i −0.547754 1.32240i
\(576\) 0 0
\(577\) 355.899i 0.616810i 0.951255 + 0.308405i \(0.0997952\pi\)
−0.951255 + 0.308405i \(0.900205\pi\)
\(578\) 0 0
\(579\) 75.3256i 0.130096i
\(580\) 0 0
\(581\) −12.2385 261.355i −0.0210645 0.449836i
\(582\) 0 0
\(583\) 69.3608 28.7302i 0.118972 0.0492799i
\(584\) 0 0
\(585\) −124.683 51.6454i −0.213133 0.0882828i
\(586\) 0 0
\(587\) −26.6252 26.6252i −0.0453580 0.0453580i 0.684064 0.729422i \(-0.260211\pi\)
−0.729422 + 0.684064i \(0.760211\pi\)
\(588\) 0 0
\(589\) −11.4772 + 27.7085i −0.0194859 + 0.0470432i
\(590\) 0 0
\(591\) −570.334 −0.965032
\(592\) 0 0
\(593\) 441.649 441.649i 0.744771 0.744771i −0.228721 0.973492i \(-0.573454\pi\)
0.973492 + 0.228721i \(0.0734544\pi\)
\(594\) 0 0
\(595\) 712.917 + 351.122i 1.19818 + 0.590122i
\(596\) 0 0
\(597\) −366.190 366.190i −0.613384 0.613384i
\(598\) 0 0
\(599\) 399.099i 0.666275i −0.942878 0.333138i \(-0.891893\pi\)
0.942878 0.333138i \(-0.108107\pi\)
\(600\) 0 0
\(601\) −837.008 346.700i −1.39269 0.576872i −0.444848 0.895606i \(-0.646742\pi\)
−0.947844 + 0.318734i \(0.896742\pi\)
\(602\) 0 0
\(603\) −81.8882 + 81.8882i −0.135801 + 0.135801i
\(604\) 0 0
\(605\) −270.104 + 652.089i −0.446453 + 1.07783i
\(606\) 0 0
\(607\) −98.3533 237.446i −0.162032 0.391179i 0.821923 0.569599i \(-0.192901\pi\)
−0.983954 + 0.178420i \(0.942901\pi\)
\(608\) 0 0
\(609\) 13.3101 + 284.239i 0.0218557 + 0.466731i
\(610\) 0 0
\(611\) 1019.62 1.66877
\(612\) 0 0
\(613\) 502.826 0.820271 0.410136 0.912025i \(-0.365481\pi\)
0.410136 + 0.912025i \(0.365481\pi\)
\(614\) 0 0
\(615\) 1288.82 533.847i 2.09564 0.868044i
\(616\) 0 0
\(617\) −815.576 + 337.823i −1.32184 + 0.547525i −0.928317 0.371790i \(-0.878744\pi\)
−0.393524 + 0.919314i \(0.628744\pi\)
\(618\) 0 0
\(619\) −248.846 + 600.767i −0.402013 + 0.970545i 0.585164 + 0.810915i \(0.301030\pi\)
−0.987177 + 0.159630i \(0.948970\pi\)
\(620\) 0 0
\(621\) −845.012 845.012i −1.36073 1.36073i
\(622\) 0 0
\(623\) 204.132 224.189i 0.327660 0.359855i
\(624\) 0 0
\(625\) 730.882i 1.16941i
\(626\) 0 0
\(627\) 70.0033 + 70.0033i 0.111648 + 0.111648i
\(628\) 0 0
\(629\) −158.886 550.544i −0.252601 0.875269i
\(630\) 0 0
\(631\) −114.707 114.707i −0.181787 0.181787i 0.610347 0.792134i \(-0.291030\pi\)
−0.792134 + 0.610347i \(0.791030\pi\)
\(632\) 0 0
\(633\) −222.395 −0.351336
\(634\) 0 0
\(635\) −1068.23 442.477i −1.68226 0.696815i
\(636\) 0 0
