Properties

Label 476.4.a.b.1.4
Level $476$
Weight $4$
Character 476.1
Self dual yes
Analytic conductor $28.085$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,4,Mod(1,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 476.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.0849091627\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 71x^{4} - 32x^{3} + 547x^{2} + 268x - 720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.00920\) of defining polynomial
Character \(\chi\) \(=\) 476.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00920 q^{3} +15.3947 q^{5} -7.00000 q^{7} -25.9815 q^{9} +25.7348 q^{11} +16.0232 q^{13} +15.5364 q^{15} +17.0000 q^{17} +157.385 q^{19} -7.06441 q^{21} -152.339 q^{23} +111.998 q^{25} -53.4690 q^{27} +293.792 q^{29} +246.190 q^{31} +25.9715 q^{33} -107.763 q^{35} -102.495 q^{37} +16.1707 q^{39} -80.0959 q^{41} -311.232 q^{43} -399.979 q^{45} +449.527 q^{47} +49.0000 q^{49} +17.1564 q^{51} -518.705 q^{53} +396.180 q^{55} +158.833 q^{57} +810.255 q^{59} +101.071 q^{61} +181.871 q^{63} +246.673 q^{65} -233.289 q^{67} -153.740 q^{69} +981.570 q^{71} -274.218 q^{73} +113.029 q^{75} -180.143 q^{77} -218.065 q^{79} +647.540 q^{81} +432.623 q^{83} +261.711 q^{85} +296.495 q^{87} +1019.40 q^{89} -112.163 q^{91} +248.456 q^{93} +2422.91 q^{95} +466.343 q^{97} -668.628 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 14 q^{5} - 42 q^{7} - 16 q^{9} - 2 q^{11} + 8 q^{13} - 16 q^{15} + 102 q^{17} + 170 q^{19} - 14 q^{21} + 102 q^{23} + 140 q^{25} + 422 q^{27} + 278 q^{29} + 380 q^{31} + 98 q^{33} + 98 q^{35}+ \cdots + 450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00920 0.194221 0.0971104 0.995274i \(-0.469040\pi\)
0.0971104 + 0.995274i \(0.469040\pi\)
\(4\) 0 0
\(5\) 15.3947 1.37695 0.688474 0.725261i \(-0.258281\pi\)
0.688474 + 0.725261i \(0.258281\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −25.9815 −0.962278
\(10\) 0 0
\(11\) 25.7348 0.705393 0.352696 0.935738i \(-0.385265\pi\)
0.352696 + 0.935738i \(0.385265\pi\)
\(12\) 0 0
\(13\) 16.0232 0.341849 0.170925 0.985284i \(-0.445324\pi\)
0.170925 + 0.985284i \(0.445324\pi\)
\(14\) 0 0
\(15\) 15.5364 0.267432
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) 157.385 1.90035 0.950175 0.311717i \(-0.100904\pi\)
0.950175 + 0.311717i \(0.100904\pi\)
\(20\) 0 0
\(21\) −7.06441 −0.0734086
\(22\) 0 0
\(23\) −152.339 −1.38108 −0.690540 0.723294i \(-0.742627\pi\)
−0.690540 + 0.723294i \(0.742627\pi\)
\(24\) 0 0
\(25\) 111.998 0.895985
\(26\) 0 0
\(27\) −53.4690 −0.381115
\(28\) 0 0
\(29\) 293.792 1.88124 0.940618 0.339466i \(-0.110246\pi\)
0.940618 + 0.339466i \(0.110246\pi\)
\(30\) 0 0
\(31\) 246.190 1.42636 0.713179 0.700982i \(-0.247255\pi\)
0.713179 + 0.700982i \(0.247255\pi\)
\(32\) 0 0
\(33\) 25.9715 0.137002
\(34\) 0 0
\(35\) −107.763 −0.520437
\(36\) 0 0
\(37\) −102.495 −0.455405 −0.227703 0.973731i \(-0.573121\pi\)
−0.227703 + 0.973731i \(0.573121\pi\)
\(38\) 0 0
\(39\) 16.1707 0.0663943
\(40\) 0 0
\(41\) −80.0959 −0.305094 −0.152547 0.988296i \(-0.548748\pi\)
−0.152547 + 0.988296i \(0.548748\pi\)
\(42\) 0 0
\(43\) −311.232 −1.10378 −0.551889 0.833918i \(-0.686093\pi\)
−0.551889 + 0.833918i \(0.686093\pi\)
\(44\) 0 0
\(45\) −399.979 −1.32501
\(46\) 0 0
\(47\) 449.527 1.39511 0.697556 0.716530i \(-0.254271\pi\)
0.697556 + 0.716530i \(0.254271\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 17.1564 0.0471055
\(52\) 0 0
\(53\) −518.705 −1.34433 −0.672167 0.740400i \(-0.734636\pi\)
−0.672167 + 0.740400i \(0.734636\pi\)
\(54\) 0 0
\(55\) 396.180 0.971289
\(56\) 0 0
\(57\) 158.833 0.369088
\(58\) 0 0
\(59\) 810.255 1.78790 0.893951 0.448164i \(-0.147922\pi\)
0.893951 + 0.448164i \(0.147922\pi\)
\(60\) 0 0
\(61\) 101.071 0.212144 0.106072 0.994358i \(-0.466173\pi\)
0.106072 + 0.994358i \(0.466173\pi\)
\(62\) 0 0
\(63\) 181.871 0.363707
\(64\) 0 0
\(65\) 246.673 0.470709
\(66\) 0 0
\(67\) −233.289 −0.425385 −0.212693 0.977119i \(-0.568223\pi\)
−0.212693 + 0.977119i \(0.568223\pi\)
\(68\) 0 0
\(69\) −153.740 −0.268234
\(70\) 0 0
\(71\) 981.570 1.64072 0.820358 0.571850i \(-0.193774\pi\)
0.820358 + 0.571850i \(0.193774\pi\)
