Properties

Label 4761.2.a.bm.1.4
Level $4761$
Weight $2$
Character 4761.1
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.284630\) of defining polynomial
Character \(\chi\) \(=\) 4761.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.236479 q^{2} -1.94408 q^{4} +1.00714 q^{5} +2.05529 q^{7} +0.932691 q^{8} -0.238168 q^{10} +4.39011 q^{11} -2.08816 q^{13} -0.486033 q^{14} +3.66759 q^{16} -2.16917 q^{17} -2.66759 q^{19} -1.95796 q^{20} -1.03817 q^{22} -3.98567 q^{25} +0.493805 q^{26} -3.99565 q^{28} -7.97428 q^{29} -7.82464 q^{31} -2.73269 q^{32} +0.512963 q^{34} +2.06997 q^{35} +3.92676 q^{37} +0.630830 q^{38} +0.939352 q^{40} -6.30788 q^{41} +2.16627 q^{43} -8.53471 q^{44} +7.22297 q^{47} -2.77577 q^{49} +0.942526 q^{50} +4.05954 q^{52} -11.2938 q^{53} +4.42146 q^{55} +1.91695 q^{56} +1.88575 q^{58} -12.1922 q^{59} +14.1129 q^{61} +1.85036 q^{62} -6.68896 q^{64} -2.10307 q^{65} -0.712023 q^{67} +4.21704 q^{68} -0.489504 q^{70} +4.11767 q^{71} -0.0586401 q^{73} -0.928595 q^{74} +5.18601 q^{76} +9.02295 q^{77} +16.2978 q^{79} +3.69379 q^{80} +1.49168 q^{82} -14.5437 q^{83} -2.18466 q^{85} -0.512278 q^{86} +4.09461 q^{88} +2.75372 q^{89} -4.29177 q^{91} -1.70808 q^{94} -2.68665 q^{95} -5.90566 q^{97} +0.656411 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} - 7 q^{5} - 3 q^{7} + 9 q^{8} - 6 q^{10} - 2 q^{11} - 7 q^{13} + 10 q^{14} + 6 q^{16} - 16 q^{17} - q^{19} - 21 q^{20} + 14 q^{22} + 20 q^{25} + 5 q^{26} + 2 q^{28} - 18 q^{29}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.236479 −0.167216 −0.0836079 0.996499i \(-0.526644\pi\)
−0.0836079 + 0.996499i \(0.526644\pi\)
\(3\) 0 0
\(4\) −1.94408 −0.972039
\(5\) 1.00714 0.450408 0.225204 0.974312i \(-0.427695\pi\)
0.225204 + 0.974312i \(0.427695\pi\)
\(6\) 0 0
\(7\) 2.05529 0.776828 0.388414 0.921485i \(-0.373023\pi\)
0.388414 + 0.921485i \(0.373023\pi\)
\(8\) 0.932691 0.329756
\(9\) 0 0
\(10\) −0.238168 −0.0753153
\(11\) 4.39011 1.32367 0.661833 0.749651i \(-0.269779\pi\)
0.661833 + 0.749651i \(0.269779\pi\)
\(12\) 0 0
\(13\) −2.08816 −0.579150 −0.289575 0.957155i \(-0.593514\pi\)
−0.289575 + 0.957155i \(0.593514\pi\)
\(14\) −0.486033 −0.129898
\(15\) 0 0
\(16\) 3.66759 0.916898
\(17\) −2.16917 −0.526101 −0.263050 0.964782i \(-0.584729\pi\)
−0.263050 + 0.964782i \(0.584729\pi\)
\(18\) 0 0
\(19\) −2.66759 −0.611988 −0.305994 0.952033i \(-0.598989\pi\)
−0.305994 + 0.952033i \(0.598989\pi\)
\(20\) −1.95796 −0.437814
\(21\) 0 0
\(22\) −1.03817 −0.221338
\(23\) 0 0
\(24\) 0 0
\(25\) −3.98567 −0.797133
\(26\) 0.493805 0.0968431
\(27\) 0 0
\(28\) −3.99565 −0.755107
\(29\) −7.97428 −1.48079 −0.740393 0.672174i \(-0.765361\pi\)
−0.740393 + 0.672174i \(0.765361\pi\)
\(30\) 0 0
\(31\) −7.82464 −1.40535 −0.702674 0.711512i \(-0.748011\pi\)
−0.702674 + 0.711512i \(0.748011\pi\)
\(32\) −2.73269 −0.483076
\(33\) 0 0
\(34\) 0.512963 0.0879724
\(35\) 2.06997 0.349889
\(36\) 0 0
\(37\) 3.92676 0.645555 0.322777 0.946475i \(-0.395383\pi\)
0.322777 + 0.946475i \(0.395383\pi\)
\(38\) 0.630830 0.102334
\(39\) 0 0
\(40\) 0.939352 0.148525
\(41\) −6.30788 −0.985126 −0.492563 0.870277i \(-0.663940\pi\)
−0.492563 + 0.870277i \(0.663940\pi\)
\(42\) 0 0
\(43\) 2.16627 0.330354 0.165177 0.986264i \(-0.447181\pi\)
0.165177 + 0.986264i \(0.447181\pi\)
\(44\) −8.53471 −1.28666
\(45\) 0 0
\(46\) 0 0
\(47\) 7.22297 1.05358 0.526789 0.849996i \(-0.323396\pi\)
0.526789 + 0.849996i \(0.323396\pi\)
\(48\) 0 0
\(49\) −2.77577 −0.396539
\(50\) 0.942526 0.133293
\(51\) 0 0
\(52\) 4.05954 0.562957
\(53\) −11.2938 −1.55132 −0.775662 0.631149i \(-0.782584\pi\)
−0.775662 + 0.631149i \(0.782584\pi\)
\(54\) 0 0
\(55\) 4.42146 0.596189
\(56\) 1.91695 0.256164
\(57\) 0 0
\(58\) 1.88575 0.247611
\(59\) −12.1922 −1.58729 −0.793643 0.608384i \(-0.791818\pi\)
−0.793643 + 0.608384i \(0.791818\pi\)
\(60\) 0 0
\(61\) 14.1129 1.80697 0.903485 0.428620i \(-0.141000\pi\)
0.903485 + 0.428620i \(0.141000\pi\)
\(62\) 1.85036 0.234996
\(63\) 0 0
\(64\) −6.68896 −0.836120
\(65\) −2.10307 −0.260854
\(66\) 0 0
\(67\) −0.712023 −0.0869874 −0.0434937 0.999054i \(-0.513849\pi\)
−0.0434937 + 0.999054i \(0.513849\pi\)
\(68\) 4.21704 0.511391
\(69\) 0 0
\(70\) −0.489504 −0.0585070
\(71\) 4.11767 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(72\) 0 0
\(73\) −0.0586401 −0.00686331 −0.00343166 0.999994i \(-0.501092\pi\)
−0.00343166 + 0.999994i \(0.501092\pi\)
\(74\) −0.928595 −0.107947
\(75\) 0 0
\(76\) 5.18601 0.594876
\(77\) 9.02295 1.02826
