Properties

Label 4761.2.a.bd.1.3
Level $4761$
Weight $2$
Character 4761.1
Self dual yes
Analytic conductor $38.017$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1587)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.517638\) of defining polynomial
Character \(\chi\) \(=\) 4761.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} +1.00000 q^{4} -3.34607 q^{5} -3.86370 q^{7} -1.73205 q^{8} -5.79555 q^{10} -4.89898 q^{11} -3.00000 q^{13} -6.69213 q^{14} -5.00000 q^{16} +4.24264 q^{17} -1.03528 q^{19} -3.34607 q^{20} -8.48528 q^{22} +6.19615 q^{25} -5.19615 q^{26} -3.86370 q^{28} +4.26795 q^{29} +3.46410 q^{31} -5.19615 q^{32} +7.34847 q^{34} +12.9282 q^{35} -8.38375 q^{37} -1.79315 q^{38} +5.79555 q^{40} +0.464102 q^{41} -5.93426 q^{43} -4.89898 q^{44} -6.92820 q^{47} +7.92820 q^{49} +10.7321 q^{50} -3.00000 q^{52} +0.896575 q^{53} +16.3923 q^{55} +6.69213 q^{56} +7.39230 q^{58} -0.928203 q^{59} +0.138701 q^{61} +6.00000 q^{62} +1.00000 q^{64} +10.0382 q^{65} +7.72741 q^{67} +4.24264 q^{68} +22.3923 q^{70} +3.46410 q^{71} -12.1244 q^{73} -14.5211 q^{74} -1.03528 q^{76} +18.9282 q^{77} +4.14110 q^{79} +16.7303 q^{80} +0.803848 q^{82} -6.69213 q^{83} -14.1962 q^{85} -10.2784 q^{86} +8.48528 q^{88} -0.896575 q^{89} +11.5911 q^{91} -12.0000 q^{94} +3.46410 q^{95} -18.9024 q^{97} +13.7321 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 12 q^{13} - 20 q^{16} + 4 q^{25} + 24 q^{29} + 24 q^{35} - 12 q^{41} + 4 q^{49} + 36 q^{50} - 12 q^{52} + 24 q^{55} - 12 q^{58} + 24 q^{59} + 24 q^{62} + 4 q^{64} + 48 q^{70} + 48 q^{77}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.34607 −1.49641 −0.748203 0.663470i \(-0.769083\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(6\) 0 0
\(7\) −3.86370 −1.46034 −0.730171 0.683264i \(-0.760560\pi\)
−0.730171 + 0.683264i \(0.760560\pi\)
\(8\) −1.73205 −0.612372
\(9\) 0 0
\(10\) −5.79555 −1.83272
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) −6.69213 −1.78855
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 4.24264 1.02899 0.514496 0.857493i \(-0.327979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 0 0
\(19\) −1.03528 −0.237509 −0.118754 0.992924i \(-0.537890\pi\)
−0.118754 + 0.992924i \(0.537890\pi\)
\(20\) −3.34607 −0.748203
\(21\) 0 0
\(22\) −8.48528 −1.80907
\(23\) 0 0
\(24\) 0 0
\(25\) 6.19615 1.23923
\(26\) −5.19615 −1.01905
\(27\) 0 0
\(28\) −3.86370 −0.730171
\(29\) 4.26795 0.792538 0.396269 0.918134i \(-0.370305\pi\)
0.396269 + 0.918134i \(0.370305\pi\)
\(30\) 0 0
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0 0
\(34\) 7.34847 1.26025
\(35\) 12.9282 2.18527
\(36\) 0 0
\(37\) −8.38375 −1.37828 −0.689140 0.724629i \(-0.742011\pi\)
−0.689140 + 0.724629i \(0.742011\pi\)
\(38\) −1.79315 −0.290887
\(39\) 0 0
\(40\) 5.79555 0.916358
\(41\) 0.464102 0.0724805 0.0362402 0.999343i \(-0.488462\pi\)
0.0362402 + 0.999343i \(0.488462\pi\)
\(42\) 0 0
\(43\) −5.93426 −0.904966 −0.452483 0.891773i \(-0.649462\pi\)
−0.452483 + 0.891773i \(0.649462\pi\)
\(44\) −4.89898 −0.738549
\(45\) 0 0
\(46\) 0 0
\(47\) −6.92820 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(48\) 0 0
\(49\) 7.92820 1.13260
\(50\) 10.7321 1.51774
\(51\) 0 0
\(52\) −3.00000 −0.416025
\(53\) 0.896575 0.123154 0.0615771 0.998102i \(-0.480387\pi\)
0.0615771 + 0.998102i \(0.480387\pi\)
\(54\) 0 0
\(55\) 16.3923 2.21034
\(56\) 6.69213 0.894274
\(57\) 0 0
\(58\) 7.39230 0.970657
\(59\) −0.928203 −0.120842 −0.0604209 0.998173i \(-0.519244\pi\)
−0.0604209 + 0.998173i \(0.519244\pi\)
\(60\) 0 0
\(61\) 0.138701 0.0177588 0.00887940 0.999961i \(-0.497174\pi\)
0.00887940 + 0.999961i \(0.497174\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 10.0382 1.24508
\(66\) 0 0
\(67\) 7.72741 0.944053 0.472026 0.881584i \(-0.343523\pi\)
0.472026 + 0.881584i \(0.343523\pi\)
\(68\) 4.24264 0.514496
\(69\) 0 0
\(70\) 22.3923 2.67639
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) −12.1244 −1.41905 −0.709524 0.704681i \(-0.751090\pi\)
−0.709524 + 0.704681i \(0.751090\pi\)
\(74\) −14.5211 −1.68804
\(75\) 0 0
\(76\) −1.03528 −0.118754
\(77\) 18.9282 2.15707
\(78\) 0 0
\(79\) 4.14110 0.465911 0.232955 0.972487i \(-0.425160\pi\)
0.232955 + 0.972487i \(0.425160\pi\)
\(80\) 16.7303 1.87051
\(81\) 0 0
\(82\) 0.803848 0.0887701
\(83\) −6.69213 −0.734557 −0.367278 0.930111i \(-0.619710\pi\)