\(637\) −79.3089 844.970i −0.124504 1.32648i
\(638\) 0 0
\(639\) 139.450 + 57.7620i 0.218231 + 0.0903944i
\(640\) 0 0
\(641\) −874.060 + 362.047i −1.36359 + 0.564816i −0.940042 0.341058i \(-0.889215\pi\)
−0.423545 + 0.905875i \(0.639215\pi\)
\(642\) 0 0
\(643\) −512.592 + 212.322i −0.797188 + 0.330206i −0.743829 0.668370i \(-0.766993\pi\)
−0.0533582 + 0.998575i \(0.516993\pi\)
\(644\) 0 0
\(645\) −1009.85 −1.56566
\(646\) 0 0
\(647\) 101.168i 0.156365i 0.996939 + 0.0781824i \(0.0249116\pi\)
−0.996939 + 0.0781824i \(0.975088\pi\)
\(648\) 0 0
\(649\) 399.661 165.545i 0.615810 0.255077i
\(650\) 0 0
\(651\) 3.04014 + 64.9226i 0.00466995 + 0.0997275i
\(652\) 0 0
\(653\) −906.247 375.380i −1.38782 0.574854i −0.441260 0.897379i \(-0.645468\pi\)
−0.946561 + 0.322525i \(0.895468\pi\)
\(654\) 0 0
\(655\) 100.583 100.583i 0.153563 0.153563i
\(656\) 0 0
\(657\) 129.562 + 53.6663i 0.197202 + 0.0816838i
\(658\) 0 0
\(659\) 539.391i 0.818499i −0.912423 0.409249i \(-0.865791\pi\)
0.912423 0.409249i \(-0.134209\pi\)
\(660\) 0 0
\(661\) −96.5660 + 96.5660i −0.146091 + 0.146091i −0.776369 0.630278i \(-0.782941\pi\)
0.630278 + 0.776369i \(0.282941\pi\)
\(662\) 0 0
\(663\) −791.766 + 228.502i −1.19422 + 0.344648i
\(664\) 0 0
\(665\) 382.453 179.814i 0.575117 0.270397i
\(666\) 0 0
\(667\) 609.980i 0.914513i
\(668\) 0 0
\(669\) 16.1652 39.0263i 0.0241633 0.0583353i
\(670\) 0 0
\(671\) −50.9021 50.9021i −0.0758601 0.0758601i
\(672\) 0 0
\(673\) 398.377 + 165.013i 0.591942 + 0.245190i 0.658486 0.752593i \(-0.271197\pi\)
−0.0665440 + 0.997783i \(0.521197\pi\)
\(674\) 0 0
\(675\) −213.394 515.180i −0.316140 0.763229i
\(676\) 0 0
\(677\) 1081.60 448.015i 1.59764 0.661765i 0.606562 0.795036i \(-0.292548\pi\)
0.991080 + 0.133271i \(0.0425481\pi\)
\(678\) 0 0
\(679\) −36.0687 12.9990i −0.0531203 0.0191443i
\(680\) 0 0
\(681\) −418.382 −0.614364
\(682\) 0 0
\(683\) −259.915 627.489i −0.380548 0.918725i −0.991860 0.127335i \(-0.959358\pi\)
0.611311 0.791390i \(-0.290642\pi\)
\(684\) 0 0
\(685\) −135.629 327.439i −0.197999 0.478012i
\(686\) 0 0
\(687\) 556.497 + 230.508i 0.810039 + 0.335529i
\(688\) 0 0
\(689\) 234.998 + 234.998i 0.341070 + 0.341070i
\(690\) 0 0
\(691\) 403.939 + 167.317i 0.584571 + 0.242137i 0.655313 0.755357i \(-0.272537\pi\)
−0.0707418 + 0.997495i \(0.522537\pi\)
\(692\) 0 0
\(693\) −30.0636 10.8348i −0.0433818 0.0156346i
\(694\) 0 0
\(695\) 442.814 + 442.814i 0.637142 + 0.637142i