\(78\) 0 0
\(79\) 16.2978 1.83365 0.916823 0.399295i \(-0.130745\pi\)
0.916823 + 0.399295i \(0.130745\pi\)
\(80\) 3.69379 0.412978
\(81\) 0 0
\(82\) 1.49168 0.164729
\(83\) −14.5437 −1.59638 −0.798191 0.602404i \(-0.794209\pi\)
−0.798191 + 0.602404i \(0.794209\pi\)
\(84\) 0 0
\(85\) −2.18466 −0.236960
\(86\) −0.512278 −0.0552403
\(87\) 0 0
\(88\) 4.09461 0.436487
\(89\) 2.75372 0.291893 0.145947 0.989292i \(-0.453377\pi\)
0.145947 + 0.989292i \(0.453377\pi\)
\(90\) 0 0
\(91\) −4.29177 −0.449900
\(92\) 0 0
\(93\) 0 0
\(94\) −1.70808 −0.176175
\(95\) −2.68665 −0.275644
\(96\) 0 0
\(97\) −5.90566 −0.599628 −0.299814 0.953998i \(-0.596925\pi\)
−0.299814 + 0.953998i \(0.596925\pi\)
\(98\) 0.656411 0.0663076
\(99\) 0 0
\(100\) 7.74844 0.774844
\(101\) 5.33760 0.531111 0.265556 0.964096i \(-0.414445\pi\)
0.265556 + 0.964096i \(0.414445\pi\)
\(102\) 0 0
\(103\) 4.95919 0.488643 0.244322 0.969694i \(-0.421435\pi\)
0.244322 + 0.969694i \(0.421435\pi\)
\(104\) −1.94760 −0.190978
\(105\) 0 0
\(106\) 2.67075 0.259406
\(107\) 3.53964 0.342190 0.171095 0.985255i \(-0.445270\pi\)
0.171095 + 0.985255i \(0.445270\pi\)
\(108\) 0 0
\(109\) −3.81953 −0.365845 −0.182922 0.983127i \(-0.558556\pi\)
−0.182922 + 0.983127i \(0.558556\pi\)
\(110\) −1.04558 −0.0996923
\(111\) 0 0
\(112\) 7.53798 0.712272
\(113\) −18.3439 −1.72565 −0.862825 0.505503i \(-0.831307\pi\)
−0.862825 + 0.505503i \(0.831307\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 15.5026 1.43938
\(117\) 0 0
\(118\) 2.88319 0.265419
\(119\) −4.45828 −0.408690
\(120\) 0 0
\(121\) 8.27303 0.752094
\(122\) −3.33740 −0.302154
\(123\) 0 0
\(124\) 15.2117 1.36605
\(125\) −9.04984 −0.809442
\(126\) 0 0
\(127\) 1.04594 0.0928121 0.0464060 0.998923i \(-0.485223\pi\)
0.0464060 + 0.998923i \(0.485223\pi\)
\(128\) 7.04718 0.622889
\(129\) 0 0
\(130\) 0.497331 0.0436189
\(131\) −9.18162 −0.802202 −0.401101 0.916034i \(-0.631372\pi\)
−0.401101 + 0.916034i \(0.631372\pi\)
\(132\) 0 0
\(133\) −5.48269 −0.475409
\(134\) 0.168378 0.0145457
\(135\) 0 0
\(136\) −2.02317 −0.173485
\(137\) −14.8173 −1.26592 −0.632962 0.774183i \(-0.718161\pi\)
−0.632962 + 0.774183i \(0.718161\pi\)
\(138\) 0 0
\(139\) 16.3675 1.38827 0.694137 0.719843i \(-0.255786\pi\)
0.694137 + 0.719843i \(0.255786\pi\)
\(140\) −4.02419 −0.340106
\(141\) 0 0
\(142\) −0.973742 −0.0817146
\(143\) −9.16723 −0.766602
\(144\) 0 0
\(145\) −8.03123 −0.666957
\(146\) 0.0138672 0.00114765
\(147\) 0 0
\(148\) −7.63392 −0.627504
\(149\) 0.714546 0.0585379 0.0292689 0.999572i \(-0.490682\pi\)
0.0292689 + 0.999572i \(0.490682\pi\)
\(150\) 0 0
\(151\) 7.21853 0.587436 0.293718 0.955892i \(-0.405107\pi\)
0.293718 + 0.955892i \(0.405107\pi\)
\(152\) −2.48804 −0.201807
\(153\) 0 0
\(154\) −2.13374 −0.171941
\(155\) −7.88052 −0.632979
\(156\) 0 0
\(157\) −17.9878 −1.43558 −0.717792 0.696257i \(-0.754847\pi\)
−0.717792 + 0.696257i \(0.754847\pi\)
\(158\) −3.85408 −0.306614
\(159\) 0 0
\(160\) −2.75221 −0.217581
\(161\) 0 0
\(162\) 0 0
\(163\) 4.58162 0.358860 0.179430 0.983771i \(-0.442575\pi\)
0.179430 + 0.983771i \(0.442575\pi\)
\(164\) 12.2630 0.957581
\(165\) 0 0
\(166\) 3.43929 0.266940
\(167\) 16.8037 1.30031 0.650155 0.759801i \(-0.274704\pi\)
0.650155 + 0.759801i \(0.274704\pi\)
\(168\) 0 0
\(169\) −8.63960 −0.664585
\(170\) 0.516626 0.0396234
\(171\) 0 0
\(172\) −4.21140 −0.321116
\(173\) 5.79309 0.440441 0.220220 0.975450i \(-0.429322\pi\)
0.220220 + 0.975450i \(0.429322\pi\)
\(174\) 0 0
\(175\) −8.19171 −0.619235
\(176\) 16.1011 1.21367
\(177\) 0 0
\(178\) −0.651196 −0.0488092
\(179\) −17.1995 −1.28555 −0.642777 0.766053i \(-0.722218\pi\)
−0.642777 + 0.766053i \(0.722218\pi\)
\(180\) 0 0
\(181\) 2.18141 0.162143 0.0810715 0.996708i \(-0.474166\pi\)
0.0810715 + 0.996708i \(0.474166\pi\)
\(182\) 1.01491 0.0752304
\(183\) 0 0
\(184\) 0 0
\(185\) 3.95480 0.290763
\(186\) 0 0
\(187\) −9.52289 −0.696382
\(188\) −14.0420 −1.02412
\(189\) 0 0
\(190\) 0.635335 0.0460920
\(191\) −17.3153 −1.25289 −0.626445 0.779465i \(-0.715491\pi\)
−0.626445 + 0.779465i \(0.715491\pi\)
\(192\) 0 0
\(193\) −17.9909 −1.29501 −0.647506 0.762060i \(-0.724188\pi\)
−0.647506 + 0.762060i \(0.724188\pi\)
\(194\) 1.39656 0.100267
\(195\) 0 0
\(196\) 5.39632 0.385451
\(197\) 4.90355 0.349363 0.174682 0.984625i \(-0.444110\pi\)
0.174682 + 0.984625i \(0.444110\pi\)
\(198\) 0 0
\(199\) −12.4893 −0.885341 −0.442671 0.896684i \(-0.645969\pi\)
−0.442671 + 0.896684i \(0.645969\pi\)