−0.367278 + 0.930111i \(0.619710\pi\)
\(84\) 0 0
\(85\) −14.1962 −1.53979
\(86\) −10.2784 −1.10835
\(87\) 0 0
\(88\) 8.48528 0.904534
\(89\) −0.896575 −0.0950368 −0.0475184 0.998870i \(-0.515131\pi\)
−0.0475184 + 0.998870i \(0.515131\pi\)
\(90\) 0 0
\(91\) 11.5911 1.21508
\(92\) 0 0
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 3.46410 0.355409
\(96\) 0 0
\(97\) −18.9024 −1.91925 −0.959625 0.281284i \(-0.909240\pi\)
−0.959625 + 0.281284i \(0.909240\pi\)
\(98\) 13.7321 1.38715
\(99\) 0 0
\(100\) 6.19615 0.619615
\(101\) 18.4641 1.83725 0.918623 0.395134i \(-0.129302\pi\)
0.918623 + 0.395134i \(0.129302\pi\)
\(102\) 0 0
\(103\) 17.2480 1.69949 0.849746 0.527192i \(-0.176755\pi\)
0.849746 + 0.527192i \(0.176755\pi\)
\(104\) 5.19615 0.509525
\(105\) 0 0
\(106\) 1.55291 0.150832
\(107\) 16.4901 1.59416 0.797079 0.603876i \(-0.206378\pi\)
0.797079 + 0.603876i \(0.206378\pi\)
\(108\) 0 0
\(109\) 10.7961 1.03408 0.517038 0.855962i \(-0.327035\pi\)
0.517038 + 0.855962i \(0.327035\pi\)
\(110\) 28.3923 2.70710
\(111\) 0 0
\(112\) 19.3185 1.82543
\(113\) −3.34607 −0.314771 −0.157386 0.987537i \(-0.550307\pi\)
−0.157386 + 0.987537i \(0.550307\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.26795 0.396269
\(117\) 0 0
\(118\) −1.60770 −0.148000
\(119\) −16.3923 −1.50268
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) 0.240237 0.0217500
\(123\) 0 0
\(124\) 3.46410 0.311086
\(125\) −4.00240 −0.357986
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 12.1244 1.07165
\(129\) 0 0
\(130\) 17.3867 1.52491
\(131\) 7.85641 0.686417 0.343209 0.939259i \(-0.388486\pi\)
0.343209 + 0.939259i \(0.388486\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 13.3843 1.15622
\(135\) 0 0
\(136\) −7.34847 −0.630126
\(137\) −2.68973 −0.229799 −0.114899 0.993377i \(-0.536655\pi\)
−0.114899 + 0.993377i \(0.536655\pi\)
\(138\) 0 0
\(139\) −18.3923 −1.56001 −0.780007 0.625770i \(-0.784785\pi\)
−0.780007 + 0.625770i \(0.784785\pi\)
\(140\) 12.9282 1.09263
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) 14.6969 1.22902
\(144\) 0 0
\(145\) −14.2808 −1.18596
\(146\) −21.0000 −1.73797
\(147\) 0 0
\(148\) −8.38375 −0.689140
\(149\) 2.68973 0.220351 0.110175 0.993912i \(-0.464859\pi\)
0.110175 + 0.993912i \(0.464859\pi\)
\(150\) 0 0
\(151\) −12.3923 −1.00847 −0.504236 0.863566i \(-0.668226\pi\)
−0.504236 + 0.863566i \(0.668226\pi\)
\(152\) 1.79315 0.145444
\(153\) 0 0
\(154\) 32.7846 2.64186
\(155\) −11.5911 −0.931020
\(156\) 0 0
\(157\) −13.9019 −1.10949 −0.554746 0.832020i \(-0.687185\pi\)
−0.554746 + 0.832020i \(0.687185\pi\)
\(158\) 7.17260 0.570622
\(159\) 0 0
\(160\) 17.3867 1.37454
\(161\) 0 0
\(162\) 0 0
\(163\) −15.4641 −1.21124 −0.605621 0.795753i \(-0.707075\pi\)
−0.605621 + 0.795753i \(0.707075\pi\)
\(164\) 0.464102 0.0362402
\(165\) 0 0
\(166\) −11.5911 −0.899645
\(167\) 17.3205 1.34030 0.670151 0.742225i \(-0.266230\pi\)
0.670151 + 0.742225i \(0.266230\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) −24.5885 −1.88585
\(171\) 0 0
\(172\) −5.93426 −0.452483
\(173\) −11.1962 −0.851228 −0.425614 0.904905i \(-0.639942\pi\)
−0.425614 + 0.904905i \(0.639942\pi\)
\(174\) 0 0
\(175\) −23.9401 −1.80970
\(176\) 24.4949 1.84637
\(177\) 0 0
\(178\) −1.55291 −0.116396
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) −1.41421 −0.105118 −0.0525588 0.998618i \(-0.516738\pi\)
−0.0525588 + 0.998618i \(0.516738\pi\)
\(182\) 20.0764 1.48816
\(183\) 0 0
\(184\) 0 0
\(185\) 28.0526 2.06247
\(186\) 0 0
\(187\) −20.7846 −1.51992
\(188\) −6.92820 −0.505291
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) 16.4901 1.19318 0.596590 0.802546i \(-0.296522\pi\)
0.596590 + 0.802546i \(0.296522\pi\)
\(192\) 0 0
\(193\) −25.1962 −1.81366 −0.906829 0.421498i \(-0.861504\pi\)
−0.906829 + 0.421498i \(0.861504\pi\)
\(194\) −32.7399 −2.35059
\(195\) 0 0
\(196\) 7.92820 0.566300
\(197\) −6.12436 −0.436342 −0.218171 0.975911i \(-0.570009\pi\)
−0.218171 + 0.975911i \(0.570009\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) −10.7321 −0.758871
\(201\) 0 0
\(202\) 31.9808 2.25016
\(203\) −16.4901 −1.15738
\(204\) 0 0
\(205\) −1.55291 −0.108460
\(206\) 29.8744 2.08144
\(207\) 0 0
\(208\) 15.0000 1.04006
\(209\) 5.07180 0.350824
\(210\) 0 0
\(211\) 14.5359 1.00069 0.500346 0.865825i \(-0.333206\pi\)