\(696\) 0 0
\(697\) −613.241 + 1110.79i −0.879830 + 1.59368i
\(698\) 0 0
\(699\) −491.162 + 491.162i −0.702664 + 0.702664i
\(700\) 0 0
\(701\) 781.470i 1.11479i −0.830246 0.557397i \(-0.811800\pi\)
0.830246 0.557397i \(-0.188200\pi\)
\(702\) 0 0
\(703\) −281.530 116.613i −0.400469 0.165880i
\(704\) 0 0
\(705\) 778.029 + 778.029i 1.10359 + 1.10359i
\(706\) 0 0
\(707\) 514.963 + 468.892i 0.728378 + 0.663214i
\(708\) 0 0
\(709\) 260.175 107.768i 0.366960 0.152000i −0.191581 0.981477i \(-0.561361\pi\)
0.558541 + 0.829477i \(0.311361\pi\)
\(710\) 0 0
\(711\) −17.7820 42.9296i −0.0250099 0.0603791i
\(712\) 0 0
\(713\) 139.325i 0.195406i
\(714\) 0 0
\(715\) 452.556 0.632946
\(716\) 0 0
\(717\) 276.800 114.654i 0.386053 0.159908i
\(718\) 0 0
\(719\) 30.0257 + 72.4884i 0.0417604 + 0.100818i 0.943383 0.331704i \(-0.107624\pi\)
−0.901623 + 0.432523i \(0.857624\pi\)
\(720\) 0 0
\(721\) 214.749 + 195.536i 0.297848 + 0.271201i
\(722\) 0 0
\(723\) 734.996 734.996i 1.01659 1.01659i
\(724\) 0 0
\(725\) −108.923 + 262.964i −0.150239 + 0.362709i
\(726\) 0 0
\(727\) 204.327 0.281055 0.140528 0.990077i \(-0.455120\pi\)
0.140528 + 0.990077i \(0.455120\pi\)
\(728\) 0 0
\(729\) −563.858 563.858i −0.773468 0.773468i
\(730\) 0 0
\(731\) 717.853 573.014i 0.982015 0.783877i
\(732\) 0 0
\(733\) 295.368 295.368i 0.402958 0.402958i −0.476316 0.879274i \(-0.658028\pi\)
0.879274 + 0.476316i \(0.158028\pi\)
\(734\) 0 0
\(735\) 584.245 705.279i 0.794891 0.959564i
\(736\) 0 0
\(737\) 148.613 358.783i 0.201646 0.486816i
\(738\) 0 0
\(739\) −886.691 + 886.691i −1.19985 + 1.19985i −0.225643 + 0.974210i \(0.572448\pi\)
−0.974210 + 0.225643i \(0.927552\pi\)
\(740\) 0 0
\(741\) −167.708 + 404.882i −0.226326 + 0.546400i
\(742\) 0 0
\(743\) −965.640 + 399.981i −1.29965 + 0.538332i −0.921847 0.387554i \(-0.873320\pi\)
−0.377802 + 0.925886i \(0.623320\pi\)
\(744\) 0 0
\(745\) 1166.43 483.152i 1.56568 0.648527i
\(746\) 0 0
\(747\) 43.6111i 0.0583817i
\(748\) 0 0
\(749\) −185.451 + 514.577i −0.247599 + 0.687018i
\(750\) 0 0
\(751\) 290.378 + 701.033i 0.386654 + 0.933467i 0.990644 + 0.136474i \(0.0435770\pi\)
−0.603989 + 0.796993i \(0.706423\pi\)
\(752\) 0 0
\(753\) −242.073 + 100.270i −0.321477 + 0.133160i
\(754\) 0 0
\(755\) 667.788 1612.18i 0.884487 2.13534i
\(756\) 0 0
\(757\) 189.952 189.952i 0.250928 0.250928i −0.570423 0.821351i \(-0.693221\pi\)
0.821351 + 0.570423i \(0.193221\pi\)
\(758\) 0 0