\(200\) −3.71739 −0.262859
\(201\) 0 0
\(202\) −1.26223 −0.0888102
\(203\) −16.3895 −1.15032
\(204\) 0 0
\(205\) −6.35293 −0.443708
\(206\) −1.17274 −0.0817089
\(207\) 0 0
\(208\) −7.65851 −0.531022
\(209\) −11.7110 −0.810068
\(210\) 0 0
\(211\) −18.0552 −1.24297 −0.621485 0.783426i \(-0.713470\pi\)
−0.621485 + 0.783426i \(0.713470\pi\)
\(212\) 21.9560 1.50795
\(213\) 0 0
\(214\) −0.837049 −0.0572195
\(215\) 2.18174 0.148794
\(216\) 0 0
\(217\) −16.0819 −1.09171
\(218\) 0.903239 0.0611750
\(219\) 0 0
\(220\) −8.59566 −0.579519
\(221\) 4.52957 0.304692
\(222\) 0 0
\(223\) −8.73096 −0.584668 −0.292334 0.956316i \(-0.594432\pi\)
−0.292334 + 0.956316i \(0.594432\pi\)
\(224\) −5.61648 −0.375267
\(225\) 0 0
\(226\) 4.33795 0.288556
\(227\) 23.7174 1.57418 0.787090 0.616838i \(-0.211587\pi\)
0.787090 + 0.616838i \(0.211587\pi\)
\(228\) 0 0
\(229\) 6.81277 0.450201 0.225100 0.974336i \(-0.427729\pi\)
0.225100 + 0.974336i \(0.427729\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −7.43754 −0.488298
\(233\) 1.36738 0.0895797 0.0447899 0.998996i \(-0.485738\pi\)
0.0447899 + 0.998996i \(0.485738\pi\)
\(234\) 0 0
\(235\) 7.27455 0.474540
\(236\) 23.7025 1.54290
\(237\) 0 0
\(238\) 1.05429 0.0683394
\(239\) 18.0099 1.16497 0.582483 0.812843i \(-0.302081\pi\)
0.582483 + 0.812843i \(0.302081\pi\)
\(240\) 0 0
\(241\) 0.295761 0.0190516 0.00952582 0.999955i \(-0.496968\pi\)
0.00952582 + 0.999955i \(0.496968\pi\)
\(242\) −1.95640 −0.125762
\(243\) 0 0
\(244\) −27.4365 −1.75644
\(245\) −2.79560 −0.178604
\(246\) 0 0
\(247\) 5.57035 0.354433
\(248\) −7.29797 −0.463422
\(249\) 0 0
\(250\) 2.14010 0.135352
\(251\) 15.0335 0.948906 0.474453 0.880281i \(-0.342646\pi\)
0.474453 + 0.880281i \(0.342646\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.247342 −0.0155196
\(255\) 0 0
\(256\) 11.7114 0.731964
\(257\) −14.5046 −0.904774 −0.452387 0.891822i \(-0.649427\pi\)
−0.452387 + 0.891822i \(0.649427\pi\)
\(258\) 0 0
\(259\) 8.07064 0.501485
\(260\) 4.08853 0.253560
\(261\) 0 0
\(262\) 2.17126 0.134141
\(263\) 15.2707 0.941634 0.470817 0.882231i \(-0.343959\pi\)
0.470817 + 0.882231i \(0.343959\pi\)
\(264\) 0 0
\(265\) −11.3745 −0.698728
\(266\) 1.29654 0.0794959
\(267\) 0 0
\(268\) 1.38423 0.0845552
\(269\) −13.6130 −0.830000 −0.415000 0.909821i \(-0.636218\pi\)
−0.415000 + 0.909821i \(0.636218\pi\)
\(270\) 0 0
\(271\) 4.41606 0.268257 0.134128 0.990964i \(-0.457177\pi\)
0.134128 + 0.990964i \(0.457177\pi\)
\(272\) −7.95563 −0.482381
\(273\) 0 0
\(274\) 3.50397 0.211682
\(275\) −17.4975 −1.05514
\(276\) 0 0
\(277\) 16.7884 1.00872 0.504358 0.863495i \(-0.331729\pi\)
0.504358 + 0.863495i \(0.331729\pi\)
\(278\) −3.87057 −0.232141
\(279\) 0 0
\(280\) 1.93064 0.115378
\(281\) −28.0522 −1.67345 −0.836726 0.547622i \(-0.815533\pi\)
−0.836726 + 0.547622i \(0.815533\pi\)
\(282\) 0 0
\(283\) −28.4068 −1.68861 −0.844304 0.535865i \(-0.819986\pi\)
−0.844304 + 0.535865i \(0.819986\pi\)
\(284\) −8.00507 −0.475014
\(285\) 0 0
\(286\) 2.16786 0.128188
\(287\) −12.9645 −0.765273
\(288\) 0 0
\(289\) −12.2947 −0.723218
\(290\) 1.89922 0.111526
\(291\) 0 0
\(292\) 0.114001 0.00667140
\(293\) −15.4269 −0.901251 −0.450625 0.892713i \(-0.648799\pi\)
−0.450625 + 0.892713i \(0.648799\pi\)
\(294\) 0 0
\(295\) −12.2793 −0.714926
\(296\) 3.66245 0.212876
\(297\) 0 0
\(298\) −0.168975 −0.00978846
\(299\) 0 0
\(300\) 0 0
\(301\) 4.45232 0.256628
\(302\) −1.70703 −0.0982285
\(303\) 0 0
\(304\) −9.78365 −0.561131
\(305\) 14.2137 0.813873
\(306\) 0 0
\(307\) 32.8470 1.87468 0.937339 0.348419i \(-0.113281\pi\)
0.937339 + 0.348419i \(0.113281\pi\)
\(308\) −17.5413 −0.999510
\(309\) 0 0
\(310\) 1.86358 0.105844
\(311\) 2.02085 0.114592 0.0572959 0.998357i \(-0.481752\pi\)
0.0572959 + 0.998357i \(0.481752\pi\)
\(312\) 0 0
\(313\) 22.3502 1.26331 0.631655 0.775250i \(-0.282376\pi\)
0.631655 + 0.775250i \(0.282376\pi\)
\(314\) 4.25374 0.240052
\(315\) 0 0
\(316\) −31.6842 −1.78237
\(317\) −14.0996 −0.791915 −0.395957 0.918269i \(-0.629587\pi\)
−0.395957 + 0.918269i \(0.629587\pi\)
\(318\) 0 0
\(319\) −35.0079 −1.96007
\(320\) −6.73674 −0.376595
\(321\) 0 0
\(322\) 0 0
\(323\) 5.78646 0.321967
\(324\) 0 0
\(325\) 8.32269 0.461660
\(326\) −1.08346 −0.0600071
\(327\) 0 0
\(328\) −5.88331 −0.324851
\(329\) 14.8453 0.818449
\(330\) 0 0
\(331\) 0.786431 0.0432262 0.0216131 0.999766i \(-0.493120\pi\)
0.0216131 + 0.999766i \(0.493120\pi\)
\(332\) 28.2741 1.55175
\(333\) 0 0
\(334\) −3.97372 −0.217433
\(335\) −0.717108 −0.0391798