\(72\) 0 0
\(73\) −274.218 −0.439654 −0.219827 0.975539i \(-0.570549\pi\)
−0.219827 + 0.975539i \(0.570549\pi\)
\(74\) 0 0
\(75\) 113.029 0.174019
\(76\) 0 0
\(77\) −180.143 −0.266613
\(78\) 0 0
\(79\) −218.065 −0.310560 −0.155280 0.987870i \(-0.549628\pi\)
−0.155280 + 0.987870i \(0.549628\pi\)
\(80\) 0 0
\(81\) 647.540 0.888258
\(82\) 0 0
\(83\) 432.623 0.572127 0.286064 0.958211i \(-0.407653\pi\)
0.286064 + 0.958211i \(0.407653\pi\)
\(84\) 0 0
\(85\) 261.711 0.333959
\(86\) 0 0
\(87\) 296.495 0.365375
\(88\) 0 0
\(89\) 1019.40 1.21412 0.607058 0.794657i \(-0.292349\pi\)
0.607058 + 0.794657i \(0.292349\pi\)
\(90\) 0 0
\(91\) −112.163 −0.129207
\(92\) 0 0
\(93\) 248.456 0.277028
\(94\) 0 0
\(95\) 2422.91 2.61668
\(96\) 0 0
\(97\) 466.343 0.488144 0.244072 0.969757i \(-0.421517\pi\)
0.244072 + 0.969757i \(0.421517\pi\)
\(98\) 0 0
\(99\) −668.628 −0.678784
\(100\) 0 0
\(101\) 317.874 0.313165 0.156583 0.987665i \(-0.449952\pi\)
0.156583 + 0.987665i \(0.449952\pi\)
\(102\) 0 0
\(103\) 659.029 0.630447 0.315224 0.949017i \(-0.397920\pi\)
0.315224 + 0.949017i \(0.397920\pi\)
\(104\) 0 0
\(105\) −108.755 −0.101080
\(106\) 0 0
\(107\) −471.704 −0.426181 −0.213091 0.977032i \(-0.568353\pi\)
−0.213091 + 0.977032i \(0.568353\pi\)
\(108\) 0 0
\(109\) −500.205 −0.439550 −0.219775 0.975551i \(-0.570532\pi\)
−0.219775 + 0.975551i \(0.570532\pi\)
\(110\) 0 0
\(111\) −103.438 −0.0884492
\(112\) 0 0
\(113\) −123.992 −0.103223 −0.0516115 0.998667i \(-0.516436\pi\)
−0.0516115 + 0.998667i \(0.516436\pi\)
\(114\) 0 0
\(115\) −2345.22 −1.90167
\(116\) 0 0
\(117\) −416.308 −0.328954
\(118\) 0 0
\(119\) −119.000 −0.0916698
\(120\) 0 0
\(121\) −668.722 −0.502421
\(122\) 0 0
\(123\) −80.8328 −0.0592557
\(124\) 0 0
\(125\) −200.161 −0.143224
\(126\) 0 0
\(127\) −1011.83 −0.706974 −0.353487 0.935439i \(-0.615004\pi\)
−0.353487 + 0.935439i \(0.615004\pi\)
\(128\) 0 0
\(129\) −314.096 −0.214377
\(130\) 0 0
\(131\) 686.919 0.458140 0.229070 0.973410i \(-0.426431\pi\)
0.229070 + 0.973410i \(0.426431\pi\)
\(132\) 0 0
\(133\) −1101.70 −0.718265
\(134\) 0 0
\(135\) −823.141 −0.524776
\(136\) 0 0
\(137\) −2091.92 −1.30456 −0.652279 0.757979i \(-0.726187\pi\)
−0.652279 + 0.757979i \(0.726187\pi\)
\(138\) 0 0
\(139\) 1372.65 0.837605 0.418802 0.908077i \(-0.362450\pi\)
0.418802 + 0.908077i \(0.362450\pi\)
\(140\) 0 0
\(141\) 453.663 0.270960
\(142\) 0 0
\(143\) 412.354 0.241138
\(144\) 0 0
\(145\) 4522.86 2.59036
\(146\) 0 0
\(147\) 49.4508 0.0277458
\(148\) 0 0
\(149\) −2399.64 −1.31937 −0.659684 0.751543i \(-0.729310\pi\)
−0.659684 + 0.751543i \(0.729310\pi\)
\(150\) 0 0
\(151\) −3143.05 −1.69389 −0.846946 0.531678i \(-0.821562\pi\)
−0.846946 + 0.531678i \(0.821562\pi\)
\(152\) 0 0
\(153\) −441.686 −0.233387
\(154\) 0 0
\(155\) 3790.04 1.96402
\(156\) 0 0
\(157\) −167.866 −0.0853323 −0.0426662 0.999089i \(-0.513585\pi\)
−0.0426662 + 0.999089i \(0.513585\pi\)
\(158\) 0 0
\(159\) −523.478 −0.261097
\(160\) 0 0
\(161\) 1066.37 0.521999
\(162\) 0 0
\(163\) 4127.67 1.98346 0.991729 0.128346i \(-0.0409669\pi\)
0.991729 + 0.128346i \(0.0409669\pi\)
\(164\) 0 0
\(165\) 399.825 0.188645
\(166\) 0 0
\(167\) −1829.02 −0.847507 −0.423753 0.905778i \(-0.639288\pi\)
−0.423753 + 0.905778i \(0.639288\pi\)
\(168\) 0 0
\(169\) −1940.26 −0.883139
\(170\) 0 0
\(171\) −4089.11 −1.82867
\(172\) 0 0
\(173\) −1930.68 −0.848481 −0.424240 0.905550i \(-0.639459\pi\)
−0.424240 + 0.905550i \(0.639459\pi\)
\(174\) 0 0
\(175\) −783.987 −0.338650
\(176\) 0 0
\(177\) 817.710 0.347248
\(178\) 0 0
\(179\) −1322.13 −0.552069 −0.276034 0.961148i \(-0.589020\pi\)
−0.276034 + 0.961148i \(0.589020\pi\)
\(180\) 0 0
\(181\) 494.916 0.203242 0.101621 0.994823i \(-0.467597\pi\)
0.101621 + 0.994823i \(0.467597\pi\)
\(182\) 0 0
\(183\) 102.001 0.0412027
\(184\) 0 0
\(185\) −1577.88 −0.627069
\(186\) 0 0
\(187\) 437.491 0.171083
\(188\) 0 0
\(189\) 374.283 0.144048
\(190\) 0 0
\(191\) 124.336 0.0471028 0.0235514 0.999723i \(-0.492503\pi\)
0.0235514 + 0.999723i \(0.492503\pi\)
\(192\) 0 0
\(193\) 2718.16 1.01377 0.506884 0.862014i \(-0.330797\pi\)
0.506884 + 0.862014i \(0.330797\pi\)
\(194\) 0 0
\(195\) 248.943 0.0914215