\(759\) 424.893 + 175.997i 0.559807 + 0.231880i
\(760\) 0 0
\(761\) −270.807 −0.355857 −0.177928 0.984043i \(-0.556940\pi\)
−0.177928 + 0.984043i \(0.556940\pi\)
\(762\) 0 0
\(763\) −1166.65 + 548.514i −1.52903 + 0.718891i
\(764\) 0 0
\(765\) 115.964 + 64.0205i 0.151586 + 0.0836870i
\(766\) 0 0
\(767\) 1354.07 + 1354.07i 1.76541 + 1.76541i
\(768\) 0 0
\(769\) 780.346 1.01475 0.507377 0.861724i \(-0.330615\pi\)
0.507377 + 0.861724i \(0.330615\pi\)
\(770\) 0 0
\(771\) 148.256 357.923i 0.192291 0.464232i
\(772\) 0 0
\(773\) 587.517 + 587.517i 0.760048 + 0.760048i 0.976331 0.216283i \(-0.0693933\pi\)
−0.216283 + 0.976331i \(0.569393\pi\)
\(774\) 0 0
\(775\) −24.8790 + 60.0632i −0.0321019 + 0.0775009i
\(776\) 0 0
\(777\) −659.641 + 30.8891i −0.848959 + 0.0397543i
\(778\) 0 0
\(779\) 258.219 + 623.395i 0.331474 + 0.800250i
\(780\) 0 0
\(781\) −506.155 −0.648085
\(782\) 0 0
\(783\) 413.281i 0.527817i
\(784\) 0 0
\(785\) 124.772 + 301.226i 0.158945 + 0.383727i
\(786\) 0 0
\(787\) −400.943 967.962i −0.509457 1.22994i −0.944197 0.329383i \(-0.893159\pi\)
0.434739 0.900556i \(-0.356841\pi\)
\(788\) 0 0
\(789\) −53.8903 + 130.103i −0.0683020 + 0.164896i
\(790\) 0 0
\(791\) 329.382 + 700.574i 0.416412 + 0.885682i
\(792\) 0 0
\(793\) 121.947 294.405i 0.153779 0.371255i
\(794\) 0 0
\(795\) 358.634i 0.451112i
\(796\) 0 0
\(797\) 596.320 596.320i 0.748205 0.748205i −0.225937 0.974142i \(-0.572544\pi\)
0.974142 + 0.225937i \(0.0725443\pi\)
\(798\) 0 0
\(799\) −994.536 111.590i −1.24473 0.139662i
\(800\) 0 0
\(801\) 35.7361 35.7361i 0.0446144 0.0446144i
\(802\) 0 0
\(803\) −470.265 −0.585635
\(804\) 0 0
\(805\) 1321.77 1451.64i 1.64195 1.80328i
\(806\) 0 0
\(807\) −250.655 + 250.655i −0.310601 + 0.310601i
\(808\) 0 0
\(809\) −178.015 73.7362i −0.220043 0.0911448i 0.269939 0.962878i \(-0.412997\pi\)
−0.489982 + 0.871733i \(0.662997\pi\)
\(810\) 0 0
\(811\) 245.758 + 593.312i 0.303031 + 0.731581i 0.999897 + 0.0143795i \(0.00457729\pi\)
−0.696866 + 0.717202i \(0.745423\pi\)
\(812\) 0 0
\(813\) 529.697 + 1278.80i 0.651534 + 1.57294i
\(814\) 0 0
\(815\) 506.734i 0.621759i
\(816\) 0 0
\(817\) 488.459i 0.597869i
\(818\) 0 0
\(819\) −6.61697 141.306i −0.00807933 0.172535i
\(820\) 0 0
\(821\) 527.861 218.647i 0.642949 0.266318i −0.0372945 0.999304i \(-0.511874\pi\)
0.680244 + 0.732986i \(0.261874\pi\)
\(822\) 0 0
\(823\) −453.446 187.824i −0.550967 0.228218i 0.0897911 0.995961i \(-0.471380\pi\)