0.500346 + 0.865825i \(0.333206\pi\)
\(212\) 0.896575 0.0615771
\(213\) 0 0
\(214\) 28.5617 1.95244
\(215\) 19.8564 1.35420
\(216\) 0 0
\(217\) −13.3843 −0.908583
\(218\) 18.6993 1.26648
\(219\) 0 0
\(220\) 16.3923 1.10517
\(221\) −12.7279 −0.856173
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 20.0764 1.34141
\(225\) 0 0
\(226\) −5.79555 −0.385515
\(227\) −18.2832 −1.21350 −0.606751 0.794892i \(-0.707527\pi\)
−0.606751 + 0.794892i \(0.707527\pi\)
\(228\) 0 0
\(229\) −16.1112 −1.06465 −0.532327 0.846539i \(-0.678682\pi\)
−0.532327 + 0.846539i \(0.678682\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −7.39230 −0.485329
\(233\) −6.46410 −0.423477 −0.211739 0.977326i \(-0.567913\pi\)
−0.211739 + 0.977326i \(0.567913\pi\)
\(234\) 0 0
\(235\) 23.1822 1.51224
\(236\) −0.928203 −0.0604209
\(237\) 0 0
\(238\) −28.3923 −1.84040
\(239\) 9.46410 0.612182 0.306091 0.952002i \(-0.400979\pi\)
0.306091 + 0.952002i \(0.400979\pi\)
\(240\) 0 0
\(241\) −0.0371647 −0.00239399 −0.00119700 0.999999i \(-0.500381\pi\)
−0.00119700 + 0.999999i \(0.500381\pi\)
\(242\) 22.5167 1.44743
\(243\) 0 0
\(244\) 0.138701 0.00887940
\(245\) −26.5283 −1.69483
\(246\) 0 0
\(247\) 3.10583 0.197619
\(248\) −6.00000 −0.381000
\(249\) 0 0
\(250\) −6.93237 −0.438441
\(251\) 5.37945 0.339548 0.169774 0.985483i \(-0.445696\pi\)
0.169774 + 0.985483i \(0.445696\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −10.3923 −0.652071
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 11.5359 0.719590 0.359795 0.933031i \(-0.382847\pi\)
0.359795 + 0.933031i \(0.382847\pi\)
\(258\) 0 0
\(259\) 32.3923 2.01276
\(260\) 10.0382 0.622542
\(261\) 0 0
\(262\) 13.6077 0.840686
\(263\) −23.6627 −1.45910 −0.729552 0.683925i \(-0.760271\pi\)
−0.729552 + 0.683925i \(0.760271\pi\)
\(264\) 0 0
\(265\) −3.00000 −0.184289
\(266\) 6.92820 0.424795
\(267\) 0 0
\(268\) 7.72741 0.472026
\(269\) −18.9282 −1.15407 −0.577036 0.816718i \(-0.695791\pi\)
−0.577036 + 0.816718i \(0.695791\pi\)
\(270\) 0 0
\(271\) −4.39230 −0.266814 −0.133407 0.991061i \(-0.542592\pi\)
−0.133407 + 0.991061i \(0.542592\pi\)
\(272\) −21.2132 −1.28624
\(273\) 0 0
\(274\) −4.65874 −0.281445
\(275\) −30.3548 −1.83046
\(276\) 0 0
\(277\) −30.9282 −1.85830 −0.929148 0.369708i \(-0.879458\pi\)
−0.929148 + 0.369708i \(0.879458\pi\)
\(278\) −31.8564 −1.91062
\(279\) 0 0
\(280\) −22.3923 −1.33820
\(281\) −14.0406 −0.837592 −0.418796 0.908080i \(-0.637548\pi\)
−0.418796 + 0.908080i \(0.637548\pi\)
\(282\) 0 0
\(283\) 8.76268 0.520887 0.260444 0.965489i \(-0.416131\pi\)
0.260444 + 0.965489i \(0.416131\pi\)
\(284\) 3.46410 0.205557
\(285\) 0 0
\(286\) 25.4558 1.50524
\(287\) −1.79315 −0.105846
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −24.7351 −1.45250
\(291\) 0 0
\(292\) −12.1244 −0.709524
\(293\) −16.9062 −0.987670 −0.493835 0.869556i \(-0.664405\pi\)
−0.493835 + 0.869556i \(0.664405\pi\)
\(294\) 0 0
\(295\) 3.10583 0.180828
\(296\) 14.5211 0.844020
\(297\) 0 0
\(298\) 4.65874 0.269874
\(299\) 0 0
\(300\) 0 0
\(301\) 22.9282 1.32156
\(302\) −21.4641 −1.23512
\(303\) 0 0
\(304\) 5.17638 0.296886
\(305\) −0.464102 −0.0265744
\(306\) 0 0
\(307\) 30.9282 1.76517 0.882583 0.470157i \(-0.155803\pi\)
0.882583 + 0.470157i \(0.155803\pi\)
\(308\) 18.9282 1.07853
\(309\) 0 0
\(310\) −20.0764 −1.14026
\(311\) 3.46410 0.196431 0.0982156 0.995165i \(-0.468687\pi\)
0.0982156 + 0.995165i \(0.468687\pi\)
\(312\) 0 0
\(313\) 9.65926 0.545974 0.272987 0.962018i \(-0.411988\pi\)
0.272987 + 0.962018i \(0.411988\pi\)
\(314\) −24.0788 −1.35885
\(315\) 0 0
\(316\) 4.14110 0.232955
\(317\) 35.1962 1.97681 0.988406 0.151831i \(-0.0485170\pi\)
0.988406 + 0.151831i \(0.0485170\pi\)
\(318\) 0 0
\(319\) −20.9086 −1.17066
\(320\) −3.34607 −0.187051
\(321\) 0 0
\(322\) 0 0
\(323\) −4.39230 −0.244394
\(324\) 0 0
\(325\) −18.5885 −1.03110
\(326\) −26.7846 −1.48346
\(327\) 0 0
\(328\) −0.803848 −0.0443851
\(329\) 26.7685 1.47580
\(330\) 0 0
\(331\) 18.0000 0.989369 0.494685 0.869072i \(-0.335284\pi\)
0.494685 + 0.869072i \(0.335284\pi\)
\(332\) −6.69213 −0.367278
\(333\) 0 0
\(334\) 30.0000 1.64153
\(335\) −25.8564 −1.41269
\(336\) 0 0
\(337\) −3.06866 −0.167161 −0.0835804 0.996501i \(-0.526636\pi\)
−0.0835804 + 0.996501i \(0.526636\pi\)
\(338\) −6.92820 −0.376845
\(339\) 0 0
\(340\) −14.1962 −0.769894