\(196\) 0 0
\(197\) −3498.30 −1.26520 −0.632598 0.774481i \(-0.718011\pi\)
−0.632598 + 0.774481i \(0.718011\pi\)
\(198\) 0 0
\(199\) 1175.36 0.418688 0.209344 0.977842i \(-0.432867\pi\)
0.209344 + 0.977842i \(0.432867\pi\)
\(200\) 0 0
\(201\) −235.436 −0.0826187
\(202\) 0 0
\(203\) −2056.55 −0.711041
\(204\) 0 0
\(205\) −1233.06 −0.420099
\(206\) 0 0
\(207\) 3957.99 1.32898
\(208\) 0 0
\(209\) 4050.27 1.34049
\(210\) 0 0
\(211\) −3063.75 −0.999608 −0.499804 0.866138i \(-0.666595\pi\)
−0.499804 + 0.866138i \(0.666595\pi\)
\(212\) 0 0
\(213\) 990.601 0.318661
\(214\) 0 0
\(215\) −4791.34 −1.51984
\(216\) 0 0
\(217\) −1723.33 −0.539113
\(218\) 0 0
\(219\) −276.741 −0.0853900
\(220\) 0 0
\(221\) 272.395 0.0829107
\(222\) 0 0
\(223\) −3458.24 −1.03848 −0.519239 0.854629i \(-0.673785\pi\)
−0.519239 + 0.854629i \(0.673785\pi\)
\(224\) 0 0
\(225\) −2909.88 −0.862187
\(226\) 0 0
\(227\) −1731.27 −0.506205 −0.253102 0.967439i \(-0.581451\pi\)
−0.253102 + 0.967439i \(0.581451\pi\)
\(228\) 0 0
\(229\) −4666.12 −1.34649 −0.673245 0.739420i \(-0.735100\pi\)
−0.673245 + 0.739420i \(0.735100\pi\)
\(230\) 0 0
\(231\) −181.801 −0.0517819
\(232\) 0 0
\(233\) 6137.20 1.72559 0.862793 0.505558i \(-0.168713\pi\)
0.862793 + 0.505558i \(0.168713\pi\)
\(234\) 0 0
\(235\) 6920.35 1.92100
\(236\) 0 0
\(237\) −220.072 −0.0603172
\(238\) 0 0
\(239\) −1399.51 −0.378774 −0.189387 0.981903i \(-0.560650\pi\)
−0.189387 + 0.981903i \(0.560650\pi\)
\(240\) 0 0
\(241\) 1160.08 0.310072 0.155036 0.987909i \(-0.450451\pi\)
0.155036 + 0.987909i \(0.450451\pi\)
\(242\) 0 0
\(243\) 2097.16 0.553633
\(244\) 0 0
\(245\) 754.342 0.196707
\(246\) 0 0
\(247\) 2521.82 0.649634
\(248\) 0 0
\(249\) 436.604 0.111119
\(250\) 0 0
\(251\) −7093.95 −1.78393 −0.891965 0.452105i \(-0.850673\pi\)
−0.891965 + 0.452105i \(0.850673\pi\)
\(252\) 0 0
\(253\) −3920.40 −0.974204
\(254\) 0 0
\(255\) 264.119 0.0648618
\(256\) 0 0
\(257\) −6646.89 −1.61331 −0.806657 0.591019i \(-0.798726\pi\)
−0.806657 + 0.591019i \(0.798726\pi\)
\(258\) 0 0
\(259\) 717.462 0.172127
\(260\) 0 0
\(261\) −7633.17 −1.81027
\(262\) 0 0
\(263\) 7548.59 1.76983 0.884916 0.465751i \(-0.154216\pi\)
0.884916 + 0.465751i \(0.154216\pi\)
\(264\) 0 0
\(265\) −7985.33 −1.85108
\(266\) 0 0
\(267\) 1028.78 0.235807
\(268\) 0 0
\(269\) −7286.99 −1.65166 −0.825828 0.563922i \(-0.809292\pi\)
−0.825828 + 0.563922i \(0.809292\pi\)
\(270\) 0 0
\(271\) 3457.10 0.774922 0.387461 0.921886i \(-0.373352\pi\)
0.387461 + 0.921886i \(0.373352\pi\)
\(272\) 0 0
\(273\) −113.195 −0.0250947
\(274\) 0 0
\(275\) 2882.24 0.632021
\(276\) 0 0
\(277\) −2279.17 −0.494377 −0.247188 0.968967i \(-0.579507\pi\)
−0.247188 + 0.968967i \(0.579507\pi\)
\(278\) 0 0
\(279\) −6396.40 −1.37255
\(280\) 0 0
\(281\) −5833.37 −1.23840 −0.619199 0.785234i \(-0.712543\pi\)
−0.619199 + 0.785234i \(0.712543\pi\)
\(282\) 0 0
\(283\) 5449.45 1.14465 0.572325 0.820027i \(-0.306042\pi\)
0.572325 + 0.820027i \(0.306042\pi\)
\(284\) 0 0
\(285\) 2445.20 0.508214
\(286\) 0 0
\(287\) 560.671 0.115315
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 470.634 0.0948077
\(292\) 0 0
\(293\) 2639.75 0.526334 0.263167 0.964750i \(-0.415233\pi\)
0.263167 + 0.964750i \(0.415233\pi\)
\(294\) 0 0
\(295\) 12473.7 2.46185
\(296\) 0 0
\(297\) −1376.01 −0.268836
\(298\) 0 0
\(299\) −2440.96 −0.472121
\(300\) 0 0
\(301\) 2178.63 0.417189
\(302\) 0 0
\(303\) 320.799 0.0608232
\(304\) 0 0
\(305\) 1555.96 0.292111
\(306\) 0 0
\(307\) −6167.27 −1.14653 −0.573265 0.819370i \(-0.694323\pi\)
−0.573265 + 0.819370i \(0.694323\pi\)
\(308\) 0 0
\(309\) 665.093 0.122446
\(310\) 0 0
\(311\) 6519.01 1.18862 0.594308 0.804238i \(-0.297426\pi\)
0.594308 + 0.804238i \(0.297426\pi\)
\(312\) 0 0
\(313\) −10196.8 −1.84140 −0.920702 0.390267i \(-0.872383\pi\)
−0.920702 + 0.390267i \(0.872383\pi\)
\(314\) 0 0
\(315\) 2799.85 0.500805
\(316\) 0 0
\(317\) −5456.49 −0.966773 −0.483387 0.875407i \(-0.660593\pi\)
−0.483387 + 0.875407i \(0.660593\pi\)
\(318\) 0 0
\(319\) 7560.67 1.32701
\(320\) 0 0
\(321\) −476.045 −0.0827733
\(322\) 0 0
\(323\) 2675.55 0.460903
\(324\) 0 0
\(325\) 1794.57 0.306292
\(326\) 0 0