−0.640759 + 0.767742i \(0.721380\pi\)
\(824\) 0 0
\(825\) 151.745 + 151.745i 0.183934 + 0.183934i
\(826\) 0 0
\(827\) −213.981 + 516.595i −0.258743 + 0.624662i −0.998856 0.0478213i \(-0.984772\pi\)
0.740113 + 0.672483i \(0.234772\pi\)
\(828\) 0 0
\(829\) −1103.21 −1.33077 −0.665384 0.746501i \(-0.731732\pi\)
−0.665384 + 0.746501i \(0.731732\pi\)
\(830\) 0 0
\(831\) 40.7939 40.7939i 0.0490902 0.0490902i
\(832\) 0 0
\(833\) −15.1177 + 832.863i −0.0181485 + 0.999835i
\(834\) 0 0
\(835\) 478.606 + 478.606i 0.573181 + 0.573181i
\(836\) 0 0
\(837\) 94.3968i 0.112780i
\(838\) 0 0
\(839\) −1397.65 578.924i −1.66585 0.690017i −0.667347 0.744747i \(-0.732570\pi\)
−0.998501 + 0.0547305i \(0.982570\pi\)
\(840\) 0 0
\(841\) −445.511 + 445.511i −0.529740 + 0.529740i
\(842\) 0 0
\(843\) −179.163 + 432.538i −0.212530 + 0.513093i
\(844\) 0 0
\(845\) 334.745 + 808.145i 0.396148 + 0.956385i
\(846\) 0 0
\(847\) −739.029 + 34.6066i −0.872525 + 0.0408578i
\(848\) 0 0
\(849\) 657.716 0.774695
\(850\) 0 0
\(851\) −1415.60 −1.66345
\(852\) 0 0
\(853\) −1105.75 + 458.016i −1.29631 + 0.536947i −0.920859 0.389897i \(-0.872511\pi\)
−0.375447 + 0.926844i \(0.622511\pi\)
\(854\) 0 0
\(855\) 65.0806 26.9572i 0.0761176 0.0315289i
\(856\) 0 0
\(857\) −386.743 + 933.681i −0.451276 + 1.08948i 0.520562 + 0.853824i \(0.325723\pi\)
−0.971837 + 0.235652i \(0.924277\pi\)
\(858\) 0 0
\(859\) −496.780 496.780i −0.578324 0.578324i 0.356117 0.934441i \(-0.384100\pi\)
−0.934441 + 0.356117i \(0.884100\pi\)
\(860\) 0 0
\(861\) 1081.20 + 984.473i 1.25575 + 1.14341i
\(862\) 0 0
\(863\) 1636.78i 1.89662i 0.317346 + 0.948310i \(0.397209\pi\)
−0.317346 + 0.948310i \(0.602791\pi\)
\(864\) 0 0
\(865\) 93.5393 + 93.5393i 0.108138 + 0.108138i
\(866\) 0 0
\(867\) 797.296 136.228i 0.919603 0.157126i
\(868\) 0 0
\(869\) 110.181 + 110.181i 0.126791 + 0.126791i
\(870\) 0 0
\(871\) 1719.08 1.97369
\(872\) 0 0
\(873\) −5.90411 2.44556i −0.00676301 0.00280133i
\(874\) 0 0
\(875\) −228.570 + 107.464i −0.261222 + 0.122816i
\(876\) 0 0
\(877\) 962.736 + 398.778i 1.09776 + 0.454707i 0.856706 0.515805i \(-0.172507\pi\)
0.241054 + 0.970512i \(0.422507\pi\)
\(878\) 0 0
\(879\) 954.609 395.412i 1.08602 0.449843i
\(880\) 0 0
\(881\) −1244.74 + 515.587i −1.41287 + 0.585230i −0.953058 0.302787i \(-0.902083\pi\)
−0.459811 + 0.888017i \(0.652083\pi\)
\(882\) 0 0
\(883\) 663.854 0.751816 0.375908 0.926657i \(-0.377331\pi\)