\(341\) −16.9706 −0.919007
\(342\) 0 0
\(343\) −3.58630 −0.193642
\(344\) 10.2784 0.554176
\(345\) 0 0
\(346\) −19.3923 −1.04254
\(347\) 4.39230 0.235791 0.117896 0.993026i \(-0.462385\pi\)
0.117896 + 0.993026i \(0.462385\pi\)
\(348\) 0 0
\(349\) 24.7846 1.32669 0.663345 0.748314i \(-0.269136\pi\)
0.663345 + 0.748314i \(0.269136\pi\)
\(350\) −41.4655 −2.21642
\(351\) 0 0
\(352\) 25.4558 1.35680
\(353\) −7.73205 −0.411536 −0.205768 0.978601i \(-0.565969\pi\)
−0.205768 + 0.978601i \(0.565969\pi\)
\(354\) 0 0
\(355\) −11.5911 −0.615192
\(356\) −0.896575 −0.0475184
\(357\) 0 0
\(358\) 10.3923 0.549250
\(359\) 9.31749 0.491758 0.245879 0.969301i \(-0.420923\pi\)
0.245879 + 0.969301i \(0.420923\pi\)
\(360\) 0 0
\(361\) −17.9282 −0.943590
\(362\) −2.44949 −0.128742
\(363\) 0 0
\(364\) 11.5911 0.607539
\(365\) 40.5689 2.12347
\(366\) 0 0
\(367\) 12.8295 0.669692 0.334846 0.942273i \(-0.391316\pi\)
0.334846 + 0.942273i \(0.391316\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 48.5885 2.52599
\(371\) −3.46410 −0.179847
\(372\) 0 0
\(373\) 8.38375 0.434094 0.217047 0.976161i \(-0.430358\pi\)
0.217047 + 0.976161i \(0.430358\pi\)
\(374\) −36.0000 −1.86152
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) −12.8038 −0.659432
\(378\) 0 0
\(379\) −1.23835 −0.0636097 −0.0318048 0.999494i \(-0.510126\pi\)
−0.0318048 + 0.999494i \(0.510126\pi\)
\(380\) 3.46410 0.177705
\(381\) 0 0
\(382\) 28.5617 1.46134
\(383\) 24.9754 1.27618 0.638091 0.769961i \(-0.279724\pi\)
0.638091 + 0.769961i \(0.279724\pi\)
\(384\) 0 0
\(385\) −63.3350 −3.22785
\(386\) −43.6410 −2.22127
\(387\) 0 0
\(388\) −18.9024 −0.959625
\(389\) −9.14162 −0.463499 −0.231749 0.972776i \(-0.574445\pi\)
−0.231749 + 0.972776i \(0.574445\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −13.7321 −0.693573
\(393\) 0 0
\(394\) −10.6077 −0.534408
\(395\) −13.8564 −0.697191
\(396\) 0 0
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) 9.79796 0.491127
\(399\) 0 0
\(400\) −30.9808 −1.54904
\(401\) 19.6603 0.981788 0.490894 0.871219i \(-0.336670\pi\)
0.490894 + 0.871219i \(0.336670\pi\)
\(402\) 0 0
\(403\) −10.3923 −0.517678
\(404\) 18.4641 0.918623
\(405\) 0 0
\(406\) −28.5617 −1.41749
\(407\) 41.0718 2.03585
\(408\) 0 0
\(409\) −12.7846 −0.632158 −0.316079 0.948733i \(-0.602367\pi\)
−0.316079 + 0.948733i \(0.602367\pi\)
\(410\) −2.68973 −0.132836
\(411\) 0 0
\(412\) 17.2480 0.849746
\(413\) 3.58630 0.176470
\(414\) 0 0
\(415\) 22.3923 1.09920
\(416\) 15.5885 0.764287
\(417\) 0 0
\(418\) 8.78461 0.429669
\(419\) 3.58630 0.175202 0.0876012 0.996156i \(-0.472080\pi\)
0.0876012 + 0.996156i \(0.472080\pi\)
\(420\) 0 0
\(421\) 8.38375 0.408599 0.204299 0.978908i \(-0.434508\pi\)
0.204299 + 0.978908i \(0.434508\pi\)
\(422\) 25.1769 1.22559
\(423\) 0 0
\(424\) −1.55291 −0.0754162
\(425\) 26.2880 1.27516
\(426\) 0 0
\(427\) −0.535898 −0.0259339
\(428\) 16.4901 0.797079
\(429\) 0 0
\(430\) 34.3923 1.65854
\(431\) 35.2538 1.69812 0.849058 0.528300i \(-0.177170\pi\)
0.849058 + 0.528300i \(0.177170\pi\)
\(432\) 0 0
\(433\) 39.6351 1.90474 0.952372 0.304939i \(-0.0986362\pi\)
0.952372 + 0.304939i \(0.0986362\pi\)
\(434\) −23.1822 −1.11278
\(435\) 0 0
\(436\) 10.7961 0.517038
\(437\) 0 0
\(438\) 0 0
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) −28.3923 −1.35355
\(441\) 0 0
\(442\) −22.0454 −1.04859
\(443\) −40.6410 −1.93091 −0.965456 0.260564i \(-0.916091\pi\)
−0.965456 + 0.260564i \(0.916091\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 6.92820 0.328060
\(447\) 0 0
\(448\) −3.86370 −0.182543
\(449\) −33.2487 −1.56910 −0.784552 0.620063i \(-0.787107\pi\)
−0.784552 + 0.620063i \(0.787107\pi\)
\(450\) 0 0
\(451\) −2.27362 −0.107061
\(452\) −3.34607 −0.157386
\(453\) 0 0
\(454\) −31.6675 −1.48623
\(455\) −38.7846 −1.81825
\(456\) 0 0
\(457\) 30.3920 1.42168 0.710839 0.703355i \(-0.248316\pi\)
0.710839 + 0.703355i \(0.248316\pi\)
\(458\) −27.9053 −1.30393
\(459\) 0 0
\(460\) 0 0
\(461\) −6.12436 −0.285240 −0.142620 0.989778i \(-0.545553\pi\)
−0.142620 + 0.989778i \(0.545553\pi\)
\(462\) 0 0
\(463\) −0.392305 −0.0182320 −0.00911598 0.999958i \(-0.502902\pi\)
−0.00911598 + 0.999958i \(0.502902\pi\)
\(464\) −21.3397 −0.990673
\(465\) 0 0
\(466\) −11.1962 −0.518652
\(467\) −12.0716 −0.558606 −0.279303 0.960203i \(-0.590103\pi\)