\(327\) −504.807 −0.0853697
\(328\) 0 0
\(329\) −3146.69 −0.527303
\(330\) 0 0
\(331\) 42.4952 0.00705663 0.00352832 0.999994i \(-0.498877\pi\)
0.00352832 + 0.999994i \(0.498877\pi\)
\(332\) 0 0
\(333\) 2662.96 0.438227
\(334\) 0 0
\(335\) −3591.43 −0.585733
\(336\) 0 0
\(337\) −9804.74 −1.58486 −0.792431 0.609962i \(-0.791185\pi\)
−0.792431 + 0.609962i \(0.791185\pi\)
\(338\) 0 0
\(339\) −125.133 −0.0200480
\(340\) 0 0
\(341\) 6335.65 1.00614
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −2366.79 −0.369345
\(346\) 0 0
\(347\) −6842.22 −1.05853 −0.529265 0.848457i \(-0.677532\pi\)
−0.529265 + 0.848457i \(0.677532\pi\)
\(348\) 0 0
\(349\) 10649.2 1.63335 0.816674 0.577099i \(-0.195815\pi\)
0.816674 + 0.577099i \(0.195815\pi\)
\(350\) 0 0
\(351\) −856.746 −0.130284
\(352\) 0 0
\(353\) −1594.80 −0.240461 −0.120231 0.992746i \(-0.538363\pi\)
−0.120231 + 0.992746i \(0.538363\pi\)
\(354\) 0 0
\(355\) 15111.0 2.25918
\(356\) 0 0
\(357\) −120.095 −0.0178042
\(358\) 0 0
\(359\) 4241.38 0.623542 0.311771 0.950157i \(-0.399078\pi\)
0.311771 + 0.950157i \(0.399078\pi\)
\(360\) 0 0
\(361\) 17911.1 2.61133
\(362\) 0 0
\(363\) −674.875 −0.0975806
\(364\) 0 0
\(365\) −4221.51 −0.605381
\(366\) 0 0
\(367\) 6814.84 0.969296 0.484648 0.874709i \(-0.338948\pi\)
0.484648 + 0.874709i \(0.338948\pi\)
\(368\) 0 0
\(369\) 2081.01 0.293586
\(370\) 0 0
\(371\) 3630.94 0.508110
\(372\) 0 0
\(373\) 1982.82 0.275245 0.137623 0.990485i \(-0.456054\pi\)
0.137623 + 0.990485i \(0.456054\pi\)
\(374\) 0 0
\(375\) −202.003 −0.0278170
\(376\) 0 0
\(377\) 4707.50 0.643100
\(378\) 0 0
\(379\) −3805.19 −0.515725 −0.257862 0.966182i \(-0.583018\pi\)
−0.257862 + 0.966182i \(0.583018\pi\)
\(380\) 0 0
\(381\) −1021.14 −0.137309
\(382\) 0 0
\(383\) 9577.05 1.27771 0.638857 0.769325i \(-0.279408\pi\)
0.638857 + 0.769325i \(0.279408\pi\)
\(384\) 0 0
\(385\) −2773.26 −0.367113
\(386\) 0 0
\(387\) 8086.28 1.06214
\(388\) 0 0
\(389\) 10499.8 1.36854 0.684269 0.729229i \(-0.260121\pi\)
0.684269 + 0.729229i \(0.260121\pi\)
\(390\) 0 0
\(391\) −2589.76 −0.334961
\(392\) 0 0
\(393\) 693.239 0.0889804
\(394\) 0 0
\(395\) −3357.06 −0.427625
\(396\) 0 0
\(397\) 6497.20 0.821373 0.410687 0.911777i \(-0.365289\pi\)
0.410687 + 0.911777i \(0.365289\pi\)
\(398\) 0 0
\(399\) −1111.83 −0.139502
\(400\) 0 0
\(401\) 6028.66 0.750766 0.375383 0.926870i \(-0.377511\pi\)
0.375383 + 0.926870i \(0.377511\pi\)
\(402\) 0 0
\(403\) 3944.76 0.487600
\(404\) 0 0
\(405\) 9968.71 1.22308
\(406\) 0 0
\(407\) −2637.67 −0.321240
\(408\) 0 0
\(409\) −4053.69 −0.490079 −0.245039 0.969513i \(-0.578801\pi\)
−0.245039 + 0.969513i \(0.578801\pi\)
\(410\) 0 0
\(411\) −2111.16 −0.253372
\(412\) 0 0
\(413\) −5671.79 −0.675764
\(414\) 0 0
\(415\) 6660.12 0.787789
\(416\) 0 0
\(417\) 1385.28 0.162680
\(418\) 0 0
\(419\) −3771.70 −0.439760 −0.219880 0.975527i \(-0.570567\pi\)
−0.219880 + 0.975527i \(0.570567\pi\)
\(420\) 0 0
\(421\) 7683.30 0.889457 0.444728 0.895666i \(-0.353300\pi\)
0.444728 + 0.895666i \(0.353300\pi\)
\(422\) 0 0
\(423\) −11679.4 −1.34249
\(424\) 0 0
\(425\) 1903.97 0.217308
\(426\) 0 0
\(427\) −707.495 −0.0801828
\(428\) 0 0
\(429\) 416.148 0.0468341
\(430\) 0 0
\(431\) −2810.92 −0.314146 −0.157073 0.987587i \(-0.550206\pi\)
−0.157073 + 0.987587i \(0.550206\pi\)
\(432\) 0 0
\(433\) −12675.1 −1.40676 −0.703380 0.710814i \(-0.748327\pi\)
−0.703380 + 0.710814i \(0.748327\pi\)
\(434\) 0 0
\(435\) 4564.47 0.503103
\(436\) 0 0
\(437\) −23975.9 −2.62453
\(438\) 0 0
\(439\) 3256.34 0.354024 0.177012 0.984209i \(-0.443357\pi\)
0.177012 + 0.984209i \(0.443357\pi\)
\(440\) 0 0
\(441\) −1273.09 −0.137468
\(442\) 0 0
\(443\) −4751.27 −0.509570 −0.254785 0.966998i \(-0.582005\pi\)
−0.254785 + 0.966998i \(0.582005\pi\)
\(444\) 0 0
\(445\) 15693.4 1.67177
\(446\) 0 0
\(447\) −2421.72 −0.256249
\(448\) 0 0
\(449\) −13214.1 −1.38889 −0.694445 0.719546i \(-0.744350\pi\)
−0.694445 + 0.719546i \(0.744350\pi\)
\(450\) 0 0
\(451\) −2061.25 −0.215211
\(452\) 0 0
\(453\) −3171.97 −0.328989
\(454\) 0 0
\(455\) −1726.71 −0.177911
\(456\) 0 0
\(457\) 8864.12 0.907322 0.453661 0.891174i \(-0.350118\pi\)