\(336\) 0 0
\(337\) −5.20000 −0.283262 −0.141631 0.989919i \(-0.545235\pi\)
−0.141631 + 0.989919i \(0.545235\pi\)
\(338\) 2.04308 0.111129
\(339\) 0 0
\(340\) 4.24715 0.230334
\(341\) −34.3510 −1.86021
\(342\) 0 0
\(343\) −20.0921 −1.08487
\(344\) 2.02046 0.108936
\(345\) 0 0
\(346\) −1.36994 −0.0736486
\(347\) −10.4512 −0.561050 −0.280525 0.959847i \(-0.590509\pi\)
−0.280525 + 0.959847i \(0.590509\pi\)
\(348\) 0 0
\(349\) 15.7564 0.843421 0.421710 0.906731i \(-0.361430\pi\)
0.421710 + 0.906731i \(0.361430\pi\)
\(350\) 1.93717 0.103546
\(351\) 0 0
\(352\) −11.9968 −0.639432
\(353\) −20.1148 −1.07060 −0.535302 0.844661i \(-0.679802\pi\)
−0.535302 + 0.844661i \(0.679802\pi\)
\(354\) 0 0
\(355\) 4.14708 0.220104
\(356\) −5.35344 −0.283732
\(357\) 0 0
\(358\) 4.06733 0.214965
\(359\) 11.0102 0.581097 0.290548 0.956860i \(-0.406162\pi\)
0.290548 + 0.956860i \(0.406162\pi\)
\(360\) 0 0
\(361\) −11.8839 −0.625471
\(362\) −0.515858 −0.0271129
\(363\) 0 0
\(364\) 8.34354 0.437320
\(365\) −0.0590590 −0.00309129
\(366\) 0 0
\(367\) −20.5922 −1.07490 −0.537452 0.843294i \(-0.680613\pi\)
−0.537452 + 0.843294i \(0.680613\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.935227 −0.0486201
\(371\) −23.2121 −1.20511
\(372\) 0 0
\(373\) 23.0849 1.19529 0.597644 0.801761i \(-0.296103\pi\)
0.597644 + 0.801761i \(0.296103\pi\)
\(374\) 2.25196 0.116446
\(375\) 0 0
\(376\) 6.73680 0.347424
\(377\) 16.6515 0.857598
\(378\) 0 0
\(379\) 1.22394 0.0628696 0.0314348 0.999506i \(-0.489992\pi\)
0.0314348 + 0.999506i \(0.489992\pi\)
\(380\) 5.22305 0.267937
\(381\) 0 0
\(382\) 4.09470 0.209503
\(383\) −7.51089 −0.383789 −0.191894 0.981416i \(-0.561463\pi\)
−0.191894 + 0.981416i \(0.561463\pi\)
\(384\) 0 0
\(385\) 9.08739 0.463136
\(386\) 4.25447 0.216547
\(387\) 0 0
\(388\) 11.4811 0.582862
\(389\) −17.9573 −0.910473 −0.455237 0.890370i \(-0.650445\pi\)
−0.455237 + 0.890370i \(0.650445\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.58894 −0.130761
\(393\) 0 0
\(394\) −1.15959 −0.0584191
\(395\) 16.4142 0.825888
\(396\) 0 0
\(397\) −33.3520 −1.67389 −0.836944 0.547289i \(-0.815660\pi\)
−0.836944 + 0.547289i \(0.815660\pi\)
\(398\) 2.95345 0.148043
\(399\) 0 0
\(400\) −14.6178 −0.730890
\(401\) −8.12602 −0.405794 −0.202897 0.979200i \(-0.565036\pi\)
−0.202897 + 0.979200i \(0.565036\pi\)
\(402\) 0 0
\(403\) 16.3391 0.813907
\(404\) −10.3767 −0.516261
\(405\) 0 0
\(406\) 3.87577 0.192351
\(407\) 17.2389 0.854500
\(408\) 0 0
\(409\) −15.4452 −0.763718 −0.381859 0.924221i \(-0.624716\pi\)
−0.381859 + 0.924221i \(0.624716\pi\)
\(410\) 1.50233 0.0741950
\(411\) 0 0
\(412\) −9.64104 −0.474980
\(413\) −25.0585 −1.23305
\(414\) 0 0
\(415\) −14.6476 −0.719023
\(416\) 5.70628 0.279774
\(417\) 0 0
\(418\) 2.76941 0.135456
\(419\) −21.6131 −1.05587 −0.527935 0.849285i \(-0.677034\pi\)
−0.527935 + 0.849285i \(0.677034\pi\)
\(420\) 0 0
\(421\) 7.89428 0.384744 0.192372 0.981322i \(-0.438382\pi\)
0.192372 + 0.981322i \(0.438382\pi\)
\(422\) 4.26967 0.207844
\(423\) 0 0
\(424\) −10.5336 −0.511558
\(425\) 8.64559 0.419372
\(426\) 0 0
\(427\) 29.0061 1.40370
\(428\) −6.88133 −0.332622
\(429\) 0 0
\(430\) −0.515936 −0.0248807
\(431\) 3.16611 0.152506 0.0762531 0.997088i \(-0.475704\pi\)
0.0762531 + 0.997088i \(0.475704\pi\)
\(432\) 0 0
\(433\) 16.9520 0.814662 0.407331 0.913280i \(-0.366459\pi\)
0.407331 + 0.913280i \(0.366459\pi\)
\(434\) 3.80304 0.182552
\(435\) 0 0
\(436\) 7.42547 0.355615
\(437\) 0 0
\(438\) 0 0
\(439\) 13.7946 0.658379 0.329189 0.944264i \(-0.393225\pi\)
0.329189 + 0.944264i \(0.393225\pi\)
\(440\) 4.12386 0.196597
\(441\) 0 0
\(442\) −1.07115 −0.0509492
\(443\) 7.94775 0.377609 0.188805 0.982015i \(-0.439539\pi\)
0.188805 + 0.982015i \(0.439539\pi\)
\(444\) 0 0
\(445\) 2.77338 0.131471
\(446\) 2.06469 0.0977658
\(447\) 0 0
\(448\) −13.7478 −0.649521
\(449\) 31.4846 1.48585 0.742925 0.669374i \(-0.233438\pi\)
0.742925 + 0.669374i \(0.233438\pi\)
\(450\) 0 0
\(451\) −27.6923 −1.30398
\(452\) 35.6620 1.67740
\(453\) 0 0
\(454\) −5.60867 −0.263228
\(455\) −4.32242 −0.202638
\(456\) 0 0
\(457\) 21.3571 0.999041 0.499521 0.866302i \(-0.333509\pi\)
0.499521 + 0.866302i \(0.333509\pi\)
\(458\) −1.61108 −0.0752807
\(459\) 0 0
\(460\) 0 0
\(461\) −1.51050 −0.0703510 −0.0351755 0.999381i \(-0.511199\pi\)
−0.0351755 + 0.999381i \(0.511199\pi\)
\(462\) 0 0
\(463\) −3.05242 −0.141858 −0.0709289 0.997481i \(-0.522596\pi\)
−0.0709289 + 0.997481i \(0.522596\pi\)