−0.279303 + 0.960203i \(0.590103\pi\)
\(468\) 0 0
\(469\) −29.8564 −1.37864
\(470\) 40.1528 1.85211
\(471\) 0 0
\(472\) 1.60770 0.0740002
\(473\) 29.0718 1.33672
\(474\) 0 0
\(475\) −6.41473 −0.294328
\(476\) −16.3923 −0.751340
\(477\) 0 0
\(478\) 16.3923 0.749767
\(479\) 8.96575 0.409656 0.204828 0.978798i \(-0.434337\pi\)
0.204828 + 0.978798i \(0.434337\pi\)
\(480\) 0 0
\(481\) 25.1512 1.14680
\(482\) −0.0643712 −0.00293203
\(483\) 0 0
\(484\) 13.0000 0.590909
\(485\) 63.2487 2.87198
\(486\) 0 0
\(487\) −17.6077 −0.797881 −0.398940 0.916977i \(-0.630622\pi\)
−0.398940 + 0.916977i \(0.630622\pi\)
\(488\) −0.240237 −0.0108750
\(489\) 0 0
\(490\) −45.9483 −2.07573
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) 18.1074 0.815515
\(494\) 5.37945 0.242033
\(495\) 0 0
\(496\) −17.3205 −0.777714
\(497\) −13.3843 −0.600366
\(498\) 0 0
\(499\) −6.92820 −0.310149 −0.155074 0.987903i \(-0.549562\pi\)
−0.155074 + 0.987903i \(0.549562\pi\)
\(500\) −4.00240 −0.178993
\(501\) 0 0
\(502\) 9.31749 0.415860
\(503\) 23.1822 1.03364 0.516822 0.856093i \(-0.327115\pi\)
0.516822 + 0.856093i \(0.327115\pi\)
\(504\) 0 0
\(505\) −61.7821 −2.74927
\(506\) 0 0
\(507\) 0 0
\(508\) −6.00000 −0.266207
\(509\) 31.7321 1.40650 0.703249 0.710943i \(-0.251732\pi\)
0.703249 + 0.710943i \(0.251732\pi\)
\(510\) 0 0
\(511\) 46.8449 2.07230
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) 19.9808 0.881314
\(515\) −57.7128 −2.54313
\(516\) 0 0
\(517\) 33.9411 1.49273
\(518\) 56.1051 2.46512
\(519\) 0 0
\(520\) −17.3867 −0.762456
\(521\) −14.0406 −0.615130 −0.307565 0.951527i \(-0.599514\pi\)
−0.307565 + 0.951527i \(0.599514\pi\)
\(522\) 0 0
\(523\) −16.7675 −0.733191 −0.366596 0.930380i \(-0.619477\pi\)
−0.366596 + 0.930380i \(0.619477\pi\)
\(524\) 7.85641 0.343209
\(525\) 0 0
\(526\) −40.9850 −1.78703
\(527\) 14.6969 0.640209
\(528\) 0 0
\(529\) 0 0
\(530\) −5.19615 −0.225706
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) −1.39230 −0.0603074
\(534\) 0 0
\(535\) −55.1769 −2.38551
\(536\) −13.3843 −0.578112
\(537\) 0 0
\(538\) −32.7846 −1.41344
\(539\) −38.8401 −1.67296
\(540\) 0 0
\(541\) −35.5885 −1.53007 −0.765034 0.643990i \(-0.777278\pi\)
−0.765034 + 0.643990i \(0.777278\pi\)
\(542\) −7.60770 −0.326778
\(543\) 0 0
\(544\) −22.0454 −0.945189
\(545\) −36.1244 −1.54740
\(546\) 0 0
\(547\) 5.32051 0.227488 0.113744 0.993510i \(-0.463716\pi\)
0.113744 + 0.993510i \(0.463716\pi\)
\(548\) −2.68973 −0.114899
\(549\) 0 0
\(550\) −52.5761 −2.24185
\(551\) −4.41851 −0.188235
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) −53.5692 −2.27594
\(555\) 0 0
\(556\) −18.3923 −0.780007
\(557\) 23.2466 0.984990 0.492495 0.870315i \(-0.336085\pi\)
0.492495 + 0.870315i \(0.336085\pi\)
\(558\) 0 0
\(559\) 17.8028 0.752977
\(560\) −64.6410 −2.73158
\(561\) 0 0
\(562\) −24.3190 −1.02584
\(563\) −4.41851 −0.186218 −0.0931089 0.995656i \(-0.529680\pi\)
−0.0931089 + 0.995656i \(0.529680\pi\)
\(564\) 0 0
\(565\) 11.1962 0.471026
\(566\) 15.1774 0.637954
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) −0.240237 −0.0100712 −0.00503562 0.999987i \(-0.501603\pi\)
−0.00503562 + 0.999987i \(0.501603\pi\)
\(570\) 0 0
\(571\) −26.9716 −1.12873 −0.564363 0.825527i \(-0.690878\pi\)
−0.564363 + 0.825527i \(0.690878\pi\)
\(572\) 14.6969 0.614510
\(573\) 0 0
\(574\) −3.10583 −0.129635
\(575\) 0 0
\(576\) 0 0
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 1.73205 0.0720438
\(579\) 0 0
\(580\) −14.2808 −0.592979
\(581\) 25.8564 1.07270
\(582\) 0 0
\(583\) −4.39230 −0.181911
\(584\) 21.0000 0.868986
\(585\) 0 0
\(586\) −29.2824 −1.20964
\(587\) −34.6410 −1.42979 −0.714894 0.699233i \(-0.753525\pi\)
−0.714894 + 0.699233i \(0.753525\pi\)
\(588\) 0 0
\(589\) −3.58630 −0.147771
\(590\) 5.37945 0.221469
\(591\) 0 0
\(592\) 41.9187 1.72285
\(593\) 38.7846 1.59269 0.796347 0.604841i \(-0.206763\pi\)
0.796347 + 0.604841i \(0.206763\pi\)
\(594\) 0 0
\(595\) 54.8497 2.24862
\(596\) 2.68973 0.110175
\(597\) 0 0
\(598\) 0 0
\(599\) 29.3205 1.19800 0.599002 0.800748i \(-0.295564\pi\)
0.599002 + 0.800748i \(0.295564\pi\)
\(600\) 0 0
\(601\) 21.1962 0.864609 0.432305 0.901728i \(-0.357701\pi\)
0.432305 + 0.901728i \(0.357701\pi\)
\(602\) 39.7128 1.61857
\(603\) 0 0
\(604\) −12.3923 −0.504236
\(605\) −43.4988 −1.76848
\(606\) 0 0