0.453661 + 0.891174i \(0.350118\pi\)
\(458\) 0 0
\(459\) −908.973 −0.0924340
\(460\) 0 0
\(461\) −17544.6 −1.77252 −0.886261 0.463186i \(-0.846706\pi\)
−0.886261 + 0.463186i \(0.846706\pi\)
\(462\) 0 0
\(463\) −6190.68 −0.621394 −0.310697 0.950509i \(-0.600562\pi\)
−0.310697 + 0.950509i \(0.600562\pi\)
\(464\) 0 0
\(465\) 3824.91 0.381454
\(466\) 0 0
\(467\) 12097.8 1.19876 0.599381 0.800464i \(-0.295414\pi\)
0.599381 + 0.800464i \(0.295414\pi\)
\(468\) 0 0
\(469\) 1633.02 0.160781
\(470\) 0 0
\(471\) −169.411 −0.0165733
\(472\) 0 0
\(473\) −8009.48 −0.778597
\(474\) 0 0
\(475\) 17626.8 1.70268
\(476\) 0 0
\(477\) 13476.7 1.29362
\(478\) 0 0
\(479\) −2134.03 −0.203562 −0.101781 0.994807i \(-0.532454\pi\)
−0.101781 + 0.994807i \(0.532454\pi\)
\(480\) 0 0
\(481\) −1642.29 −0.155680
\(482\) 0 0
\(483\) 1076.18 0.101383
\(484\) 0 0
\(485\) 7179.23 0.672149
\(486\) 0 0
\(487\) 10374.0 0.965278 0.482639 0.875820i \(-0.339678\pi\)
0.482639 + 0.875820i \(0.339678\pi\)
\(488\) 0 0
\(489\) 4165.64 0.385229
\(490\) 0 0
\(491\) −7307.57 −0.671662 −0.335831 0.941922i \(-0.609017\pi\)
−0.335831 + 0.941922i \(0.609017\pi\)
\(492\) 0 0
\(493\) 4994.47 0.456267
\(494\) 0 0
\(495\) −10293.4 −0.934650
\(496\) 0 0
\(497\) −6870.99 −0.620133
\(498\) 0 0
\(499\) 7833.65 0.702770 0.351385 0.936231i \(-0.385711\pi\)
0.351385 + 0.936231i \(0.385711\pi\)
\(500\) 0 0
\(501\) −1845.85 −0.164603
\(502\) 0 0
\(503\) −15051.0 −1.33418 −0.667090 0.744977i \(-0.732460\pi\)
−0.667090 + 0.744977i \(0.732460\pi\)
\(504\) 0 0
\(505\) 4893.59 0.431212
\(506\) 0 0
\(507\) −1958.11 −0.171524
\(508\) 0 0
\(509\) −299.106 −0.0260464 −0.0130232 0.999915i \(-0.504146\pi\)
−0.0130232 + 0.999915i \(0.504146\pi\)
\(510\) 0 0
\(511\) 1919.52 0.166174
\(512\) 0 0
\(513\) −8415.23 −0.724253
\(514\) 0 0
\(515\) 10145.6 0.868093
\(516\) 0 0
\(517\) 11568.5 0.984102
\(518\) 0 0
\(519\) −1948.45 −0.164793
\(520\) 0 0
\(521\) 13064.5 1.09859 0.549297 0.835627i \(-0.314896\pi\)
0.549297 + 0.835627i \(0.314896\pi\)
\(522\) 0 0
\(523\) −11621.2 −0.971623 −0.485812 0.874064i \(-0.661476\pi\)
−0.485812 + 0.874064i \(0.661476\pi\)
\(524\) 0 0
\(525\) −791.200 −0.0657730
\(526\) 0 0
\(527\) 4185.24 0.345943
\(528\) 0 0
\(529\) 11040.1 0.907380
\(530\) 0 0
\(531\) −21051.7 −1.72046
\(532\) 0 0
\(533\) −1283.39 −0.104296
\(534\) 0 0
\(535\) −7261.77 −0.586829
\(536\) 0 0
\(537\) −1334.29 −0.107223
\(538\) 0 0
\(539\) 1261.00 0.100770
\(540\) 0 0
\(541\) −552.394 −0.0438988 −0.0219494 0.999759i \(-0.506987\pi\)
−0.0219494 + 0.999759i \(0.506987\pi\)
\(542\) 0 0
\(543\) 499.470 0.0394739
\(544\) 0 0
\(545\) −7700.53 −0.605237
\(546\) 0 0
\(547\) 3714.09 0.290316 0.145158 0.989408i \(-0.453631\pi\)
0.145158 + 0.989408i \(0.453631\pi\)
\(548\) 0 0
\(549\) −2625.97 −0.204141
\(550\) 0 0
\(551\) 46238.6 3.57501
\(552\) 0 0
\(553\) 1526.46 0.117381
\(554\) 0 0
\(555\) −1592.39 −0.121790
\(556\) 0 0
\(557\) 9082.21 0.690890 0.345445 0.938439i \(-0.387728\pi\)
0.345445 + 0.938439i \(0.387728\pi\)
\(558\) 0 0
\(559\) −4986.94 −0.377326
\(560\) 0 0
\(561\) 441.516 0.0332279
\(562\) 0 0
\(563\) 13260.3 0.992640 0.496320 0.868140i \(-0.334684\pi\)
0.496320 + 0.868140i \(0.334684\pi\)
\(564\) 0 0
\(565\) −1908.83 −0.142133
\(566\) 0 0
\(567\) −4532.78 −0.335730
\(568\) 0 0
\(569\) 16130.1 1.18842 0.594208 0.804312i \(-0.297466\pi\)
0.594208 + 0.804312i \(0.297466\pi\)
\(570\) 0 0
\(571\) −10919.8 −0.800316 −0.400158 0.916446i \(-0.631045\pi\)
−0.400158 + 0.916446i \(0.631045\pi\)
\(572\) 0 0
\(573\) 125.480 0.00914835
\(574\) 0 0
\(575\) −17061.7 −1.23743
\(576\) 0 0
\(577\) −13205.7 −0.952790 −0.476395 0.879231i \(-0.658057\pi\)
−0.476395 + 0.879231i \(0.658057\pi\)
\(578\) 0 0
\(579\) 2743.17 0.196895
\(580\) 0 0
\(581\) −3028.36 −0.216244
\(582\) 0 0
\(583\) −13348.8 −0.948283
\(584\) 0 0
\(585\) −6408.95 −0.452953
\(586\) 0 0
\(587\) 11464.8 0.806136 0.403068 0.915170i \(-0.367944\pi\)
0.403068 + 0.915170i \(0.367944\pi\)
\(588\) 0 0
\(589\) 38746.7 2.71058
\(590\) 0 0
\(591\) −3530.49 −0.245727
\(592\) 0 0
\(593\) 10524.3 0.728807 0.364404 0.931241i \(-0.381273\pi\)
0.364404 + 0.931241i \(0.381273\pi\)
\(594\) 0 0