\(464\) −29.2464 −1.35773
\(465\) 0 0
\(466\) −0.323355 −0.0149791
\(467\) −5.32804 −0.246552 −0.123276 0.992372i \(-0.539340\pi\)
−0.123276 + 0.992372i \(0.539340\pi\)
\(468\) 0 0
\(469\) −1.46342 −0.0675742
\(470\) −1.72028 −0.0793505
\(471\) 0 0
\(472\) −11.3715 −0.523417
\(473\) 9.51017 0.437278
\(474\) 0 0
\(475\) 10.6321 0.487836
\(476\) 8.66724 0.397262
\(477\) 0 0
\(478\) −4.25897 −0.194801
\(479\) 9.46457 0.432447 0.216224 0.976344i \(-0.430626\pi\)
0.216224 + 0.976344i \(0.430626\pi\)
\(480\) 0 0
\(481\) −8.19968 −0.373873
\(482\) −0.0699412 −0.00318573
\(483\) 0 0
\(484\) −16.0834 −0.731064
\(485\) −5.94783 −0.270077
\(486\) 0 0
\(487\) 13.6397 0.618075 0.309037 0.951050i \(-0.399993\pi\)
0.309037 + 0.951050i \(0.399993\pi\)
\(488\) 13.1630 0.595859
\(489\) 0 0
\(490\) 0.661099 0.0298654
\(491\) −2.93931 −0.132649 −0.0663247 0.997798i \(-0.521127\pi\)
−0.0663247 + 0.997798i \(0.521127\pi\)
\(492\) 0 0
\(493\) 17.2976 0.779043
\(494\) −1.31727 −0.0592668
\(495\) 0 0
\(496\) −28.6976 −1.28856
\(497\) 8.46302 0.379618
\(498\) 0 0
\(499\) 11.4719 0.513553 0.256776 0.966471i \(-0.417340\pi\)
0.256776 + 0.966471i \(0.417340\pi\)
\(500\) 17.5936 0.786809
\(501\) 0 0
\(502\) −3.55511 −0.158672
\(503\) −23.2357 −1.03603 −0.518014 0.855372i \(-0.673329\pi\)
−0.518014 + 0.855372i \(0.673329\pi\)
\(504\) 0 0
\(505\) 5.37572 0.239217
\(506\) 0 0
\(507\) 0 0
\(508\) −2.03339 −0.0902169
\(509\) 3.96686 0.175828 0.0879139 0.996128i \(-0.471980\pi\)
0.0879139 + 0.996128i \(0.471980\pi\)
\(510\) 0 0
\(511\) −0.120523 −0.00533161
\(512\) −16.8639 −0.745284
\(513\) 0 0
\(514\) 3.43004 0.151292
\(515\) 4.99460 0.220089
\(516\) 0 0
\(517\) 31.7096 1.39459
\(518\) −1.90853 −0.0838562
\(519\) 0 0
\(520\) −1.96151 −0.0860181
\(521\) −3.28183 −0.143779 −0.0718897 0.997413i \(-0.522903\pi\)
−0.0718897 + 0.997413i \(0.522903\pi\)
\(522\) 0 0
\(523\) −0.172624 −0.00754832 −0.00377416 0.999993i \(-0.501201\pi\)
−0.00377416 + 0.999993i \(0.501201\pi\)
\(524\) 17.8498 0.779771
\(525\) 0 0
\(526\) −3.61121 −0.157456
\(527\) 16.9730 0.739354
\(528\) 0 0
\(529\) 0 0
\(530\) 2.68982 0.116838
\(531\) 0 0
\(532\) 10.6588 0.462116
\(533\) 13.1718 0.570536
\(534\) 0 0
\(535\) 3.56492 0.154125
\(536\) −0.664097 −0.0286846
\(537\) 0 0
\(538\) 3.21919 0.138789
\(539\) −12.1859 −0.524885
\(540\) 0 0
\(541\) 16.4406 0.706838 0.353419 0.935465i \(-0.385019\pi\)
0.353419 + 0.935465i \(0.385019\pi\)
\(542\) −1.04431 −0.0448568
\(543\) 0 0
\(544\) 5.92767 0.254147
\(545\) −3.84681 −0.164779
\(546\) 0 0
\(547\) 0.317709 0.0135842 0.00679212 0.999977i \(-0.497838\pi\)
0.00679212 + 0.999977i \(0.497838\pi\)
\(548\) 28.8059 1.23053
\(549\) 0 0
\(550\) 4.13779 0.176436
\(551\) 21.2721 0.906223
\(552\) 0 0
\(553\) 33.4967 1.42443
\(554\) −3.97009 −0.168673
\(555\) 0 0
\(556\) −31.8197 −1.34946
\(557\) −1.82207 −0.0772036 −0.0386018 0.999255i \(-0.512290\pi\)
−0.0386018 + 0.999255i \(0.512290\pi\)
\(558\) 0 0
\(559\) −4.52352 −0.191324
\(560\) 7.59181 0.320813
\(561\) 0 0
\(562\) 6.63374 0.279828
\(563\) 2.56170 0.107963 0.0539814 0.998542i \(-0.482809\pi\)
0.0539814 + 0.998542i \(0.482809\pi\)
\(564\) 0 0
\(565\) −18.4749 −0.777246
\(566\) 6.71760 0.282362
\(567\) 0 0
\(568\) 3.84052 0.161144
\(569\) 11.7193 0.491300 0.245650 0.969359i \(-0.420999\pi\)
0.245650 + 0.969359i \(0.420999\pi\)
\(570\) 0 0
\(571\) −0.594181 −0.0248657 −0.0124329 0.999923i \(-0.503958\pi\)
−0.0124329 + 0.999923i \(0.503958\pi\)
\(572\) 17.8218 0.745167
\(573\) 0 0
\(574\) 3.06584 0.127966
\(575\) 0 0
\(576\) 0 0
\(577\) 4.11715 0.171399 0.0856995 0.996321i \(-0.472687\pi\)
0.0856995 + 0.996321i \(0.472687\pi\)
\(578\) 2.90744 0.120933
\(579\) 0 0
\(580\) 15.6133 0.648308
\(581\) −29.8916 −1.24011
\(582\) 0 0
\(583\) −49.5810 −2.05344
\(584\) −0.0546931 −0.00226322
\(585\) 0 0
\(586\) 3.64814 0.150703
\(587\) −41.6561 −1.71933 −0.859666 0.510857i \(-0.829328\pi\)
−0.859666 + 0.510857i \(0.829328\pi\)
\(588\) 0 0
\(589\) 20.8730 0.860055
\(590\) 2.90378 0.119547
\(591\) 0 0
\(592\) 14.4018 0.591908
\(593\) −1.37079 −0.0562914 −0.0281457 0.999604i \(-0.508960\pi\)
−0.0281457 + 0.999604i \(0.508960\pi\)
\(594\) 0 0
\(595\) −4.49012 −0.184077
\(596\) −1.38913 −0.0569011
\(597\) 0 0
\(598\) 0 0
\(599\) 26.0672 1.06508 0.532538 0.846406i \(-0.321238\pi\)
0.532538 + 0.846406i \(0.321238\pi\)
\(600\) 0 0
\(601\) −0.0655862 −0.00267532 −0.00133766 0.999999i \(-0.500426\pi\)
−0.00133766 + 0.999999i \(0.500426\pi\)