0.375908 + 0.926657i \(0.377331\pi\)
\(884\) 0 0
\(885\) 2066.47i 2.33499i
\(886\) 0 0
\(887\) −691.553 + 286.451i −0.779654 + 0.322943i −0.736776 0.676137i \(-0.763653\pi\)
−0.0428784 + 0.999080i \(0.513653\pi\)
\(888\) 0 0
\(889\) −56.6915 1210.66i −0.0637700 1.36182i
\(890\) 0 0
\(891\) 249.919 + 103.520i 0.280493 + 0.116184i
\(892\) 0 0
\(893\) −376.328 + 376.328i −0.421420 + 0.421420i
\(894\) 0 0
\(895\) −2062.99 854.519i −2.30502 0.954769i
\(896\) 0 0
\(897\) 2035.84i 2.26961i
\(898\) 0 0
\(899\) 34.0706 34.0706i 0.0378984 0.0378984i
\(900\) 0 0
\(901\) −203.498 254.935i −0.225858 0.282947i
\(902\) 0 0
\(903\) −450.382 957.934i −0.498762 1.06084i
\(904\) 0 0
\(905\) 1507.56i 1.66582i
\(906\) 0 0
\(907\) −640.011 + 1545.12i −0.705635 + 1.70355i 0.00499432 + 0.999988i \(0.498410\pi\)
−0.710629 + 0.703566i \(0.751590\pi\)
\(908\) 0 0
\(909\) 82.0859 + 82.0859i 0.0903035 + 0.0903035i
\(910\) 0 0
\(911\) 284.622 + 117.894i 0.312428 + 0.129412i 0.533387 0.845871i \(-0.320919\pi\)
−0.220959 + 0.975283i \(0.570919\pi\)
\(912\) 0 0
\(913\) 55.9651 + 135.112i 0.0612981 + 0.147987i
\(914\) 0 0
\(915\) 317.701 131.596i 0.347215 0.143821i
\(916\) 0 0
\(917\) 140.272 + 50.5533i 0.152968 + 0.0551290i
\(918\) 0 0
\(919\) −340.694 −0.370722 −0.185361 0.982670i \(-0.559345\pi\)
−0.185361 + 0.982670i \(0.559345\pi\)
\(920\) 0 0
\(921\) 195.010 + 470.795i 0.211737 + 0.511178i
\(922\) 0 0
\(923\) −857.438 2070.04i −0.928968 2.24273i
\(924\) 0 0
\(925\) −610.268 252.781i −0.659749 0.273277i
\(926\) 0 0
\(927\) 34.2312 + 34.2312i 0.0369269 + 0.0369269i
\(928\) 0 0
\(929\) −1676.85 694.573i −1.80500 0.747657i −0.984348 0.176233i \(-0.943609\pi\)
−0.820655 0.571424i \(-0.806391\pi\)
\(930\) 0 0
\(931\) 341.139 + 282.595i 0.366422 + 0.303540i
\(932\) 0 0
\(933\) −21.3336 21.3336i −0.0228656 0.0228656i
\(934\) 0 0
\(935\) −441.423 49.5289i −0.472110 0.0529721i
\(936\) 0 0
\(937\) −410.955 + 410.955i −0.438586 + 0.438586i −0.891536 0.452950i \(-0.850372\pi\)
0.452950 + 0.891536i \(0.350372\pi\)
\(938\) 0 0
\(939\) 1171.45i 1.24755i
\(940\) 0 0
\(941\) −811.748 336.237i −0.862644 0.357319i −0.0929028 0.995675i \(-0.529615\pi\)
−0.769741 + 0.638356i \(0.779615\pi\)
\(942\) 0 0
\(943\) 2216.48 + 2216.48i 2.35046 + 2.35046i
\(944\) 0 0
\(945\) 895.541 983.533i 0.947663 1.04078i
\(946\) 0 0
\(947\) 740.167 306.587i 0.781591 0.323746i 0.0440335 0.999030i \(-0.485979\pi\)