\(595\) −1831.97 −0.126225
\(596\) 0 0
\(597\) 1186.17 0.0813179
\(598\) 0 0
\(599\) −21190.3 −1.44543 −0.722715 0.691146i \(-0.757106\pi\)
−0.722715 + 0.691146i \(0.757106\pi\)
\(600\) 0 0
\(601\) −17924.2 −1.21654 −0.608272 0.793729i \(-0.708137\pi\)
−0.608272 + 0.793729i \(0.708137\pi\)
\(602\) 0 0
\(603\) 6061.21 0.409339
\(604\) 0 0
\(605\) −10294.8 −0.691807
\(606\) 0 0
\(607\) 11521.8 0.770438 0.385219 0.922825i \(-0.374126\pi\)
0.385219 + 0.922825i \(0.374126\pi\)
\(608\) 0 0
\(609\) −2075.47 −0.138099
\(610\) 0 0
\(611\) 7202.87 0.476918
\(612\) 0 0
\(613\) 8052.51 0.530567 0.265284 0.964170i \(-0.414534\pi\)
0.265284 + 0.964170i \(0.414534\pi\)
\(614\) 0 0
\(615\) −1244.40 −0.0815920
\(616\) 0 0
\(617\) −21023.6 −1.37176 −0.685882 0.727713i \(-0.740583\pi\)
−0.685882 + 0.727713i \(0.740583\pi\)
\(618\) 0 0
\(619\) −29039.3 −1.88560 −0.942802 0.333354i \(-0.891819\pi\)
−0.942802 + 0.333354i \(0.891819\pi\)
\(620\) 0 0
\(621\) 8145.40 0.526350
\(622\) 0 0
\(623\) −7135.81 −0.458893
\(624\) 0 0
\(625\) −17081.2 −1.09320
\(626\) 0 0
\(627\) 4087.54 0.260352
\(628\) 0 0
\(629\) −1742.41 −0.110452
\(630\) 0 0
\(631\) −8671.86 −0.547102 −0.273551 0.961857i \(-0.588198\pi\)
−0.273551 + 0.961857i \(0.588198\pi\)
\(632\) 0 0
\(633\) −3091.94 −0.194145
\(634\) 0 0
\(635\) −15576.9 −0.973467
\(636\) 0 0
\(637\) 785.138 0.0488356
\(638\) 0 0
\(639\) −25502.7 −1.57883
\(640\) 0 0
\(641\) −17252.9 −1.06310 −0.531551 0.847026i \(-0.678391\pi\)
−0.531551 + 0.847026i \(0.678391\pi\)
\(642\) 0 0
\(643\) 16000.1 0.981309 0.490655 0.871354i \(-0.336758\pi\)
0.490655 + 0.871354i \(0.336758\pi\)
\(644\) 0 0
\(645\) −4835.42 −0.295185
\(646\) 0 0
\(647\) −4349.51 −0.264292 −0.132146 0.991230i \(-0.542187\pi\)
−0.132146 + 0.991230i \(0.542187\pi\)
\(648\) 0 0
\(649\) 20851.7 1.26117
\(650\) 0 0
\(651\) −1739.19 −0.104707
\(652\) 0 0
\(653\) 15497.9 0.928761 0.464380 0.885636i \(-0.346277\pi\)
0.464380 + 0.885636i \(0.346277\pi\)
\(654\) 0 0
\(655\) 10574.9 0.630835
\(656\) 0 0
\(657\) 7124.59 0.423070
\(658\) 0 0
\(659\) 1040.36 0.0614970 0.0307485 0.999527i \(-0.490211\pi\)
0.0307485 + 0.999527i \(0.490211\pi\)
\(660\) 0 0
\(661\) 10737.2 0.631814 0.315907 0.948790i \(-0.397691\pi\)
0.315907 + 0.948790i \(0.397691\pi\)
\(662\) 0 0
\(663\) 274.901 0.0161030
\(664\) 0 0
\(665\) −16960.3 −0.989013
\(666\) 0 0
\(667\) −44756.0 −2.59814
\(668\) 0 0
\(669\) −3490.05 −0.201694
\(670\) 0 0
\(671\) 2601.03 0.149645
\(672\) 0 0
\(673\) 21103.1 1.20871 0.604357 0.796713i \(-0.293430\pi\)
0.604357 + 0.796713i \(0.293430\pi\)
\(674\) 0 0
\(675\) −5988.43 −0.341473
\(676\) 0 0
\(677\) −8460.36 −0.480292 −0.240146 0.970737i \(-0.577195\pi\)
−0.240146 + 0.970737i \(0.577195\pi\)
\(678\) 0 0
\(679\) −3264.40 −0.184501
\(680\) 0 0
\(681\) −1747.20 −0.0983155
\(682\) 0 0
\(683\) −8550.65 −0.479036 −0.239518 0.970892i \(-0.576989\pi\)
−0.239518 + 0.970892i \(0.576989\pi\)
\(684\) 0 0
\(685\) −32204.5 −1.79631
\(686\) 0 0
\(687\) −4709.05 −0.261516
\(688\) 0 0
\(689\) −8311.33 −0.459560
\(690\) 0 0
\(691\) 9246.17 0.509032 0.254516 0.967069i \(-0.418084\pi\)
0.254516 + 0.967069i \(0.418084\pi\)
\(692\) 0 0
\(693\) 4680.40 0.256556
\(694\) 0 0
\(695\) 21131.7 1.15334
\(696\) 0 0
\(697\) −1361.63 −0.0739963
\(698\) 0 0
\(699\) 6193.67 0.335145
\(700\) 0 0
\(701\) 1138.54 0.0613438 0.0306719 0.999530i \(-0.490235\pi\)
0.0306719 + 0.999530i \(0.490235\pi\)
\(702\) 0 0
\(703\) −16131.1 −0.865430
\(704\) 0 0
\(705\) 6984.03 0.373097
\(706\) 0 0
\(707\) −2225.12 −0.118365
\(708\) 0 0
\(709\) −7742.45 −0.410118 −0.205059 0.978750i \(-0.565739\pi\)
−0.205059 + 0.978750i \(0.565739\pi\)
\(710\) 0 0
\(711\) 5665.66 0.298845
\(712\) 0 0
\(713\) −37504.3 −1.96991
\(714\) 0 0
\(715\) 6348.08 0.332035
\(716\) 0 0
\(717\) −1412.39 −0.0735657
\(718\) 0 0
\(719\) −33796.7 −1.75300 −0.876498 0.481406i \(-0.840126\pi\)
−0.876498 + 0.481406i \(0.840126\pi\)
\(720\) 0 0
\(721\) −4613.21 −0.238287
\(722\) 0 0
\(723\) 1170.75 0.0602224
\(724\) 0 0
\(725\) 32904.2 1.68556
\(726\) 0 0
\(727\) 27370.1 1.39629 0.698144 0.715958i \(-0.254010\pi\)
0.698144 + 0.715958i \(0.254010\pi\)
\(728\) 0 0