\(602\) −1.05288 −0.0429122
\(603\) 0 0
\(604\) −14.0334 −0.571010
\(605\) 8.33211 0.338749
\(606\) 0 0
\(607\) −15.0668 −0.611544 −0.305772 0.952105i \(-0.598915\pi\)
−0.305772 + 0.952105i \(0.598915\pi\)
\(608\) 7.28971 0.295637
\(609\) 0 0
\(610\) −3.36123 −0.136092
\(611\) −15.0827 −0.610180
\(612\) 0 0
\(613\) −45.3834 −1.83302 −0.916509 0.400014i \(-0.869005\pi\)
−0.916509 + 0.400014i \(0.869005\pi\)
\(614\) −7.76762 −0.313476
\(615\) 0 0
\(616\) 8.41563 0.339075
\(617\) 44.0445 1.77316 0.886582 0.462571i \(-0.153073\pi\)
0.886582 + 0.462571i \(0.153073\pi\)
\(618\) 0 0
\(619\) 19.9977 0.803776 0.401888 0.915689i \(-0.368354\pi\)
0.401888 + 0.915689i \(0.368354\pi\)
\(620\) 15.3204 0.615280
\(621\) 0 0
\(622\) −0.477888 −0.0191615
\(623\) 5.65969 0.226751
\(624\) 0 0
\(625\) 10.8139 0.432554
\(626\) −5.28536 −0.211245
\(627\) 0 0
\(628\) 34.9697 1.39544
\(629\) −8.51780 −0.339627
\(630\) 0 0
\(631\) −40.2554 −1.60254 −0.801271 0.598301i \(-0.795843\pi\)
−0.801271 + 0.598301i \(0.795843\pi\)
\(632\) 15.2008 0.604656
\(633\) 0 0
\(634\) 3.33427 0.132421
\(635\) 1.05341 0.0418033
\(636\) 0 0
\(637\) 5.79624 0.229656
\(638\) 8.27864 0.327754
\(639\) 0 0
\(640\) 7.09751 0.280554
\(641\) −23.0020 −0.908526 −0.454263 0.890868i \(-0.650097\pi\)
−0.454263 + 0.890868i \(0.650097\pi\)
\(642\) 0 0
\(643\) −6.29862 −0.248393 −0.124197 0.992258i \(-0.539635\pi\)
−0.124197 + 0.992258i \(0.539635\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.36838 −0.0538381
\(647\) 0.235819 0.00927101 0.00463550 0.999989i \(-0.498524\pi\)
0.00463550 + 0.999989i \(0.498524\pi\)
\(648\) 0 0
\(649\) −53.5250 −2.10104
\(650\) −1.96814 −0.0771968
\(651\) 0 0
\(652\) −8.90702 −0.348826
\(653\) −19.7596 −0.773253 −0.386626 0.922236i \(-0.626360\pi\)
−0.386626 + 0.922236i \(0.626360\pi\)
\(654\) 0 0
\(655\) −9.24719 −0.361318
\(656\) −23.1348 −0.903260
\(657\) 0 0
\(658\) −3.51060 −0.136858
\(659\) −39.6658 −1.54516 −0.772579 0.634918i \(-0.781034\pi\)
−0.772579 + 0.634918i \(0.781034\pi\)
\(660\) 0 0
\(661\) 36.8354 1.43273 0.716366 0.697725i \(-0.245804\pi\)
0.716366 + 0.697725i \(0.245804\pi\)
\(662\) −0.185974 −0.00722810
\(663\) 0 0
\(664\) −13.5648 −0.526417
\(665\) −5.52184 −0.214128
\(666\) 0 0
\(667\) 0 0
\(668\) −32.6677 −1.26395
\(669\) 0 0
\(670\) 0.169581 0.00655148
\(671\) 61.9571 2.39183
\(672\) 0 0
\(673\) 50.6016 1.95055 0.975274 0.220999i \(-0.0709317\pi\)
0.975274 + 0.220999i \(0.0709317\pi\)
\(674\) 1.22969 0.0473659
\(675\) 0 0
\(676\) 16.7961 0.646002
\(677\) −27.0137 −1.03822 −0.519111 0.854707i \(-0.673737\pi\)
−0.519111 + 0.854707i \(0.673737\pi\)
\(678\) 0 0
\(679\) −12.1378 −0.465808
\(680\) −2.03761 −0.0781390
\(681\) 0 0
\(682\) 8.12329 0.311057
\(683\) 27.5008 1.05229 0.526144 0.850396i \(-0.323637\pi\)
0.526144 + 0.850396i \(0.323637\pi\)
\(684\) 0 0
\(685\) −14.9231 −0.570181
\(686\) 4.75135 0.181407
\(687\) 0 0
\(688\) 7.94501 0.302901
\(689\) 23.5832 0.898449
\(690\) 0 0
\(691\) −3.58673 −0.136446 −0.0682229 0.997670i \(-0.521733\pi\)
−0.0682229 + 0.997670i \(0.521733\pi\)
\(692\) −11.2622 −0.428125
\(693\) 0 0
\(694\) 2.47149 0.0938165
\(695\) 16.4844 0.625289
\(696\) 0 0
\(697\) 13.6829 0.518276
\(698\) −3.72606 −0.141033
\(699\) 0 0
\(700\) 15.9253 0.601920
\(701\) 29.0797 1.09833 0.549163 0.835716i \(-0.314947\pi\)
0.549163 + 0.835716i \(0.314947\pi\)
\(702\) 0 0
\(703\) −10.4750 −0.395072
\(704\) −29.3653 −1.10674
\(705\) 0 0
\(706\) 4.75673 0.179022
\(707\) 10.9703 0.412582
\(708\) 0 0
\(709\) −2.59976 −0.0976360 −0.0488180 0.998808i \(-0.515545\pi\)
−0.0488180 + 0.998808i \(0.515545\pi\)
\(710\) −0.980697 −0.0368049
\(711\) 0 0
\(712\) 2.56837 0.0962536
\(713\) 0 0
\(714\) 0 0
\(715\) −9.23270 −0.345283
\(716\) 33.4373 1.24961
\(717\) 0 0
\(718\) −2.60368 −0.0971686
\(719\) −18.9338 −0.706110 −0.353055 0.935603i \(-0.614857\pi\)
−0.353055 + 0.935603i \(0.614857\pi\)
\(720\) 0 0
\(721\) 10.1926 0.379591
\(722\) 2.81030 0.104589
\(723\) 0 0
\(724\) −4.24083 −0.157609
\(725\) 31.7828 1.18038
\(726\) 0 0
\(727\) 8.08294 0.299780 0.149890 0.988703i \(-0.452108\pi\)
0.149890 + 0.988703i \(0.452108\pi\)
\(728\) −4.00290 −0.148357
\(729\) 0 0
\(730\) 0.0139662 0.000516912 0
\(731\) −4.69901 −0.173799
\(732\) 0 0
\(733\) 6.31984 0.233429 0.116714 0.993166i \(-0.462764\pi\)
0.116714 + 0.993166i \(0.462764\pi\)
\(734\) 4.86962 0.179741
\(735\) 0 0
\(736\) 0 0
\(737\) −3.12586 −0.115142
\(738\) 0 0
\(739\) −23.0985 −0.849691 −0.424845 0.905266i \(-0.639672\pi\)