\(607\) 2.00000 0.0811775 0.0405887 0.999176i \(-0.487077\pi\)
0.0405887 + 0.999176i \(0.487077\pi\)
\(608\) 5.37945 0.218166
\(609\) 0 0
\(610\) −0.803848 −0.0325468
\(611\) 20.7846 0.840855
\(612\) 0 0
\(613\) −17.6641 −0.713445 −0.356722 0.934210i \(-0.616106\pi\)
−0.356722 + 0.934210i \(0.616106\pi\)
\(614\) 53.5692 2.16188
\(615\) 0 0
\(616\) −32.7846 −1.32093
\(617\) 43.4345 1.74861 0.874303 0.485380i \(-0.161319\pi\)
0.874303 + 0.485380i \(0.161319\pi\)
\(618\) 0 0
\(619\) −24.6980 −0.992695 −0.496348 0.868124i \(-0.665326\pi\)
−0.496348 + 0.868124i \(0.665326\pi\)
\(620\) −11.5911 −0.465510
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) 3.46410 0.138786
\(624\) 0 0
\(625\) −17.5885 −0.703538
\(626\) 16.7303 0.668678
\(627\) 0 0
\(628\) −13.9019 −0.554746
\(629\) −35.5692 −1.41824
\(630\) 0 0
\(631\) 27.0459 1.07668 0.538341 0.842727i \(-0.319051\pi\)
0.538341 + 0.842727i \(0.319051\pi\)
\(632\) −7.17260 −0.285311
\(633\) 0 0
\(634\) 60.9615 2.42109
\(635\) 20.0764 0.796707
\(636\) 0 0
\(637\) −23.7846 −0.942381
\(638\) −36.2147 −1.43376
\(639\) 0 0
\(640\) −40.5689 −1.60363
\(641\) −39.4321 −1.55747 −0.778737 0.627351i \(-0.784139\pi\)
−0.778737 + 0.627351i \(0.784139\pi\)
\(642\) 0 0
\(643\) 24.2175 0.955045 0.477522 0.878620i \(-0.341535\pi\)
0.477522 + 0.878620i \(0.341535\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −7.60770 −0.299321
\(647\) 6.92820 0.272376 0.136188 0.990683i \(-0.456515\pi\)
0.136188 + 0.990683i \(0.456515\pi\)
\(648\) 0 0
\(649\) 4.54725 0.178495
\(650\) −32.1962 −1.26284
\(651\) 0 0
\(652\) −15.4641 −0.605621
\(653\) 17.5359 0.686233 0.343116 0.939293i \(-0.388517\pi\)
0.343116 + 0.939293i \(0.388517\pi\)
\(654\) 0 0
\(655\) −26.2880 −1.02716
\(656\) −2.32051 −0.0906006
\(657\) 0 0
\(658\) 46.3644 1.80747
\(659\) −45.0518 −1.75497 −0.877484 0.479606i \(-0.840779\pi\)
−0.877484 + 0.479606i \(0.840779\pi\)
\(660\) 0 0
\(661\) 2.89280 0.112517 0.0562584 0.998416i \(-0.482083\pi\)
0.0562584 + 0.998416i \(0.482083\pi\)
\(662\) 31.1769 1.21173
\(663\) 0 0
\(664\) 11.5911 0.449822
\(665\) −13.3843 −0.519019
\(666\) 0 0
\(667\) 0 0
\(668\) 17.3205 0.670151
\(669\) 0 0
\(670\) −44.7846 −1.73018
\(671\) −0.679492 −0.0262315
\(672\) 0 0
\(673\) 33.7128 1.29953 0.649767 0.760134i \(-0.274867\pi\)
0.649767 + 0.760134i \(0.274867\pi\)
\(674\) −5.31508 −0.204729
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) −9.86233 −0.379040 −0.189520 0.981877i \(-0.560693\pi\)
−0.189520 + 0.981877i \(0.560693\pi\)
\(678\) 0 0
\(679\) 73.0333 2.80276
\(680\) 24.5885 0.942924
\(681\) 0 0
\(682\) −29.3939 −1.12555
\(683\) −16.3923 −0.627234 −0.313617 0.949550i \(-0.601541\pi\)
−0.313617 + 0.949550i \(0.601541\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) −6.21166 −0.237162
\(687\) 0 0
\(688\) 29.6713 1.13121
\(689\) −2.68973 −0.102470
\(690\) 0 0
\(691\) −24.2487 −0.922464 −0.461232 0.887279i \(-0.652592\pi\)
−0.461232 + 0.887279i \(0.652592\pi\)
\(692\) −11.1962 −0.425614
\(693\) 0 0
\(694\) 7.60770 0.288784
\(695\) 61.5419 2.33442
\(696\) 0 0
\(697\) 1.96902 0.0745818
\(698\) 42.9282 1.62486
\(699\) 0 0
\(700\) −23.9401 −0.904851
\(701\) −31.0112 −1.17128 −0.585638 0.810573i \(-0.699156\pi\)
−0.585638 + 0.810573i \(0.699156\pi\)
\(702\) 0 0
\(703\) 8.67949 0.327353
\(704\) −4.89898 −0.184637
\(705\) 0 0
\(706\) −13.3923 −0.504026
\(707\) −71.3398 −2.68301
\(708\) 0 0
\(709\) 16.8319 0.632134 0.316067 0.948737i \(-0.397638\pi\)
0.316067 + 0.948737i \(0.397638\pi\)
\(710\) −20.0764 −0.753454
\(711\) 0 0
\(712\) 1.55291 0.0581979
\(713\) 0 0
\(714\) 0 0
\(715\) −49.1769 −1.83911
\(716\) 6.00000 0.224231
\(717\) 0 0
\(718\) 16.1384 0.602278
\(719\) 43.8564 1.63557 0.817784 0.575525i \(-0.195202\pi\)
0.817784 + 0.575525i \(0.195202\pi\)
\(720\) 0 0
\(721\) −66.6410 −2.48184
\(722\) −31.0526 −1.15566
\(723\) 0 0
\(724\) −1.41421 −0.0525588
\(725\) 26.4449 0.982138
\(726\) 0 0
\(727\) −17.2480 −0.639692 −0.319846 0.947470i \(-0.603631\pi\)
−0.319846 + 0.947470i \(0.603631\pi\)
\(728\) −20.0764 −0.744081
\(729\) 0 0
\(730\) 70.2674 2.60071
\(731\) −25.1769 −0.931202
\(732\) 0 0
\(733\) 12.8666 0.475240 0.237620 0.971358i \(-0.423633\pi\)
0.237620 + 0.971358i \(0.423633\pi\)
\(734\) 22.2213 0.820202
\(735\) 0 0
\(736\) 0 0
\(737\) −37.8564 −1.39446
\(738\) 0 0