\(729\) −15367.1 −0.780731
\(730\) 0 0
\(731\) −5290.95 −0.267706
\(732\) 0 0
\(733\) 20572.5 1.03665 0.518324 0.855184i \(-0.326556\pi\)
0.518324 + 0.855184i \(0.326556\pi\)
\(734\) 0 0
\(735\) 761.283 0.0382046
\(736\) 0 0
\(737\) −6003.64 −0.300064
\(738\) 0 0
\(739\) 7596.57 0.378138 0.189069 0.981964i \(-0.439453\pi\)
0.189069 + 0.981964i \(0.439453\pi\)
\(740\) 0 0
\(741\) 2545.02 0.126172
\(742\) 0 0
\(743\) −10034.0 −0.495441 −0.247721 0.968831i \(-0.579682\pi\)
−0.247721 + 0.968831i \(0.579682\pi\)
\(744\) 0 0
\(745\) −36941.8 −1.81670
\(746\) 0 0
\(747\) −11240.2 −0.550546
\(748\) 0 0
\(749\) 3301.93 0.161081
\(750\) 0 0
\(751\) 29250.6 1.42126 0.710632 0.703564i \(-0.248409\pi\)
0.710632 + 0.703564i \(0.248409\pi\)
\(752\) 0 0
\(753\) −7159.22 −0.346476
\(754\) 0 0
\(755\) −48386.5 −2.33240
\(756\) 0 0
\(757\) −40135.6 −1.92702 −0.963509 0.267676i \(-0.913744\pi\)
−0.963509 + 0.267676i \(0.913744\pi\)
\(758\) 0 0
\(759\) −3956.47 −0.189211
\(760\) 0 0
\(761\) 5811.28 0.276818 0.138409 0.990375i \(-0.455801\pi\)
0.138409 + 0.990375i \(0.455801\pi\)
\(762\) 0 0
\(763\) 3501.43 0.166134
\(764\) 0 0
\(765\) −6799.64 −0.321361
\(766\) 0 0
\(767\) 12982.9 0.611194
\(768\) 0 0
\(769\) 32588.3 1.52817 0.764086 0.645114i \(-0.223190\pi\)
0.764086 + 0.645114i \(0.223190\pi\)
\(770\) 0 0
\(771\) −6708.05 −0.313339
\(772\) 0 0
\(773\) 34681.7 1.61373 0.806865 0.590737i \(-0.201163\pi\)
0.806865 + 0.590737i \(0.201163\pi\)
\(774\) 0 0
\(775\) 27572.9 1.27799
\(776\) 0 0
\(777\) 724.063 0.0334307
\(778\) 0 0
\(779\) −12605.9 −0.579786
\(780\) 0 0
\(781\) 25260.5 1.15735
\(782\) 0 0
\(783\) −15708.8 −0.716968
\(784\) 0 0
\(785\) −2584.26 −0.117498
\(786\) 0 0
\(787\) −14570.5 −0.659953 −0.329976 0.943989i \(-0.607041\pi\)
−0.329976 + 0.943989i \(0.607041\pi\)
\(788\) 0 0
\(789\) 7618.04 0.343738
\(790\) 0 0
\(791\) 867.944 0.0390146
\(792\) 0 0
\(793\) 1619.48 0.0725212
\(794\) 0 0
\(795\) −8058.81 −0.359518
\(796\) 0 0
\(797\) 20881.3 0.928047 0.464023 0.885823i \(-0.346405\pi\)
0.464023 + 0.885823i \(0.346405\pi\)
\(798\) 0 0
\(799\) 7641.96 0.338364
\(800\) 0 0
\(801\) −26485.6 −1.16832
\(802\) 0 0
\(803\) −7056.93 −0.310129
\(804\) 0 0
\(805\) 16416.5 0.718765
\(806\) 0 0
\(807\) −7354.03 −0.320786
\(808\) 0 0
\(809\) −5971.77 −0.259526 −0.129763 0.991545i \(-0.541422\pi\)
−0.129763 + 0.991545i \(0.541422\pi\)
\(810\) 0 0
\(811\) −41435.5 −1.79408 −0.897039 0.441951i \(-0.854286\pi\)
−0.897039 + 0.441951i \(0.854286\pi\)
\(812\) 0 0
\(813\) 3488.91 0.150506
\(814\) 0 0
\(815\) 63544.4 2.73112
\(816\) 0 0
\(817\) −48983.4 −2.09756
\(818\) 0 0
\(819\) 2914.15 0.124333
\(820\) 0 0
\(821\) 1088.07 0.0462531 0.0231266 0.999733i \(-0.492638\pi\)
0.0231266 + 0.999733i \(0.492638\pi\)
\(822\) 0 0
\(823\) 14637.7 0.619973 0.309987 0.950741i \(-0.399675\pi\)
0.309987 + 0.950741i \(0.399675\pi\)
\(824\) 0 0
\(825\) 2908.76 0.122752
\(826\) 0 0
\(827\) 3434.72 0.144422 0.0722110 0.997389i \(-0.476994\pi\)
0.0722110 + 0.997389i \(0.476994\pi\)
\(828\) 0 0
\(829\) 34138.8 1.43027 0.715133 0.698988i \(-0.246366\pi\)
0.715133 + 0.698988i \(0.246366\pi\)
\(830\) 0 0
\(831\) −2300.14 −0.0960182
\(832\) 0 0
\(833\) 833.000 0.0346479
\(834\) 0 0
\(835\) −28157.3 −1.16697
\(836\) 0 0
\(837\) −13163.6 −0.543607
\(838\) 0 0
\(839\) −4742.97 −0.195168 −0.0975838 0.995227i \(-0.531111\pi\)
−0.0975838 + 0.995227i \(0.531111\pi\)
\(840\) 0 0
\(841\) 61924.9 2.53905
\(842\) 0 0
\(843\) −5887.05 −0.240523
\(844\) 0 0
\(845\) −29869.7 −1.21604
\(846\) 0 0
\(847\) 4681.06 0.189897
\(848\) 0 0
\(849\) 5499.59 0.222315
\(850\) 0 0
\(851\) 15613.9 0.628951
\(852\) 0 0
\(853\) 10776.5 0.432569 0.216284 0.976330i \(-0.430606\pi\)
0.216284 + 0.976330i \(0.430606\pi\)
\(854\) 0 0
\(855\) −62950.8 −2.51798
\(856\) 0 0
\(857\) 901.774 0.0359440 0.0179720 0.999838i \(-0.494279\pi\)
0.0179720 + 0.999838i \(0.494279\pi\)
\(858\) 0 0
\(859\) 2052.46 0.0815240 0.0407620 0.999169i \(-0.487021\pi\)
0.0407620 + 0.999169i \(0.487021\pi\)
\(860\) 0 0
\(861\) 565.830 0.0223965
\(862\) 0 0
\(863\) 7560.61 0.298223 0.149111 0.988820i \(-0.452359\pi\)
0.149111 + 0.988820i \(0.452359\pi\)