−0.424845 + 0.905266i \(0.639672\pi\)
\(740\) −7.68844 −0.282633
\(741\) 0 0
\(742\) 5.48917 0.201514
\(743\) −26.6717 −0.978491 −0.489246 0.872146i \(-0.662728\pi\)
−0.489246 + 0.872146i \(0.662728\pi\)
\(744\) 0 0
\(745\) 0.719649 0.0263659
\(746\) −5.45908 −0.199871
\(747\) 0 0
\(748\) 18.5132 0.676911
\(749\) 7.27499 0.265822
\(750\) 0 0
\(751\) 31.6095 1.15345 0.576724 0.816939i \(-0.304331\pi\)
0.576724 + 0.816939i \(0.304331\pi\)
\(752\) 26.4909 0.966024
\(753\) 0 0
\(754\) −3.93774 −0.143404
\(755\) 7.27008 0.264585
\(756\) 0 0
\(757\) 28.9705 1.05295 0.526475 0.850190i \(-0.323513\pi\)
0.526475 + 0.850190i \(0.323513\pi\)
\(758\) −0.289436 −0.0105128
\(759\) 0 0
\(760\) −2.50581 −0.0908953
\(761\) 45.0660 1.63364 0.816821 0.576891i \(-0.195734\pi\)
0.816821 + 0.576891i \(0.195734\pi\)
\(762\) 0 0
\(763\) −7.85026 −0.284198
\(764\) 33.6623 1.21786
\(765\) 0 0
\(766\) 1.77617 0.0641755
\(767\) 25.4592 0.919277
\(768\) 0 0
\(769\) 20.5509 0.741084 0.370542 0.928816i \(-0.379172\pi\)
0.370542 + 0.928816i \(0.379172\pi\)
\(770\) −2.14898 −0.0774437
\(771\) 0 0
\(772\) 34.9757 1.25880
\(773\) −18.4221 −0.662598 −0.331299 0.943526i \(-0.607487\pi\)
−0.331299 + 0.943526i \(0.607487\pi\)
\(774\) 0 0
\(775\) 31.1864 1.12025
\(776\) −5.50815 −0.197731
\(777\) 0 0
\(778\) 4.24653 0.152246
\(779\) 16.8269 0.602885
\(780\) 0 0
\(781\) 18.0770 0.646846
\(782\) 0 0
\(783\) 0 0
\(784\) −10.1804 −0.363586
\(785\) −18.1163 −0.646598
\(786\) 0 0
\(787\) 19.8522 0.707654 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(788\) −9.53288 −0.339595
\(789\) 0 0
\(790\) −3.88161 −0.138101
\(791\) −37.7021 −1.34053
\(792\) 0 0
\(793\) −29.4699 −1.04651
\(794\) 7.88704 0.279900
\(795\) 0 0
\(796\) 24.2801 0.860586
\(797\) −25.6946 −0.910148 −0.455074 0.890454i \(-0.650387\pi\)
−0.455074 + 0.890454i \(0.650387\pi\)
\(798\) 0 0
\(799\) −15.6678 −0.554289
\(800\) 10.8916 0.385076
\(801\) 0 0
\(802\) 1.92163 0.0678552
\(803\) −0.257436 −0.00908474
\(804\) 0 0
\(805\) 0 0
\(806\) −3.86385 −0.136098
\(807\) 0 0
\(808\) 4.97834 0.175137
\(809\) −15.4647 −0.543710 −0.271855 0.962338i \(-0.587637\pi\)
−0.271855 + 0.962338i \(0.587637\pi\)
\(810\) 0 0
\(811\) −20.7503 −0.728642 −0.364321 0.931273i \(-0.618699\pi\)
−0.364321 + 0.931273i \(0.618699\pi\)
\(812\) 31.8624 1.11815
\(813\) 0 0
\(814\) −4.07663 −0.142886
\(815\) 4.61434 0.161633
\(816\) 0 0
\(817\) −5.77874 −0.202172
\(818\) 3.65247 0.127706
\(819\) 0 0
\(820\) 12.3506 0.431302
\(821\) −35.6399 −1.24384 −0.621921 0.783080i \(-0.713648\pi\)
−0.621921 + 0.783080i \(0.713648\pi\)
\(822\) 0 0
\(823\) 46.5608 1.62301 0.811503 0.584348i \(-0.198650\pi\)
0.811503 + 0.584348i \(0.198650\pi\)
\(824\) 4.62539 0.161133
\(825\) 0 0
\(826\) 5.92580 0.206185
\(827\) 46.6143 1.62094 0.810468 0.585782i \(-0.199213\pi\)
0.810468 + 0.585782i \(0.199213\pi\)
\(828\) 0 0
\(829\) −41.8838 −1.45468 −0.727342 0.686276i \(-0.759244\pi\)
−0.727342 + 0.686276i \(0.759244\pi\)
\(830\) 3.46385 0.120232
\(831\) 0 0
\(832\) 13.9676 0.484239
\(833\) 6.02112 0.208619
\(834\) 0 0
\(835\) 16.9237 0.585670
\(836\) 22.7671 0.787418
\(837\) 0 0
\(838\) 5.11105 0.176558
\(839\) −27.7532 −0.958146 −0.479073 0.877775i \(-0.659027\pi\)
−0.479073 + 0.877775i \(0.659027\pi\)
\(840\) 0 0
\(841\) 34.5891 1.19273
\(842\) −1.86683 −0.0643352
\(843\) 0 0
\(844\) 35.1007 1.20822
\(845\) −8.70131 −0.299334
\(846\) 0 0
\(847\) 17.0035 0.584247
\(848\) −41.4211 −1.42241
\(849\) 0 0
\(850\) −2.04450 −0.0701257
\(851\) 0 0
\(852\) 0 0
\(853\) −43.3281 −1.48353 −0.741763 0.670662i \(-0.766010\pi\)
−0.741763 + 0.670662i \(0.766010\pi\)
\(854\) −6.85933 −0.234722
\(855\) 0 0
\(856\) 3.30139 0.112839
\(857\) −50.2087 −1.71510 −0.857549 0.514402i \(-0.828014\pi\)
−0.857549 + 0.514402i \(0.828014\pi\)
\(858\) 0 0
\(859\) −38.0827 −1.29936 −0.649682 0.760206i \(-0.725098\pi\)
−0.649682 + 0.760206i \(0.725098\pi\)
\(860\) −4.24148 −0.144633
\(861\) 0 0
\(862\) −0.748719 −0.0255015
\(863\) −19.4101 −0.660728 −0.330364 0.943854i \(-0.607171\pi\)
−0.330364 + 0.943854i \(0.607171\pi\)
\(864\) 0 0
\(865\) 5.83447 0.198378
\(866\) −4.00880 −0.136224
\(867\) 0 0
\(868\) 31.2645 1.06119
\(869\) 71.5490 2.42713
\(870\) 0 0
\(871\) 1.48681 0.0503788
\(872\) −3.56244 −0.120640
\(873\) 0 0
\(874\) 0 0
\(875\) −18.6001 −0.628797
\(876\) 0 0
\(877\) −21.3238 −0.720054 −0.360027 0.932942i \(-0.617233\pi\)
−0.360027 + 0.932942i \(0.617233\pi\)
\(878\) −3.26212 −0.110091