\(739\) 39.1769 1.44115 0.720573 0.693379i \(-0.243879\pi\)
0.720573 + 0.693379i \(0.243879\pi\)
\(740\) 28.0526 1.03123
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) 28.0812 1.03020 0.515100 0.857130i \(-0.327755\pi\)
0.515100 + 0.857130i \(0.327755\pi\)
\(744\) 0 0
\(745\) −9.00000 −0.329734
\(746\) 14.5211 0.531654
\(747\) 0 0
\(748\) −20.7846 −0.759961
\(749\) −63.7128 −2.32802
\(750\) 0 0
\(751\) 31.1127 1.13532 0.567659 0.823264i \(-0.307849\pi\)
0.567659 + 0.823264i \(0.307849\pi\)
\(752\) 34.6410 1.26323
\(753\) 0 0
\(754\) −22.1769 −0.807636
\(755\) 41.4655 1.50908
\(756\) 0 0
\(757\) 32.0093 1.16340 0.581698 0.813405i \(-0.302388\pi\)
0.581698 + 0.813405i \(0.302388\pi\)
\(758\) −2.14488 −0.0779056
\(759\) 0 0
\(760\) −6.00000 −0.217643
\(761\) −31.9808 −1.15930 −0.579651 0.814865i \(-0.696811\pi\)
−0.579651 + 0.814865i \(0.696811\pi\)
\(762\) 0 0
\(763\) −41.7128 −1.51011
\(764\) 16.4901 0.596590
\(765\) 0 0
\(766\) 43.2586 1.56300
\(767\) 2.78461 0.100546
\(768\) 0 0
\(769\) 16.1112 0.580983 0.290492 0.956878i \(-0.406181\pi\)
0.290492 + 0.956878i \(0.406181\pi\)
\(770\) −109.699 −3.95329
\(771\) 0 0
\(772\) −25.1962 −0.906829
\(773\) 33.2848 1.19717 0.598585 0.801059i \(-0.295730\pi\)
0.598585 + 0.801059i \(0.295730\pi\)
\(774\) 0 0
\(775\) 21.4641 0.771013
\(776\) 32.7399 1.17530
\(777\) 0 0
\(778\) −15.8338 −0.567667
\(779\) −0.480473 −0.0172147
\(780\) 0 0
\(781\) −16.9706 −0.607254
\(782\) 0 0
\(783\) 0 0
\(784\) −39.6410 −1.41575
\(785\) 46.5167 1.66025
\(786\) 0 0
\(787\) 39.3949 1.40428 0.702138 0.712040i \(-0.252229\pi\)
0.702138 + 0.712040i \(0.252229\pi\)
\(788\) −6.12436 −0.218171
\(789\) 0 0
\(790\) −24.0000 −0.853882
\(791\) 12.9282 0.459674
\(792\) 0 0
\(793\) −0.416102 −0.0147762
\(794\) −43.3013 −1.53670
\(795\) 0 0
\(796\) 5.65685 0.200502
\(797\) −15.3533 −0.543841 −0.271920 0.962320i \(-0.587659\pi\)
−0.271920 + 0.962320i \(0.587659\pi\)
\(798\) 0 0
\(799\) −29.3939 −1.03988
\(800\) −32.1962 −1.13831
\(801\) 0 0
\(802\) 34.0526 1.20244
\(803\) 59.3970 2.09607
\(804\) 0 0
\(805\) 0 0
\(806\) −18.0000 −0.634023
\(807\) 0 0
\(808\) −31.9808 −1.12508
\(809\) 1.85641 0.0652678 0.0326339 0.999467i \(-0.489610\pi\)
0.0326339 + 0.999467i \(0.489610\pi\)
\(810\) 0 0
\(811\) −6.92820 −0.243282 −0.121641 0.992574i \(-0.538816\pi\)
−0.121641 + 0.992574i \(0.538816\pi\)
\(812\) −16.4901 −0.578689
\(813\) 0 0
\(814\) 71.1384 2.49340
\(815\) 51.7439 1.81251
\(816\) 0 0
\(817\) 6.14359 0.214937
\(818\) −22.1436 −0.774233
\(819\) 0 0
\(820\) −1.55291 −0.0542301
\(821\) −36.0333 −1.25757 −0.628786 0.777579i \(-0.716448\pi\)
−0.628786 + 0.777579i \(0.716448\pi\)
\(822\) 0 0
\(823\) −9.46410 −0.329898 −0.164949 0.986302i \(-0.552746\pi\)
−0.164949 + 0.986302i \(0.552746\pi\)
\(824\) −29.8744 −1.04072
\(825\) 0 0
\(826\) 6.21166 0.216131
\(827\) −16.0096 −0.556709 −0.278354 0.960478i \(-0.589789\pi\)
−0.278354 + 0.960478i \(0.589789\pi\)
\(828\) 0 0
\(829\) 31.5885 1.09711 0.548556 0.836114i \(-0.315178\pi\)
0.548556 + 0.836114i \(0.315178\pi\)
\(830\) 38.7846 1.34623
\(831\) 0 0
\(832\) −3.00000 −0.104006
\(833\) 33.6365 1.16544
\(834\) 0 0
\(835\) −57.9555 −2.00563
\(836\) 5.07180 0.175412
\(837\) 0 0
\(838\) 6.21166 0.214578
\(839\) 32.1480 1.10987 0.554936 0.831893i \(-0.312743\pi\)
0.554936 + 0.831893i \(0.312743\pi\)
\(840\) 0 0
\(841\) −10.7846 −0.371883
\(842\) 14.5211 0.500429
\(843\) 0 0
\(844\) 14.5359 0.500346
\(845\) 13.3843 0.460433
\(846\) 0 0
\(847\) −50.2281 −1.72586
\(848\) −4.48288 −0.153943
\(849\) 0 0
\(850\) 45.5322 1.56174
\(851\) 0 0
\(852\) 0 0
\(853\) −5.21539 −0.178572 −0.0892858 0.996006i \(-0.528458\pi\)
−0.0892858 + 0.996006i \(0.528458\pi\)
\(854\) −0.928203 −0.0317625
\(855\) 0 0
\(856\) −28.5617 −0.976218
\(857\) 51.2487 1.75062 0.875311 0.483560i \(-0.160656\pi\)
0.875311 + 0.483560i \(0.160656\pi\)
\(858\) 0 0
\(859\) 36.3923 1.24169 0.620845 0.783934i \(-0.286790\pi\)
0.620845 + 0.783934i \(0.286790\pi\)
\(860\) 19.8564 0.677098
\(861\) 0 0
\(862\) 61.0614 2.07976
\(863\) −8.78461 −0.299032 −0.149516 0.988759i \(-0.547771\pi\)
−0.149516 + 0.988759i \(0.547771\pi\)
\(864\) 0 0
\(865\) 37.4631 1.27378
\(866\) 68.6501 2.33282
\(867\) 0 0
\(868\) −13.3843 −0.454291
\(869\) −20.2872 −0.688196
\(870\) 0 0
\(871\) −23.1822 −0.785500
\(872\) −18.6993 −0.633240