\(864\) 0 0
\(865\) −29722.4 −1.16831
\(866\) 0 0
\(867\) 291.659 0.0114248
\(868\) 0 0
\(869\) −5611.85 −0.219067
\(870\) 0 0
\(871\) −3738.05 −0.145418
\(872\) 0 0
\(873\) −12116.3 −0.469730
\(874\) 0 0
\(875\) 1401.13 0.0541334
\(876\) 0 0
\(877\) 26675.1 1.02709 0.513543 0.858064i \(-0.328333\pi\)
0.513543 + 0.858064i \(0.328333\pi\)
\(878\) 0 0
\(879\) 2664.04 0.102225
\(880\) 0 0
\(881\) 13711.6 0.524354 0.262177 0.965020i \(-0.415560\pi\)
0.262177 + 0.965020i \(0.415560\pi\)
\(882\) 0 0
\(883\) 29386.2 1.11996 0.559980 0.828506i \(-0.310809\pi\)
0.559980 + 0.828506i \(0.310809\pi\)
\(884\) 0 0
\(885\) 12588.4 0.478142
\(886\) 0 0
\(887\) 15162.6 0.573969 0.286985 0.957935i \(-0.407347\pi\)
0.286985 + 0.957935i \(0.407347\pi\)
\(888\) 0 0
\(889\) 7082.84 0.267211
\(890\) 0 0
\(891\) 16664.3 0.626571
\(892\) 0 0
\(893\) 70748.9 2.65120
\(894\) 0 0
\(895\) −20353.8 −0.760170
\(896\) 0 0
\(897\) −2463.42 −0.0916958
\(898\) 0 0
\(899\) 72328.8 2.68332
\(900\) 0 0
\(901\) −8817.99 −0.326049
\(902\) 0 0
\(903\) 2198.67 0.0810268
\(904\) 0 0
\(905\) 7619.11 0.279854
\(906\) 0 0
\(907\) 30643.4 1.12183 0.560914 0.827874i \(-0.310450\pi\)
0.560914 + 0.827874i \(0.310450\pi\)
\(908\) 0 0
\(909\) −8258.86 −0.301352
\(910\) 0 0
\(911\) −28467.4 −1.03531 −0.517655 0.855589i \(-0.673195\pi\)
−0.517655 + 0.855589i \(0.673195\pi\)
\(912\) 0 0
\(913\) 11133.5 0.403574
\(914\) 0 0
\(915\) 1570.27 0.0567340
\(916\) 0 0
\(917\) −4808.43 −0.173161
\(918\) 0 0
\(919\) 15469.7 0.555275 0.277637 0.960686i \(-0.410449\pi\)
0.277637 + 0.960686i \(0.410449\pi\)
\(920\) 0 0
\(921\) −6224.01 −0.222680
\(922\) 0 0
\(923\) 15727.9 0.560878
\(924\) 0 0
\(925\) −11479.2 −0.408036
\(926\) 0 0
\(927\) −17122.6 −0.606666
\(928\) 0 0
\(929\) 24954.0 0.881286 0.440643 0.897682i \(-0.354750\pi\)
0.440643 + 0.897682i \(0.354750\pi\)
\(930\) 0 0
\(931\) 7711.88 0.271479
\(932\) 0 0
\(933\) 6578.99 0.230854
\(934\) 0 0
\(935\) 6735.06 0.235572
\(936\) 0 0
\(937\) 53097.7 1.85125 0.925627 0.378438i \(-0.123539\pi\)
0.925627 + 0.378438i \(0.123539\pi\)
\(938\) 0 0
\(939\) −10290.7 −0.357639
\(940\) 0 0
\(941\) −31108.6 −1.07770 −0.538848 0.842403i \(-0.681140\pi\)
−0.538848 + 0.842403i \(0.681140\pi\)
\(942\) 0 0
\(943\) 12201.7 0.421360
\(944\) 0 0
\(945\) 5761.99 0.198347
\(946\) 0 0
\(947\) −37184.9 −1.27597 −0.637987 0.770047i \(-0.720233\pi\)
−0.637987 + 0.770047i \(0.720233\pi\)
\(948\) 0 0
\(949\) −4393.85 −0.150296
\(950\) 0 0
\(951\) −5506.70 −0.187767
\(952\) 0 0
\(953\) −29917.1 −1.01690 −0.508452 0.861090i \(-0.669782\pi\)
−0.508452 + 0.861090i \(0.669782\pi\)
\(954\) 0 0
\(955\) 1914.12 0.0648581
\(956\) 0 0
\(957\) 7630.24 0.257733
\(958\) 0 0
\(959\) 14643.4 0.493077
\(960\) 0 0
\(961\) 30818.7 1.03450
\(962\) 0 0
\(963\) 12255.6 0.410105
\(964\) 0 0
\(965\) 41845.3 1.39591
\(966\) 0 0
\(967\) −49683.9 −1.65225 −0.826126 0.563485i \(-0.809460\pi\)
−0.826126 + 0.563485i \(0.809460\pi\)
\(968\) 0 0
\(969\) 2700.17 0.0895169
\(970\) 0 0
\(971\) −38044.4 −1.25737 −0.628684 0.777661i \(-0.716406\pi\)
−0.628684 + 0.777661i \(0.716406\pi\)
\(972\) 0 0
\(973\) −9608.58 −0.316585
\(974\) 0 0
\(975\) 1811.08 0.0594883
\(976\) 0 0
\(977\) −45796.0 −1.49964 −0.749818 0.661644i \(-0.769859\pi\)
−0.749818 + 0.661644i \(0.769859\pi\)
\(978\) 0 0
\(979\) 26234.1 0.856429
\(980\) 0 0
\(981\) 12996.1 0.422969
\(982\) 0 0
\(983\) −10.6433 −0.000345340 0 −0.000172670 1.00000i \(-0.500055\pi\)
−0.000172670 1.00000i \(0.500055\pi\)
\(984\) 0 0
\(985\) −53855.4 −1.74211
\(986\) 0 0
\(987\) −3175.64 −0.102413
\(988\) 0 0
\(989\) 47412.7 1.52441
\(990\) 0 0
\(991\) −6252.30 −0.200415 −0.100207 0.994967i \(-0.531951\pi\)
−0.100207 + 0.994967i \(0.531951\pi\)
\(992\) 0 0
\(993\) 42.8862 0.00137055
\(994\) 0 0
\(995\) 18094.3 0.576511
\(996\) 0 0
\(997\) −11851.0 −0.376453 −0.188227 0.982126i \(-0.560274\pi\)
−0.188227 + 0.982126i \(0.560274\pi\)
\(998\) 0 0
\(999\) 5480.28 0.173562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 476.4.a.b.1.4 6
4.3 odd 2 1904.4.a.m.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.4.a.b.1.4 6 1.1 even 1 trivial
1904.4.a.m.1.3 6 4.3 odd 2