0.737557 + 0.675285i \(0.235979\pi\)
\(948\) 0 0
\(949\) −796.639 1923.26i −0.839451 2.02661i
\(950\) 0 0
\(951\) 34.2778i 0.0360440i
\(952\) 0 0
\(953\) 481.411 0.505154 0.252577 0.967577i \(-0.418722\pi\)
0.252577 + 0.967577i \(0.418722\pi\)
\(954\) 0 0
\(955\) 1924.79 797.276i 2.01549 0.834844i
\(956\) 0 0
\(957\) −60.8655 146.942i −0.0636003 0.153545i
\(958\) 0 0
\(959\) 250.116 274.691i 0.260809 0.286435i
\(960\) 0 0
\(961\) −671.748 + 671.748i −0.699009 + 0.699009i
\(962\) 0 0
\(963\) −34.8898 + 84.2314i −0.0362303 + 0.0874677i
\(964\) 0 0
\(965\) −179.732 −0.186251
\(966\) 0 0
\(967\) −364.587 364.587i −0.377029 0.377029i 0.493000 0.870029i \(-0.335900\pi\)
−0.870029 + 0.493000i \(0.835900\pi\)
\(968\) 0 0
\(969\) 207.893 376.568i 0.214544 0.388615i
\(970\) 0 0
\(971\) 404.328 404.328i 0.416404 0.416404i −0.467558 0.883962i \(-0.654866\pi\)
0.883962 + 0.467558i \(0.154866\pi\)
\(972\) 0 0
\(973\) −222.558 + 617.538i −0.228734 + 0.634675i
\(974\) 0 0
\(975\) −363.538 + 877.657i −0.372859 + 0.900161i
\(976\) 0 0
\(977\) 751.571 751.571i 0.769264 0.769264i −0.208713 0.977977i \(-0.566927\pi\)
0.977977 + 0.208713i \(0.0669273\pi\)
\(978\) 0 0
\(979\) −64.8549 + 156.573i −0.0662460 + 0.159932i
\(980\) 0 0
\(981\) −198.525 + 82.2318i −0.202370 + 0.0838244i
\(982\) 0 0
\(983\) 564.876 233.979i 0.574645 0.238026i −0.0763841 0.997078i \(-0.524338\pi\)
0.651029 + 0.759053i \(0.274338\pi\)
\(984\) 0 0
\(985\) 1360.86i 1.38158i
\(986\) 0 0
\(987\) −391.038 + 1085.02i −0.396189 + 1.09931i
\(988\) 0 0
\(989\) −868.357 2096.40i −0.878015 2.11972i
\(990\) 0 0
\(991\) 278.739 115.458i 0.281271 0.116506i −0.237588 0.971366i \(-0.576357\pi\)
0.518859 + 0.854860i \(0.326357\pi\)
\(992\) 0 0
\(993\) 89.3572 215.727i 0.0899871 0.217248i
\(994\) 0 0
\(995\) 873.755 873.755i 0.878146 0.878146i
\(996\) 0 0
\(997\) 88.0306 + 36.4635i 0.0882955 + 0.0365732i 0.426394 0.904538i \(-0.359784\pi\)
−0.338099 + 0.941111i \(0.609784\pi\)
\(998\) 0 0
\(999\) −959.111 −0.960071
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 476.3.x.a.321.19 yes 96
7.6 odd 2 inner 476.3.x.a.321.6 96
17.8 even 8 inner 476.3.x.a.433.6 yes 96
119.76 odd 8 inner 476.3.x.a.433.19 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.3.x.a.321.6 96 7.6 odd 2 inner
476.3.x.a.321.19 yes 96 1.1 even 1 trivial
476.3.x.a.433.6 yes 96 17.8 even 8 inner
476.3.x.a.433.19 yes 96 119.76 odd 8 inner