\(873\) 0 0
\(874\) 0 0
\(875\) 15.4641 0.522782
\(876\) 0 0
\(877\) −32.7846 −1.10706 −0.553529 0.832830i \(-0.686719\pi\)
−0.553529 + 0.832830i \(0.686719\pi\)
\(878\) 45.0333 1.51980
\(879\) 0 0
\(880\) −81.9615 −2.76292
\(881\) 0.896575 0.0302064 0.0151032 0.999886i \(-0.495192\pi\)
0.0151032 + 0.999886i \(0.495192\pi\)
\(882\) 0 0
\(883\) 21.7128 0.730694 0.365347 0.930871i \(-0.380950\pi\)
0.365347 + 0.930871i \(0.380950\pi\)
\(884\) −12.7279 −0.428086
\(885\) 0 0
\(886\) −70.3923 −2.36488
\(887\) −17.0718 −0.573215 −0.286607 0.958048i \(-0.592528\pi\)
−0.286607 + 0.958048i \(0.592528\pi\)
\(888\) 0 0
\(889\) 23.1822 0.777507
\(890\) 5.19615 0.174175
\(891\) 0 0
\(892\) 4.00000 0.133930
\(893\) 7.17260 0.240022
\(894\) 0 0
\(895\) −20.0764 −0.671080
\(896\) −46.8449 −1.56498
\(897\) 0 0
\(898\) −57.5885 −1.92175
\(899\) 14.7846 0.493094
\(900\) 0 0
\(901\) 3.80385 0.126725
\(902\) −3.93803 −0.131122
\(903\) 0 0
\(904\) 5.79555 0.192757
\(905\) 4.73205 0.157299
\(906\) 0 0
\(907\) −44.4970 −1.47750 −0.738749 0.673981i \(-0.764583\pi\)
−0.738749 + 0.673981i \(0.764583\pi\)
\(908\) −18.2832 −0.606751
\(909\) 0 0
\(910\) −67.1769 −2.22689
\(911\) −11.5911 −0.384031 −0.192015 0.981392i \(-0.561502\pi\)
−0.192015 + 0.981392i \(0.561502\pi\)
\(912\) 0 0
\(913\) 32.7846 1.08501
\(914\) 52.6405 1.74119
\(915\) 0 0
\(916\) −16.1112 −0.532327
\(917\) −30.3548 −1.00240
\(918\) 0 0
\(919\) −24.4206 −0.805560 −0.402780 0.915297i \(-0.631956\pi\)
−0.402780 + 0.915297i \(0.631956\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −10.6077 −0.349346
\(923\) −10.3923 −0.342067
\(924\) 0 0
\(925\) −51.9470 −1.70801
\(926\) −0.679492 −0.0223295
\(927\) 0 0
\(928\) −22.1769 −0.727993
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −8.20788 −0.269002
\(932\) −6.46410 −0.211739
\(933\) 0 0
\(934\) −20.9086 −0.684150
\(935\) 69.5467 2.27442
\(936\) 0 0
\(937\) 48.5365 1.58562 0.792810 0.609469i \(-0.208617\pi\)
0.792810 + 0.609469i \(0.208617\pi\)
\(938\) −51.7128 −1.68848
\(939\) 0 0
\(940\) 23.1822 0.756121
\(941\) 3.28169 0.106980 0.0534901 0.998568i \(-0.482965\pi\)
0.0534901 + 0.998568i \(0.482965\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 4.64102 0.151052
\(945\) 0 0
\(946\) 50.3538 1.63714
\(947\) −6.92820 −0.225136 −0.112568 0.993644i \(-0.535908\pi\)
−0.112568 + 0.993644i \(0.535908\pi\)
\(948\) 0 0
\(949\) 36.3731 1.18072
\(950\) −11.1106 −0.360477
\(951\) 0 0
\(952\) 28.3923 0.920200
\(953\) 9.07725 0.294041 0.147020 0.989133i \(-0.453032\pi\)
0.147020 + 0.989133i \(0.453032\pi\)
\(954\) 0 0
\(955\) −55.1769 −1.78548
\(956\) 9.46410 0.306091
\(957\) 0 0
\(958\) 15.5291 0.501724
\(959\) 10.3923 0.335585
\(960\) 0 0
\(961\) −19.0000 −0.612903
\(962\) 43.5632 1.40453
\(963\) 0 0
\(964\) −0.0371647 −0.00119700
\(965\) 84.3080 2.71397
\(966\) 0 0
\(967\) 47.5692 1.52972 0.764861 0.644195i \(-0.222807\pi\)
0.764861 + 0.644195i \(0.222807\pi\)
\(968\) −22.5167 −0.723713
\(969\) 0 0
\(970\) 109.550 3.51744
\(971\) −14.3452 −0.460360 −0.230180 0.973148i \(-0.573931\pi\)
−0.230180 + 0.973148i \(0.573931\pi\)
\(972\) 0 0
\(973\) 71.0624 2.27816
\(974\) −30.4974 −0.977200
\(975\) 0 0
\(976\) −0.693504 −0.0221985
\(977\) 17.2108 0.550622 0.275311 0.961355i \(-0.411219\pi\)
0.275311 + 0.961355i \(0.411219\pi\)
\(978\) 0 0
\(979\) 4.39230 0.140379
\(980\) −26.5283 −0.847415
\(981\) 0 0
\(982\) 31.1769 0.994895
\(983\) −4.06678 −0.129710 −0.0648550 0.997895i \(-0.520658\pi\)
−0.0648550 + 0.997895i \(0.520658\pi\)
\(984\) 0 0
\(985\) 20.4925 0.652945
\(986\) 31.3629 0.998798
\(987\) 0 0
\(988\) 3.10583 0.0988096
\(989\) 0 0
\(990\) 0 0
\(991\) −22.6410 −0.719216 −0.359608 0.933104i \(-0.617090\pi\)
−0.359608 + 0.933104i \(0.617090\pi\)
\(992\) −18.0000 −0.571501
\(993\) 0 0
\(994\) −23.1822 −0.735295
\(995\) −18.9282 −0.600064
\(996\) 0 0
\(997\) 13.1962 0.417926 0.208963 0.977924i \(-0.432991\pi\)
0.208963 + 0.977924i \(0.432991\pi\)
\(998\) −12.0000 −0.379853
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.bd.1.3 4
3.2 odd 2 1587.2.a.n.1.2 yes 4
23.22 odd 2 inner 4761.2.a.bd.1.4 4
69.68 even 2 1587.2.a.n.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.2.a.n.1.1 4 69.68 even 2
1587.2.a.n.1.2 yes 4 3.2 odd 2
4761.2.a.bd.1.3 4 1.1 even 1 trivial
4761.2.a.bd.1.4 4 23.22 odd 2 inner