\(879\) 0 0
\(880\) 16.2161 0.546645
\(881\) 14.0783 0.474311 0.237155 0.971472i \(-0.423785\pi\)
0.237155 + 0.971472i \(0.423785\pi\)
\(882\) 0 0
\(883\) 56.8259 1.91234 0.956172 0.292804i \(-0.0945885\pi\)
0.956172 + 0.292804i \(0.0945885\pi\)
\(884\) −8.80583 −0.296172
\(885\) 0 0
\(886\) −1.87948 −0.0631422
\(887\) 20.5838 0.691137 0.345568 0.938394i \(-0.387686\pi\)
0.345568 + 0.938394i \(0.387686\pi\)
\(888\) 0 0
\(889\) 2.14971 0.0720990
\(890\) −0.655847 −0.0219840
\(891\) 0 0
\(892\) 16.9737 0.568320
\(893\) −19.2679 −0.644777
\(894\) 0 0
\(895\) −17.3224 −0.579023
\(896\) 14.4840 0.483877
\(897\) 0 0
\(898\) −7.44545 −0.248458
\(899\) 62.3959 2.08102
\(900\) 0 0
\(901\) 24.4982 0.816153
\(902\) 6.54864 0.218046
\(903\) 0 0
\(904\) −17.1092 −0.569044
\(905\) 2.19699 0.0730304
\(906\) 0 0
\(907\) −0.380471 −0.0126333 −0.00631667 0.999980i \(-0.502011\pi\)
−0.00631667 + 0.999980i \(0.502011\pi\)
\(908\) −46.1085 −1.53016
\(909\) 0 0
\(910\) 1.02216 0.0338843
\(911\) 5.82616 0.193029 0.0965146 0.995332i \(-0.469231\pi\)
0.0965146 + 0.995332i \(0.469231\pi\)
\(912\) 0 0
\(913\) −63.8485 −2.11308
\(914\) −5.05049 −0.167056
\(915\) 0 0
\(916\) −13.2446 −0.437613
\(917\) −18.8709 −0.623172
\(918\) 0 0
\(919\) −8.02685 −0.264781 −0.132391 0.991198i \(-0.542265\pi\)
−0.132391 + 0.991198i \(0.542265\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.357201 0.0117638
\(923\) −8.59834 −0.283018
\(924\) 0 0
\(925\) −15.6507 −0.514593
\(926\) 0.721832 0.0237209
\(927\) 0 0
\(928\) 21.7912 0.715332
\(929\) 4.06182 0.133264 0.0666319 0.997778i \(-0.478775\pi\)
0.0666319 + 0.997778i \(0.478775\pi\)
\(930\) 0 0
\(931\) 7.40463 0.242677
\(932\) −2.65828 −0.0870750
\(933\) 0 0
\(934\) 1.25997 0.0412274
\(935\) −9.59090 −0.313656
\(936\) 0 0
\(937\) −30.2035 −0.986706 −0.493353 0.869829i \(-0.664229\pi\)
−0.493353 + 0.869829i \(0.664229\pi\)
\(938\) 0.346067 0.0112995
\(939\) 0 0
\(940\) −14.1423 −0.461271
\(941\) 45.1432 1.47163 0.735813 0.677185i \(-0.236800\pi\)
0.735813 + 0.677185i \(0.236800\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −44.7160 −1.45538
\(945\) 0 0
\(946\) −2.24895 −0.0731198
\(947\) 52.7617 1.71452 0.857262 0.514881i \(-0.172164\pi\)
0.857262 + 0.514881i \(0.172164\pi\)
\(948\) 0 0
\(949\) 0.122450 0.00397489
\(950\) −2.51428 −0.0815739
\(951\) 0 0
\(952\) −4.15820 −0.134768
\(953\) −24.2187 −0.784521 −0.392261 0.919854i \(-0.628307\pi\)
−0.392261 + 0.919854i \(0.628307\pi\)
\(954\) 0 0
\(955\) −17.4390 −0.564311
\(956\) −35.0127 −1.13239
\(957\) 0 0
\(958\) −2.23817 −0.0723120
\(959\) −30.4538 −0.983404
\(960\) 0 0
\(961\) 30.2250 0.975000
\(962\) 1.93905 0.0625175
\(963\) 0 0
\(964\) −0.574982 −0.0185189
\(965\) −18.1194 −0.583284
\(966\) 0 0
\(967\) 5.47721 0.176135 0.0880675 0.996115i \(-0.471931\pi\)
0.0880675 + 0.996115i \(0.471931\pi\)
\(968\) 7.71618 0.248007
\(969\) 0 0
\(970\) 1.40654 0.0451612
\(971\) −10.5100 −0.337283 −0.168641 0.985677i \(-0.553938\pi\)
−0.168641 + 0.985677i \(0.553938\pi\)
\(972\) 0 0
\(973\) 33.6400 1.07845
\(974\) −3.22551 −0.103352
\(975\) 0 0
\(976\) 51.7603 1.65681
\(977\) 23.6399 0.756306 0.378153 0.925743i \(-0.376559\pi\)
0.378153 + 0.925743i \(0.376559\pi\)
\(978\) 0 0
\(979\) 12.0891 0.386370
\(980\) 5.43486 0.173610
\(981\) 0 0
\(982\) 0.695085 0.0221811
\(983\) 18.5143 0.590514 0.295257 0.955418i \(-0.404595\pi\)
0.295257 + 0.955418i \(0.404595\pi\)
\(984\) 0 0
\(985\) 4.93857 0.157356
\(986\) −4.09051 −0.130268
\(987\) 0 0
\(988\) −10.8292 −0.344523
\(989\) 0 0
\(990\) 0 0
\(991\) 17.9995 0.571772 0.285886 0.958264i \(-0.407712\pi\)
0.285886 + 0.958264i \(0.407712\pi\)
\(992\) 21.3823 0.678889
\(993\) 0 0
\(994\) −2.00133 −0.0634782
\(995\) −12.5785 −0.398764
\(996\) 0 0
\(997\) −1.92620 −0.0610034 −0.0305017 0.999535i \(-0.509710\pi\)
−0.0305017 + 0.999535i \(0.509710\pi\)
\(998\) −2.71286 −0.0858742
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.bm.1.4 5
3.2 odd 2 1587.2.a.r.1.2 5
23.17 odd 22 207.2.i.a.82.1 10
23.19 odd 22 207.2.i.a.154.1 10
23.22 odd 2 4761.2.a.bp.1.4 5
69.17 even 22 69.2.e.b.13.1 10
69.65 even 22 69.2.e.b.16.1 yes 10
69.68 even 2 1587.2.a.q.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.b.13.1 10 69.17 even 22
69.2.e.b.16.1 yes 10 69.65 even 22
207.2.i.a.82.1 10 23.17 odd 22
207.2.i.a.154.1 10 23.19 odd 22
1587.2.a.q.1.2 5 69.68 even 2
1587.2.a.r.1.2 5 3.2 odd 2
4761.2.a.bm.1.4 5 1.1 even 1 trivial
4761.2.a.bp.1.4 5 23.22 odd 2